JPWO2007129403A1 - Rotary fluid machine - Google Patents

Rotary fluid machine Download PDF

Info

Publication number
JPWO2007129403A1
JPWO2007129403A1 JP2008514346A JP2008514346A JPWO2007129403A1 JP WO2007129403 A1 JPWO2007129403 A1 JP WO2007129403A1 JP 2008514346 A JP2008514346 A JP 2008514346A JP 2008514346 A JP2008514346 A JP 2008514346A JP WO2007129403 A1 JPWO2007129403 A1 JP WO2007129403A1
Authority
JP
Japan
Prior art keywords
fluid
rotor
partition member
housing
annular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008514346A
Other languages
Japanese (ja)
Other versions
JP5147134B2 (en
Inventor
俊雄 岡村
俊雄 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okamura YK
Original Assignee
Okamura YK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamura YK filed Critical Okamura YK
Publication of JPWO2007129403A1 publication Critical patent/JPWO2007129403A1/en
Application granted granted Critical
Publication of JP5147134B2 publication Critical patent/JP5147134B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C11/00Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type
    • F01C11/002Combinations of two or more machines or engines, each being of rotary-piston or oscillating-piston type of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/30Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F01C1/34Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members
    • F01C1/356Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F01C1/3568Rotary-piston machines or engines having the characteristics covered by two or more groups F01C1/02, F01C1/08, F01C1/22, F01C1/24 or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F01C1/08 or F01C1/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member with axially movable vanes

Abstract

回転型流体機械において、環状作動室(5)が、回転軸(4)の軸心方向におけるロータ(3)の片側の環状壁部(3a)と、この環状壁部(3a)に臨むようにハウジング(2)に形成された環状溝(20b)とで構成され、往復動仕切り部材(6)が、ハウジングに回転軸の軸心と平行方向へ移動自在に装着されて、環状作動室を仕切る進出位置と環状作動室から退いた退入位置とに移動自在であり、この往復動仕切り部材が付勢機構(7)により進出位置の方へ付勢され、環状作動室を横断的に仕切る円弧形仕切り部材(8)がロータに形成されている。In the rotary fluid machine, the annular working chamber (5) faces the annular wall (3a) on one side of the rotor (3) in the axial direction of the rotating shaft (4) and the annular wall (3a). An annular groove (20b) formed in the housing (2), and a reciprocating partition member (6) is mounted on the housing so as to be movable in a direction parallel to the axis of the rotary shaft, thereby partitioning the annular working chamber. The reciprocating partition member is movable toward the advanced position by the urging mechanism (7), and can be moved between the advanced position and the retracted position retracted from the annular working chamber. An arcuate partition member (8) is formed on the rotor.

Description

本発明は、回転軸の軸心方向におけるロータの少なくとも片側の環状壁部とハウジングに形成された環状溝とで環状作動室を構成し、この環状作動室をハウジングに装着された往復動仕切り部材とロータに形成された円弧形仕切り部材とで仕切り、往復動仕切り部材を回転軸の軸心と平行方向へ進退移動させるようにした回転型流体機械に関するものである。   The present invention forms an annular working chamber by an annular wall portion on at least one side of a rotor in the axial direction of a rotating shaft and an annular groove formed in the housing, and a reciprocating partition member mounted on the housing. And a rotary fluid machine in which the reciprocating partition member is moved forward and backward in a direction parallel to the axis of the rotation shaft.

従来、種々の複雑な構造の容積型の流体機械(流体圧ポンプ、流体圧モータ)が実用化されている。そのうち、ロータの回転による容積変化を利用した回転型流体機械は比較的構造が簡単であるが、ロータに複数のベーンを装着したものや、ロータに半径方向に出没する複数の仕切り部材を装着した流体機械では、ロータとその付属機構の構造が複雑化する。   Conventionally, volumetric fluid machines (fluid pressure pumps, fluid pressure motors) having various complicated structures have been put into practical use. Among them, the rotary fluid machine using the volume change caused by the rotation of the rotor has a relatively simple structure. However, the rotor is equipped with a plurality of vanes, or the rotor is equipped with a plurality of partition members that appear in the radial direction. In the fluid machine, the structure of the rotor and its attached mechanism is complicated.

そこで、本願発明者が提案した回転型流体機械(特許文献1参照)では、ハウジング内の円形断面のロータ収容室にロータが回転自在に収容され、回転軸がハウジングとロータの中心部を貫通してロータと一体的に回転し、ロータ収容室のうちロータの外周の外側に環状作動室が形成されている。ハウジングのうち環状作動室より外側に、第1仕切り部材が回転軸の軸心直交方向(径方向)へ移動自在に装着され、第1仕切り部材をロータの方へ付勢するバネ部材が装着され、この第1仕切り部材が環状作動室の内周面(ロータの外周面)に当接して環状作動室を仕切っている。   Therefore, in the rotary fluid machine proposed by the inventor of the present application (see Patent Document 1), the rotor is rotatably accommodated in a rotor accommodating chamber having a circular cross section in the housing, and the rotating shaft passes through the central portion of the housing and the rotor. The rotor rotates integrally with the rotor, and an annular working chamber is formed outside the outer periphery of the rotor in the rotor accommodating chamber. A first partition member is mounted on the outer side of the annular working chamber of the housing so as to be movable in a direction orthogonal to the axis of the rotating shaft (radial direction), and a spring member that biases the first partition member toward the rotor is mounted. The first partition member is in contact with the inner peripheral surface (the outer peripheral surface of the rotor) of the annular working chamber to partition the annular working chamber.

ロータの外周部には山形の第2仕切り部材(受圧突部又は加圧突部)が一体形成され、この第2仕切り部材がロータ収容室の外周面(ハウジングの内周面)に当接して環状作動室を仕切っている。ロータと共に回転する第2仕切り部材が、第1仕切り部材に接触して第1仕切り部材を径方向外側へ移動させ環状作動室外へ退けて通過する。ハウジングには、第1仕切り部材に対してロータ回転方向リーディング側近傍部に流体導入ポートが形成され、第1仕切り部材に対してロータ回転方向トレーリング側近傍部に流体導出ポートが形成されている。   A mountain-shaped second partition member (pressure receiving projection or pressure projection) is integrally formed on the outer periphery of the rotor, and the second partition member is in contact with the outer peripheral surface of the rotor accommodating chamber (inner peripheral surface of the housing). The annular working chamber is partitioned. The second partition member that rotates together with the rotor contacts the first partition member, moves the first partition member radially outward, and moves away from the annular working chamber. In the housing, a fluid introduction port is formed in the vicinity of the leading side of the rotor rotation direction with respect to the first partition member, and a fluid outlet port is formed in the vicinity of the trailing side of the rotor rotation direction with respect to the first partition member. .

特開平6−108981号公報JP-A-6-108981

従来の容積型の種々の回転型流体機械では、一般に構造が複雑になり製作コストが高価になる。特許文献1の回転型流体機械では、ロータより外周側の空間を活用してロータの外周の外側に環状作動室が形成される。そのため、ロータに対する軸心方向の側方の空間を有効活用して環状作動室を形成することができないため、また、ハウジンのうち環状作動室より外周側部位に第1仕切り部材とバネ部材が装着されるため、流体機械の直径(全高及び全幅)が大きくなって大型化し、製造コストも高価になる。   Conventional various rotary fluid machines of a positive displacement type generally have a complicated structure and a high manufacturing cost. In the rotary fluid machine of Patent Document 1, an annular working chamber is formed outside the outer periphery of the rotor by utilizing the space on the outer peripheral side from the rotor. For this reason, the annular working chamber cannot be formed by effectively utilizing the space in the axial direction with respect to the rotor, and the first partition member and the spring member are mounted on the outer peripheral portion of the housing from the annular working chamber. Therefore, the diameter (full height and full width) of the fluid machine becomes large and the size is increased, and the manufacturing cost is also expensive.

環状作動室の半径方向の幅を拡大すると、第1仕切り部材の進退移動量が大きくなるため、第1仕切り部材の往復動作の応答性を確保しにくくなり、装置も大型化する。そこで、第1仕切り部材の進退移動量を適正範囲に内に抑えて、環状作動室の軸心方向の幅を拡大すると、大きな容積の環状作動室を構成できるが、ロータが大型化し、ロータ内のデッドスペースが大きくなる。   When the radial width of the annular working chamber is increased, the amount of forward / backward movement of the first partition member is increased, so that it is difficult to ensure the responsiveness of the reciprocating operation of the first partition member, and the apparatus is also enlarged. Therefore, if the amount of forward and backward movement of the first partition member is kept within an appropriate range and the width in the axial direction of the annular working chamber is increased, a large-volume annular working chamber can be formed. The dead space increases.

第1仕切り部材は環状作動室の内周面(ロータの外周面)に当接する構成であるが、ロータの外周面の曲率は一定でないため、第1仕切り部材の先端部をロータの外周面に面接触させることが難しく、線接触になり易いため、流体密に仕切るシール性能を確保することが困難であり、耐久性も低下し、高圧の流体に適用できなくなる。尚、第1仕切り部材の先端部を回転可能な構造にすれば、ほぼ面接触させることができるが、構造が複雑化する。しかも、1台の流体機械に1組の環状作動室しか構成できないため、設計の自由度に乏しく、小型化又は大容量化することが難しく、製作コストが高価になる。   The first partition member is configured to contact the inner peripheral surface of the annular working chamber (the outer peripheral surface of the rotor). However, since the curvature of the outer peripheral surface of the rotor is not constant, the tip of the first partition member is placed on the outer peripheral surface of the rotor. Since it is difficult to make a surface contact and it is likely to be a line contact, it is difficult to secure a sealing performance for fluid tight partitioning, the durability is lowered, and it cannot be applied to a high pressure fluid. In addition, if the front-end | tip part of a 1st partition member is made into the structure which can be rotated, it can be made to substantially surface contact, but a structure becomes complicated. In addition, since only one set of annular working chambers can be configured in one fluid machine, the degree of freedom of design is poor, and it is difficult to reduce the size or increase the capacity, and the manufacturing cost is high.

本発明の目的は、構造を簡単化、小型化又は大容量化することのできる回転型流体機械を提供すること、軸心方向におけるロータの少なくとも片側の空間を有効利用して環状作動室を形成可能な回転型流体機械を提供すること、摺動部を面接触で流体密にシール可能な回転型流体機械を提供すること、1つのロータを複数組の流体加圧機構又は流体圧受圧機構に活用可能な回転型流体機械を提供すること、設計の自由度が著しく高い回転型流体機械を提供すること、などである。   An object of the present invention is to provide a rotary fluid machine whose structure can be simplified, reduced in size or increased in capacity, and to form an annular working chamber by effectively utilizing the space on at least one side of the rotor in the axial direction. Providing a rotary fluid machine capable of fluid sealing, and providing a rotary fluid machine capable of fluid-tight sealing of a sliding portion by surface contact. One rotor can be used as a plurality of sets of fluid pressurizing mechanisms or fluid pressure receiving mechanisms. To provide a rotary fluid machine that can be utilized, to provide a rotary fluid machine that has a remarkably high degree of design freedom, and the like.

本発明は、ハウジングと、ハウジング内に相対回転可能に収容されたロータと、このハウジングとロータの中心部を貫通してロータと一体的に回転する回転軸とを備え、流体を加圧する流体圧ポンプ又は流体圧でロータを回転駆動する流体圧モータとして作動可能な回転型流体機械において、前記回転軸の軸心方向におけるロータの少なくとも片側の環状壁部と、この環状壁部に臨むように前記ハウジングに形成された環状溝とで構成された環状作動室と、前記ハウジングに回転軸の軸心と平行方向へ移動自在に装着され、前記環状作動室を仕切る進出位置と、環状作動室から退いた退入位置とに移動自在の少なくとも1つの往復動仕切り部材と、前記往復動仕切り部材を進出位置の方へ付勢する付勢手段と、前記ロータに形成されて環状作動室を横断的に仕切る少なくとも1つの円弧形仕切り部材であって、少なくとも、ロータ回転方向リーディング側部分に形成され往復動仕切り部材を退入位置へ駆動可能な第1傾斜面と、ロータ回転方向トレーリング側部分に形成され往復動仕切り部材の退入位置から進出位置への復帰を許容する第2傾斜面とを有する少なくとも1つの円弧形仕切り部材と、前記ハウジングのうちの往復動仕切り部材に対してロータ回転方向リーディング側近傍部に形成され環状作動室に流体を導入する為の流体導入ポートと、前記ハウジングのうちの往復動仕切り部材に対してロータ回転方向トレーリング側近傍部に形成され環状作動室から流体を導出する為の流体導出ポートとを備えたことを特徴とするものである。   The present invention includes a housing, a rotor housed in the housing so as to be relatively rotatable, and a rotary shaft that penetrates the central portion of the housing and the rotor and rotates integrally with the rotor, and pressurizes fluid. In a rotary fluid machine operable as a pump or a fluid pressure motor that rotationally drives the rotor with fluid pressure, the annular wall portion on at least one side of the rotor in the axial direction of the rotating shaft, and the annular wall portion facing the annular wall portion An annular working chamber formed by an annular groove formed in the housing, an advance position for partitioning the annular working chamber, mounted in the housing so as to be movable in a direction parallel to the axis of the rotation shaft, and retracted from the annular working chamber. At least one reciprocating partition member movable to the retracted position, urging means for urging the reciprocating partition member toward the advanced position, and an annular work formed on the rotor. At least one arcuate partition member for transversely partitioning the chamber, at least a first inclined surface formed on the leading side portion in the rotor rotational direction and capable of driving the reciprocating partition member to the retracted position, and the rotor rotational direction At least one arc-shaped partition member formed on the trailing side portion and having a second inclined surface allowing the return of the reciprocating partition member from the retracted position to the advanced position, and the reciprocating partition member of the housing Formed in the vicinity of the rotor rotating direction leading side, and a fluid introduction port for introducing fluid into the annular working chamber, and formed in the rotor rotating direction trailing side vicinity of the reciprocating partition member of the housing And a fluid outlet port for leading out the fluid from the annular working chamber.

次に、上記回転型流体機械の作用、効果について説明する。
この回転型流体機械が流体圧モータである場合には、流体導入ポートから加圧流体が導入されてロータと回転軸が回転駆動され、ゼロ圧又は低圧になった流体は流体導出ポートから排出される。この回転型流体機械が流体圧ポンプである場合には、流体導入ポートから非加圧状態(又は加圧状態)の流体が導入されて環状作動室内で加圧され、その加圧流体が流体導出ポートから導出される。
Next, the operation and effect of the rotary fluid machine will be described.
When the rotary fluid machine is a fluid pressure motor, pressurized fluid is introduced from the fluid introduction port, the rotor and the rotation shaft are driven to rotate, and the fluid that has reached zero pressure or low pressure is discharged from the fluid outlet port. The When this rotary fluid machine is a fluid pressure pump, a fluid in a non-pressurized state (or a pressurized state) is introduced from the fluid introduction port and pressurized in the annular working chamber, and the pressurized fluid is derived from the fluid. Derived from the port.

環状作動室は、回転軸の軸心方向におけるロータの少なくとも片側の環状壁部と、この環状壁部に臨むようにハウジングに形成された環状溝とで構成され、この環状作動室が、ハウジングに装着された少なくとも1つの往復動仕切り部材で仕切られ、且つ、ロータに形成された少なくとも1つの円弧形仕切り部材で仕切られる。往復動仕切り部材と円弧形仕切り部材は、環状作動室を流体密に仕切ることが望ましいが、流体のリークが生じるような構造でもよい。 The annular working chamber is composed of an annular wall portion on at least one side of the rotor in the axial direction of the rotation shaft, and an annular groove formed in the housing so as to face the annular wall portion. It is partitioned by at least one reciprocating partition member mounted, and is partitioned by at least one arc-shaped partition member formed on the rotor. The reciprocating partition member and the arc-shaped partition member desirably partition the annular working chamber in a fluid-tight manner, but may have a structure in which fluid leakage occurs.

往復動仕切り部材が進出位置にある状態で、ロータと共に回転する円弧形仕切り部材が往復動仕切り部材に達すると、往復動仕切り部材が、円弧形仕切り部材の第1,第2傾斜面に順に接触して、進出位置から退入位置へ移動し、円弧形仕切り部材の通過後に退入位置から進出位置へ復帰する。 When the arcuate partition member that rotates together with the rotor reaches the reciprocating partition member with the reciprocating partition member in the advanced position, the reciprocating partition member is placed on the first and second inclined surfaces of the arcuate partition member. Touching in sequence, the position moves from the advanced position to the retracted position, and after passing through the arc-shaped partition member, returns from the retracted position to the advanced position.

この回転型流体機械によれば、軸心方向におけるロータの少なくとも片側に配置した環状作動室を往復動仕切り部材と円弧形仕切り部材とで仕切る構造を採用したので、流体機械の構造を簡単化することができる。   According to this rotary type fluid machine, the structure of the annular machine chamber arranged on at least one side of the rotor in the axial direction is divided by the reciprocating partition member and the arc-shaped partition member, so the structure of the fluid machine is simplified. can do.

往復動仕切り部材と付勢手段を環状作動室より外周側に突出させる必要がないので、回転型流体機械の直径(全高又は全幅)を小さくしてコンパクト化することができる。環状作動室の軸心方向の幅をあまり大きくせずに、環状作動室の半径方向の幅を大きくすることにより、流体機械の容量を確保することができるため、回転型流体機械を全体的にコンパクトに構成でき、製作コストを低減できる。   Since it is not necessary to project the reciprocating partition member and the urging means to the outer peripheral side from the annular working chamber, the diameter (full height or full width) of the rotary fluid machine can be reduced and made compact. Since the capacity of the fluid machine can be secured by increasing the radial width of the annular working chamber without increasing the axial width of the annular working chamber so much, It can be configured compactly and manufacturing costs can be reduced.

環状作動室の軸心方向の幅を適正な大きさに形成することにより、往復動仕切り部材の進退移動量を適正な大きさに抑えて、往復動仕切り部材を高い応答性でもって進退移動させることができる。往復動仕切り部材がロータと接触する摺動部およびハウジングと接触する摺動部と、円弧形仕切り部材がハウジングと接触する摺動部を面接触の構造にすることができるので、上記の摺動部を流体密又はほぼ流体密にシールする構造の信頼性、耐久性を確保することができる。   By forming the width of the annular working chamber in the axial direction to an appropriate size, the reciprocating partition member can be moved back and forth with high responsiveness while the reciprocating partition member is kept in an appropriate amount. be able to. Since the sliding portion where the reciprocating partition member contacts the rotor, the sliding portion where the arc-shaped partition member contacts the housing, and the sliding portion where the arc-shaped partition member contacts the housing can be structured to be in surface contact, The reliability and durability of the structure in which the moving part is sealed fluid-tight or almost fluid-tight can be ensured.

ロータの両側に環状作動室を配置して2組の流体機械を構成したり、ロータの片側又は両側に、夫々、同心円状の複数の環状作動室を配置して複数組の流体機械を構成したりすることができるため、非常に高い設計の自由度を有する流体機械を実現することできる。   Two sets of fluid machines are constructed by arranging annular working chambers on both sides of the rotor, or a plurality of sets of fluid machines are constructed by arranging a plurality of concentric annular working chambers on one or both sides of the rotor. Therefore, it is possible to realize a fluid machine having a very high degree of design freedom.

本発明の従属請求項の構成として、次の構成を採用可能である。
(1)前記回転軸の軸心方向におけるロータの両側に前記環状作動室を設け、各環状作動室に対応する往復動仕切り部材と、付勢手段と、円弧状仕切り部材と、流体導入ポートと、流体導出ポートとを設ける。
(2)前記付勢手段が、ガススプリングからなる。
(3)前記ガススプリングの圧縮ガス収容室の大部分をハウジングの壁部内に形成する。
The following configuration can be adopted as the configuration of the dependent claims of the present invention.
(1) The annular working chambers are provided on both sides of the rotor in the axial direction of the rotating shaft, a reciprocating partition member corresponding to each annular working chamber, an urging means, an arc-shaped partition member, a fluid introduction port, And a fluid outlet port.
(2) The biasing means includes a gas spring.
(3) Most of the compressed gas storage chamber of the gas spring is formed in the wall of the housing.

(4)前記往復動仕切り部材の進出位置と退入位置とに亙る進退移動を許容しながら周方向に移動しないように規制する係合案内機構を設ける。
(5)前記往復動仕切り部材のロータ側先端部分に、ロータの環状壁面のうち回転軸の軸心と直交する面部分に流体密に面接触可能な先端摺動面と、円弧状仕切り部材の第1,第2傾斜面に流体密に夫々面接触可能な第1,第2傾斜摺動面とを形成する。
(4) An engagement guide mechanism is provided for restricting the reciprocating partition member from moving in the circumferential direction while allowing the reciprocating partition member to move forward and backward.
(5) A tip sliding surface capable of fluid-tight contact with a portion of the annular wall surface of the rotor perpendicular to the axis of the rotating shaft, and a circular arc partition member Formed on the first and second inclined surfaces are first and second inclined sliding surfaces capable of fluid-tight contact with each other.

(6)前記往復動仕切り部材は、環状作動室の内周面の一部と外周面の一部に流体密に夫々面接触可能な内周円弧面と外周円弧面を有する。
(7)前記円弧形仕切り部材は、環状作動室の内周面と外周面に流体密に夫々面接触可能な内周摺動面と外周摺動面を有する。
(8)前記円弧形仕切り部材の第1,第2傾斜面の間におけるハウジング側先端部分に、ハウジングの環状溝の奥端の大部分が環状の環状壁面に流体密に面接触可能な先端摺動面を形成する。
(6) The reciprocating partition member has an inner circumferential arc surface and an outer circumferential arc surface that can make fluid contact with a part of the inner circumferential surface and a part of the outer circumferential surface of the annular working chamber, respectively.
(7) The arc-shaped partition member has an inner peripheral sliding surface and an outer peripheral sliding surface that can be brought into fluid-tight contact with the inner peripheral surface and the outer peripheral surface of the annular working chamber, respectively.
(8) The tip of the arcuate partition member between the first and second inclined surfaces, the tip of the housing-side tip where the most of the back end of the annular groove of the housing can be brought into fluid-tight surface contact with the annular annular wall surface Form a sliding surface.

(9)前記ロータの少なくとも片側に、回転軸の軸心と同心状の複数の前記環状作動室がロータとハウジングとで形成され、各環状作動室に夫々対応する、1又は複数の復動仕切り部材と、1又は複数の円弧形仕切り部材と、各復動仕切り部材に対応する流体導入ポート及び流体導出ポートとを設ける。 (9) At least one side of the rotor is formed with a plurality of the annular working chambers concentric with the axis of the rotation shaft by a rotor and a housing, and one or a plurality of return partitions corresponding to the respective annular working chambers. A member, one or a plurality of arc-shaped partition members, and a fluid introduction port and a fluid discharge port corresponding to each return partition member are provided.

(10)前記ロータの両側に、回転軸の軸心と同心状の複数の前記環状作動室がロータとハウジングとで形成され、各環状作動室に夫々対応する、1又は複数の復動仕切り部材と、1又は複数の円弧形仕切り部材と、各復動仕切り部材に対応する流体導入ポート及び流体導出ポートとを設ける。 (10) One or more return partition members each having a plurality of annular working chambers concentrically with the axis of the rotating shaft formed on both sides of the rotor by a rotor and a housing, each corresponding to each annular working chamber. And one or a plurality of arc-shaped partition members, and fluid introduction ports and fluid outlet ports corresponding to the respective return partition members.

(11)回転型流体圧モータとして構成され、複数の流体導入ポートに加圧流体を夫々供給する為の複数の流体通路を夫々切り換える複数の方向切換弁手段と、それら方向切換弁手段を制御する制御手段を設け、前記制御手段を介して複数の方向切換弁手段を選択的に切り換えることにより、回転軸の回転速度と、回転軸から出力されるトルクの少なくとも一方を複数とおりに切り換えるように構成する。 (11) It is configured as a rotary fluid pressure motor, and controls a plurality of direction switching valve means for switching a plurality of fluid passages for supplying pressurized fluid to a plurality of fluid introduction ports, respectively, and the direction switching valve means. Provided with control means, and configured to selectively switch at least one of the rotational speed of the rotary shaft and the torque output from the rotary shaft by selectively switching the plurality of direction switching valve means via the control means. To do.

本発明の実施例に係る回転型流体機械の斜視図である。1 is a perspective view of a rotary fluid machine according to an embodiment of the present invention. 回転型流体機械の縦断面図(図3のII−II線断面図)である。It is a longitudinal cross-sectional view (II-II sectional view taken on the line of FIG. 3) of a rotary fluid machine. 図2のIII −III 線断面図である。It is the III-III sectional view taken on the line of FIG. ハウジングの要部の斜視図である。It is a perspective view of the principal part of a housing. ロータの正面図である。It is a front view of a rotor. ロータの要部の斜視図である。It is a perspective view of the principal part of a rotor. 図2のVII −VII 線断面図(往復動仕切り部材が進出位置)である。It is the VII-VII sectional view taken on the line of FIG. 2 (a reciprocating partition member is advancing position). 往復動仕切り部材が退入位置のときの図7相当図である。FIG. 8 is a view corresponding to FIG. 7 when the reciprocating partition member is in the retracted position. 図7のIX−IX線断面図である。It is the IX-IX sectional view taken on the line of FIG. 円弧形仕切り部材の第1傾斜面と往復動仕切り部材の第1傾斜摺動面が面接触した状態を示す作動説明図である。It is operation | movement explanatory drawing which shows the state which the 1st inclined surface of the arc-shaped partition member and the 1st inclined sliding surface of the reciprocating partition member contacted. 円弧形仕切り部材の先端摺動面と往復動仕切り部材の先端摺動面が面接触した状態を示す作動説明図である。It is operation | movement explanatory drawing which shows the state which the tip sliding surface of the circular arc-shaped partition member and the tip sliding surface of the reciprocating partition member contacted. 円弧形仕切り部材の第2傾斜面と往復動仕切り部材の第2傾斜摺動面が面接触した状態を示す作動説明図である。It is operation | movement explanatory drawing which shows the state which the 2nd inclined surface of the circular arc-shaped partition member and the 2nd inclined sliding surface of the reciprocating partition member contacted. 変更例1の回転型流体機械の図2相当図である。FIG. 3 is a view corresponding to FIG. 2 of a rotary fluid machine of a first modification. 変更例2の回転型流体機械の図3相当図である。FIG. 6 is a view corresponding to FIG. 3 of a rotary fluid machine of a second modification. 変更例3の回転型流体機械の図7相当図である。FIG. 8 is a view corresponding to FIG. 7 showing a rotary fluid machine of a third modification. 変更例4の回転型流体機械の要部の図2相当図である。FIG. 10 is a view corresponding to FIG. 変更例5の回転型流体機械の要部の図2相当図である。FIG. 10 is a view corresponding to FIG. 変更例6の往復動仕切り部材の断面図である。It is sectional drawing of the reciprocating partition member of the example 6 of a change. 変更例7の円弧形仕切り部材の斜視図である。It is a perspective view of the circular-arc-shaped partition member of the example 7 of a change. 変更例8の回転型流体機械の図2相当図である。FIG. 9 is a view corresponding to FIG. 変更例8の回転型流体機械の図5相当図である。FIG. 6 is a view corresponding to FIG. 5 of a rotary fluid machine of a modification example 8. 図21に示す回転型流体機械の断面図(図20のXXII−XXII線断面相当図)である。FIG. 22 is a cross-sectional view of the rotary fluid machine shown in FIG. 21 (corresponding to a cross section taken along line XXII-XXII in FIG. 20). 変更例9の油圧式多段変速機の構成図である。It is a block diagram of the hydraulic multi-stage transmission of the modification 9.

符号の説明Explanation of symbols

1,1A〜1H 回転型流体機械
2,2B〜2H ハウジング
3,3B,3G,3F,3H ロータ
3a 環状壁部
4,4M 回転軸
5,5H1,5H2 環状作動室
6,6C,6D,6E,6F,6H1,6H2 往復動仕切り部材
6a 内周円弧面
6b 外周円弧面
6d 先端摺動面
6e 第1傾斜摺動面
6f 第2傾斜摺動面
7,7C 付勢機構
8,8G,8H1,8H2 円弧形仕切り部材
8a 内周摺動面
8b 外周摺動面
8d 先端摺動面
8f 第1傾斜面
8e 第2傾斜面
9,9a,9b 流体導入ポート
10,10a,10b 流体導出ポート
20b 環状溝
40,40D 係合案内機構
60 ガススプリング
61 圧縮ガス収容室
101,102 流体通路
103 電磁方向切換え弁
107 制御ユニット
DESCRIPTION OF SYMBOLS 1,1A-1H Rotary type fluid machine 2,2B-2H Housing 3,3B, 3G, 3F, 3H Rotor 3a Annular wall part 4,4M Rotating shaft 5,5H1,5H2 Annular working chamber 6,6C, 6D, 6E, 6F, 6H1, 6H2 Reciprocating partition member 6a Inner circular arc surface 6b Outer circular arc surface 6d End sliding surface 6e First inclined sliding surface 6f Second inclined sliding surface 7, 7C Energizing mechanism 8, 8G, 8H1, 8H2 Arc-shaped partition member 8a Inner peripheral sliding surface 8b Outer peripheral sliding surface 8d End sliding surface 8f First inclined surface 8e Second inclined surfaces 9, 9a, 9b Fluid introduction ports 10, 10a, 10b Fluid outlet port 20b Annular groove 40, 40D engagement guide mechanism 60 gas spring 61 compressed gas storage chamber 101, 102 fluid passage 103 electromagnetic direction switching valve 107 control unit

本発明の回転型流体機械は容積型の流体機械であり、この回転型流体機械においては、環状作動室が、回転軸の軸心方向におけるロータの少なくとも片側の環状壁部と、環状壁部に臨むようにハウジングに形成された環状溝とで構成され、少なくとも1つの往復動仕切り部材が、ハウジングに回転軸の軸心と平行方向へ移動自在に装着されて、環状作動室を仕切る進出位置と環状作動室から退いた退入位置とに移動自在であり、この往復動仕切り部材が付勢手段により進出位置の方へ付勢され、環状作動室を横断的に仕切る少なくとも1つの円弧形仕切り部材がロータに形成されている。   The rotary fluid machine of the present invention is a positive displacement fluid machine. In this rotary fluid machine, an annular working chamber is provided on the annular wall portion on at least one side of the rotor in the axial direction of the rotation shaft, and the annular wall portion. And an advancing position for partitioning the annular working chamber, wherein at least one reciprocating partition member is movably mounted in the housing in a direction parallel to the axis of the rotation shaft. At least one arc-shaped partition which is movable to a retracted position retracted from the annular working chamber, and the reciprocating partition member is biased toward the advanced position by the biasing means, and partitions the annular working chamber transversely. A member is formed on the rotor.

以下、本発明の実施例について図面に基づいて説明する。
尚、以下の説明において、「軸心」「軸心方向」「径方向」「周方向」は、回転軸4(又はハウジング2又はロータ3又は環状作動室5)の軸心C、軸心方向、径方向、周方向を意味する(図1、図2参照)。
Embodiments of the present invention will be described below with reference to the drawings.
In the following description, “axial center”, “axial direction”, “radial direction”, and “circumferential direction” are the axial center C and axial direction of the rotating shaft 4 (or the housing 2, the rotor 3, or the annular working chamber 5). , Radial direction and circumferential direction (see FIGS. 1 and 2).

図1〜図12に示すように、回転型流体機械1は、ハウジング2、ロータ3、回転軸4、環状作動室5、1対の往復動仕切り部材6、1対の付勢機構7、1対の円弧形仕切り部材8、1対の流体導入ポート9、1対の流体導出ポート10を備えている。この流体機械1は、流体を加圧する流体圧ポンプ(液圧ポンプ、気体加圧ポンプ)又は流体圧でロータ3を回転駆動する流体圧モータ(油圧モータ、エアモータ)として作動可能である。   As shown in FIGS. 1 to 12, the rotary fluid machine 1 includes a housing 2, a rotor 3, a rotating shaft 4, an annular working chamber 5, a pair of reciprocating partition members 6, and a pair of biasing mechanisms 7, 1. A pair of arcuate partition members 8, a pair of fluid inlet ports 9, and a pair of fluid outlet ports 10 are provided. The fluid machine 1 can be operated as a fluid pressure pump (hydraulic pressure pump, gas pressure pump) for pressurizing fluid or a fluid pressure motor (hydraulic motor, air motor) for rotating the rotor 3 with fluid pressure.

図1〜図4、図7〜図9に示すように、ハウジング2は、軸心方向に対向する第1,第2ハウジング部材20,21を有し、第1ハウジング部材20に、1対の往復動仕切り部材6及び1対の付勢機構7が装着されるとともに、1対の流体導入ポート9及び1対の流体導出ポート10が形成されている。第1,第2ハウジング部材20,21の中心部に軸孔20a,21aが形成され、これら軸孔20a,21aに軸受22,23が内嵌状に装着されている。   As shown in FIGS. 1 to 4 and 7 to 9, the housing 2 includes first and second housing members 20 and 21 that face each other in the axial direction. A reciprocating partition member 6 and a pair of urging mechanisms 7 are mounted, and a pair of fluid introduction ports 9 and a pair of fluid outlet ports 10 are formed. Shaft holes 20a and 21a are formed at the center of the first and second housing members 20 and 21, and bearings 22 and 23 are fitted into the shaft holes 20a and 21a in an internally fitted manner.

第1ハウジング部材20には、第2ハウジング部材21の方へ開口する環状溝20bが軸孔20aと同心状に形成されている。この環状溝20bは軸心Cを通る平面における半断面の形状が長方形に形成されている。第2ハウジング部材21には、第1ハウジング部材20の方へ開口する円形凹部21bが軸孔21aと同心状に且つ環状溝20bよりも少し大径に形成されている。第1ハウジング部材20の外周壁部20cと第2ハウジング部材21の外周壁部21cとがシール部材24を介して結合されている。第1,第2ハウジング部材20,21は、例えば、外周壁部20c,21cに貫通させた複数のタイボルト(図示略)により固定されている。   In the first housing member 20, an annular groove 20b that opens toward the second housing member 21 is formed concentrically with the shaft hole 20a. The annular groove 20b is formed in a rectangular shape in a half section on a plane passing through the axis C. In the second housing member 21, a circular recess 21b that opens toward the first housing member 20 is formed concentrically with the shaft hole 21a and slightly larger in diameter than the annular groove 20b. The outer peripheral wall portion 20 c of the first housing member 20 and the outer peripheral wall portion 21 c of the second housing member 21 are coupled via a seal member 24. The first and second housing members 20 and 21 are fixed by, for example, a plurality of tie bolts (not shown) penetrating the outer peripheral wall portions 20c and 21c.

第1ハウジング部材20の環状溝20bの奥端の大部分が環状の環状壁面20dと、第2ハウジング部材21の円形凹部21bの奥端の円形壁面21dは、軸心Cと直交する平面に形成されている。例えば、第1,第2ハウジング部材20,21の軸心方向の幅はほぼ同じであり、環状溝20bと円形凹部21bの軸心方向の幅はほぼ同じで且つ第1ハウジング部材20の軸心方向の幅の約1/2であり、環状溝20bは例えば第1ハウジング部材20の中心から半径の約5/10〜8/10の径方向部位に形成されている。   Most of the back end of the annular groove 20b of the first housing member 20 is a ring-shaped annular wall surface 20d, and the circular wall surface 21d of the back end of the circular recess 21b of the second housing member 21 is formed in a plane orthogonal to the axis C. Has been. For example, the first and second housing members 20 and 21 have substantially the same axial width, the annular groove 20b and the circular recess 21b have substantially the same axial width, and the first housing member 20 has an axial center. For example, the annular groove 20b is formed in a radial portion having a radius of about 5/10 to 8/10 from the center of the first housing member 20.

図2、図3、図5〜図9に示すように、ロータ3は、ハウジング2内に相対回転可能に収容されている。ロータ3は円板部25を有し、この円板部25から1対の円弧形仕切り部材8が第1ハウジング部材20の方へ突出状に形成されている。円板部25は、第2ハウジング部材21の円形凹部21bに回転摺動自在に収容され、第1ハウジング部材20の環状溝20b以外の第2ハウジング部材側端面に回転摺動自在に当接している。円板部25の中心部には軸孔25aとキー溝25bが形成されている。尚、矢印A,Bはロータ3の回転方向(正転方向)を示す。   As shown in FIGS. 2, 3, and 5 to 9, the rotor 3 is accommodated in the housing 2 so as to be relatively rotatable. The rotor 3 has a disc portion 25, and a pair of arc-shaped partition members 8 are formed so as to protrude from the disc portion 25 toward the first housing member 20. The disc portion 25 is accommodated in the circular recess 21b of the second housing member 21 so as to be slidable and slidably abuts against the second housing member side end surface other than the annular groove 20b of the first housing member 20. Yes. A shaft hole 25 a and a key groove 25 b are formed at the center of the disc portion 25. Arrows A and B indicate the rotation direction (forward rotation direction) of the rotor 3.

図1〜図3、図7、図8に示すように、回転軸4は、ハウジング2とロータ3の中心部を貫通してロータ3と一体的に回転する。回転軸4は、第1、第2ハウジング部材20,21の軸孔20a,21aに軸受22,23を介して内嵌されて回転自在に支持され、ロータ3の円板部25の軸孔25aに内嵌され、回転軸4のうち軸孔25aに内嵌される部分に形成されたキー溝4aと円板部25のキー溝25bにキー部材30が係合されている。回転軸4のうちハウジング2の軸心方向両端側に外嵌状に係合された1対のリング部材31により、回転軸4がハウジング2及びロータ3から抜け止めされている。   As shown in FIGS. 1 to 3, 7, and 8, the rotation shaft 4 passes through the central portion of the housing 2 and the rotor 3 and rotates integrally with the rotor 3. The rotary shaft 4 is fitted into the shaft holes 20a and 21a of the first and second housing members 20 and 21 via bearings 22 and 23 so as to be rotatably supported, and the shaft hole 25a of the disk portion 25 of the rotor 3 is supported. The key member 30 is engaged with the key groove 4 a formed in the portion of the rotary shaft 4 that is fitted in the shaft hole 25 a and the key groove 25 b of the disc portion 25. The rotating shaft 4 is prevented from being detached from the housing 2 and the rotor 3 by a pair of ring members 31 that are externally engaged with both ends of the rotating shaft 4 in the axial direction of the housing 2.

図2、図3、図7〜図9に示すように、環状作動室5は、軸心方向におけるロータ3の片側(第1ハウジング部材20側)の環状壁部3a(円弧形仕切り部材8の第1,第2傾斜面8e,8fを含む)と、環状壁部3aに臨むようにハウジング2に形成された環状溝20bとで構成されている。この環状作動室5より内周側において第1ハウジング部材20とロータ3の間が環状のシール部材35でシールされ、環状作動室5より外周側において第1ハウジング部材20とロータ3との間がほぼ環状のシール部材36でシールされている。   As shown in FIGS. 2, 3, and 7 to 9, the annular working chamber 5 has an annular wall portion 3 a (arc-shaped partition member 8) on one side (first housing member 20 side) of the rotor 3 in the axial direction. The first and second inclined surfaces 8e and 8f) and an annular groove 20b formed in the housing 2 so as to face the annular wall portion 3a. The space between the first housing member 20 and the rotor 3 is sealed by an annular seal member 35 on the inner peripheral side of the annular working chamber 5, and the space between the first housing member 20 and the rotor 3 is disposed on the outer peripheral side of the annular working chamber 5. Sealed with a substantially annular sealing member 36.

図2、図4、図7〜図12に示すように、1対の往復動仕切り部材6は、ハウジング2に軸心Cと平行方向へ移動自在に且つ軸心Cを中心とする回転対称位置に装着されている。各往復動仕切り部材6は、環状作動室5を仕切る進出位置(図7、図9参照)と、環状作動室5から退いた退入位置(図8参照)とに移動自在である。   As shown in FIGS. 2, 4, and 7 to 12, the pair of reciprocating partition members 6 are rotationally symmetric about the axis C and are movable in the housing 2 in a direction parallel to the axis C. It is attached to. Each reciprocating partition member 6 is movable between an advance position (see FIGS. 7 and 9) that partitions the annular working chamber 5 and a retracted position (see FIG. 8) that retreats from the annular working chamber 5.

各往復動仕切り部材6は、環状作動室5の内周面(環状溝20bの内周壁面)の一部に流体密に面接触する内周円弧面6aと、環状作動室5の外周面(環状溝20bの外周壁面)の一部に流体密に面接触する外周円弧面6bと、周方向に約15度隔てて設けられ周方向と直交する1対の側面6cと、先端摺動面6dを有する。尚、1対の側面6cは軸心Cを通る平面上に位置している。   Each reciprocating partition member 6 includes an inner peripheral circular arc surface 6a in fluid-tight surface contact with a part of the inner peripheral surface of the annular working chamber 5 (the inner peripheral wall surface of the annular groove 20b), and the outer peripheral surface of the annular working chamber 5 ( An outer peripheral circular arc surface 6b in fluid contact with a part of the outer peripheral wall surface of the annular groove 20b, a pair of side surfaces 6c provided approximately 15 degrees apart in the circumferential direction and orthogonal to the circumferential direction, and a tip sliding surface 6d Have The pair of side surfaces 6c are located on a plane passing through the axis C.

往復動仕切り部材6の軸心方向の長さは、例えば、第1ハウジング部材20の軸心方向の幅とほぼ同じであり、この往復動仕切り部材6を軽量化して往復移動の応答性を高める為に、往復動仕切り部材6はロータ3と反対側へ開口する凹部を有するカップ形断面の部材に形成されている。   The length of the reciprocating partition member 6 in the axial center direction is, for example, substantially the same as the width of the first housing member 20 in the axial center direction, and the reciprocating partition member 6 is reduced in weight to improve the responsiveness of the reciprocating movement. For this purpose, the reciprocating partition member 6 is formed as a cup-shaped cross-section member having a recess that opens to the opposite side of the rotor 3.

各往復動仕切り部材6のロータ側先端部分には、ロータ3の環状壁面3aのうちの、軸心Cと直交する面部分3a1と円弧状仕切り部材8の先端摺動面8dとに流体密に面接触可能な先端摺動面6dと、円弧状仕切り部材8の第1,第2傾斜面8e,8fに夫々流体密に面接触可能な第1,第2傾斜摺動面6e,6fとが形成されている。   The reciprocating partition member 6 is fluid-tightly connected to the front end portion on the rotor side of the annular wall surface 3a of the rotor 3 and the surface portion 3a1 orthogonal to the axis C and the front sliding surface 8d of the arcuate partition member 8. A front sliding surface 6d capable of surface contact and first and second inclined sliding surfaces 6e, 6f capable of fluid-tight surface contact with the first and second inclined surfaces 8e, 8f of the arcuate partition member 8, respectively. Is formed.

1対の往復動仕切り部材6をハウジング2に装着するために、第1ハウジング部材20には、往復動仕切り部材6がほぼ流体密に装着される1対の装着孔20eが貫通状に且つ環状溝20bに連通するように形成されている。各装着孔20eに往復動仕切り部材6が軸心Cと平行方向へスライド自在に内嵌され、この往復動仕切り部材6と第1ハウジング部材20との間が環状のシール部材45で流体密にシールされている。   In order to mount the pair of reciprocating partition members 6 on the housing 2, the first housing member 20 has a pair of mounting holes 20 e in which the reciprocating partition members 6 are mounted in a substantially fluid-tight manner in an annular shape. It is formed so as to communicate with the groove 20b. A reciprocating partition member 6 is fitted into each mounting hole 20e so as to be slidable in a direction parallel to the axis C, and an annular seal member 45 provides fluid tightness between the reciprocating partition member 6 and the first housing member 20. It is sealed.

ここで、往復動仕切り部材6は装着孔20eに常時装着されており、往復動仕切り部材6が退入位置にあるとき、その約半分が装着孔20eからロータ3と反対側へ突出した状態になり、往復動仕切り部材6が進出位置のときには、その約半分がロータ3側へ突出した状態になり、この装着孔20eにより、往復動仕切り部材6の進出位置と退入位置とに亙る進退移動を許容しながら周方向に移動しないように規制する係合案内機構40が構成されている。   Here, the reciprocating partition member 6 is always mounted in the mounting hole 20e, and when the reciprocating partition member 6 is in the retracted position, about half of the reciprocating partition member 6 protrudes from the mounting hole 20e to the opposite side of the rotor 3. Thus, when the reciprocating partition member 6 is in the advanced position, approximately half of the reciprocating partition member 6 protrudes toward the rotor 3, and the mounting hole 20e advances and retracts between the advanced position and the retracted position of the reciprocating partition member 6. An engagement guide mechanism 40 that restricts movement in the circumferential direction while allowing the movement is configured.

図2、図7〜図9に示すように、1対の付勢機構7は、1対の往復動仕切り部材6を夫々進出位置の方へ付勢する。各付勢機構7は1対の圧縮コイルバネ50からなり、これら圧縮コイルバネ50を受けるバネ受け部材51が、第1ハウジング部材20に設けられ、このバネ受け部材51の環状のフランジ部51aが第1ハウジング部材20に固定されている。1対の圧縮コイルバネ50は半径方向に異なる位置に配置され、往復動仕切り部材6とバネ受け部材51との間に圧縮状態に装着されている。1対の圧縮コイルバネ50は、往復動仕切り部材6が進出位置にある状態でも、往復動仕切り部材6に作用する軸心方向向きの流体力よりも大きな弾性力を発生可能に構成されている。   As shown in FIGS. 2 and 7 to 9, the pair of urging mechanisms 7 urge the pair of reciprocating partition members 6 toward the advanced positions. Each urging mechanism 7 includes a pair of compression coil springs 50. A spring receiving member 51 that receives the compression coil springs 50 is provided in the first housing member 20, and an annular flange portion 51a of the spring receiving member 51 is the first. It is fixed to the housing member 20. The pair of compression coil springs 50 are disposed at different positions in the radial direction, and are mounted in a compressed state between the reciprocating partition member 6 and the spring receiving member 51. The pair of compression coil springs 50 is configured to generate an elastic force larger than the axial fluid force acting on the reciprocating partition member 6 even when the reciprocating partition member 6 is in the advanced position.

図2、図3、図5、図6、図8、図10〜図12に示すように、1対の円弧形仕切り部材8は、ロータ3に軸心Cを中心とする回転対称位置に形成され、各円弧形仕切り部材8は環状作動室5を横断的に流体密に仕切る。各円弧仕切り部材8は、例えば、周方向に約85度に亙ってロータ3の円板部25から第1ハウジング部材20の方へ突出状に形成され、環状溝20bに回転摺動自在に係合している。   As shown in FIGS. 2, 3, 5, 6, 8, and 10 to 12, the pair of arcuate partition members 8 are located at rotationally symmetric positions about the axis C in the rotor 3. Each arcuate partition member 8 is formed in a fluid-tight manner across the annular working chamber 5. Each arc partition member 8 is formed, for example, so as to protrude from the disk portion 25 of the rotor 3 toward the first housing member 20 over about 85 degrees in the circumferential direction, and is slidably rotatable in the annular groove 20b. Is engaged.

各円弧形仕切り部材8は、環状作動室5の内周面と外周面に流体密に夫々面接触可能な内周摺動面8aと外周摺動面8bと、ロータ回転方向リーディング側部分に形成され往復動仕切り部材6を退入位置へ駆動可能な第1傾斜面8eと、ロータ回転方向トレーリング側部分に形成され往復動仕切り部材6の退入位置から進出位置への復帰を許容する第2傾斜面8fと、第1,第2傾斜面8e,8fの間の先端摺動面8dとを有する。先端摺動面8dは、円弧形仕切り部材8におけるハウジング側先端部分に、第1ハウジング部材20の環状溝20bの奥端の環状壁面20dに流体密に面接触するように形成されている。   Each arc-shaped partition member 8 has an inner peripheral sliding surface 8a and an outer peripheral sliding surface 8b that can make fluid contact with the inner peripheral surface and the outer peripheral surface of the annular working chamber 5, respectively, and a rotor rotating direction leading side portion. The first inclined surface 8e formed and capable of driving the reciprocating partition member 6 to the retracted position and the return of the reciprocating partition member 6 formed on the trailing side portion of the rotor rotational direction from the retracted position to the advanced position are allowed. A second inclined surface 8f and a tip sliding surface 8d between the first and second inclined surfaces 8e and 8f are provided. The tip sliding surface 8d is formed at the housing-side tip portion of the arc-shaped partition member 8 so as to be in fluid-tight surface contact with the annular wall surface 20d at the back end of the annular groove 20b of the first housing member 20.

先端摺動面8dは例えば周方向に約5度の領域部に、軸心Cと直交する平面と平行に形成され、先端摺動面8dの両端に仮想される径方向線分8d1,8d2は軸心Cを通る平面上にある。第1傾斜面8eは例えば周方向に約45度の領域部に形成され、この第1傾斜面8eは、軸心Cと直交する平面に対して周方向に傾斜状(トレーリング側ほど環状壁面20dに接近するような傾斜状)に形成されている。この第1傾斜面8eのリーディング側端部に仮想される半径方向線分8e1は軸心Cを通る平面上にある。そのため、第1傾斜面8eの周方向傾斜角は、外周側から内周側へ向かってリニアに増加している。第1傾斜面8eの周方向の平均的な傾斜角は例えば約20度である。   The tip sliding surface 8d is formed, for example, in an area portion of about 5 degrees in the circumferential direction and parallel to a plane orthogonal to the axis C, and radial line segments 8d1 and 8d2 hypothesized at both ends of the tip sliding surface 8d are It lies on a plane passing through the axis C. The first inclined surface 8e is formed, for example, in a region portion of about 45 degrees in the circumferential direction. The first inclined surface 8e is inclined in the circumferential direction with respect to a plane orthogonal to the axis C (the annular wall surface toward the trailing side). It is formed in an inclined shape so as to approach 20d. A radial line segment 8e1 assumed at the leading end of the first inclined surface 8e is on a plane passing through the axis C. Therefore, the circumferential inclination angle of the first inclined surface 8e increases linearly from the outer peripheral side toward the inner peripheral side. The average inclination angle in the circumferential direction of the first inclined surface 8e is, for example, about 20 degrees.

往復動仕切り部材6の第1傾斜摺動面6eは、第1傾斜面8eに面接触するように僅かに捩じれた傾斜摺動面に形成されている。尚、前記約45度の領域部は一例に過ぎず、約45度に限定される訳ではない。前記傾斜角(約20度)は一例に過ぎず、約20度に限定される訳ではない。   The first inclined sliding surface 6e of the reciprocating partition member 6 is formed as an inclined sliding surface that is slightly twisted so as to come into surface contact with the first inclined surface 8e. Note that the region of about 45 degrees is merely an example, and is not limited to about 45 degrees. The inclination angle (about 20 degrees) is merely an example, and is not limited to about 20 degrees.

第2傾斜面8fは例えば周方向に約35度の領域部に形成され、この第2傾斜面8fは、軸心Cと直交する平面に対して周方向に傾斜状(トレーリング側ほど環状壁面20dから離隔するような傾斜状)に形成されている。この第2傾斜面8fのトレーリング側端部に仮想される半径方向線分8f1は軸心Cを通る平面上にある。そのため、第2傾斜面8fの周方向傾斜角は、外周側から内周側へ向かってリニアに増加している。第2傾斜面8fの周方向の平均的な傾斜角は例えば約25度である。往復動仕切り部材6の第2傾斜摺動面6fは、第2傾斜面8fに面接触するように僅かに捩じれた傾斜摺動面に形成されている。尚、前記約35度の領域は一例に過ぎず、これに限定される訳ではない。前記傾斜角(約25度)は一例に過ぎず、約20度に限定される訳ではない。   The second inclined surface 8f is formed, for example, in an area portion of about 35 degrees in the circumferential direction. The second inclined surface 8f is inclined in the circumferential direction with respect to a plane orthogonal to the axis C (the annular wall surface toward the trailing side). It is formed so as to be separated from 20d. A radial line segment 8f1 imaginary at the trailing end of the second inclined surface 8f is on a plane passing through the axis C. Therefore, the circumferential inclination angle of the second inclined surface 8f increases linearly from the outer peripheral side toward the inner peripheral side. The average inclination angle in the circumferential direction of the second inclined surface 8f is, for example, about 25 degrees. The second inclined sliding surface 6f of the reciprocating partition member 6 is formed as an inclined sliding surface that is slightly twisted so as to come into surface contact with the second inclined surface 8f. The region of about 35 degrees is merely an example, and the present invention is not limited to this. The inclination angle (about 25 degrees) is merely an example, and is not limited to about 20 degrees.

第1,第2傾斜面8e,8fが周方向と直交する(軸心Cを通る)任意の平面と交差して形成される半径方向線分は全て軸心Cと直交する面上にある。尚、半径方向線分8d1,8d2の部位は、折れ面ではなく曲面状に形成するのが望ましく、半径方向線分8e1,8f1の部位も、折れ面ではなく曲面状に形成するのが望ましい。   Radial line segments formed by intersecting an arbitrary plane in which the first and second inclined surfaces 8e and 8f are orthogonal to the circumferential direction (passing through the axis C) are all on the plane orthogonal to the axis C. It should be noted that the portions of the radial line segments 8d1 and 8d2 are preferably formed in a curved shape rather than a folded surface, and the portions of the radial direction line segments 8e1 and 8f1 are preferably formed in a curved shape instead of a folded surface.

図1、図2、図4に示すように、1対の流体導入ポート9は、ハウジング2のうちの1対の往復動仕切り部材6に対してロータ回転方向リーディング側近傍部に形成され、1対の流体導出ポート10は、ハウジング2のうちの往復動仕切り部材に対してロータ回転方向トレーリング側近傍部に形成されている。流体導入ポート9と流体導出ポート10は、第1ハウジング部材20の外周壁部20cに環状作動室5と連通状に形成され、各流体導入ポート9に流体導入管(図示略)が接続され、各流体導出ポート10に流体導出管(図示略)が接続されている。   As shown in FIGS. 1, 2, and 4, the pair of fluid introduction ports 9 is formed in the vicinity of the leading side in the rotor rotation direction with respect to the pair of reciprocating partition members 6 in the housing 2. The pair of fluid outlet ports 10 are formed in the vicinity of the reciprocating partition member of the housing 2 in the vicinity of the rotor rotation direction trailing side. The fluid introduction port 9 and the fluid outlet port 10 are formed in communication with the annular working chamber 5 on the outer peripheral wall portion 20c of the first housing member 20, and a fluid introduction pipe (not shown) is connected to each fluid introduction port 9. A fluid outlet pipe (not shown) is connected to each fluid outlet port 10.

尚、ハウジング2、ロータ3、回転軸4、1対の往復動仕切り部材6等は、種々の鋼材料、球状黒鉛鋳鉄、鋳鉄、ステンレス、アルミニウム、アルミ合金、合成樹脂、FRP(繊維強化合成樹脂)又は高強度のセラミック材料などの何れかの材料で構成することができるが、これらの材料に限定される訳ではない。   The housing 2, the rotor 3, the rotating shaft 4, and the pair of reciprocating partition members 6 are made of various steel materials, spheroidal graphite cast iron, cast iron, stainless steel, aluminum, aluminum alloy, synthetic resin, FRP (fiber reinforced synthetic resin). ) Or a high-strength ceramic material, but is not limited to these materials.

以上説明した回転型流体機械1の作用・効果について説明する。
環状作動室5は、回転軸4の軸心方向におけるロータ3の片側の環状壁部3aと、この環状壁部3aに臨むようにハウジング2に形成された環状溝20bとで構成され、シール部材35,36,45により流体密にシールされ、この環状作動室5が、1対の往復動仕切り部材6で仕切られ、且つ1対の円弧形仕切り部材8で仕切られている。
The operation and effect of the rotary fluid machine 1 described above will be described.
The annular working chamber 5 includes an annular wall portion 3a on one side of the rotor 3 in the axial direction of the rotating shaft 4, and an annular groove 20b formed in the housing 2 so as to face the annular wall portion 3a. The annular working chamber 5 is partitioned by a pair of reciprocating partition members 6 and partitioned by a pair of arc-shaped partition members 8.

1対の往復動仕切り部材6の内周円弧面6aと外周円弧面6bが、夫々、環状作動室5の内周面の一部と外周面の一部に流体密に面接触して、1対の往復動仕切り部材6が軸心Cと平行方向へ進出位置と退入位置とに亙って移動自在であり、1対の円弧形仕切り部材8の内周摺動面8aと外周摺動面8bが、夫々、環状作動室5の内周面と外周面に流体密に面接触しながら、1対の円弧形仕切り部材8がロータ3及び回転軸4と共に軸心Cの回りに回転自在である。   The inner peripheral circular arc surface 6a and the outer peripheral circular arc surface 6b of the pair of reciprocating partition members 6 are in fluid-tight surface contact with a part of the inner peripheral surface and a part of the outer peripheral surface of the annular working chamber 5, respectively. The pair of reciprocating partition members 6 is movable in the direction parallel to the axis C along the advance position and the retract position, and the inner peripheral sliding surface 8a and the outer peripheral slide of the pair of arcuate partition members 8 The pair of arc-shaped partition members 8 together with the rotor 3 and the rotating shaft 4 are rotated around the axis C while the moving surfaces 8b are in fluid-tight contact with the inner and outer peripheral surfaces of the annular working chamber 5, respectively. It is free to rotate.

ロータ3と共に1対の円弧形仕切り部材8が回転するとき、基本的には、進出位置の1対の往復動仕切り部材6の先端摺動面6dが、ロータ3の環状壁部3aのうちの回転軸4の軸心Cと直交する面部分3a1に流体密に面接触し、1対の円弧形仕切り部材8の先端摺動面8dが、ハウジング2の環状溝20bの環状壁面20dに流体密に面接触した状態を維持する。但し、1対の往復動仕切り部材6と1対の円弧形仕切り部材8とが周方向にオーバラップする際には、上記とは幾分異なる状態となる。   When the pair of arcuate partition members 8 rotate together with the rotor 3, the tip sliding surfaces 6 d of the pair of reciprocating partition members 6 at the advanced position are basically the annular wall portions 3 a of the rotor 3. The surface sliding portion 8d of the pair of arcuate partition members 8 is in fluid contact with the surface portion 3a1 orthogonal to the axis C of the rotary shaft 4 and the annular wall surface 20d of the annular groove 20b of the housing 2 is in contact with the surface portion 3a1. Maintain fluid-tight surface contact. However, when the pair of reciprocating partition members 6 and the pair of arcuate partition members 8 overlap in the circumferential direction, a slightly different state is obtained.

ロータ3と共に回転する1対の円弧形仕切り部材8が1対の往復動仕切り部材6に達すると、各往復動仕切り部材6が、円弧形仕切り部材8の第1傾斜面8e、先端摺動面8d、第2傾斜面8fに順に接触して、進出位置から退入位置へ移動し、円弧形仕切り部材8の通過後に再び進出位置へ復帰する。   When the pair of arcuate partition members 8 that rotate together with the rotor 3 reach the pair of reciprocating partition members 6, the reciprocating partition members 6 are connected to the first inclined surface 8 e of the arcuate partition member 8, the tip slide. The moving surface 8d and the second inclined surface 8f are sequentially contacted, moved from the advanced position to the retracted position, and returned to the advanced position again after passing through the arcuate partition member 8.

次に、上記のことについて図10〜図12に基づいて詳しく説明する。
図10に鎖線で示すように、進出位置の往復動仕切り部材6の先端摺動面6dが、ロータ3の環状壁部3aの面部分3a1に面接触した状態で、円弧形仕切り部材8の第1傾斜面8eのロータ回転方向リーディング側端部が、往復動仕切り部材6の第1傾斜摺動面6eに面接触してから、図10に実線で示すように、第1傾斜面8eにより往復動仕切り部材6が退入位置の方へ駆動される。このとき、往復動仕切り部材6と円弧形仕切り部材8の間の空間の容積が零まで縮小する。
Next, the above will be described in detail with reference to FIGS.
As indicated by a chain line in FIG. 10, the tip sliding surface 6 d of the reciprocating partition member 6 at the advanced position is in surface contact with the surface portion 3 a 1 of the annular wall portion 3 a of the rotor 3. After the leading end of the first inclined surface 8e in the rotor rotational direction comes into surface contact with the first inclined sliding surface 6e of the reciprocating partition member 6, as shown by the solid line in FIG. The reciprocating partition member 6 is driven toward the retracted position. At this time, the volume of the space between the reciprocating partition member 6 and the arc-shaped partition member 8 is reduced to zero.

次に、図11に示すように、往復動仕切り部材6が第1傾斜面8eにより退入位置へ駆動されると、円弧形仕切り部材8の先端摺動面8dが往復動仕切り部材6の先端摺動面6dに面接触し、その後、円弧形仕切り部材8の第2傾斜面8fにより、往復動仕切り部材6の進出位置への復帰が許容される。   Next, as shown in FIG. 11, when the reciprocating partition member 6 is driven to the retracted position by the first inclined surface 8 e, the tip sliding surface 8 d of the arc-shaped partition member 8 is moved to the reciprocating partition member 6. After the surface contact with the tip sliding surface 6d, the second inclined surface 8f of the arcuate partition member 8 permits the reciprocating partition member 6 to return to the advanced position.

この場合、図12に実線で示すように、付勢機構7により進出位置の方へ付勢された往復動仕切り部材6の第2傾斜摺動面6fが、円弧形仕切り部材8の第2傾斜面8fに面接触した状態で、往復動仕切り部材6が進出位置の方へ復帰移動し、その後、図12に鎖線で示すように、進出位置の往復動仕切り部材6の先端摺動面6dが、ロータ3の環状壁部3aの面部分3a1に面接触し、円弧形仕切り部材8の通過が完了する。このとき、往復動仕切り部材6と円弧形仕切り部材8の間の空間の容積が零から拡大していく。   In this case, as shown by a solid line in FIG. 12, the second inclined sliding surface 6 f of the reciprocating partition member 6 urged toward the advanced position by the urging mechanism 7 is the second inclined sliding surface 6 f of the arc-shaped partition member 8. The reciprocating partition member 6 moves back toward the advanced position while being in surface contact with the inclined surface 8f, and then, as shown by a chain line in FIG. 12, the tip sliding surface 6d of the reciprocating partition member 6 at the advanced position. However, the surface contact with the surface portion 3a1 of the annular wall 3a of the rotor 3 is completed, and the passage of the arc-shaped partition member 8 is completed. At this time, the volume of the space between the reciprocating partition member 6 and the arcuate partition member 8 increases from zero.

図2に示すように、この回転型流体機械1では、環状作動室5が1対の往復動仕切り部材6により1対の作動分室5aに区画され、各作動分室5aのロータ回転方向トレーリング側端部に流体導入ポート9が連通し、各作動分割室5aのロータ回転方向リーディング側端部に流体導出ポート10が連通している。ロータ3が回転するとき、各作動分室5aにおいて、円弧形仕切り部材8よりもロータ回転方向トレーリング側の容積拡張空間5a1に流体導入ポート9から流体が導入され、円弧形仕切り部材8よりもロータ回転方向リーディング側の容積収縮空間5a2から流体導出ポート10に流体が吐出される。   As shown in FIG. 2, in this rotary fluid machine 1, the annular working chamber 5 is partitioned into a pair of working compartments 5a by a pair of reciprocating partition members 6, and the rotor rotating direction trailing side of each working compartment 5a. The fluid introduction port 9 communicates with the end portion, and the fluid outlet port 10 communicates with the leading end portion in the rotor rotation direction of each working partition chamber 5a. When the rotor 3 rotates, fluid is introduced from the fluid introduction port 9 into the volume expansion space 5 a 1 on the trailing side of the rotor rotation direction from the arc-shaped partition member 8 in each working compartment 5 a, and from the arc-shaped partition member 8. Also, the fluid is discharged to the fluid outlet port 10 from the volume contraction space 5a2 on the leading side in the rotor rotation direction.

この回転型流体機械1を流体圧ポンプ(液体加圧ポンプ又は気体加圧ポンプ)として使用する場合には、回転軸4が電動モータ等の回転駆動手段(図示略)により回転駆動されて、ロータ3と共に1対の円弧形仕切り部材8が回転し、これら円弧形仕切り部材8により流体導入ポート9から1対の容積拡張空間5a1に導入された流体(液体又は気体)が、1対の容積収縮空間5a2において加圧されて1対の流体導出ポート10から吐出される。   When this rotary fluid machine 1 is used as a fluid pressure pump (liquid pressurization pump or gas pressurization pump), the rotary shaft 4 is rotationally driven by a rotational drive means (not shown) such as an electric motor, and the rotor 3 and a pair of arc-shaped partition members 8 rotate, and the fluid (liquid or gas) introduced into the pair of volume expansion spaces 5a1 from the fluid introduction port 9 by these arc-shaped partition members 8 is a pair of Pressurized in the volumetric contraction space 5 a 2 and discharged from the pair of fluid outlet ports 10.

他方、回転型流体機械1を流体圧モータ(油圧モータ又はエアモータ)として使用する場合には、1対の流体導入ポート10から環状作動室5の1対の容積拡張空間5a1に加圧流体(加圧油、加圧エア)が導入され、これら加圧流体の流体圧が1対の円弧形仕切り部材8に作用して回転トルクが発生し、1対の円弧形仕切り部材8と共にロータ3が回転駆動される。この流体圧モータでは、2つの円弧形仕切り部材8が流体圧を受圧するため、発生するトルクTは、T=2×Sa×P×Rとなる。
但し、Saは、環状作動室5の長方形状の断面積(軸心Cを通る平面における片側の断面積)であり、Pは流体圧であり、Rは軸心から環状作動室5までの半径である。
On the other hand, when the rotary fluid machine 1 is used as a fluid pressure motor (hydraulic motor or air motor), a pressurized fluid (acceleration) is applied from a pair of fluid introduction ports 10 to a pair of volume expansion spaces 5a1 of the annular working chamber 5. Pressure oil, pressurized air) is introduced, and the fluid pressure of these pressurized fluids acts on the pair of arcuate partition members 8 to generate rotational torque, and together with the pair of arcuate partition members 8, the rotor 3. Is driven to rotate. In this fluid pressure motor, since the two arc-shaped partition members 8 receive the fluid pressure, the generated torque T is T = 2 × Sa × P × R.
However, Sa is the rectangular sectional area of the annular working chamber 5 (one-side sectional area in the plane passing through the axis C), P is the fluid pressure, and R is the radius from the axis to the annular working chamber 5. It is.

流体圧モータとして使用する場合には、好ましくは、円弧形仕切り部材8の第1,第2傾斜面8e,8fを等しい傾斜角に形成しておき(第1,第2傾斜面8e,8fを先端摺動面6dに対して周方向に対称に形成しておき)、流体導入ポート9に流体圧を供給し且つ流体導出ポート10から流体を排出する正転作動モードから、流体導出ポート10に流体圧を供給し且つ流体導入ポート9から流体を排出する逆転作動モードに切り換えることにより、流体圧モータの回転方向を逆転させることもできる。   When used as a fluid pressure motor, the first and second inclined surfaces 8e and 8f of the arcuate partition member 8 are preferably formed at equal inclination angles (first and second inclined surfaces 8e and 8f). From the forward operation mode in which the fluid pressure is supplied to the fluid inlet port 9 and the fluid is discharged from the fluid outlet port 10. The rotation direction of the fluid pressure motor can be reversed by switching to the reverse operation mode in which the fluid pressure is supplied to the fluid and the fluid is discharged from the fluid introduction port 9.

前記往復動仕切り部材6の先端部に形成した、第1、第2傾斜摺動面6e,6fは必須のものではなく、流体圧が低い流体機械の場合には、第1、第2傾斜摺動面6e,6fを省略し、先端摺動面6dを部分円筒面状に形成してもよい。   The first and second inclined sliding surfaces 6e and 6f formed at the front end of the reciprocating partition member 6 are not essential, and in the case of a fluid machine having a low fluid pressure, the first and second inclined sliding surfaces. The moving surfaces 6e and 6f may be omitted, and the tip sliding surface 6d may be formed in a partial cylindrical surface shape.

上記の流体機械1では、ロータ3の片側に、1つの環状作動室5を形成したが、複数の環状作動室を同心状に形成し、各環状作動室に対応する往復動仕切り部材6、付勢機構7、円弧形仕切り部材8、流体導入ポート9、流体導出ポート10など設けることにより、複数組の流体加圧機構又は流体圧受圧機構を有する複数組の流体機械を備えた回転型流体機械を実現することも可能である。   In the fluid machine 1 described above, one annular working chamber 5 is formed on one side of the rotor 3, but a plurality of annular working chambers are formed concentrically, and a reciprocating partition member 6 corresponding to each annular working chamber is attached. Rotating fluid provided with a plurality of sets of fluid machines having a plurality of sets of fluid pressurizing mechanisms or fluid pressure receiving mechanisms by providing a biasing mechanism 7, an arc-shaped partition member 8, a fluid introduction port 9, a fluid outlet port 10, and the like It is also possible to implement a machine.

以上説明した回転型流体機械1によれば次のような効果が得られる。
(1)回転型流体機械1は、ハウジング2、ロータ3、回転軸4、環状作動室5、1対の往復動仕切り部材6、1対の付勢機構7、1対の円弧形仕切り部材8、1対の流体導入ポート9、1対の流体導出ポート10を備えたシンプルな構造であり、従来の回転型流体機械と比べると、回転型流体機械1の構造を著しく簡単化することができる。
特に、この回転型流体機械1においては、軸心方向におけるロータ3の少なくとも片側に配置した環状作動室5を往復動仕切り部材6と円弧形仕切り部材8とで仕切る構造を採用したので、流体機械1の構造を簡単化することができる。
According to the rotary fluid machine 1 described above, the following effects can be obtained.
(1) The rotary fluid machine 1 includes a housing 2, a rotor 3, a rotary shaft 4, an annular working chamber 5, a pair of reciprocating partition members 6, a pair of biasing mechanisms 7, and a pair of arc-shaped partition members. 8, a simple structure including a pair of fluid introduction ports 9 and a pair of fluid outlet ports 10, and the structure of the rotary fluid machine 1 can be significantly simplified as compared with a conventional rotary fluid machine. it can.
In particular, the rotary fluid machine 1 employs a structure in which the annular working chamber 5 disposed on at least one side of the rotor 3 in the axial direction is partitioned by the reciprocating partition member 6 and the arc-shaped partition member 8. The structure of the machine 1 can be simplified.

(2)往復動仕切り部材6と付勢機構7を環状作動室5より外周側に突出させる必要がないので、流体機械1の直径(全高又は全幅)を小さくして小型化又は大容量化することができる。環状作動室5の軸心方向の幅をあまり大きくせずに、環状作動室5の径方向の幅を大きくすることにより、流体機械1の容量を増すことができるため、流体機械1を全体的にコンパクトに構成でき、製作コストを低減できる。 (2) Since it is not necessary to project the reciprocating partition member 6 and the urging mechanism 7 to the outer peripheral side from the annular working chamber 5, the diameter (full height or full width) of the fluid machine 1 is reduced to reduce the size or increase the capacity. be able to. Since the capacity of the fluid machine 1 can be increased by increasing the radial width of the annular working chamber 5 without increasing the width of the annular working chamber 5 in the axial direction, the fluid machine 1 can be increased as a whole. It can be configured compactly and the manufacturing cost can be reduced.

(3)環状作動室5の軸心方向の幅を適正な大きさに形成することにより、往復動仕切り部材6の進退移動量を適正な大きさに抑えて、往復動仕切り部材6を高い応答性でもって進退移動させることができる。往復動仕切り部材6がロータ3と接触する摺動部および第1ハウジング20と接触する摺動部と、円弧形仕切り部材8が第1ハウジング20と接触する摺動部を面接触の構造にすることができるので、上記の摺動部を流体密又はほぼ流体密にシールする構造の信頼性、耐久性を確保することができる。 (3) By forming the width of the annular working chamber 5 in the axial direction in an appropriate size, the reciprocating partition member 6 is suppressed in an appropriate size and the reciprocating partition member 6 has a high response. You can move forward and backward with sex. The sliding part in which the reciprocating partition member 6 contacts the rotor 3 and the sliding part in contact with the first housing 20 and the sliding part in which the arcuate partition member 8 contacts the first housing 20 have a surface contact structure. Therefore, it is possible to ensure the reliability and durability of the structure in which the sliding portion is sealed in a fluid-tight or almost fluid-tight manner.

(4)ロータ3の両側に環状作動室5を配置して2組の流体機械を構成したり、ロータ3の片側又は両側に、夫々、同心円状の複数の環状作動室5を配置して複数組の流体機械を構成したりすることができるため、非常に高い設計の自由度を有する流体機械を実現することできる。
(5)この回転型流体機械1は、種々の用途、容量、吐出圧の流体圧ポンプとして、また、種々の用途、容量、流体圧の流体圧モータとして、適用することができる。
(4) Two sets of fluid machines are configured by disposing the annular working chambers 5 on both sides of the rotor 3, or a plurality of concentric annular working chambers 5 are disposed on one or both sides of the rotor 3. Therefore, a fluid machine having a very high degree of design freedom can be realized.
(5) The rotary fluid machine 1 can be applied as a fluid pressure pump having various uses, capacities and discharge pressures, and as a fluid pressure motor having various uses, capacities and fluid pressures.

次に、前記回転型流体機械1を部分的に変更した変更例について説明する。
但し、前記回転型流体機械1の部材と同じ部材又は類似する部材には、同一又は類似の符号を付して説明を省略する。
Next, a modified example in which the rotary fluid machine 1 is partially changed will be described.
However, the same or similar members as those of the rotary fluid machine 1 are denoted by the same or similar reference numerals, and description thereof is omitted.

1)図13に示す回転型流体機械1Aにおいては、往復動仕切り部材6、付勢機構7、円弧形仕切り部材8、流体導入ポート9、流体導出ポート10が夫々1組設けられている。尚、大型の回転型流体機械では、往復動仕切り部材6、付勢機構7、円弧形仕切り部材8、流体導入ポート9、流体導出ポート10を3組以上設けることも可能である。   1) In the rotary fluid machine 1A shown in FIG. 13, a reciprocating partition member 6, an urging mechanism 7, an arc-shaped partition member 8, a fluid introduction port 9, and a fluid outlet port 10 are provided. In a large rotary fluid machine, three or more sets of the reciprocating partition member 6, the biasing mechanism 7, the arc-shaped partition member 8, the fluid introduction port 9, and the fluid outlet port 10 can be provided.

2)図14に示す回転型流体機械1Bにおいては、回転軸4の軸心方向におけるロータ3Bの両側に環状作動室5が設けられ、各環状作動室5に対応する往復動仕切り部材6と、付勢機構7と、円弧状仕切り部材8と、流体導入ポート9と、流体導出ポート10とが設けられている。この回転型流体機械1Bは大型の流体機械に適する。但し、小型の流体機械にも適用可能である。   2) In the rotary fluid machine 1B shown in FIG. 14, the annular working chambers 5 are provided on both sides of the rotor 3B in the axial direction of the rotating shaft 4, and the reciprocating partition members 6 corresponding to the respective annular working chambers 5; An urging mechanism 7, an arc-shaped partition member 8, a fluid introduction port 9, and a fluid outlet port 10 are provided. This rotary fluid machine 1B is suitable for a large fluid machine. However, it can also be applied to small fluid machines.

ハウジング2Bは軸心方向に対向する1対のハウジング部材20Bを有し、これらの外周壁部同士がシール部材24Bを介在させた状態で複数のタイボルトにより固定されている。回転軸4はロータ3Bに相対回転不能に連結されており、この回転軸4は1対のハウジング部材20Bの中心部に軸受22Bを介して回転自在に支持されている。各環状作動室5より内周側においてハウジング部材20Bとロータ3との間が環状のシール部材35Bでシールされ、各環状作動室5より外周側においてハウジング部材20Bとロータ3との間がほぼ環状のシール部材36Bでシールされている。   The housing 2B has a pair of housing members 20B facing each other in the axial direction, and these outer peripheral wall portions are fixed by a plurality of tie bolts with a seal member 24B interposed therebetween. The rotating shaft 4 is connected to the rotor 3B so as not to rotate relative to the rotor 3B. The rotating shaft 4 is rotatably supported at the center of a pair of housing members 20B via a bearing 22B. A space between the housing member 20B and the rotor 3 is sealed by an annular seal member 35B on the inner peripheral side from each annular working chamber 5, and a portion between the housing member 20B and the rotor 3 is substantially annular on the outer peripheral side from each annular working chamber 5. The sealing member 36B is sealed.

ここで、各環状作動室5に対応する往復動仕切り部材6、付勢機構7、円弧状仕切り部材8、流体導入ポート9と、流体導出ポート10は夫々1組設けてもよく、複数組設けてもよい。但し、それらを複数組設ける場合には、流体圧ポンプでは、回転トルク負荷の変動幅が極力小さくなるように、また、流体圧モータでは、出力される回転トルクの変動幅が極力小さくなるように、周方向の配置位置を選択するのが望ましい。   Here, the reciprocating partition member 6, the urging mechanism 7, the arc-shaped partition member 8, the fluid introduction port 9, and the fluid outlet port 10 corresponding to each annular working chamber 5 may each be provided, or a plurality of sets may be provided. May be. However, when multiple sets of them are provided, the fluctuation range of the rotational torque load is minimized in the fluid pressure pump, and the fluctuation width of the output rotational torque is minimized in the fluid pressure motor. It is desirable to select an arrangement position in the circumferential direction.

3)図15に示す回転型流体機械1Cでは、付勢機構7Cが、圧縮ガスG(例えば、圧縮窒素ガス)で作動するガスプリング60で構成されている。このガススプリング60の圧縮ガス収容室61の大部分がハウジング2Cの壁部内に形成されている。 往復動仕切り部材6Cは、カップ形の断面を有し、第1ハウジング部材20Cに形成された装着孔20eに、軸心と平行方向にスライド自在に装着され、複数の環状のシール部材62により流体密にシールされている。   3) In the rotary fluid machine 1 </ b> C shown in FIG. 15, the urging mechanism 7 </ b> C is configured by a gas spring 60 that operates with a compressed gas G (for example, compressed nitrogen gas). Most of the compressed gas storage chamber 61 of the gas spring 60 is formed in the wall portion of the housing 2C. The reciprocating partition member 6 </ b> C has a cup-shaped cross section, is mounted in a mounting hole 20 e formed in the first housing member 20 </ b> C so as to be slidable in a direction parallel to the axis, and is fluidized by a plurality of annular seal members 62. It is tightly sealed.

第1ハウジング部材20Cのうちの環状作動室5よりも内周側部分に、ロータ3と反対側外面から環状作動室5と同心状の環状溝20fが形成され、この環状溝20fが環状蓋部材63を溶接することにより気密に閉じられ、圧縮ガス収容室61の大部分を形成する環状収容室64が形成されている。装着孔20eに対してロータ3と反対側に、往復動仕切り部材6の進退移動を許容する状態にしてカバー部材65が配設され、このカバー部材65の環状のフランジ部65aが第1ハウジング部材20Cのうち装着孔20e及び環状蓋部材63の一部の外側部分に気密に固定されている。   An annular groove 20f concentric with the annular working chamber 5 is formed from the outer surface on the opposite side to the rotor 3 on the inner peripheral side portion of the first housing member 20C from the annular working chamber 5, and the annular groove 20f is formed as an annular lid member. An annular housing chamber 64 that is hermetically closed by welding 63 and forms the majority of the compressed gas housing chamber 61 is formed. A cover member 65 is disposed on the opposite side of the mounting hole 20e from the rotor 3 so as to allow the reciprocating partition member 6 to move forward and backward, and an annular flange portion 65a of the cover member 65 is a first housing member. The mounting hole 20e and the annular lid member 63 are partially airtightly fixed in 20C.

前記環状蓋部材63の一部に連通穴63aが形成され、この連通穴63aによって環状収容室64とカバー部材65の内部空間とが連通され、往復動仕切り部材6Cは圧縮ガス収容室61の圧縮ガスのガス圧を受圧するように構成されている。即ち、圧縮ガス収容室61が環状収容室64とカバー部材65と往復動仕切り部材6とで構成され、この圧縮ガス収容室61内のガス圧により、往復動仕切り部材6Cが進出位置の方へ付勢される。   A communication hole 63 a is formed in a part of the annular lid member 63, and the communication chamber 63 communicates with the inner space of the cover member 65 through the communication hole 63 a, and the reciprocating partition member 6 C is compressed in the compressed gas storage chamber 61. It is comprised so that the gas pressure of gas may be received. That is, the compressed gas storage chamber 61 is composed of the annular storage chamber 64, the cover member 65, and the reciprocating partition member 6. The reciprocating partition member 6C is moved toward the advanced position by the gas pressure in the compressed gas storage chamber 61. Be energized.

圧縮ガス収容室61の容積を大きくすることができるので、往復動仕切り部材6Cの進退移動に基づくガス圧の変動が非常に小さくなり、ほぼ一定の付勢力でもって往復動仕切り部材6Cを付勢することができる。ガススプリング60の環状収容室64の大部分をハウジング2の壁部内に形成することができるので、ガススプリング60を設けるために回転型流体機械1Cが大型化することがない。   Since the volume of the compressed gas storage chamber 61 can be increased, the fluctuation of the gas pressure due to the forward / backward movement of the reciprocating partition member 6C becomes very small, and the reciprocating partition member 6C is biased with a substantially constant biasing force. can do. Since most of the annular housing chamber 64 of the gas spring 60 can be formed in the wall portion of the housing 2, the rotary fluid machine 1 </ b> C does not increase in size because the gas spring 60 is provided.

尚、流体機械1Cの温度が高くなると、ガススプリング60のガス圧が高くなるので、圧縮ガス収容室61を小型のアキュムレータに接続してもよい。また、ガススプリング60の圧縮ガス収容室61をハウジング2Cの壁部の外部に形成してもよく、ガススプリングの出力ロッドにより往復動仕切り部材6を付勢するように構成してもよい。その他、往復動仕切り部材6Cを進出位置の方へ付勢する付勢手段としては、板バネ、皿バネ、合成樹脂発泡体等の種々の弾性部材、エアシリンダ、アキュムレータに接続された油圧シリンダ等の種々の流体圧付勢手段を適用可能である。   When the temperature of the fluid machine 1C increases, the gas pressure of the gas spring 60 increases, so the compressed gas storage chamber 61 may be connected to a small accumulator. The compressed gas storage chamber 61 of the gas spring 60 may be formed outside the wall portion of the housing 2C, and the reciprocating partition member 6 may be urged by the output rod of the gas spring. As other biasing means for biasing the reciprocating partition member 6C toward the advanced position, various elastic members such as a leaf spring, a disc spring, and a synthetic resin foam, an air cylinder, a hydraulic cylinder connected to an accumulator, and the like Various fluid pressure biasing means can be applied.

4)図16に示す回転型流体機械1Dでは、係合案内機構40Dが、第1ハウジング部材20Dの環状溝20bの内周壁部と外周壁部に形成された軸心と平行方向へ延びる係合溝70,71を有し、これら係合溝70,71に往復動仕切り部材6Dの径方向内端部と径方向外端部とをスライド自在に係合させて、往復動仕切り部材6Dの進出位置と退入位置とに亙る進退移動を許容しながら、流体圧が作用しても周方向に移動しないように構成してある。   4) In the rotary fluid machine 1D shown in FIG. 16, the engagement guide mechanism 40D has an engagement extending in a direction parallel to the axial centers formed on the inner peripheral wall portion and the outer peripheral wall portion of the annular groove 20b of the first housing member 20D. Grooves 70 and 71 are provided, and the engagement grooves 70 and 71 are slidably engaged with the radially inner end and the radially outer end of the reciprocating partition member 6D so that the reciprocating partition member 6D advances. It is configured not to move in the circumferential direction even when fluid pressure is applied while allowing forward and backward movement over the position and the retracted position.

5)図17に示す回転型流体機械1Eでは、図16の回転型流体機械1Dにおいて、第1ハウジング部材20Eの環状溝20bの内周壁部と往復動仕切り部材6Eの径方向内端部との間をシールするシール部材72が装着され、第1ハウジング部材20Eの環状溝20bの外周壁部と往復動仕切り部材6Eの径方向外端部との間をシールするシール部材73が装着されている。尚、前記のメイン実施例の回転型流体機械1においても図17に示す係合案内機構40Dを採用可能である。   5) In the rotary fluid machine 1E shown in FIG. 17, in the rotary fluid machine 1D shown in FIG. 16, the inner peripheral wall portion of the annular groove 20b of the first housing member 20E and the radially inner end portion of the reciprocating partition member 6E. A seal member 72 that seals the gap is mounted, and a seal member 73 that seals between the outer peripheral wall of the annular groove 20b of the first housing member 20E and the radially outer end of the reciprocating partition member 6E is mounted. . It is to be noted that the engagement guide mechanism 40D shown in FIG. 17 can also be adopted in the rotary fluid machine 1 of the main embodiment.

6)図18に示すように、往復動仕切り部材6Fの先端摺動面6dと第1傾斜摺動面6eと第2傾斜摺動面6fに、金属製又は非金属製の固体潤滑性に優れるシール部材80〜82を夫々装着してもよい。   6) As shown in FIG. 18, the tip sliding surface 6d, the first inclined sliding surface 6e, and the second inclined sliding surface 6f of the reciprocating partition member 6F are excellent in solid lubricity made of metal or nonmetal. The seal members 80 to 82 may be mounted respectively.

7)図19に示すように、円弧形仕切り部材8の内周摺動面8aと外周摺動面8bと先端摺動面8dに、金属製又は非金属製の固体潤滑性に優れるシール部材85〜87を夫々装着してもよい。   7) As shown in FIG. 19, a seal member that is excellent in solid lubricity made of metal or non-metal on the inner peripheral sliding surface 8a, the outer peripheral sliding surface 8b, and the tip sliding surface 8d of the arc-shaped partition member 8. 85 to 87 may be mounted respectively.

8)図20〜図23に示す回転型流体機械1Hにおいては、ロータ3Hの軸心方向の両側に、夫々、回転軸4の軸心と同心状の2つの環状作動室5H1,5H2がロータ3Hとハウジング2Hとで形成され、図22の左右両側の環状作動室5H1はロータ3Hに対して対称に形成されているが、非対称に形成してもよい。左右両側の環状作動室5H2はロータ3Hに対して対称に形成されているが、非対称に形成してもよい。尚、図22に示した例では、環状作動室5H1,5H2の回転軸4の軸心を含む平面における片側の断面の形状を同じに形成したが、断面形状や断面積は異なっていてもよい。   8) In the rotary fluid machine 1H shown in FIGS. 20 to 23, two annular working chambers 5H1 and 5H2 that are concentric with the axis of the rotary shaft 4 are respectively provided on both sides of the rotor 3H in the axial direction. The annular working chambers 5H1 on both the left and right sides in FIG. 22 are formed symmetrically with respect to the rotor 3H, but may be formed asymmetrically. Although the annular working chambers 5H2 on the left and right sides are formed symmetrically with respect to the rotor 3H, they may be formed asymmetrically. In the example shown in FIG. 22, the shape of the cross section on one side in the plane including the axis of the rotating shaft 4 of the annular working chambers 5H1 and 5H2 is the same, but the cross sectional shape and the cross sectional area may be different. .

4つの環状作動室5H1,5H2の各々に対応するように、1つの往復動仕切り部材6H1,6H2と、1つの付勢機構7H1,7H2と、1つの円弧形仕切り部材8H1,8H2と、各往復動仕切り部材6H1,6H2に対応する流体導入ポート9a,9b及び流体導出ポート10a,10bとが設けられている。   One reciprocating partition member 6H1, 6H2, one urging mechanism 7H1, 7H2, one arcuate partition member 8H1, 8H2, and each of the four annular working chambers 5H1, 5H2, Fluid introduction ports 9a and 9b and fluid outlet ports 10a and 10b corresponding to the reciprocating partition members 6H1 and 6H2 are provided.

ハウジング2Hは軸心方向に対向する1対のハウジング部材20Hを有し、これらの外周壁部同士がシール部材24を介在させた状態で複数のタイボルトにより固定されている。回転軸4はロータ3Hに相対回転不能に連結されており、この回転軸4は1対のハウジング部材20Hの中心部に軸受22を介して回転自在に支持されている。
各ハウジング部材20Hとロータ3Hとの間は、環状作動室5H1より内周側において環状のシール部材90でシールされ、環状作動室5H1より外周側且つ各環状作動室5H2より内周側において環状のシール部材91でシールされ、環状作動室5H2より外周側においてほぼ環状のシール部材92でシールされている。
The housing 2H has a pair of housing members 20H opposed in the axial direction, and these outer peripheral wall portions are fixed by a plurality of tie bolts with a seal member 24 interposed therebetween. The rotating shaft 4 is connected to the rotor 3H so as not to rotate relative to the rotor 3H, and the rotating shaft 4 is rotatably supported via a bearing 22 at the center of a pair of housing members 20H.
Each housing member 20H and the rotor 3H are sealed by an annular seal member 90 on the inner peripheral side from the annular working chamber 5H1, and are annular on the outer peripheral side from the annular working chamber 5H1 and on the inner peripheral side from each annular working chamber 5H2. Sealed by a seal member 91 and sealed by a substantially annular seal member 92 on the outer peripheral side from the annular working chamber 5H2.

2つの往復動仕切り部材6H1、2つの円弧形仕切り部材8H1、2つの往復動仕切り部材6H2、2つの円弧形仕切り部材8H2は、夫々、回転方向に180度異なる位置に設けられている。ロータ3Hの片側において、往復動仕切り部材6H1は往復動仕切り部材6H2に対してトレーリング側に90度ずれた位置にあり、また、円弧形仕切り部材8H1は円弧形仕切り部材8H2に対してトレーリング側に90度ずれた位置にある。これにより、流体圧ポンプとして使用する場合の回転トルク負荷の変動幅を小さくし、流体圧モータとして使用する場合に出力される出力トルクの変動幅を小さくすることができる。   The two reciprocating partition members 6H1, the two arc-shaped partition members 8H1, the two reciprocating partition members 6H2, and the two arc-shaped partition members 8H2 are provided at positions that differ by 180 degrees in the rotational direction. On one side of the rotor 3H, the reciprocating partition member 6H1 is at a position shifted 90 degrees toward the trailing side with respect to the reciprocating partition member 6H2, and the arc-shaped partition member 8H1 is located with respect to the arc-shaped partition member 8H2. It is at a position shifted 90 degrees to the trailing side. Thereby, the fluctuation range of the rotational torque load when used as a fluid pressure pump can be reduced, and the fluctuation range of the output torque output when used as a fluid pressure motor can be reduced.

各ハウジング部材20Hの環状作動室5H1に臨む側壁部に、環状作動室5H1に対応する流体導入ポート9aと流体導出ポート10aが形成され、各ハウジング部材20Hの外周壁部に、環状作動室5H2に対応する流体導入ポート9bと流体導出ポート10bが形成されている。尚、各環状作動室5H1,5H2に対応する、往復動仕切り部材6H1,6H2、付勢機構7H1,7H2、円弧状仕切り部材8H1,8H2、流体導入ポート9a,9b、流体導出ポート10a,10bは、夫々、複数組設けてもよい。   A fluid introduction port 9a and a fluid outlet port 10a corresponding to the annular working chamber 5H1 are formed in the side wall portion of each housing member 20H facing the annular working chamber 5H1, and the annular working chamber 5H2 is formed on the outer peripheral wall portion of each housing member 20H. Corresponding fluid introduction ports 9b and fluid outlet ports 10b are formed. The reciprocating partition members 6H1 and 6H2, the biasing mechanisms 7H1 and 7H2, the arc-shaped partition members 8H1 and 8H2, the fluid introduction ports 9a and 9b, and the fluid outlet ports 10a and 10b corresponding to the annular working chambers 5H1 and 5H2, respectively. Each of them may have a plurality of sets.

上記の流体機械1Hによれば、ロータ3Hの軸心の両側の空間を有効活用して、流体加圧機構又は流体圧受圧機構を構成することができるため、流体機械の容量アップ及び小型化の面で極めて有利であり、流体圧ポンプとして使用する場合に複数の環状作動室から複数とおりの吐出圧を発生可能になり、流体圧モータとして使用する場合、複数の環状作動室への流体圧の供給を切り換えることにより、複数とおりの回転速度及び/又は出力トルクを発生させることが可能になる。   According to the fluid machine 1H, since the fluid pressurizing mechanism or the fluid pressure receiving mechanism can be configured by effectively utilizing the space on both sides of the axis of the rotor 3H, the capacity of the fluid machine can be increased and the size can be reduced. When used as a fluid pressure pump, a plurality of discharge pressures can be generated from a plurality of annular working chambers, and when used as a fluid pressure motor, the fluid pressure to the plurality of annular working chambers can be generated. By switching the supply, a plurality of rotation speeds and / or output torques can be generated.

尚、上記の例では、ロータ3Hの軸心方向の両側に、夫々、同心状の2つの環状作動室を形成したが、3つ以上の環状作動室を含む3組以上の流体加圧機構又は流体圧受圧機構を形成してもよい。或いは、ロータ3Hの軸心方向の片側だけに、同心状の複数の環状作動室を含む流体加圧機構又は流体圧受圧機構を設け設けてもよい。   In the above example, two concentric annular working chambers are formed on both sides in the axial direction of the rotor 3H. However, three or more sets of fluid pressurizing mechanisms including three or more annular working chambers or A fluid pressure receiving mechanism may be formed. Alternatively, a fluid pressurizing mechanism or a fluid pressure receiving mechanism including a plurality of concentric annular working chambers may be provided only on one side of the rotor 3H in the axial direction.

9)図23に示す油圧式多段変速機100は、前記図20〜22に示す回転型流体機械1Hと同構造の回転型油圧モータ1Mと、図14に示す回転型流体機械1Bと同構造の油圧ポンプ1Pと、流体通路101,102と、4つの電磁方向切換弁103などを有する。   9) The hydraulic multi-stage transmission 100 shown in FIG. 23 has the same structure as the rotary hydraulic motor 1M having the same structure as the rotary fluid machine 1H shown in FIGS. 20 to 22 and the rotary fluid machine 1B shown in FIG. The hydraulic pump 1P, fluid passages 101 and 102, four electromagnetic direction switching valves 103, and the like are included.

油圧ポンプ1Pの回転軸4Pが内燃機関104の出力軸104aに連結され、内燃機関104により油圧ポンプ1Pが駆動されて、この油圧ポンプ1Pから加圧油が吐出され、その加圧油の全量が流体通路101,102を介して油圧モータ1Mに供給される。油圧ポンプ1Pの流体導出ポートは流体通路101に接続され、この流体通路101から分岐した4本の流体通路102が、油圧モータ1Mの4つの流体導入ポート9a,9bに夫々接続され、4本の流体通路102には、夫々、3ポートの電磁方向切換弁103が設けられている。   The rotary shaft 4P of the hydraulic pump 1P is connected to the output shaft 104a of the internal combustion engine 104, the hydraulic pump 1P is driven by the internal combustion engine 104, the pressurized oil is discharged from the hydraulic pump 1P, and the total amount of the pressurized oil is The fluid is supplied to the hydraulic motor 1M through the fluid passages 101 and 102. The fluid outlet port of the hydraulic pump 1P is connected to the fluid passage 101, and four fluid passages 102 branched from the fluid passage 101 are connected to the four fluid introduction ports 9a and 9b of the hydraulic motor 1M, respectively. Each fluid passage 102 is provided with a three-port electromagnetic direction switching valve 103.

油圧ポンプ1Pに作動油を供給するとともに油圧モータ1Mからドレン圧の作動油が供給される油タンク105が設けられ、各電磁方向切換弁103は、流体通路102の加圧油を油圧モータ1Mに供給する加圧油供給位置と、油タンク105の作動油を油圧モータ1Mに供給する作動油供給位置とに択一的に切り換えるように構成され、4つの電磁方向切換弁103は操作部106からの指令に基づいて4つの電磁方向切換弁103を制御する制御ユニット107に電気的に接続されている。   An oil tank 105 is provided that supplies hydraulic oil to the hydraulic pump 1P and is supplied with hydraulic oil having a drain pressure from the hydraulic motor 1M. Each electromagnetic direction switching valve 103 supplies the pressurized oil in the fluid passage 102 to the hydraulic motor 1M. It is configured to selectively switch between a pressurized oil supply position to be supplied and a hydraulic oil supply position to supply the hydraulic oil in the oil tank 105 to the hydraulic motor 1M, and the four electromagnetic direction switching valves 103 are provided from the operation unit 106. Is electrically connected to a control unit 107 that controls the four electromagnetic directional control valves 103 based on the command.

例えば、仮に、油圧ポンプ1Pからの加圧油の吐出量が一定である場合、制御ユニット107により4つの電磁方向切換弁103を選択的に加圧油供給位置に切り換えることにより、油圧モータ1Mの回転軸4Mの回転速度と出力トルクを複数とおりに切り換えることができる。例えば、表1に示すように、4つの電磁方向切換弁103を選択的に加圧油供給位置に切り換えることにより、第1変速段〜第8変速段の8とおりに切り換えることができる。尚、表1中の「左側」、「右側」は、図22に示す流体機械1Hにおける「左側」と「右側」を示す。
For example, if the discharge amount of the pressurized oil from the hydraulic pump 1P is constant, the control unit 107 selectively switches the four electromagnetic direction switching valves 103 to the pressurized oil supply position, so that the hydraulic motor 1M The rotational speed and output torque of the rotating shaft 4M can be switched in a plurality of ways. For example, as shown in Table 1, by selectively switching the four electromagnetic direction switching valves 103 to the pressurized oil supply position, it is possible to perform switching in eight ways from the first gear to the eighth gear. In Table 1, “left side” and “right side” indicate “left side” and “right side” in the fluid machine 1H shown in FIG.

例えば、第1変速段から第8変速段へ向かって徐々に回転軸4Mの回転速度が高速になり、出力トルクが小さくなる。但し、例えば、第1変速段から第4変速段では減速(出力軸104aよりも回転軸4Mが低速)、第5変速段から第8変速段では増速(出力軸104aよりも回転軸4Mが高速)となるように設定することも可能である。尚、内燃機関104の回転速度が増加すると、油圧ポンプ1Pからの吐出量が増加し、油圧モータ1Mの負荷が増大すると、加圧油の油圧が高くなる。   For example, the rotational speed of the rotating shaft 4M gradually increases from the first gear to the eighth gear, and the output torque decreases. However, for example, the first to fourth speed stages are decelerated (the rotating shaft 4M is lower than the output shaft 104a), and the fifth to eighth speed stages are increased (the rotating shaft 4M is more than the output shaft 104a). It is also possible to set it to be (high speed). When the rotational speed of the internal combustion engine 104 increases, the discharge amount from the hydraulic pump 1P increases, and when the load of the hydraulic motor 1M increases, the hydraulic pressure of the pressurized oil increases.

尚、油圧ポンプ1Pと油圧モータ1Mとを一体的に複合的に構成し、その内部に電磁方向切換弁103や流体通路101,102を立体的に組み込むことも可能である。
前記油圧モータ1Mとしては、回転型流体機械1H以外に、ロータ3Fの軸心方向の片側のみに複数の環状作動室を形成したものや、図14の回転型流体機械1Bも適用可能である。油圧ポンプ1Pとしては、前記の種々の回転型流体機械1,1A〜1Fを適用可能である。但し、油圧ポンプ1Pとしては、既存の種々のポンプも採用可能である。
The hydraulic pump 1P and the hydraulic motor 1M can be combined integrally and the electromagnetic direction switching valve 103 and the fluid passages 101 and 102 can be three-dimensionally incorporated therein.
As the hydraulic motor 1M, in addition to the rotary fluid machine 1H, one in which a plurality of annular working chambers are formed only on one side in the axial direction of the rotor 3F, or the rotary fluid machine 1B in FIG. 14 is also applicable. As the hydraulic pump 1P, the above-described various rotary fluid machines 1, 1A to 1F can be applied. However, various existing pumps can be employed as the hydraulic pump 1P.

駆動機として内燃機構104以外の種々の駆動機を採用可能である。制御ユニット107を介して複数の電磁方向切換弁103を選択的に切り換えることにより、回転軸4の回転速度と回転軸4から出力されるトルクの一方を複数とおり切り換えるように構成することも可能である。前記油圧式多段変速機100を、種々の車両の多段変速機に適用可能であり、車両以外の種々の産業機械の多段変速機に適用可能である。   Various driving machines other than the internal combustion mechanism 104 can be adopted as the driving machine. By selectively switching the plurality of electromagnetic direction switching valves 103 via the control unit 107, it is possible to switch between one of the rotational speed of the rotating shaft 4 and the torque output from the rotating shaft 4. is there. The hydraulic multi-stage transmission 100 can be applied to multi-stage transmissions of various vehicles, and can be applied to multi-stage transmissions of various industrial machines other than vehicles.

10)その他、本発明の趣旨を逸脱しない範囲において、前記開示事項以外の種々の変更を付加して、また、ハウジング2、ロータ3、環状作動室5、1対の往復動仕切り部材6、1対の円弧形仕切り部材8等のサイズ及び形状を適宜変更して実施可能である。   10) In addition, various modifications other than the above-described disclosure are added and the housing 2, the rotor 3, the annular working chamber 5, and the pair of reciprocating partition members 6 and 1 are added without departing from the spirit of the present invention. It can be implemented by appropriately changing the size and shape of the pair of arcuate partition members 8 and the like.

本発明の回転型流体機械1は、種々の用途、容量、吐出圧又は流体圧の流体機械であって、液体加圧ポンプ、気体加圧ポンプ、油圧モータ、エアモータ、流体(特に液体)を定量ずつ分配する計量器などに適用可能である。   The rotary fluid machine 1 of the present invention is a fluid machine having various uses, capacities, discharge pressures or fluid pressures, and quantifies liquid pressurization pumps, gas pressurization pumps, hydraulic motors, air motors, and fluids (particularly liquids). It can be applied to weighing devices that distribute each item.

Claims (12)

ハウジングと、ハウジング内に相対回転可能に収容されたロータと、このハウジングとロータの中心部を貫通してロータと一体的に回転する回転軸とを備え、流体を加圧する流体圧ポンプ又は流体圧でロータを回転駆動する流体圧モータとして作動可能な回転型流体機械において、
前記回転軸の軸心方向におけるロータの少なくとも片側の環状壁部と、この環状壁部に臨むように前記ハウジングに形成された環状溝とで構成された環状作動室と、
前記ハウジングに回転軸の軸心と平行方向へ移動自在に装着され、前記環状作動室を仕切る進出位置と、環状作動室から退いた退入位置とに移動自在の少なくとも1つの往復動仕切り部材と、
前記往復動仕切り部材を進出位置の方へ付勢する付勢手段と、
前記ロータに形成されて環状作動室を横断的に仕切る少なくとも1つの円弧形仕切り部材であって、少なくとも、ロータ回転方向リーディング側部分に形成され往復動仕切り部材を退入位置へ駆動可能な第1傾斜面と、ロータ回転方向トレーリング側部分に形成され往復動仕切り部材を退入位置から進出位置への復帰を許容する第2傾斜面とを有する少なくとも1つの円弧形仕切り部材と、
前記ハウジングのうちの往復動仕切り部材に対してロータ回転方向リーディング側近傍部に形成され環状作動室に流体を導入する為の流体導入ポートと、前記ハウジングのうちの往復動仕切り部材に対してロータ回転方向トレーリング側近傍部に形成され環状作動室から流体を導出する為の流体導出ポートと、
を備えたことを特徴とする回転型流体機械。
A fluid pressure pump or a fluid pressure comprising a housing, a rotor accommodated in the housing so as to be relatively rotatable, and a rotating shaft that passes through the housing and a central portion of the rotor and rotates integrally with the rotor, and pressurizes a fluid. In a rotary fluid machine operable as a fluid pressure motor that rotationally drives the rotor at
An annular working chamber composed of an annular wall portion on at least one side of the rotor in the axial direction of the rotating shaft and an annular groove formed in the housing so as to face the annular wall portion;
At least one reciprocating partition member which is mounted on the housing so as to be movable in a direction parallel to the axis of the rotary shaft and is movable between an advance position for partitioning the annular working chamber and a retracted position retracted from the annular working chamber; ,
Biasing means for biasing the reciprocating partition member toward the advanced position;
At least one arc-shaped partition member formed in the rotor and transversely partitioning the annular working chamber, and formed in at least a leading side portion in the rotor rotation direction and capable of driving the reciprocating partition member to the retracted position. At least one arcuate partition member having one inclined surface and a second inclined surface that is formed on the rotor rotation direction trailing side portion and allows the reciprocating partition member to return from the retracted position to the advanced position;
A fluid introduction port formed in the vicinity of the leading side of the rotor rotation direction with respect to the reciprocating partition member of the housing for introducing fluid into the annular working chamber, and a rotor for the reciprocating partition member of the housing A fluid outlet port formed in the vicinity of the rotational direction trailing side for extracting fluid from the annular working chamber;
A rotary fluid machine comprising:
前記回転軸の軸心方向におけるロータの両側に前記環状作動室を設け、
各環状作動室に対応する往復動仕切り部材と、付勢手段と、円弧状仕切り部材と、流体導入ポートと、流体導出ポートとを設けたことを特徴とする請求項1に記載の回転型流体機械。
Providing the annular working chamber on both sides of the rotor in the axial direction of the rotating shaft;
2. The rotary fluid according to claim 1, further comprising a reciprocating partition member corresponding to each annular working chamber, a biasing means, an arc-shaped partition member, a fluid introduction port, and a fluid outlet port. machine.
前記付勢手段が、ガススプリングからなることを特徴とする請求項1又は2に記載の回転型流体機械。   The rotary fluid machine according to claim 1, wherein the biasing means is a gas spring. 前記ガススプリングの圧縮ガス収容室の大部分をハウジングの壁部内に形成したことを特徴とする請求項3に記載の回転型流体機械。   4. The rotary fluid machine according to claim 3, wherein most of the compressed gas storage chamber of the gas spring is formed in a wall portion of the housing. 前記往復動仕切り部材の進出位置と退入位置とに亙る進退移動を許容しながら周方向に移動しないように規制する係合案内機構を設けたことを特徴とする請求項1又は2に記載の回転型流体機械。   3. The engagement guide mechanism is provided for restricting the reciprocating partition member from moving in a circumferential direction while allowing advancing and retreating movement between an advancing position and a retracting position of the reciprocating partition member. Rotary fluid machine. 前記往復動仕切り部材のロータ側先端部分に、ロータの環状壁面のうち回転軸の軸心と直交する面部分に流体密に面接触可能な先端摺動面と、円弧状仕切り部材の第1,第2傾斜面に流体密に夫々面接触可能な第1,第2傾斜摺動面とを形成したことを特徴とする請求項5に記載の回転型流体機械。   A tip-side sliding surface capable of fluid-tight contact with a surface portion orthogonal to the axis of the rotary shaft of the annular wall surface of the rotor on the rotor-side tip portion of the reciprocating partition member, and first and second arc-shaped partition members 6. The rotary fluid machine according to claim 5, wherein the first inclined surface and the second inclined sliding surface capable of fluid contact with each other are formed on the second inclined surface. 前記往復動仕切り部材は、環状作動室の内周面の一部と外周面の一部に流体密に夫々面接触可能な内周円弧面と外周円弧面を有することを特徴とする請求項5に記載の回転型流体機械。   6. The reciprocating partition member has an inner circular arc surface and an outer circular arc surface that can make fluid contact with a part of the inner peripheral surface and a part of the outer peripheral surface of the annular working chamber, respectively. A rotary fluid machine according to 1. 前記円弧形仕切り部材は、環状作動室の内周面と外周面に流体密に夫々面接触可能な内周摺動面と外周摺動面を有することを特徴とする請求項5に記載の回転型流体機械。   6. The arcuate partition member has an inner peripheral sliding surface and an outer peripheral sliding surface that can make fluid-tight contact with the inner peripheral surface and the outer peripheral surface of the annular working chamber, respectively. Rotary fluid machine. 前記円弧形仕切り部材の第1,第2傾斜面の間におけるハウジング側先端部分に、ハウジングの環状溝の奥端の大部分が環状の環状壁面に流体密に面接触可能な先端摺動面を形成したことを特徴とする請求項8に記載の回転型流体機械。   A tip sliding surface in which most of the innermost end of the annular groove of the housing is in fluid-tight surface contact with the annular annular wall surface between the first and second inclined surfaces of the arcuate partition member. The rotary fluid machine according to claim 8, wherein: 前記ロータの少なくとも片側に、回転軸の軸心と同心状の複数の前記環状作動室がロータとハウジングとで形成され、各環状作動室に夫々対応する、1又は複数の往復動仕切り部材と、1又は複数の円弧形仕切り部材と、各往復動仕切り部材に対応する流体導入ポート及び流体導出ポートとを設けたことを特徴とする請求項1に記載の回転型流体機械。   A plurality of the annular working chambers concentric with the axis of the rotation shaft are formed on at least one side of the rotor by a rotor and a housing, and one or a plurality of reciprocating partition members respectively corresponding to the respective annular working chambers; 2. The rotary fluid machine according to claim 1, wherein one or a plurality of arc-shaped partition members and a fluid introduction port and a fluid discharge port corresponding to each of the reciprocating partition members are provided. 前記ロータの両側に、回転軸の軸心と同心状の複数の前記環状作動室がロータとハウジングとで形成され、各環状作動室に夫々対応する、1又は複数の往復動仕切り部材と、1又は複数の円弧形仕切り部材と、各往復動仕切り部材に対応する流体導入ポート及び流体導出ポートとを設けたことを特徴とする請求項1に記載の回転型流体機械。   A plurality of annular working chambers concentric with the axis of the rotating shaft are formed on both sides of the rotor by a rotor and a housing, and one or a plurality of reciprocating partition members respectively corresponding to the respective annular working chambers, 2. The rotary fluid machine according to claim 1, further comprising a plurality of arc-shaped partition members and a fluid introduction port and a fluid discharge port corresponding to each of the reciprocating partition members. 回転型流体圧モータとして構成され、
複数の流体導入ポートに加圧流体を夫々供給する為の複数の流体通路を夫々切り換える複数の方向切換え弁手段と、それら方向切換え弁手段を制御する制御手段を設け、
前記制御手段を介して複数の方向切換え弁手段を選択的に切り換えることにより、回転軸の回転速度と、回転軸から出力されるトルクの少なくとも一方を複数とおりに切り換えるように構成したことを特徴とする請求項11に記載の回転型流体機械。
Configured as a rotary fluid pressure motor,
A plurality of direction switching valve means for switching a plurality of fluid passages for supplying pressurized fluid to a plurality of fluid introduction ports, respectively, and a control means for controlling the direction switching valve means;
It is characterized in that at least one of the rotational speed of the rotating shaft and the torque output from the rotating shaft is switched in plural ways by selectively switching a plurality of direction switching valve means via the control means, The rotary fluid machine according to claim 11.
JP2008514346A 2006-05-09 2006-05-09 Rotary fluid machine Expired - Fee Related JP5147134B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/309305 WO2007129403A1 (en) 2006-05-09 2006-05-09 Rotary type fluid machine

Publications (2)

Publication Number Publication Date
JPWO2007129403A1 true JPWO2007129403A1 (en) 2009-09-17
JP5147134B2 JP5147134B2 (en) 2013-02-20

Family

ID=38667520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008514346A Expired - Fee Related JP5147134B2 (en) 2006-05-09 2006-05-09 Rotary fluid machine

Country Status (3)

Country Link
JP (1) JP5147134B2 (en)
TW (1) TW200811370A (en)
WO (1) WO2007129403A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5506269B2 (en) * 2009-07-28 2014-05-28 日立アプライアンス株式会社 Hermetic electric compressor
KR100948632B1 (en) * 2010-01-06 2010-03-24 이상빈 Cylinder pump
KR102353948B1 (en) * 2017-07-26 2022-01-21 위양 스 liquid pumping device
JP7092061B2 (en) * 2019-02-12 2022-06-28 株式会社豊田自動織機 Compressor
WO2021024227A1 (en) 2019-08-07 2021-02-11 Bifrost Communications ApS Optical transmission systems, receivers, and devices, and methods of receiving optical signals

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA977686A (en) * 1972-10-13 1975-11-11 Lloyd D. Chisholm Rotary engine
JPS5232406B2 (en) * 1973-08-07 1977-08-22
JPS5074038A (en) * 1973-11-07 1975-06-18
US4137890A (en) * 1973-12-21 1979-02-06 Wohl Stephen M Toroid sweep engine
JPS54129211A (en) * 1978-03-30 1979-10-06 Hachirou Hayashida Disc engine
JPS54134204A (en) * 1978-04-08 1979-10-18 Miyata Jidouki Hanbai Kk Rotary engine
JPS5512032U (en) * 1978-07-08 1980-01-25
JPS58131320A (en) * 1982-01-30 1983-08-05 Hachiro Hayashida Disc engine
ATE50822T1 (en) * 1985-10-02 1990-03-15 Michael L Zettner ROTARY MOTOR.
JPS6460791A (en) * 1987-08-31 1989-03-07 Nippon Denso Co Compressor
JPH03286145A (en) * 1990-03-30 1991-12-17 Haruyasu Mishiro Rotary engine having movable wall
US20050254968A1 (en) * 2004-05-14 2005-11-17 Patterson Albert W Impeller pump with reciprocating vane and non-circular rotor
EP1637739A1 (en) * 2004-09-20 2006-03-22 Maso Process-Pumpen GmbH Vane pump comprising a two-part stator

Also Published As

Publication number Publication date
WO2007129403A1 (en) 2007-11-15
JP5147134B2 (en) 2013-02-20
TW200811370A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
US6659744B1 (en) Rotary two axis expansible chamber pump with pivotal link
JP5147134B2 (en) Rotary fluid machine
JP6022757B2 (en) Rotary actuator
US2782724A (en) Vane-type rotary pumps and motors
US20010036411A1 (en) Reversible variable displacement hydraulic pump and motor
CN113266610B (en) Radial plunger hydraulic device adopting hydraulic control check valve for flow distribution and working method
JP4124716B2 (en) Swash plate type hydraulic pump / motor
US9133830B2 (en) Fluid device with flexible ring
CN110553081A (en) Hydraulic reversing valve and hydraulic reversing device
CN210687175U (en) Hydraulic reversing valve and hydraulic reversing device
RU2401386C2 (en) Hydraulic device
CN108591537B (en) Fluid pressure switching valve, variable capacity rotary compressor, and refrigeration cycle device
US20090120278A1 (en) Electrohydrostatic actuator including a four-port, dual displacement hydraulic pump
CN111120279B (en) Hydraulic diaphragm pump
JP4665897B2 (en) Machine with rotating piston
JPH02201086A (en) Fluid compressor
CN116428102A (en) Rotating shaft control double-valve flow distribution radial plunger hydraulic device and working method thereof
WO2004051088A1 (en) Swash-plate variable volume chamber-type fluid machine
US3468262A (en) Piston shoes,guide means and compact rotor means in radial piston machines
JP2921788B2 (en) Rotary hydraulic transformer
RU2601686C2 (en) Engine with pressure compensation chamber driven by fluid under pressure
US3901630A (en) Fluid motor, pump or the like having inner and outer fluid displacement means
JP2018091386A (en) Electrically-driven fluid pressure type linear actuator
JP4348715B2 (en) Positive displacement fluid machinery
RU2476725C2 (en) Rotary hydraulic machine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121126

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees