JPWO2007099714A1 - Metal recovery processing method and high gradient magnetic separation apparatus - Google Patents

Metal recovery processing method and high gradient magnetic separation apparatus Download PDF

Info

Publication number
JPWO2007099714A1
JPWO2007099714A1 JP2008502670A JP2008502670A JPWO2007099714A1 JP WO2007099714 A1 JPWO2007099714 A1 JP WO2007099714A1 JP 2008502670 A JP2008502670 A JP 2008502670A JP 2008502670 A JP2008502670 A JP 2008502670A JP WO2007099714 A1 JPWO2007099714 A1 JP WO2007099714A1
Authority
JP
Japan
Prior art keywords
magnetic
metal
powder
mixed
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008502670A
Other languages
Japanese (ja)
Other versions
JP5347091B2 (en
Inventor
孝雄 荒木
孝雄 荒木
西田 稔
稔 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FIRST INC.
Ehime University NUC
Original Assignee
FIRST INC.
Ehime University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FIRST INC., Ehime University NUC filed Critical FIRST INC.
Priority to JP2008502670A priority Critical patent/JP5347091B2/en
Publication of JPWO2007099714A1 publication Critical patent/JPWO2007099714A1/en
Application granted granted Critical
Publication of JP5347091B2 publication Critical patent/JP5347091B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/025High gradient magnetic separators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/001Dry processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/005Separation by a physical processing technique only, e.g. by mechanical breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

この発明は、廃棄物起因の有価金属を含む微粉体から従来試みられてきた複雑で高エネルギーを用いず、有価金属に磁性を持たせ、単純な分離方法である磁力を用いて有価金属を回収することを目的とする。このために、この発明の金属回収処理方法は、金属を含む微粉体を鉄化合物と混合して加熱し、その金属成分を含む鉄化合物の粉体を磁性化させ、磁性化物と非磁性化物を磁力により分離して回収し、この磁性化物より有価金属を回収する。This invention does not use complicated and high energy, which has been attempted from fine powders containing valuable metals derived from waste, and makes valuable metals magnetized, and recovers valuable metals using magnetic force, which is a simple separation method. The purpose is to do. To this end, the metal recovery treatment method of the present invention mixes and heats a fine powder containing a metal with an iron compound, magnetizes the powder of the iron compound containing the metal component, and separates the magnetized product and the non-magnetized product. Separated and recovered by magnetic force, valuable metals are recovered from this magnetized product.

Description

本発明は、廃棄物等に含まれる金属成分の回収処理に関する。 The present invention relates to a recovery process of a metal component contained in waste or the like.

廃棄物リサイクルとして大きくサーマルリサイクルとマテリアルリサイクルがあり、サーマルリサイクルは、CO2削減等への対応から進んできているが、マテリアルリサイクル、特に有価金属回収は種々の方法で行われつつあるが、例えば特許文献1に記載されているように、複雑な工程で、且つ高エネルギー(特に熱エネルギー)を用いたプロセスが主たるものである。廃棄物起因の有価金属を含む微粉体からの有価金属回収の代表的な従来技術としては、以下のものある。There are two types of waste recycling: thermal recycling and material recycling, and thermal recycling is progressing from measures to reduce CO 2 etc., but material recycling, especially valuable metal recovery, is being carried out in various ways. As described in Patent Document 1, a process using a complex process and using high energy (particularly thermal energy) is the main one. The following are typical conventional techniques for recovering valuable metals from fine powder containing valuable metals derived from waste.

抽出分離は、廃棄物起因の有価金属を含む微粉体をpH調整(強酸、強アルカリ)した溶媒中に投入し、pHの違いによる任意金属の溶媒への溶解度の差を用いて分離する方法である。蒸留分離は、一定容器内に廃棄物起因の有価金属を含む微粉体を充填し、加熱(場合によっては減圧も加え)することで、任意の金属の沸点および蒸気圧を用いて、任意の温度(圧力)条件下で、任意の金属を蒸気化した後、凝縮器(コンデンサー)で凝縮回収する方法である。また、金属精錬工程に準ずるもので、高温で廃棄物起因の有価金属を含む微粉体を溶融し、任意金属の融点等の差を用いて任意の金属を回収する方法がある。
特開平9−263844
Extraction separation is a method in which fine powder containing valuable metals derived from waste is put into a solvent whose pH is adjusted (strong acid, strong alkali) and separated using the difference in solubility of any metal in the solvent due to the difference in pH. is there. Distillation separation uses a boiling point and vapor pressure of an arbitrary metal at an arbitrary temperature by filling a certain container with fine powder containing valuable metals derived from waste and heating (in some cases, adding a reduced pressure). This is a method in which an arbitrary metal is vaporized under a (pressure) condition and then condensed and recovered by a condenser (condenser). Further, there is a method similar to a metal refining process, in which a fine powder containing valuable metals derived from waste is melted at a high temperature, and an arbitrary metal is recovered using a difference in melting point or the like of the arbitrary metal.
JP-A-9-263844

抽出分離においては、pHの違いだけでは、溶解する金属を分別することはできず、高濃度であるがその他不純物も同時に溶解し含有した品位の回収物となってしまう。また、pH調整に用いる溶媒が強酸、強アルカリであるため取り扱い複雑、注意が必要な機器構成で、廃溶媒の廃棄処理にコストおよび環境負荷がかかってしまう。蒸留分離は、蒸気化に高温が必要な金属(主に貴金属)には不向きであり、また廃棄物中に含まれる不純物(低沸点の非金属)も蒸発してしまうため、その他不純物も同時に溶解し含有した品位の回収物となってしまう。これも、上記抽出分離と同じく複雑な機器構成となる。 In the extraction and separation, the dissolved metal cannot be separated only by the difference in pH, and a high-concentration but other impurities are dissolved at the same time, resulting in a quality recovered product. In addition, since the solvent used for pH adjustment is a strong acid or strong alkali, the equipment configuration requires complicated handling and care, and waste disposal of the waste solvent is costly and environmentally intensive. Distillation separation is not suitable for metals that require high temperatures for vaporization (mainly precious metals), and impurities (low-boiling non-metals) contained in the waste also evaporate, so other impurities dissolve at the same time. And it will become a recovered product of the contained quality. This also has a complicated equipment configuration similar to the extraction and separation described above.

一方、融点等の差を用いて金属を回収する方法においては、融点の高い金属(主に貴金属)に対して高温が必要であり、また金属同士で金属間化合物(合金)となってしまう場合もあり、機器構成としては大規模な設備(精錬プロセス)となる。 On the other hand, in a method of recovering a metal using a difference in melting point, etc., a high temperature is required for a metal having a high melting point (mainly noble metal), and the metals become intermetallic compounds (alloys). There is also a large-scale equipment (refining process) as the equipment configuration.

有価金属回収は、今後の廃棄物リサイクル市場において必要不可欠な項目になると考えられ、本発明では、廃棄物起因の有価金属を含む微粉体から従来試みられてきた複雑で高エネルギーを用いず、有価金属に磁性を持たせ、単純な分離方法である磁力を用いて、有価金属を回収することを目的としている。 Valuable metal recovery is considered to be an indispensable item in the future waste recycling market, and in the present invention, the complicated and high energy that has been tried from the fine powder containing valuable metal derived from waste has not been used. The purpose is to collect valuable metals using magnetism, which is a simple separation method.

上記の目的を解決するために、本発明の金属回収処理方法は、金属を含む微粉体を鉄化合物と混合して加熱し、その金属成分を含む鉄化合物の粉体を磁性化させることを特徴とする。鉄化合物としては、例えば、鉄酸化物が使用できる。さらに、磁性化物と非磁性化物を磁力により分離してもよい。加熱温度は、ガラス繊維の融点よりも低い温度が好ましい。 In order to solve the above object, the metal recovery processing method of the present invention is characterized in that a fine powder containing a metal is mixed with an iron compound and heated to magnetize the powder of the iron compound containing the metal component. And As the iron compound, for example, iron oxide can be used. Further, the magnetized product and the non-magnetized product may be separated by a magnetic force. The heating temperature is preferably lower than the melting point of the glass fiber.

本発明は、混合均質化後の微粉体に対して、従来技術に比較し、より低温での磁性化処理(加熱処理)を施すことで有価金属に磁性を帯びさせることが可能で、プロセス全体への投入エネルギーの低減ができるという効果を有する。添加剤も安価な鉄化合物であり、トータルのランニングコストを低減できる。本発明は、従来技術と比較して機器構成が個別の単純な3工程のみであり、各工程の機器操作因子は、他の機器操作と独立しており実施操作しやすく、また各工程そのものを切り離しても実施可能である。複雑な機器構成でない点、高温を使用しない点および添加剤の取り扱いの容易さ、処理回収物中の有価金属の溶出防止による環境負荷低減からも、従来技術に比較し、プロセス全体の安全性が向上される。回収される磁性物中への有価金属の濃縮による原価価値アップに加え、かつ磁性を帯び、かつ微粉体であるため、回収磁性物そのもので中間もしくは最終工業製品の代替となり得る。 In the present invention, it is possible to make the valuable metal magnetized by subjecting the fine powder after mixing and homogenization to a magnetizing treatment (heating treatment) at a lower temperature than in the prior art. It has the effect that the energy input to the can be reduced. The additive is also an inexpensive iron compound, which can reduce the total running cost. In the present invention, there are only three simple steps in which the device configuration is individual as compared with the prior art, and the device operation factor of each step is independent of other device operations, and is easy to perform. It can be implemented even if separated. Compared to the conventional technology, the overall safety of the process is also reduced from the point that it does not have a complicated equipment configuration, does not use high temperatures, is easy to handle additives, and is less environmentally friendly by preventing the elution of valuable metals in the recovered material. Be improved. In addition to increasing the cost value by concentrating valuable metals in the recovered magnetic material, and being magnetic and fine powder, the recovered magnetic material itself can be an alternative to intermediate or final industrial products.

金属回収処理方法の工程を示すフローチャートである。It is a flowchart which shows the process of a metal collection | recovery processing method. 加熱後の混合粉末の外観を示す画像である。It is an image which shows the external appearance of the mixed powder after a heating. 磁力による分別での回収率を示すグラフある。It is a graph which shows the collection | recovery rate by the classification by magnetic force. 加熱後のPCB−FeO混合粉末のXRDパターンを示すグラフある。It is a graph which shows the XRD pattern of the PCB-FeO mixed powder after a heating. 加熱後のPCB−FeO混合粉末のSEM画像およびEDX解析のグラフある。It is the graph of the SEM image and EDX analysis of PCB-FeO mixed powder after a heating. Cuの磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of Cu. Feの磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of Fe. Niの磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of Ni. Snの磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of Sn. Pbの磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of Pb. 金属成分全体の磁性側配分率を示すグラフである。It is a graph which shows the magnetic side distribution rate of the whole metal component. 試料振動型磁化測定の結果を示すグラフある。It is a graph which shows the result of a sample vibration type magnetization measurement. Δθ−tanθの散布を示すグラフである。It is a graph which shows dispersion | distribution of (DELTA) (theta) -tan (theta). PCB粉末のSEM画像およびEDXポイント解析のグラフある。It is a graph of SEM image and EDX point analysis of PCB powder. 磁性化物の平均回収率を示すグラフある。It is a graph which shows the average collection | recovery rate of a magnetized material. 金属成分の磁性側への平均分配率を示すグラフある。It is a graph which shows the average distribution rate to the magnetic side of a metal component. 高勾配磁気分別装置の構造を示すブロック図である。It is a block diagram which shows the structure of a high gradient magnetic sorting apparatus.

符号の説明Explanation of symbols

1.高勾配磁気分別装置
2.試料投入部
3.送風部
4.マトリクス
5.高勾配磁気分離部
6.振動部
7.磁性化物回収部
8.非磁性化物回収部
1. 1. High gradient magnetic fractionator 2. Sample input part 3. Air blower Matrix 5. 5. High gradient magnetic separation unit 6. Vibration unit Magnetized material recovery unit8. Non-magnetized material recovery unit

この発明を実施するための最良の形態について説明する。廃棄物起因の有価金属を含む微粉体を鉄化合物と混合し、大気中で加熱することで有価金属を磁性化し、磁性化後の磁性物と非磁性物とを磁力選別で分離する。廃棄物起因の有価金属を含む微粉体と混合する鉄化合物は、FeO(2価)、Fe3O4(FeO・Fe2O3;2価, 3価)、 Fe2O3(3価)およびFe(OH)(3価)で代表される安価な鉄化合物を用いる。The best mode for carrying out the present invention will be described. The fine powder containing valuable metal derived from waste is mixed with an iron compound and heated in the atmosphere to magnetize the valuable metal, and the magnetized magnetic material and non-magnetic material are separated by magnetic separation. Iron compounds to be mixed with fine powder containing valuable metals derived from waste are FeO (divalent), Fe 3 O 4 (FeO · Fe 2 O 3 ; divalent, trivalent), Fe 2 O 3 (trivalent). And an inexpensive iron compound represented by Fe (OH) (trivalent).

廃棄物起因の有価金属を含む微粉体と混合する鉄化合物の粒度は、混合対象物である廃棄物起因の有価金属を含む微粉体により決まり、同程度粒度もしくは、それ以下が望ましい。磁性化後の磁性物と非磁性物とを磁力選別で分離する方法において、廃棄物起因の有価金属を含む微粉体と混合する鉄化合物の混合比率は、混合対象物である廃棄物起因の有価金属を含む微粉体中の回収対象有価金属の含有量等により決めるのが好ましい。 The particle size of the iron compound to be mixed with the fine powder containing the valuable metal derived from the waste is determined by the fine powder containing the valuable metal derived from the waste that is the object to be mixed, and is preferably the same or smaller. In the method of separating magnetic material and non-magnetic material after magnetizing by magnetic separation, the mixing ratio of the iron compound mixed with the fine powder containing valuable metal derived from waste is the value derived from the waste that is the object to be mixed. It is preferable to determine the content of valuable metal to be recovered in the fine powder containing metal.

加熱する温度および時間は、廃棄物起因の有価金属を含む微粉体に含まれる回収対象有価金属の種類および含有量により決まるが、ガラス繊維の融点より低いことが好ましく、多くの場合800℃程度までの加熱温度と数分〜数十分の加熱時間である The heating temperature and time are determined by the type and content of the recovery target valuable metal contained in the fine powder containing the valuable metal derived from the waste, but are preferably lower than the melting point of the glass fiber, and in many cases up to about 800 ° C. Heating temperature and several minutes to several tens of minutes

磁力分離する磁界強度は、得られる磁性物の磁力により決めるのが好ましい。磁力分離する分離形式は、乾式、湿式のいずれの雰囲気でも磁力分離可能であり、どちらが適するかは、廃棄物起因の有価金属を含む微粉体に含まれる有価金属以外の不純物(主に非磁性物に濃縮)の性状によって決めることが好ましい。 The magnetic field strength for magnetic separation is preferably determined by the magnetic force of the obtained magnetic material. Magnetic separation can be performed in both dry and wet atmospheres. The most suitable type is the impurities other than valuable metals (mainly non-magnetic substances) contained in fine powder containing valuable metals derived from waste. The concentration is preferably determined according to the property of the concentration.

回収される磁性物および非磁性物中の有価金属の溶出防止が図られ、環境負荷に対する安全性があることが好ましい。 It is preferable that valuable metals in the recovered magnetic material and non-magnetic material are prevented from being eluted, and that there is safety against environmental loads.

回収される磁性物であるα-Fe2O3は、日光、空気、水、熱に対する安定性が大きく紫外線吸収能力を持つため、研磨材や赤色顔料、セメントの着色剤、絵の具、インク、タイル・レンガの原料など塗料としての用途がある。また、工業的にフェライト磁心および磁石、磁気記録材の原料としての用途がある。The recovered magnetic material α-Fe 2 O 3 is highly stable against sunlight, air, water, and heat and has an ability to absorb ultraviolet rays. Therefore, abrasives, red pigments, cement colorants, paints, inks and tiles・ Used as a paint for brick materials. In addition, it has industrial uses as a raw material for ferrite cores, magnets, and magnetic recording materials.

図1は金属回収処理の工程を示すフローチャートである。微粉体と鉄化合物の混合、磁性化処理(加熱処理)、磁力分離プロセスを有する。 FIG. 1 is a flowchart showing a metal recovery process. It has a mixture of fine powder and iron compound, magnetic treatment (heat treatment), and magnetic separation process.

微粉体と鉄化合物の混合について説明する。この工程では、廃棄物起因の有価金属を含む微粉体に対し、最適な鉄化合物粉体とを混合均質化する。鉄化合物の種類は、代表的なものとしてFeO(2価)、Fe3O4(FeO・Fe2O3;2価, 3価)、 Fe2O3(3価)およびFe(OH)(3価)があげられる。鉄化合物の粒度は、混合対象物である廃棄物起因の有価金属を含む微粉体により決まり、同程度粒度もしくは、それ以下が望ましい。鉄化合物の混合比率は、混合対象物である廃棄物起因の有価金属を含む微粉体中の回収対象有価金属の含有量等により決まる。The mixing of fine powder and iron compound will be described. In this step, the optimum iron compound powder is mixed and homogenized with the fine powder containing valuable metals derived from waste. Typical types of iron compounds are FeO (divalent), Fe 3 O 4 (FeO · Fe 2 O 3 ; divalent, trivalent), Fe 2 O 3 (trivalent) and Fe (OH) ( Trivalent). The particle size of the iron compound is determined by the fine powder containing valuable metal derived from waste, which is the object to be mixed, and is preferably the same particle size or less. The mixing ratio of the iron compound is determined by the content of the valuable metal to be recovered in the fine powder containing the valuable metal derived from the waste that is the object to be mixed.

つぎに、磁性化処理(加熱処理)について説明する。本工程は、上記のように最適条件で混合均質化された鉄化合物混合粉体を、大気中で加熱する。加熱温度は、廃棄物起因の有価金属を含む微粉体に含まれる回収対象有価金属の種類および含有量により決まるが、800℃程度までの加熱温度が必要である場合が多い。加熱時間は、廃棄物起因の有価金属を含む微粉体に含まれる回収対象有価金属の種類および含有量により決まるが、数分〜数十分の加熱時間が必要である場合が多い。 Next, the magnetizing process (heating process) will be described. In this step, the iron compound mixed powder mixed and homogenized under the optimum conditions as described above is heated in the atmosphere. The heating temperature is determined by the type and content of the recovery target valuable metal contained in the fine powder containing the valuable metal derived from the waste, but a heating temperature up to about 800 ° C. is often required. Although the heating time is determined by the type and content of the recovery target valuable metal contained in the fine powder containing the valuable metal derived from the waste, it often requires several minutes to several tens of minutes of heating time.

磁力分離について説明する。本工程は、上記工程において最適条件で加熱処理された鉄化合物混合粉体を、磁力を用いて磁性物と非磁性物とに分離する。磁界強度は、上磁性化処理(加熱処理)における反応で得られる磁性物の磁力により決まる。分離形式としては、乾式、湿式のいずれの雰囲気でも磁力分離可能であるが、どちらが適するかは、廃棄物起因の有価金属を含む微粉体に含まれる有価金属以外の不純物(主に非磁性物に濃縮)の性状によって決めるのが望ましい。 The magnetic separation will be described. In this step, the iron compound mixed powder heat-treated under the optimum conditions in the above step is separated into a magnetic material and a non-magnetic material using magnetic force. The magnetic field strength is determined by the magnetic force of the magnetic material obtained by the reaction in the upper magnetizing process (heating process). As a separation method, magnetic separation is possible in either dry or wet atmosphere, but which is suitable depends on impurities other than valuable metals contained in fine powder containing valuable metals derived from waste (mainly non-magnetic substances). It is desirable to determine it according to the nature of the concentration.

この発明の実施例について説明する。廃棄物起因の有価金属を含む微粉体は、表1に示す組成の廃棄プリント基板(以下PCB:Print Circuit Board)から有機分を取り除いた後の粉末を用いた。この粉末中には有価金属としてCu,Fe,Ni,Sn,Pbに加え貴金属としてAu,Ag,Pdを含んでいる。また、混合する鉄化合物は、酸化数が2から高くなるほど安定になり、FeO(2価)、Fe3O4(FeO・Fe2O3;2価, 3価)、 Fe2O3(3価)およびFe(OH)3(3価)を種々用い、比較した。用いた鉄化合物粉末は、全て粒径250μm以下とした。なお、磁性を持つ鉄化合物はFeOおよびFe3O4であった。

Figure 2007099714
Embodiments of the present invention will be described. Fine powder containing valuable metals waste caused is wasted PCBs (hereinafter PCB: P rint C ircuit B oard ) having the composition shown in Table 1 were used powder after removal of organic components from. In addition to Cu, Fe, Ni, Sn, and Pb as valuable metals, this powder contains Au, Ag, and Pd as noble metals. Further, the iron compound to be mixed becomes more stable as the oxidation number increases from 2 to FeO (divalent), Fe 3 O 4 (FeO · Fe 2 O 3 ; divalent, trivalent), Fe 2 O 3 (3 Valence) and Fe (OH) 3 (trivalent) were used for comparison. All the iron compound powders used had a particle size of 250 μm or less. The iron compounds having magnetism were FeO and Fe 3 O 4 .
Figure 2007099714

混合均質化および加熱処理条件は、表2に示す。磁性物化処理を行った粉末は磁力分離に供し、磁力分離は、磁性化処理粉末を入れた純水中に磁石を挿入し、攪拌させながら湿式磁力分離とした。

Figure 2007099714
The mixing homogenization and heat treatment conditions are shown in Table 2. The powder subjected to the magnetic materialization treatment was subjected to magnetic separation, and the magnetic separation was performed by inserting a magnet into pure water containing the magnetic treatment powder and performing wet magnetic separation while stirring.
Figure 2007099714

図2は、磁性物化処理後粉末の外観の一例を示す写真である。PCB-酸化鉄混合粉末の外観は、1073Kで処理した場合に混合した鉄化合物の酸化数が2から3へと高くなるにしたがって灰色から赤褐色へと変化し、Fe(OH)3混合粉末において特に鮮やかな赤色を呈していた。また、1073K処理後混合粉末は、価数が低くなるほど焼結が進行しており、FeO混合粉末において、全ての条件で焼結が進行していた。Fe3O4を混合した粉末は、1073KにおいてFeO混合粉末と比較すると小さい粒であったが焼結が進行していた。価数が3であるFe2O3およびFe(OH)3混合粉末は、粉末状であった。また、1273K処理を施した混合粉末は全ての条件で焼結していた。FIG. 2 is a photograph showing an example of the appearance of the powder after the magnetic materialization treatment. The appearance of the PCB-iron oxide mixed powder changed from gray to reddish brown as the oxidation number of the mixed iron compound increased from 2 to 3 when treated with 1073K, especially in the Fe (OH) 3 mixed powder It had a bright red color. In addition, the mixed powder after the 1073K treatment progressed as the valence decreased, and in the FeO mixed powder, the sintering proceeded under all conditions. The powder in which Fe 3 O 4 was mixed was smaller than the FeO mixed powder at 1073K, but sintering proceeded. The Fe 2 O 3 and Fe (OH) 3 mixed powder having a valence of 3 was powdery. Further, the mixed powder subjected to the 1273K treatment was sintered under all conditions.

FeOおよびFe3O4混合粉末において1073K処理で生成した塊状物は全て容易に崩れる程度であった。しかし、1273K処理において生成した焼結体は、焼結が進行し、粒結合を伴っていた。PCB粉末の主成分であるガラス繊維は、活性雰囲気において1123Kの軟化点である。したがって混合粉末は、PCB粉末のガラス繊維のため、1123Kを超えて繊維の形態を保持できなくなり、1273Kにおいて焼結が進行していた。また、本実施例で用いた鉄化合物は、単独で873Kにて加熱処理した結果、FeOのみが焼結し、さらに磁性を示した。In the mixed powder of FeO and Fe 3 O 4, all the masses produced by the 1073K treatment were easily broken. However, the sintered body produced in the 1273K process was sintered and accompanied by grain bonding. Glass fiber, which is the main component of PCB powder, has a softening point of 1123K in an active atmosphere. Therefore, since the mixed powder was a glass fiber of PCB powder, the fiber shape could not be maintained exceeding 1123K, and sintering proceeded at 1273K. Further, as a result of the heat treatment of the iron compound used in this example alone at 873 K, only FeO was sintered and further exhibited magnetism.

磁力分離を行う際、湿式で攪拌すると容易に崩れる程度だった1073K処理粉末はそのまま用い、1273K処理粉末は強固な焼結体となっていたため粉砕して用いた。FeO混合粉末の磁性物割合は図3(a)に示すように、6:4の混合比において、加熱時間が短いほど高くなる傾向を示し、10minにおいて93.83%であった。FeO混合粉末の磁性物割合は、混合比5:5の場合も6:4の混合比と同じ傾向にあり、10minで92.38%と最も高い割合を示した。FeO混合粉末は、加熱時間を長くしても磁性物割合が増加しなかったことから、10minで酸化反応が終了していると考えられる。次に加熱温度1273Kで10minの処理を施した結果、磁性物割合は93.60%であり、1073K以上で加熱温度の上昇による効果が無かった。 When the magnetic separation was performed, the 1073K treated powder, which was easily broken when wet-stirred, was used as it was, and the 1273K treated powder was a strong sintered body and was used after pulverization. As shown in FIG. 3 (a), the magnetic substance ratio of the FeO mixed powder tended to increase as the heating time was shorter at a mixing ratio of 6: 4, and was 93.83% at 10 min. The ratio of the magnetic substance in the FeO mixed powder was the same as the mixing ratio of 6: 4 when the mixing ratio was 5: 5, and the highest ratio was 92.38% in 10 minutes. In the FeO mixed powder, the ratio of magnetic substances did not increase even when the heating time was lengthened. Therefore, it is considered that the oxidation reaction was completed in 10 minutes. Next, as a result of performing a treatment for 10 min at a heating temperature of 1273 K, the magnetic substance ratio was 93.60%, and there was no effect due to an increase in the heating temperature at 1073 K or more.

Fe3O4混合粉末は図3(b)に示すように、6:4の混合比、10min処理条件で磁性物割合が86.01%で最も高かった。磁性物割合は加熱温度を1273Kに上げると82.67%に減少し、FeO混合粉末と同様に1073K以上で加熱温度の上昇による効果が無かった。As shown in FIG. 3B, the Fe 3 O 4 mixed powder had the highest magnetic substance ratio at 86.01% under the 6: 4 mixing ratio and 10 min treatment conditions. The ratio of magnetic substances decreased to 82.67% when the heating temperature was increased to 1273K, and there was no effect due to the increase in heating temperature at 1073K or more, as with the FeO mixed powder.

Fe2O3混合粉末は図3(c)に示すように、加熱時間10minにおいて混合比の違いによる磁性物割合の差はほとんど無かったが、加熱温度の上昇および加熱時間の延長によって磁性物割合が増加する傾向を示した。最も高い磁性物割合は、混合比6:4、加熱温度1073K、加熱時間60minの条件で80.58%をであった。また、同じ6:4の混合比、加熱時間10minでの磁性物割合が1073Kで52.58%だったのに対し、1273Kで70.10%を示し、温度の上昇による磁性物化への効果が認められた。As shown in Fig. 3 (c), the Fe 2 O 3 mixed powder had almost no difference in the magnetic material ratio due to the difference in the mixing ratio at the heating time of 10 min, but the magnetic material ratio was increased by increasing the heating temperature and extending the heating time. Showed a tendency to increase. The highest magnetic substance ratio was 80.58% under the conditions of a mixing ratio of 6: 4, a heating temperature of 1073 K, and a heating time of 60 minutes. In addition, the magnetic material ratio at the same 6: 4 mixing ratio and heating time of 10 min was 52.58% at 1073K, whereas it was 70.10% at 1273K, and the effect of increasing the temperature on the magnetic material was recognized.

Fe(OH)3混合粉末は図3(d)に示すように、加熱温度が上昇するにしたがって磁性物割合が増加する傾向が見られたが、最高値は6:4、1273K、10minの条件で86.32%であった。磁性物生成量は、混合する鉄化合物の価数が2価から高くなるにしたがって減少する傾向にあり、2価のFeOおよびFeOを含むFe3O4を混合した場合、低い加熱温度における短時間の処理で反応が終了していた。一方でFe2O3およびFe(OH)3は、Feの酸化数3で最も安定した化合物であるため、磁性を帯びるために高い温度で長い加熱時間を要すると考えられる。As shown in Fig. 3 (d), the Fe (OH) 3 mixed powder tended to increase in the magnetic substance ratio as the heating temperature increased, but the maximum values were 6: 4, 1273K, 10min. It was 86.32%. The amount of magnetic material produced tends to decrease as the valence of the iron compound to be mixed increases from divalent. When Fe 3 O 4 containing divalent FeO and FeO is mixed, the amount of magnetic compound produced is short at a low heating temperature. The reaction was completed by the treatment. On the other hand, since Fe 2 O 3 and Fe (OH) 3 are the most stable compounds with an oxidation number of Fe of 3, it is considered that a long heating time is required at a high temperature in order to have magnetism.

得られた結果から、PCB粉末と混合することで最も磁性物を生成した粉末は、FeO粉末であった。また、磁力分離後の外観は、磁力分離前と比較して、磁性物の赤褐色、非磁性物の灰色が強くなっていた。したがって磁性物は酸化鉄を主成分とする金属成分、非磁性物は、PCB粉末中のガラス繊維が主成分であることが予想される。 From the obtained results, the most magnetic powder produced by mixing with PCB powder was FeO powder. In addition, the appearance after the magnetic separation was stronger in the reddish brown of the magnetic material and the gray of the nonmagnetic material than before the magnetic separation. Therefore, it is expected that the magnetic material is a metal component mainly composed of iron oxide, and the non-magnetic material is mainly composed of glass fibers in the PCB powder.

磁力分離において磁性側に移行した混合粉末のX線回折は、一例としてFeO添加混合粉末である図4に示すように、混合した鉄化合物の違いによって強度の違いがあったものの、全てヘマタイト(α-Fe2O3)のピークが主体であった。ヘマタイトは六方晶構造であり、磁性の無い酸化鉄であり、通常磁性を持ち、スピネル構造であるマグネタイト(Fe3O4)およびマグへマイト(γ-Fe2O3)のピークは検出されなかった。また、非磁性側に移行した粉末は、図4に示すように、混合した鉄化合物の酸化数が2から3へと高くなるほどヘマタイトピークが大きく検出された。FeO混合粉末において非磁性側に移行した粉末は、SiO2ピークが大きく検出され、ガラス繊維主体であった。また、Fe2O3を除いた混合粉末の非磁性粉末は非晶質のブロードが大きく検出された。The X-ray diffraction of the mixed powder transferred to the magnetic side in the magnetic separation is, as shown in FIG. 4, which is an FeO-added mixed powder as an example, although there is a difference in strength depending on the mixed iron compound, but all hematite (α The peak of -Fe 2 O 3 ) was predominant. Hematite has a hexagonal structure, is a non-magnetic iron oxide, has no magnetism, and no peaks of magnetite (Fe 3 O 4 ) and maghemite (γ-Fe 2 O 3 ) are spinel structures. It was. Further, in the powder transferred to the nonmagnetic side, the hematite peak was detected as the oxidation number of the mixed iron compound increased from 2 to 3, as shown in FIG. In the FeO mixed powder, the powder that moved to the nonmagnetic side showed a large SiO 2 peak and was mainly composed of glass fiber. In addition, a large amount of amorphous broad was detected in the non-magnetic powder of the mixed powder excluding Fe 2 O 3 .

磁力分離後の混合粉末はSEM・EDX観察は、一例としてFeO添加混合粉末である図5に示すように、1273K処理後で1073Kと比較して粒が大きくなっていた。またEDX分析結果から、前項でヘマタイトとなっていた磁性粉末は、PCB粉末に含まれていた金属成分を取り込んでいることが明らかとなった。Niおよび貴金属成分は、濃度が低く粒径が小さく、明確な分布を認められなかった。なお、EDXグラフで検出したAuのピークは、蒸着に用いたAuである。 The SEM / EDX observation of the mixed powder after the magnetic separation was, as an example, FeO-added mixed powder, as shown in FIG. From the EDX analysis results, it became clear that the magnetic powder that was hematite in the previous section incorporated the metal components contained in the PCB powder. Ni and noble metal components had low concentrations and small particle sizes, and no clear distribution was observed. In addition, the peak of Au detected by the EDX graph is Au used for vapor deposition.

PCB粉末中金属成分の磁性側および非磁性側分配率は、磁力分離で回収した粉末重量およびEDX面分析結果から算出して、図6〜図11に示した。
Cuの磁性側への分配率は図6に示すように、FeO混合粉末で最も高い値を示し、6:4、10minの条件下において1073Kで95.73%、1273Kで95.06%であった。
Feの磁性側分配率は図7に示すように、FeOおよびFe3O4を6:4の割合で混合した粉末において全ての加熱条件で90%以上の高い分配率を示した。特にFeOを混合した粉末は、6:4での加熱条件下で全て97%以上の分配率を示し、Feを非常に高い割合で磁性物として回収し得る結果が得られた。
Niの最高磁性側分配率は図8に示すように、100%を除いてFe2O3で86.12%、FeOで96.37%、Fe3O4で94.03%、Fe(OH)3で89.27%であった。Niは、PCB粉末中の含有率が0.05mass%と非常に低かったために分析結果の信頼度は低いと考えられる。しかし、NiはFe-Niの形態でPCB中に存在していたため、Feの分配率がNiの分配率に大きく影響していると考えられる。
Snの磁性側分配率は図9に示すように、FeO、Fe3O4およびFe(OH)3において6:4の混合比で90%以上を示した。SnはCu-Snの形態でPCB中に存在するため、Cuの磁性物化に比例して磁性側に移行すると考えられる。
Pbの磁性側分配率は図10に示すように、FeO混合粉末において6:4で92.61%、5:5で93.23%と唯一90%以上を示した。
金属成分全体の磁性側分配率は図11に示すように、FeOの6:4全てと5:5の1273K、10min、Fe3O4の6:4で90%以上を示した。金属成分の磁性側分配率は、上述の磁性物割合と同様に、混合鉄化合物の酸化数が3に近づくほど少なくなる傾向を示した。
図6から図11に示した磁性側分配率のデータにおいて、いずれも一定以上の効果が確認されており、ここに特に示されていない混合比の範囲も含めて、本発明は広く適用できるものである。
その中でも特にFeOは、PCBと混合することで金属成分を90%以上の高い割合で磁性側に分配しており、磁力分離の結果からも、PCB粉末と混合する上で最適とされる。
The magnetic side and nonmagnetic side distribution ratio of the metal component in the PCB powder was calculated from the weight of the powder recovered by magnetic separation and the EDX plane analysis result, and is shown in FIGS.
As shown in FIG. 6, the distribution ratio of Cu to the magnetic side showed the highest value in the FeO mixed powder, which was 95.73% at 1073K and 95.06% at 1273K under the conditions of 6: 4 and 10 min.
As shown in FIG. 7, the magnetic side distribution ratio of Fe showed a high distribution ratio of 90% or more in all heating conditions in the powder in which FeO and Fe 3 O 4 were mixed at a ratio of 6: 4. In particular, the powder mixed with FeO showed a distribution ratio of 97% or more under the heating condition of 6: 4, and the result was that Fe could be recovered as a magnetic substance at a very high ratio.
As shown in FIG. 8, the maximum magnetic side distribution of Ni is 86.12% for Fe 2 O 3 except for 100%, 96.37% for FeO, 94.03% for Fe 3 O 4 and 89.27% for Fe (OH) 3. there were. Ni has a very low content of 0.05 mass% in the PCB powder, so the reliability of the analysis results is considered to be low. However, since Ni was present in the PCB in the form of Fe—Ni, it is considered that the distribution ratio of Fe greatly affects the distribution ratio of Ni.
As shown in FIG. 9, the magnetic side distribution ratio of Sn was 90% or more in a mixing ratio of 6: 4 in FeO, Fe 3 O 4 and Fe (OH) 3 . Since Sn is present in the PCB in the form of Cu-Sn, it is considered that it moves to the magnetic side in proportion to the magnetic materialization of Cu.
As shown in FIG. 10, the Pb magnetic side distribution ratio was 92.61% at 6: 4 and 93.23% at 5: 5, and only 90% or more.
As shown in FIG. 11, the magnetic side distribution ratio of the entire metal component showed 90% or more at 6: 4 for all FeO 6: 4 and 5: 5 for 1273 K, 10 min, and 6: 4 for Fe 3 O 4 . The magnetic side distribution ratio of the metal component tended to decrease as the oxidation number of the mixed iron compound approached 3, similar to the above-described magnetic substance ratio.
In the data on the magnetic side distribution ratio shown in FIGS. 6 to 11, the effects above a certain level have been confirmed, and the present invention can be widely applied including the range of the mixing ratio not specifically shown here. It is.
Among them, FeO, in particular, distributes the metal component to the magnetic side at a high rate of 90% or more by mixing with PCB. From the result of magnetic separation, it is optimal for mixing with PCB powder.

Fe2O3標準試薬粉末および磁力分離で磁性側に移行した混合粉末は、試料振動型磁化測定装置(VSM:Vibrating Sample Magenetometer)を用いて磁化測定を行った。標準Fe2O3は図12(a)に示すように、0.61emu/gの飽和磁化であり、ほとんど磁性を示さなかった。しかし、本実施例で得られたFe2O3粉末は図12(b)に示すように、7.54 emu/gの飽和磁化を示し、残留磁化および保磁力が1.01 emu/g、0.19KOeと小さいものの、通常磁性を持たないヘマタイトと同じ構造であるにも関わらず磁性体の特性を示した。The Fe 2 O 3 standard reagent powder and the mixed powder transferred to the magnetic side by magnetic separation were subjected to magnetization measurement using a sample vibration type magnetometer (VSM). As shown in FIG. 12 (a), standard Fe 2 O 3 had a saturation magnetization of 0.61 emu / g and showed almost no magnetism. However, as shown in FIG. 12 (b), the Fe 2 O 3 powder obtained in this example shows a saturation magnetization of 7.54 emu / g, and remanence and coercive force are as small as 1.01 emu / g and 0.19 KOe. However, although it has the same structure as hematite, which does not normally have magnetism, it showed the characteristics of a magnetic material.

本実施例で得られたヘマタイト粉末が磁性を持つ理由について、図4に示したX線回折結果より、結晶格子のひずみに着目し詳細を検討した。Braggの回折条件式は、次式で与えられる。
2d・sinθ=nλ (式1)
上式を全微分すると
Δd・sinθ+d・cosθ・Δθ=0
∴ Δd/d=−Δθ/tanθ (式2)
格子面間隔の変化すなわち格子ひずみΔd/dは、回折角θの変化量Δθ/ tanθの傾きより求められる。また式2より、格子ひずみはtanθすなわち回折角θの値が大きいほど感度が向上する。したがって標準ヘマタイトは、本実施例で得られた磁性ヘマタイト粉末のX線回折結果と比較してΔθ-tanθの散布図を作成した。
a軸が関与しない(0 1 2)および(0 2 4)面のΔθは図13に示すように、0.0185で一定であった。一方でa軸が関与している面における傾きは、(1 0 4)→(2 0 8)で-0.04405、(1 1 0)→(2 2 0)で-0.04977、(1 1 3)→(2 2 6)で-0.03154であり、負の勾配を示した。したがって式より、Δd/dはa軸が関与している面において正の勾配を示すことになり、a軸が伸びたとされる。
したがって、作製Fe2O3はミラー指数と面間隔の式より、X線回折によって測定したd、h、kおよびl値を用い、c値を表3に示す標準Fe2O3のc値と同じ13.74890Åと仮定して、a値を算出した。六方晶におけるミラー指数と面間隔の式は、次式で与えられる。
1/d2=(3/4){(h2+hk+k2)/a2}+l2/c2 (式3)

Figure 2007099714
The reason why the hematite powder obtained in this example has magnetism was examined in detail by paying attention to the distortion of the crystal lattice from the X-ray diffraction results shown in FIG. Bragg's diffraction conditional expression is given by the following expression.
2d · sin θ = nλ (Formula 1)
When the above equation is fully differentiated, Δd · sin θ + d · cos θ · Δθ = 0
Δd / d = −Δθ / tanθ (Formula 2)
The change in the lattice spacing, that is, the lattice distortion Δd / d is obtained from the gradient of the change amount Δθ / tan θ of the diffraction angle θ. From Equation 2, the sensitivity of the lattice strain increases as the value of tan θ, that is, the diffraction angle θ increases. Therefore, the standard hematite produced a scatter diagram of Δθ-tanθ in comparison with the X-ray diffraction result of the magnetic hematite powder obtained in this example.
Δθ of the (0 1 2) and (0 2 4) planes not involving the a-axis was constant at 0.0185 as shown in FIG. On the other hand, the inclination in the plane where the a axis is involved is -0.04405 from (1 0 4) → (2 0 8), -0.04977 from (1 1 0) → (2 2 0), (1 1 3) → (2 2 6) was -0.03154, indicating a negative slope. Therefore, from the equation, Δd / d shows a positive gradient in the plane where the a-axis is involved, and the a-axis is extended.
Therefore, the produced Fe 2 O 3 uses the d, h, k, and l values measured by X-ray diffraction from the Miller index and the interplanar formula, and the c value is the c value of the standard Fe 2 O 3 shown in Table 3. The a value was calculated assuming the same 13.74890cm. The formulas for Miller index and interplanar spacing in hexagonal crystals are given by
1 / d 2 = (3/4) {(h 2 + hk + k 2 ) / a 2 } + l 2 / c 2 (Formula 3)
Figure 2007099714

式3より算出した作製Fe2O3のa値は5.04944Åとなり、表3に示す標準Fe2O3のa値と比較して大きくなっていることが明らかとなった。ここで、本実施例にて測定の対象とした金属元素の原子半径は、Feが1.24Åであるのに対し、Cuが1.28Å、Niが1.25Å、Snが1.41および1.51Å、Pbが1.76Åである。また貴金属元素も、Agが1.44Å、Auが1.44Å、Pdが1.37Åであり、PCB粉末中に含まれる金属元素は全てFeと比べて原子半径が大きく、これらの金属元素がヘマタイト中に固溶していると考えられる。The a value of the prepared Fe 2 O 3 calculated from Equation 3 was 5.04944%, which was found to be larger than the a value of standard Fe 2 O 3 shown in Table 3. Here, the atomic radius of the metal element to be measured in this example, Fe is 1.24%, while Cu is 1.28%, Ni is 1.25%, Sn is 1.41 and 1.51%, and Pb is 1.76. It is a spear. Also, the noble metal elements are 1.44% Ag, 1.44% Au, 1.37% Pd, and all the metal elements contained in the PCB powder have a larger atomic radius than Fe, and these metal elements are solid in the hematite. It is thought that it is melted.

本実施例で得られた磁性ヘマタイト粉末はSEM・EDXを用いて2,000倍に拡大し、図14に示す+印の個所での点分析結果から、Fe、CuおよびSnの同時ピークが検出された。したがって、磁性ヘマタイト粉末に、CuおよびSn元素が固溶していた。 The magnetic hematite powder obtained in this example was enlarged 2,000 times using SEM / EDX, and the simultaneous peaks of Fe, Cu and Sn were detected from the point analysis results at the positions of the + marks shown in FIG. . Therefore, Cu and Sn elements were dissolved in the magnetic hematite powder.

立方スピネル型構造を持つFe3O4およびγ-Fe2O3はペレット化において、焼成温度が低く、時間が短い場合、六方稠密型のα- Fe2O3への変換が完全に行われず、何らかの格子欠陥を伴った不安定なα- Fe2O3とされる。したがって、本実施例において混合粉末は、完全に六方稠密型への変態が伴われなかったこと、および前述の通りPCB中の金属元素が鉄中に固溶したことが起因して、格子欠陥ヘマタイト結晶内に反磁性配列の均衡の乱れが生じ、弱い強磁性になったとされる。Fe 3 O 4 and γ-Fe 2 O 3 with a cubic spinel structure are not completely converted to hexagonal close-packed α-Fe 2 O 3 when the sintering temperature is low and the time is short in pelletization. , Unstable α-Fe 2 O 3 with some lattice defects. Therefore, in this example, the mixed powder was not accompanied by the transformation into the hexagonal close-packed type completely, and as described above, the metal element in the PCB was dissolved in iron, resulting in lattice defect hematite. It is said that the diamagnetic arrangement is disturbed in the crystal, resulting in weak ferromagnetism.

平均磁性物回収率は図15に示すように、どの混合粉末も6:4の混合比で最も多くなる傾向にあった。2価FeO混合粉末は6:4および5:5の混合比で各々91.18%、91.84%であり、唯一90%以上を示した。次いで、Fe3O4を6:4の割合で混合した粉末が81.81%と高い磁性割合を示した。Fe2O3混合粉末は最も割合が低く、最も高かった6:4の混合条件でも66.15%であった。Fe(OH)3混合粉末は、Fe2O3混合粉末よりも割合は高かったものの、最高値を示した6:4の混合割合でも77.46%であり、FeO およびFe3O4を混合した粉末には及ばなかった。As shown in FIG. 15, the average magnetic substance recovery rate tended to be the highest at a mixing ratio of 6: 4 for any mixed powder. The divalent FeO mixed powders were 91.18% and 91.84%, respectively, at a mixing ratio of 6: 4 and 5: 5, and showed only 90% or more. Next, a powder in which Fe 3 O 4 was mixed at a ratio of 6: 4 showed a high magnetic ratio of 81.81%. The ratio of Fe 2 O 3 powder was the lowest, and it was 66.15% even at the highest 6: 4 mixing condition. Although the ratio of Fe (OH) 3 mixed powder was higher than that of Fe 2 O 3 mixed powder, the mixing ratio of 6: 4, which showed the highest value, was 77.46%, which was a mixture of FeO and Fe 3 O 4 It did not reach.

金属成分の磁性側への平均分配率は図16に示すように、信頼度の低いNiを除いて、FeOを6:4で混合した粉末において最高の分配率であり、Cu 、Fe、 Sn、 Pbおよび金属成分全体でそれぞれ90.11%、97.50%、86.83%、82.71%および94.88%であった。FeO混合粉末は、唯一全ての金属元素および金属成分全体において80%以上の磁性側分配率を示した。 As shown in FIG. 16, the average distribution ratio of the metal component to the magnetic side is the highest distribution ratio in the powder in which FeO is mixed at a ratio of 6: 4, except for Ni, which has low reliability, and Cu, Fe, Sn, The total Pb and metal components were 90.11%, 97.50%, 86.83%, 82.71% and 94.88%, respectively. The FeO mixed powder showed a magnetic side partition ratio of 80% or more only in all the metal elements and all metal components.

2価のFeは酸化されやすく、3価に移りやすい性質を持ち、Feは3価で最も安定した化合物を形成する。FeO混合粉末が最も磁性化した理由は、FeOの結晶構造にある。2価酸化鉄であるFeOは、結晶構造的に非常にバランスが取れていない酸化鉄で、その不安定な状態のために、空気中でも様々な分子と結びつき安定となる傾向があることから、最も多く非鉄金属元素を吸着、反応し、結晶構造の乱れから最も磁性物を生成したと考えられる。FeOの次に磁性物割合および金属元素の磁性側分配率が高かったFe3O4は、2価と3価のFeが共存しており、黒色の立方晶系結晶で欠陥を持つ逆スピネル型構造である。Divalent Fe is easily oxidized and has the property of easily moving to trivalent, and Fe forms the most stable compound with trivalent. The reason why the FeO mixed powder is most magnetized is the crystal structure of FeO. FeO, a divalent iron oxide, is an iron oxide that is not very balanced in terms of crystal structure, and because of its unstable state, it tends to bind and stabilize in various molecules in the air. It is thought that many non-ferrous metal elements were adsorbed and reacted to produce the most magnetic material from the disorder of the crystal structure. Fe 3 O 4 has the second highest magnetic fraction and metal side distribution ratio next to FeO, and is a reverse spinel type in which divalent and trivalent Fe coexist and has a black cubic crystal defect. Structure.

一方、3価の酸化鉄であるFe2O3は最も安定した稠密立方構造であり、最も低い磁性物生成量および磁性側分配率を示したと考えられる。Fe2O3を混合して磁性物として回収する処理法に、フェライト化法があるが、通常、乾式フェライト処理は、空気中にてFe2O3を1673K以上で強熱しFe3O4とするため、莫大なコストを要すると予想される。また、本実施例で用いた3価のFe(OH)3は、水酸化鉄の中でも最も安定した構造を取っており、Fe2O3に次いで低い磁性物生成量および金属成分の磁性側分配率を示したと考えられる。On the other hand, Fe 2 O 3, which is a trivalent iron oxide, has the most stable dense cubic structure, and is considered to have exhibited the lowest magnetic substance production and magnetic side partition ratio. There is a ferritization method in which Fe 2 O 3 is mixed and recovered as a magnetic material. Usually, dry ferrite treatment is performed by heating Fe 2 O 3 at 1673K or higher in the air to form Fe 3 O 4 Therefore, enormous costs are expected to be required. In addition, the trivalent Fe (OH) 3 used in this example has the most stable structure among iron hydroxides, and is the second lowest magnetic substance generated after Fe 2 O 3 and the magnetic side distribution of metal components. It is thought that the rate was shown.

本実施例において以上の点から、PCB粉末中の金属成分を最も効率よく濃縮した磁性物化処理を行う上での最適条件は、PCB粉末とFeOを6:4の割合で混合し1073Kで空気酸化させることであった。 From the above points in this example, the optimum conditions for performing the magnetic materialization treatment in which the metal components in the PCB powder are most efficiently concentrated are mixed with the PCB powder and FeO at a ratio of 6: 4 and air-oxidized at 1073K. It was to let you.

続いて、高勾配磁気分別装置の例について説明する。磁性体と非磁性体の粒子を分別するには、高勾配磁気分別装置が有効である。磁性体と非磁性体を分別する従来の技術としては、磁気ドラム式や磁気ベルト式の磁気分離装置や、湿式の高勾配磁気分別装置などがある。しかし、磁気ドラム式や磁気ベルト式の磁気分離装置では、250μm程度以下の微粒子を処理しようとしても飛散させてしまうという問題がある。湿式の高勾配磁気分別装置においては、使用する液体には有価金属以外の成分も溶融するので、これらを除去する処理が必要となるなど、作業が煩雑となる。 Next, an example of a high gradient magnetic sorting device will be described. A high-gradient magnetic separation device is effective for separating magnetic and non-magnetic particles. Conventional techniques for separating magnetic and non-magnetic materials include magnetic drum type and magnetic belt type magnetic separation devices, and wet high gradient magnetic separation devices. However, in the magnetic drum type or magnetic belt type magnetic separation device, there is a problem that fine particles having a size of about 250 μm or less are scattered even if they are processed. In the wet high gradient magnetic fractionation apparatus, components other than valuable metals are melted in the liquid to be used, so that the work is complicated, for example, it is necessary to remove these components.

そこで、この実施例では液体を使用しない乾式の高勾配磁気分別装置の例について説明する。図17は、高勾配磁気分別装置の構造を示すブロック図である。この高勾配磁気分別装置1は試料投入部2と、投入された試料に対して気体を吹き付けて試料を均等に分散させる送風部3と、磁気ヘッド(図示省略)と繊維状金属メッシュのマトリクス4を備えた高勾配磁気分離部5と、繊維状金属メッシュのマトリクス4に振動を付与する振動部6と、磁性化物回収部7と、非磁性化物回収部8とを有する。また、高勾配磁気分離部5を出た試料が磁性化物回収部7へ送られるか、あるいは非磁性化物回収部8へ送られるかを切り替えることができるようになっている。 Therefore, in this embodiment, an example of a dry type high gradient magnetic separation apparatus that does not use liquid will be described. FIG. 17 is a block diagram showing the structure of the high gradient magnetic sorting apparatus. This high gradient magnetic fractionation device 1 includes a sample loading unit 2, a blower unit 3 for blowing a gas to the loaded sample to uniformly disperse the sample, a magnetic head (not shown), and a matrix 4 of a fibrous metal mesh. A high gradient magnetic separation unit 5, a vibration unit 6 that applies vibration to the matrix 4 of the fibrous metal mesh, a magnetized material recovery unit 7, and a non-magnetized product recovery unit 8. Further, it is possible to switch whether the sample that has exited the high gradient magnetic separation unit 5 is sent to the magnetized product recovery unit 7 or to the non-magnetized product recovery unit 8.

送風部3は、試料投入部2と高勾配磁気分離部5の間に設けられ、空気などの気体を投入された試料と混合することで投入される試料を均等に分散させるものである。高勾配磁気分離部5に設けられるマトリクス4はスティールワイヤーや繊維状の金属によってメッシュ状に構成された部材である。 The air blowing unit 3 is provided between the sample feeding unit 2 and the high gradient magnetic separation unit 5 and uniformly disperses the sample to be introduced by mixing a gas such as air with the sample that has been introduced. The matrix 4 provided in the high gradient magnetic separation unit 5 is a member configured in a mesh shape with a steel wire or a fibrous metal.

振動部6を作動させて、マトリクス4を振動させ、磁気ヘッドによってマトリクス4に磁力をかけた状態で、試料投入部2より磁性化物と非磁性化物の混合した試料を投入する。ここで、試料としては、250μm程度またはそれより小さい粉体を投入するのが好ましい。投入された試料は、送風部3より供給される気体によって均一に分散されており、マトリクス4に効率的に接触するような状態になる。マトリクス4は磁性化されており、このマトリクス4に供給された磁性化物は、マトリクス4中に付着する。一方、非磁性化物は、マトリクス4を通過し、また磁性化物と一緒にマトリクス4に付着する一部の非磁性化物は、マトリクス4の振動によりマトリクスから離脱し、高勾配磁気分離部5より排出される。ここで、高勾配磁気分離部5を出た試料は非磁性化物回収部8へ送られるように設定しておく。こうして、マトリクス4を通過した非磁性化物は非磁性化物回収部8に回収される。 The vibrating unit 6 is operated to vibrate the matrix 4, and a sample in which a magnetized material and a non-magnetized material are mixed is loaded from the sample loading unit 2 in a state where a magnetic force is applied to the matrix 4 by the magnetic head. Here, it is preferable to introduce a powder of about 250 μm or smaller as a sample. The input sample is uniformly dispersed by the gas supplied from the blower unit 3 and is brought into a state in which it efficiently contacts the matrix 4. The matrix 4 is magnetized, and the magnetized material supplied to the matrix 4 adheres to the matrix 4. On the other hand, the non-magnetized material passes through the matrix 4 and a part of the non-magnetized material adhering to the matrix 4 together with the magnetized material is detached from the matrix by the vibration of the matrix 4 and discharged from the high gradient magnetic separation unit 5. Is done. Here, it is set so that the sample exiting the high gradient magnetic separation unit 5 is sent to the non-magnetized substance recovery unit 8. In this way, the non-magnetized material that has passed through the matrix 4 is recovered by the non-magnetized material recovery unit 8.

次に、試料の投入を停止し、高勾配磁気分離部5を出た試料は磁性化物回収部7へ送られるように設定しておく。そして、マトリクス4に磁力がかからない状態にする。必要に応じ振動部6は作動させて、マトリクス4を振動させておく。磁力がなくなったこと、および マトリクス4が振動することによって、マトリクス4に付着していた磁性化物はマトリクス4から離脱し、磁性化物回収部7に回収される。マトリクス4に付着していた磁性化物を概ね回収したら、再度、試料の投入を行う。以上、この作業を交互に繰り返すことによって、磁性化物と非磁性化物を分別回収することができる。 Next, it is set so that the introduction of the sample is stopped and the sample exiting the high gradient magnetic separation unit 5 is sent to the magnetized material recovery unit 7. Then, the matrix 4 is brought into a state where no magnetic force is applied. The vibration unit 6 is operated as necessary to vibrate the matrix 4. When the magnetic force is lost and the matrix 4 vibrates, the magnetized material adhering to the matrix 4 is detached from the matrix 4 and recovered by the magnetized material recovery unit 7. When the magnetized material adhering to the matrix 4 is almost recovered, the sample is again charged. As described above, the magnetized product and the non-magnetized product can be separately collected by repeating this operation alternately.

以上、乾式の処理工程によって、効率的に磁性化物と非磁性化物を分別回収することができる。液体を使用しないため、磁性化物から有価金属を抽出する後処理工程も簡易になる。この高勾配磁気分別装置は、250μm程度またはそれより小さい粉体にも適しており、この発明の金属回収処理方法に適用するのに特に適している。 As described above, the magnetized product and the non-magnetized product can be efficiently separated and recovered by the dry treatment process. Since no liquid is used, the post-treatment process for extracting valuable metals from the magnetized product is simplified. This high gradient magnetic separation apparatus is also suitable for powders of about 250 μm or smaller, and is particularly suitable for application to the metal recovery processing method of the present invention.

本発明は、混合均質化後の微粉体に対して、従来技術に比較し、より低温での磁性化処理(加熱処理)を施すことで有価金属に磁性を帯びさせることが可能で、プロセス全体への投入エネルギーの低減ができる金属回収処理方法として利用でき、たとえば、使用済みパーソナルコンピュータなどの廃棄物から金Auなどの有価金属を回収・リサイクルすることができる。 In the present invention, it is possible to make the valuable metal magnetized by subjecting the fine powder after mixing and homogenization to a magnetizing treatment (heating treatment) at a lower temperature than in the prior art. It can be used as a metal recovery processing method that can reduce the input energy to the metal. For example, valuable metals such as gold Au can be recovered and recycled from waste such as used personal computers.

Claims (5)

金属を含む微粉体を鉄化合物と混合して加熱し、その金属成分を含む鉄化合物の粉体を磁性化させることを特徴とする金属回収処理方法。 A method for recovering a metal, comprising mixing a metal-containing fine powder with an iron compound and heating to magnetize the powder of the iron compound containing the metal component. 前記鉄化合物が鉄酸化物である請求項1に記載の金属回収処理方法。 The metal recovery treatment method according to claim 1, wherein the iron compound is iron oxide. 磁性化物と非磁性化物を磁力により分離する請求項1または請求項2に記載の金属回収処理方法。 The metal recovery treatment method according to claim 1 or 2, wherein the magnetized product and the non-magnetized product are separated by a magnetic force. ガラス繊維の融点よりも低い温度で加熱する請求項1ないし請求項3のいずれかに記載の金属回収処理方法。 The metal recovery treatment method according to any one of claims 1 to 3, wherein heating is performed at a temperature lower than the melting point of the glass fiber. 試料投入部と、導入された試料に対して気体を吹き付けて試料を均等に分散させる送風部と、磁気ヘッドと繊維状金属メッシュを備えた高勾配磁気分離部と、繊維状金属メッシュに振動を付与する振動部と、磁性物回収部と、非磁性物回収部とを有する高勾配磁気分別装置。 A sample input unit, a blowing unit that blows gas to the introduced sample to uniformly disperse the sample, a high gradient magnetic separation unit that includes a magnetic head and a fibrous metal mesh, and a vibration to the fibrous metal mesh A high-gradient magnetic separation device having a vibrating part to be applied, a magnetic substance recovery part, and a non-magnetic substance recovery part.
JP2008502670A 2006-03-03 2007-03-01 Metal recovery processing method Active JP5347091B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502670A JP5347091B2 (en) 2006-03-03 2007-03-01 Metal recovery processing method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006058532 2006-03-03
JP2006058532 2006-03-03
PCT/JP2007/000150 WO2007099714A1 (en) 2006-03-03 2007-03-01 Method of recovering metal and high-gradient magnetic separator
JP2008502670A JP5347091B2 (en) 2006-03-03 2007-03-01 Metal recovery processing method

Publications (2)

Publication Number Publication Date
JPWO2007099714A1 true JPWO2007099714A1 (en) 2009-07-16
JP5347091B2 JP5347091B2 (en) 2013-11-20

Family

ID=38458835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502670A Active JP5347091B2 (en) 2006-03-03 2007-03-01 Metal recovery processing method

Country Status (3)

Country Link
JP (1) JP5347091B2 (en)
TW (1) TW200736404A (en)
WO (1) WO2007099714A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100577300C (en) * 2008-05-15 2010-01-06 长沙矿冶研究院 Continuous Discrete Rare Earth Permanent Magnet High Gradient Magnetic Separator
TW201250064A (en) * 2011-06-10 2012-12-16 Son King Entpr Co Ltd Apparatus containing heavy metal liquid to be recycled as metal solid
JP5946034B2 (en) * 2012-01-19 2016-07-05 国立大学法人 東京大学 Processed precious metal-containing scrap, method for producing the same, and method for recovering precious metal
JP5772869B2 (en) * 2013-04-24 2015-09-02 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5679372B2 (en) 2013-07-03 2015-03-04 住友金属鉱山株式会社 Method for producing hematite for iron making
JP5776913B2 (en) 2014-01-17 2015-09-09 住友金属鉱山株式会社 Method for producing hematite for iron making
JP6469362B2 (en) * 2014-05-14 2019-02-13 松田産業株式会社 Method for recovering valuable materials from lithium ion secondary batteries

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL8204940A (en) * 1982-12-22 1984-07-16 Shell Int Research PROCESS FOR PREPARING A FERRONIC CONCENTRATE
JPS62254851A (en) * 1986-04-28 1987-11-06 Nittetsu Mining Co Ltd Dry magnetic separation of fine powder
JPH0143182Y2 (en) * 1986-04-30 1989-12-14
JPH06174383A (en) * 1992-05-08 1994-06-24 Techno Toriito:Kk Treating method of electric furnace dust
JPH073345A (en) * 1993-06-16 1995-01-06 Nippon Steel Corp Method for recovering valuable component from steelmaking slag
JP3448392B2 (en) * 1995-04-18 2003-09-22 住友金属鉱山株式会社 Method for recovering cobalt, copper and lithium from used lithium secondary batteries
JPH1015519A (en) * 1996-07-02 1998-01-20 Mitsubishi Heavy Ind Ltd Refuse treatment apparatus
JP3079285B2 (en) * 1996-09-02 2000-08-21 日鉱金属株式会社 How to recover valuable resources from used lithium batteries
JPH11323447A (en) * 1998-05-14 1999-11-26 Hitachi Chemical Techno Plant Co Ltd Method for recovering metal in waste
JP4022025B2 (en) * 1999-11-05 2007-12-12 三菱重工業株式会社 Recycling method and equipment for incineration ash

Also Published As

Publication number Publication date
WO2007099714A1 (en) 2007-09-07
TW200736404A (en) 2007-10-01
JP5347091B2 (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5347091B2 (en) Metal recovery processing method
JP6638719B2 (en) How to treat steel slag
Wu et al. Magnetic separation and magnetic properties of low-grade manganese carbonate ore
Bentli et al. Magnesite concentration technology and caustic–calcined product from Turkish magnesite middlings by calcination and magnetic separation
Tanvar et al. Characterization and evaluation of discarded hard disc drives for recovery of copper and rare earth values
JP6797593B2 (en) How to treat pollutants
Jiao et al. Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation: process optimization and mineralogical study
Makarchuk et al. Magnetic nanocomposite sorbents on mineral base
ABUBAKRE et al. Characterization and beneficiation of Anka chromite ore using magnetic separation process
Zhang et al. Carbon nanotubes/magnetite hybrids prepared by a facile synthesis process and their magnetic properties
Wu et al. Surface magnetization of siderite mineral
Barnwal et al. Physical processing of discarded integrated circuits for recovery of metallic values
Chen et al. PREPARATION AND RECOVERY OF IRON CARBIDE FROM PYRITE CINDER VIA A CARBURIZATION-MAGNETIC SEPARATION TECHNOLOGY
JPH10245271A (en) Treatment of ceramic material
CN102240537A (en) Method for preparing organic dye absorbent
Tu et al. Recycling of neodymium enhanced by functionalized magnetic ferrite
Liu et al. Enhancing magnetism of ferrite via regulation of Ca out of sit A from spinel-type structure by adjusting the CaO/SiO2 mass ratio: Clean and value-added utilization of minerals
Hino et al. Ferritization of waste printed circuit boards for magnetic separation of common metals
Chirita et al. A short route of micrometric magnetite synthesis via Fe-EDTA thermal decomposition
Kwon et al. Removal of Cationic and Anionic Heavy Metal Ions From Aqueous Phase by a HGMS and Magnetized Zeolite
CN107555482B (en) A kind of method and additive preparing Manganese Ferrite spinel using high lead high phosphorus promoter manganese
Erfan et al. Synthesis and characterization of barium hexaferrite (BaFe12O19) nanoparticles from iron ore waste and their possible application in water treatment
Setiadi et al. The effect of NH4OH pH on the synthesis of MnFe2O4 as heavy metal adsorbent by using co-precipitation method
Nazlan et al. Structural and Magnetic Characteristics Evaluation of Iron Oxide Extracted from Printer Toner Wastes
Gao et al. Effect of metal substitution on the magnetic properties of spinel ferrites synthesized from zinc-bearing dust

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130729

R150 Certificate of patent or registration of utility model

Ref document number: 5347091

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250