JPWO2007099711A1 - Differentiation inducer - Google Patents

Differentiation inducer Download PDF

Info

Publication number
JPWO2007099711A1
JPWO2007099711A1 JP2008502669A JP2008502669A JPWO2007099711A1 JP WO2007099711 A1 JPWO2007099711 A1 JP WO2007099711A1 JP 2008502669 A JP2008502669 A JP 2008502669A JP 2008502669 A JP2008502669 A JP 2008502669A JP WO2007099711 A1 JPWO2007099711 A1 JP WO2007099711A1
Authority
JP
Japan
Prior art keywords
bone marrow
differentiation
cells
heparin
liver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008502669A
Other languages
Japanese (ja)
Inventor
謙之 竹井
謙之 竹井
信行 榎本
信行 榎本
信紘 佐藤
信紘 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Juntendo University
Original Assignee
Juntendo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Juntendo University filed Critical Juntendo University
Publication of JPWO2007099711A1 publication Critical patent/JPWO2007099711A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/069Vascular Endothelial cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/10Heparin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/90Polysaccharides
    • C12N2501/91Heparin
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/13Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells
    • C12N2506/1346Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells
    • C12N2506/1353Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from connective tissue cells, from mesenchymal cells from mesenchymal stem cells from bone marrow mesenchymal stem cells (BM-MSC)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Wood Science & Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Vascular Medicine (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

骨髄細胞から内皮細胞への分化誘導剤を提供すること。ヘパリンまたはその塩を有効成分とする骨髄細胞から内皮細胞への分化誘導剤。To provide an agent for inducing differentiation of bone marrow cells into endothelial cells. An agent for inducing differentiation of bone marrow cells into endothelial cells, comprising heparin or a salt thereof as an active ingredient.

Description

本発明は、分化誘導剤、特に骨髄細胞から内皮細胞への分化誘導剤に関する。   The present invention relates to a differentiation inducer, particularly a differentiation inducer from bone marrow cells to endothelial cells.

内皮細胞は、血管やリンパ管の内壁をなす細胞であり、このうち血管内皮細胞は、血液と血管壁との接点に位置し、物質の透過性を制御する役割を担うとともに、血液と組織との情報伝達の役割を担っている。これら内皮細胞は、高脂血症、高血圧症、糖尿病などの疾患によって損傷を受けることが知られており、修復方法の研究がされている。
とりわけ、肝類洞内皮細胞は免疫応答・炎症制御、微小循環制御、物質交換などを介して、肝機能発現に重要な貢献をなしている。類洞内皮細胞は、ハイポキシアや障害因子に極めて脆弱であり、その機能障害や細胞死による損失は、慢性肝炎、肝硬変、劇症肝不全、肝癌、移植後のグラフト障害など主要な肝疾患においてその病態惹起機序の中心的な役割を果たしている(非特許文献1〜3)。
一方、骨髄細胞は、さまざまな臓器における未成熟細胞の起源となることが示唆されており(非特許文献4〜6)、近年肝臓などの組織においては、移植した骨髄細胞から分化させて再生させることが検討されている(非特許文献7〜9)。
これらの背景から、骨髄由来細胞の分化誘導を用いることにより、損傷した類洞内皮細胞を正所性に再生することが可能になれば、現在有効な治療法が存在しない肝硬変、劇症肝炎など難治性肝疾患の画期的な治療法になることが期待される。
Endothelial cells are the cells that form the inner walls of blood vessels and lymphatic vessels. Among these, vascular endothelial cells are located at the contact points between blood and blood vessel walls and play a role in controlling the permeability of substances, as well as between blood and tissues. Is responsible for the communication of information. These endothelial cells are known to be damaged by diseases such as hyperlipidemia, hypertension, and diabetes, and research on repair methods has been conducted.
In particular, hepatic sinusoidal endothelial cells make an important contribution to the expression of liver function through immune responses, inflammation control, microcirculation control, substance exchange, and the like. Sinusoidal endothelial cells are extremely vulnerable to hypoxia and damaging factors, and their dysfunction and loss due to cell death are associated with major liver diseases such as chronic hepatitis, cirrhosis, fulminant liver failure, liver cancer, and graft failure after transplantation. It plays a central role in the pathogenesis mechanism (Non-Patent Documents 1 to 3).
On the other hand, bone marrow cells have been suggested to be the origin of immature cells in various organs (Non-Patent Documents 4 to 6). Recently, in tissues such as liver, they are differentiated from transplanted bone marrow cells and regenerated. (Non-Patent Documents 7 to 9).
From these backgrounds, if it is possible to regenerate damaged sinusoidal endothelial cells orthotopically by using differentiation induction of bone marrow-derived cells, cirrhosis, fulminant hepatitis, etc. for which there is currently no effective treatment Expected to be a breakthrough therapy for intractable liver disease.

一方、ヘパリンは、肝臓、小腸、肺、皮膚などに存在する複雑な構造をもつヘテロ多糖であり、強い血液抗凝固活性を有することから、汎発性血管内血液凝固症候群(DIC)の治療、種々の血栓塞栓症(静脈血栓症、心筋梗塞症、肺塞栓症、脳塞栓症、四肢動脈血栓塞栓症、術中・術後の血栓塞栓症など)の治療および予防のほか、血液透析・人工心肺などの体外循環装置使用時や血管カテーテル挿入時または輸血および血液検査の際などにおける血液凝固の防止に用いられている。また、ヘパリンの投与により、肝細胞や類洞内皮細胞の増殖因子である肝細胞成長因子(HGF)の発現を上昇させ、肝再生を促進させることが報告されている(非特許文献10〜12)。しかしながら、通常の肝再生においては、既存の肝細胞の複製のみが行われ、骨髄細胞からの分化は稀であり、骨髄細胞の分化との関係については何ら知られていない。   On the other hand, heparin is a heteropolysaccharide having a complex structure that exists in the liver, small intestine, lung, skin, etc., and has strong blood anticoagulant activity, so that treatment of generalized intravascular blood coagulation syndrome (DIC), Treatment and prevention of various thromboembolism (venous thrombosis, myocardial infarction, pulmonary embolism, cerebral embolism, limb arterial thromboembolism, intraoperative and postoperative thromboembolism, etc.), hemodialysis, cardiopulmonary bypass It is used to prevent blood coagulation when using an extracorporeal circulation device such as when inserting a blood vessel catheter or at the time of blood transfusion and blood test. Further, it has been reported that administration of heparin increases the expression of hepatocyte growth factor (HGF), which is a growth factor of hepatocytes and sinusoidal endothelial cells, and promotes liver regeneration (Non-Patent Documents 10 to 12). ). However, in normal liver regeneration, only replication of existing hepatocytes is performed, differentiation from bone marrow cells is rare, and there is no known relationship with bone marrow cell differentiation.

Takei Y, et al. Targeted gene delivery to sinusoidal endothelial cells:DNA nanoassociate bearing hyaluronan−glycocalyx. FASEB J, 2004;18:699−701.(10.1096/fj.03−0494fje).Takei Y, et al. Targeted gene delivery to sinusoidal endothelial cells: DNA nanoassociate bearing hyaluronan-glycocalix. FASEB J, 2004; 18: 699-701. (10.1096 / fj.03-0494fje). Bach FH, Robson SC, Winkler H, et al. Barriers to xenotransplantation. Nature Med 1995;1:869−873Bach FH, Robson SC, Winkler H, et al. Barriers to xenotransplantation. Nature Med 1995; 1: 869-873. Mochida, S., Ogata, I., Hirata, K., Ohta, Y., Yamada, S., and Fujiwara, K.(1990) Provocation of massive hepatic necrosis by endotoxin after partial hepatectomy in rats. Gastroenterology 99, 771-777Mochida, S.M. Ogata, I .; , Hirata, K .; Ohta, Y .; Yamada, S .; , And Fujiwara, K .; (1990) Production of massive hepatic necrosis by endotoxin after partial hepatometry in rats. Gastroenterology 99, 771-777 Krause DS, et al. Cell 2001;105:369−77.Krause DS, et al. Cell 2001; 105: 369-77. Tanaka R, et al. Neuroscience 2003;117:531−9.Tanaka R, et al. Neuroscience 2003; 117: 531-9. Jackson KA, et al. J Clin Invest 2001;107:1395−402.Jackson KA, et al. J Clin Invest 2001; 107: 1395-402. Fujii H, et al. J Hepatol 2002;36:653−9.Fujii H, et al. J Hepatol 2002; 36: 653-9. Ferry N, et al. J Hepatol 2002;36:659−7.Ferry N, et al. J Hepatol 2002; 36: 659-7. Grompe M. Semin Liver 2003;23:363−72.Grompe M.M. Semin Liver 2003; 23: 363-72. Matsumoto K, et al. Biochem Biophys Res Commun 1996;227:455−61.Matsumoto K, et al. Biochem Biophys Res Commun 1996; 227: 455-61. Nakao T, et al. J Hepatol 2002;37:87−92.Nakao T, et al. J Hepatol 2002; 37: 87-92. Ishii T, et al. J Biochem(Tokyo) 1995;117:1105−12.Ishii T, et al. J Biochem (Tokyo) 1995; 117: 1105-12.

したがって、本発明の目的は、骨髄細胞から内皮細胞への分化誘導剤を提供することにある。   Accordingly, an object of the present invention is to provide an agent for inducing differentiation of bone marrow cells into endothelial cells.

本発明者らは、鋭意検討したところ、従来血液凝固阻止剤などとして用いられていたヘパリンまたはその塩が、骨髄細胞から内皮細胞への分化誘導を顕著に促進させることを見出した。   As a result of intensive studies, the present inventors have found that heparin or a salt thereof conventionally used as a blood coagulation inhibitor or the like remarkably promotes differentiation induction from bone marrow cells to endothelial cells.

すなわち、本発明は、ヘパリンまたはその塩を有効成分とする骨髄細胞から内皮細胞への分化誘導剤を提供するものであり;ヘパリンまたはその塩を有効量投与することを特徴とする骨髄細胞から内皮細胞への分化誘導方法を提供するものであり;骨髄細胞から内皮細胞への分化誘導剤の製造のためのヘパリンまたはその塩の使用を提供するものである。   That is, the present invention provides an agent for inducing differentiation of bone marrow cells into endothelial cells containing heparin or a salt thereof as an active ingredient; and an effective amount of heparin or a salt thereof is administered, which is characterized by administration of an effective amount of heparin or a salt thereof. A method for inducing differentiation into cells is provided; the use of heparin or a salt thereof for the production of an agent for inducing differentiation from bone marrow cells into endothelial cells is provided.

ヘパリンまたはその塩は、骨髄細胞から内皮細胞への分化を誘導する作用を有することから、骨髄細胞から内皮細胞への分化誘導剤の有効成分として用いることができる。本発明の分化誘導剤を用いれば、in vitroでの骨髄細胞から内皮細胞への分化を効率的に行うことができるほか、生体内に投与することにより、内皮細胞に障害のある器官の再生に供することができる。本発明の分化誘導剤は、特に、炎症などの疾患を発症している対象組織に骨髄細胞を移植したのち用いることにより、内皮細胞への優れた分化誘導効果が得られる。   Since heparin or a salt thereof has an effect of inducing differentiation from bone marrow cells to endothelial cells, it can be used as an active ingredient of an agent for inducing differentiation from bone marrow cells to endothelial cells. By using the differentiation-inducing agent of the present invention, in vitro differentiation from bone marrow cells to endothelial cells can be performed efficiently, and by in vivo administration, regeneration of organs with impaired endothelial cells can be achieved. Can be provided. The differentiation-inducing agent of the present invention can provide an excellent differentiation-inducing effect on endothelial cells, particularly by transplanting bone marrow cells into a target tissue developing a disease such as inflammation.

四塩化炭素投与群の肝小葉のHE(ヘマトキシリン エオシン)染色像(図1a)、アザン染色像(図1b)である。It is the HE (hematoxylin eosin) stained image (FIG. 1a) and the Azan stained image (FIG. 1b) of the liver lobule of the carbon tetrachloride administration group. 四塩化炭素投与群の肝小葉の抗GFP抗体染色像である。It is an anti-GFP antibody dyeing | staining image of the liver lobule of a carbon tetrachloride administration group. コントロール群の肝小葉の抗GFP抗体染色像(図3a、d)、抗CD31抗体染色像(図3c)および重ね合わせ像(図3b)である。FIG. 3 shows anti-GFP antibody-stained images (FIG. 3a, d), anti-CD31 antibody-stained image (FIG. 3c), and superimposed image (FIG. 3b) of liver lobule in the control group. 四塩化炭素投与群の肝小葉の抗GFP抗体染色像(図4a、d)、抗CD31抗体染色像(図4c)および重ね合わせ像(図4b)である。FIG. 4 shows an anti-GFP antibody-stained image (FIG. 4a, d), an anti-CD31 antibody-stained image (FIG. 4c), and a superposed image (FIG. 4b) of liver lobules in the carbon tetrachloride administration group. 四塩化炭素+ダルテパリンナトリウム投与群の肝小葉の抗GFP抗体染色像(図5a、d)、抗CD31抗体染色像(図5c)および重ね合わせ像(図5b)である。FIG. 5 shows an anti-GFP antibody-stained image (FIG. 5a, d), an anti-CD31 antibody-stained image (FIG. 5c), and a superimposed image (FIG. 5b) of the liver lobule in the carbon tetrachloride + dalteparin sodium administration group. GFP+CD31+細胞数の、各群における比較を示したグラフである。It is the graph which showed the comparison in each group of GFP + CD31 + cell number.

本発明の分化誘導剤に用いられるヘパリンとしては、例えば、健康な食用獣(例えば、ウシ、ブタ等)の肝臓、肺あるいは腸粘膜から得られ、ウロン酸とグルコサミンが交互に1,4結合した構造を有し、5000〜20000の平均分子量からなるムコ多糖類の硫酸エステルが挙げられる。また、ヘパリンとしては、優れた分化誘導効率が得られる点から、低分子ヘパリンが好ましい。低分子ヘパリンとしては、平均分子量2000〜10000のものが挙げられる。低分子ヘパリンとしては、出血等のリスクが低いため安全性が高く、また、分化誘導促進活性に優れている点から、平均相対分子量が約5000で、90%が分子量2000〜9000の範囲に分布し、硫酸エステル化の度合が二糖当たり2〜2.5であるダルテパリンが好ましい。ヘパリンの塩としては、ナトリウム塩、カルシウム塩等が例示される。   The heparin used in the differentiation-inducing agent of the present invention is obtained, for example, from the liver, lung or intestinal mucosa of a healthy edible animal (eg, cow, pig, etc.), and uronic acid and glucosamine are alternately linked to 1,4. Examples thereof include sulfated mucopolysaccharides having a structure and an average molecular weight of 5,000 to 20,000. Further, as heparin, low molecular weight heparin is preferable from the viewpoint that excellent differentiation induction efficiency is obtained. Examples of the low molecular weight heparin include those having an average molecular weight of 2000 to 10,000. Low molecular weight heparin has high safety because of low risk of bleeding and the like, and has an excellent differentiation induction promoting activity, so the average relative molecular weight is about 5000 and 90% is distributed in the molecular weight range of 2000 to 9000. Dalteparin having a degree of sulfate esterification of 2 to 2.5 per disaccharide is preferred. Examples of heparin salts include sodium salts and calcium salts.

ヘパリンは既に医薬・化粧品原料として開発されており市販品を利用することができるが、ヘパリンの調製は、第14日本薬局方に開示された方法等に準じた方法により行うことができる。低分子ヘパリンは、ウシまたはブタ腸粘膜由来のヘパリンを過酸化水素と硫酸第二銅により分解して得ることができる。   Heparin has already been developed as a raw material for pharmaceuticals and cosmetics, and a commercially available product can be used. However, heparin can be prepared by a method according to the method disclosed in the 14th Japanese Pharmacopoeia. Low molecular weight heparin can be obtained by decomposing heparin derived from bovine or porcine intestinal mucosa with hydrogen peroxide and cupric sulfate.

後記実施例に示すとおり、ヘパリンは、四塩化炭素肝障害モデルマウスにおいて、骨髄細胞から内皮細胞への分化を誘導した。したがって、ヘパリンは、骨髄細胞から内皮細胞への分化誘導剤の有効成分として用いることができる。従来ヘパリンは、肝細胞成長因子(HGF)の発現を上昇させ、それにより肝実質細胞や類洞内皮細胞などの非実質細胞を増殖させることが報告されている。しかしながら、通常の肝再生においては、既存の肝細胞の複製のみが行われ、骨髄細胞からの分化は稀であり骨髄細胞の分化との関係については何ら知られておらず、ヘパリンが骨髄細胞の分化を誘導することは意外なことである。   As shown in Examples below, heparin induced differentiation from bone marrow cells to endothelial cells in carbon tetrachloride liver injury model mice. Therefore, heparin can be used as an active ingredient of an agent for inducing differentiation from bone marrow cells to endothelial cells. Conventionally, heparin has been reported to increase the expression of hepatocyte growth factor (HGF), thereby proliferating non-parenchymal cells such as liver parenchymal cells and sinusoidal endothelial cells. However, in normal liver regeneration, only replication of existing hepatocytes is performed, differentiation from bone marrow cells is rare, and there is no known relationship with the differentiation of bone marrow cells. Inducing differentiation is surprising.

本発明の分化誘導剤は、生体内における骨髄細胞の他、生体内から分離されin vitroの系で培養される骨髄細胞からの分化誘導に用いられるが、生体内における骨髄細胞の分化誘導に好適に用いられる。
また、本発明の分化誘導剤は、生体が本来有する骨髄細胞からの分化誘導、および対象組織に移植された骨髄細胞の分化誘導に用いることができ、このうち、高い分化誘導効率が得られ疾患の治療効果に優れる点から、対象組織に移植された骨髄細胞の分化誘導に好適に用いられる。この場合、本発明の分化誘導剤は、移植後にヘパリンまたはその塩を投与するのが好ましい。
本発明の分化誘導剤は、ヘパリンまたはその塩により優れた分化誘導効率が得られる点から、骨髄細胞が移植される対象組織が肝臓である場合に好適に用いられる。また、骨髄細胞が移植される臓器は、炎症等の疾患を発症している場合に好適に用いられる。臓器が肝臓の場合、疾患としては、劇症肝炎、慢性肝炎等の肝炎、肝硬変などの終末期肝疾患、肝臓癌が挙げられ、肝炎を発症している場合に好適に用いられる。肝炎を発症している肝臓に対して用いた場合、本発明の分化誘導剤により、肝臓の類洞内皮細胞への分化を誘導することもできる。肝臓に移植された骨髄細胞は、肝実質細胞などに分化することも報告されているが、本発明の分化誘導剤により、類洞内皮細胞への分化を誘導することもできる。
The differentiation-inducing agent of the present invention is used for inducing differentiation from bone marrow cells in vivo as well as bone marrow cells separated from the living body and cultured in an in vitro system, but suitable for inducing differentiation of bone marrow cells in vivo. Used for.
In addition, the differentiation inducer of the present invention can be used for induction of differentiation from bone marrow cells inherent in a living body and differentiation induction of bone marrow cells transplanted into a target tissue, and among these, high differentiation induction efficiency can be obtained. In view of the excellent therapeutic effect, it is preferably used for inducing differentiation of bone marrow cells transplanted into the target tissue. In this case, the differentiation inducer of the present invention is preferably administered with heparin or a salt thereof after transplantation.
The differentiation-inducing agent of the present invention is suitably used when the target tissue to which bone marrow cells are transplanted is the liver, because superior differentiation-inducing efficiency can be obtained with heparin or a salt thereof. An organ into which bone marrow cells are transplanted is preferably used when a disease such as inflammation has developed. When the organ is the liver, examples of the disease include hepatitis such as fulminant hepatitis and chronic hepatitis, end-stage liver disease such as cirrhosis, and liver cancer, which are preferably used when hepatitis develops. When used for a liver that has developed hepatitis, the differentiation-inducing agent of the present invention can also induce differentiation of the liver into sinusoidal endothelial cells. Although bone marrow cells transplanted into the liver have been reported to differentiate into hepatocytes, etc., differentiation into sinusoidal endothelial cells can also be induced by the differentiation inducer of the present invention.

本発明の分化誘導剤が用いられる対象としては、例えば、ヒト、マウス、ラットなどの哺乳類が挙げられる。   Examples of the subject to which the differentiation inducer of the present invention is used include mammals such as humans, mice, and rats.

本発明の分化誘導剤は、一般的な医薬製剤の形態で用いられるが、その代表的なものとして、注射剤(液剤、懸濁剤等)等が挙げられる。   The differentiation inducer of the present invention is used in the form of a general pharmaceutical preparation, and typical examples thereof include injections (solutions, suspensions, etc.) and the like.

注射剤として調製する場合、液剤、乳剤および懸濁剤は殺菌され、かつ血液と等張であることが好ましく、これらの形態に成形するに際しては、希釈剤としてこの分野において慣用されているもの、例えば水、エタノール、マクロゴール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類等を使用することができる。この場合等張性の溶液を調製するのに必要な量の食塩、ブドウ糖あるいはグリセリンを医薬製剤中に含有させてもよく、また通常の溶解補助剤、緩衝剤、無痛化剤等を添加してもよい。   When prepared as injections, solutions, emulsions and suspensions are preferably sterilized and isotonic with blood, and when used in these forms, those commonly used in this field as diluents, For example, water, ethanol, macrogol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, polyoxyethylene sorbitan fatty acid esters and the like can be used. In this case, the amount of sodium chloride, glucose or glycerin necessary to prepare an isotonic solution may be contained in the pharmaceutical preparation, and a normal solubilizing agent, buffering agent, soothing agent, etc. may be added. Also good.

本発明のこれら医薬製剤の投与量は、用法、患者の年齢、性別、疾患の程度およびその他の条件により適宜選択されるが、通常ヘパリンの質量として、体重1kg当り、一日約5I.U./Kg〜100I.U./Kgを1時間〜24時間で注入するのがよい。   The dosage of these pharmaceutical preparations of the present invention is appropriately selected depending on the usage, patient age, gender, disease severity and other conditions. Usually, the mass of heparin is about 5 I.D per kg body weight per day. U. / Kg-100I. U. / Kg is preferably injected for 1 to 24 hours.

以下に実施例を示し、本発明をさらに詳しく説明するが、本発明はこれら実施例に制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

参考例1 GFP陽性骨髄細胞の調製
8週齢GFPトランスジェニックマウス(Okabe M, et al. FEBS Lett 1997;407:313−9)を、5−フルオロウラシル(150μg/g BW)で処理し、増殖細胞を破壊した。48時間後、頚椎脱臼により屠殺し四肢を除去したのち、28G針を用いてダルベッコ修正イーグル培地(GIBCO, Grand Island, New York)により洗い出し、大腿骨、頚骨髄腔からGFP陽性骨髄細胞を得た。
Reference Example 1 Preparation of GFP-positive bone marrow cells 8-week-old GFP transgenic mice (Okabe M, et al. FEBS Lett 1997; 407: 313-9) were treated with 5-fluorouracil (150 μg / g BW) and proliferating cells. Destroyed. After 48 hours, the limbs were sacrificed by cervical dislocation and the extremities were removed, and then washed with Dulbecco's modified Eagle medium (GIBCO, Grand Island, New York) using a 28G needle to obtain GFP-positive bone marrow cells from the femur and cervical bone marrow cavity. .

実施例1 骨髄移植された肝炎発症マウスからの肝小葉組織の調製
〔肝炎発症マウスへの骨髄移植〕
メス8週齢C57/B6マウス(日本チャールズリバー(株))に、個体1kgあたり0.2mlの四塩化炭素を、4週間にわたり週2回の頻度で投与した。4週間の四塩化炭素投与後のマウスの全身に、致死量のX線(10Gy)を照射したのち、参考例1で得られた1×10のGFP陽性骨髄細胞を、31Gの針で尾静脈に注入し、骨髄移植を行った。骨髄移植された一部の群のマウスに、骨髄移植の翌日からダルテパリンナトリウム50IU/kgを28日間連続腹腔内投与し、四塩化炭素+ダルテパリンナトリウム投与群とした。ダルテパリンナトリウムを投与しなかったマウスは、四塩化炭素投与群とした。また、四塩化炭素を投入していないC57/B6マウスに対して、上と同様にして1×10のGFP陽性骨髄細胞を注入して骨髄移植したものを用意し、コントロール群とした。
〔肝小葉組織の調製〕
それぞれの群のマウスについて、PBS(phosphate buffered saline)バッファーによって心臓経由で肝臓をかん流し、肝臓中に混入した血液細胞を除去した。かん流した肝臓を、4%パラホルムアルデヒドによって一晩固定したのち、数日間30%スクロースで処理した。得られた肝臓組織をパウダードライアイスで凍結させ、低温保持装置(LEICA CM 1900、(株)FINETEC)によって18μmの組織切片とした。
四塩化炭素投与群の組織のHE(ヘマトキシリン エオシン)染色像、アザン染色像の代表的な顕微鏡写真を、それぞれ図1a、図1bに示す。図1aに示すとおり、炎症細胞の浸潤は認められなかったが、図1bのように、肝組織の線維化が認められ、肝障害が起こっていることが確かめられた。
Example 1 Preparation of hepatic lobule tissue from bone marrow transplanted hepatitis-caused mice [Bone marrow transplantation to hepatitis-caused mice]
Female 8-week-old C57 / B6 mice (Nippon Charles River Co., Ltd.) were administered 0.2 ml of carbon tetrachloride per kg of the individual at a frequency of twice a week for 4 weeks. After irradiating a whole body of mice after carbon tetrachloride administration for 4 weeks with a lethal dose of X-rays (10 Gy), 1 × 10 7 GFP-positive bone marrow cells obtained in Reference Example 1 were tailed with a 31 G needle. Injection into a vein and bone marrow transplantation were performed. Dalteparin sodium 50 IU / kg was administered intraperitoneally for 28 days to the group of mice subjected to bone marrow transplantation from the next day of bone marrow transplantation to obtain a carbon tetrachloride + dalteparin sodium administration group. Mice that did not receive dalteparin sodium were treated with carbon tetrachloride. In addition, bone marrow transplantation was performed by injecting 1 × 10 7 GFP-positive bone marrow cells into C57 / B6 mice not charged with carbon tetrachloride in the same manner as above, and used as a control group.
(Preparation of liver lobule tissue)
For each group of mice, the liver was perfused via the heart with a PBS (phosphate buffered saline) buffer, and blood cells contaminated in the liver were removed. Perfused liver was fixed overnight with 4% paraformaldehyde and then treated with 30% sucrose for several days. The obtained liver tissue was frozen with powder dry ice, and was cut into 18 μm tissue sections using a cryostat (LEICA CM 1900, FINETEC).
Representative micrographs of HE (hematoxylin and eosin) -stained images and Azan-stained images of tissues of the carbon tetrachloride administration group are shown in FIGS. 1a and 1b, respectively. As shown in FIG. 1a, no infiltration of inflammatory cells was observed, but as shown in FIG. 1b, fibrosis of liver tissue was observed, confirming that liver damage had occurred.

実施例2 GFP陽性細胞、CD31陽性細胞の観察
得られた組織の抗GFP抗体染色像、および抗CD31抗体染色像を観察した。すなわち、得られた組織切片をPBSバッファーによって3回洗浄したのち、10%ヤギ血清に1時間浸漬した。血清を洗浄後、抗GFP抗体(Santa Cruz Biotechnology社)で1時間処理し、続いて、TRITCヤギ抗IgG抗体(Santa Cruz Biotechnology社)を37℃で1時間培養し、2次抗体処理した。顕微鏡観察は、1%ゼラチン/生理食塩液を載せたスライドガラス上で行った。また、抗CD31抗体染色像も、抗GFP抗体の代わりに抗CD31抗体(BD Bioscience社)を用いた他は同様の手法により得た。
Example 2 Observation of GFP-positive cells and CD31-positive cells An anti-GFP antibody-stained image and an anti-CD31 antibody-stained image of the obtained tissue were observed. That is, the obtained tissue section was washed 3 times with PBS buffer and then immersed in 10% goat serum for 1 hour. After the serum was washed, it was treated with an anti-GFP antibody (Santa Cruz Biotechnology) for 1 hour, and then a TRITC goat anti-IgG antibody (Santa Cruz Biotechnology) was cultured at 37 ° C. for 1 hour and treated with a secondary antibody. Microscopic observation was performed on a slide glass on which 1% gelatin / saline solution was placed. An anti-CD31 antibody stained image was also obtained in the same manner except that an anti-CD31 antibody (BD Bioscience) was used instead of the anti-GFP antibody.

〔コントロール群〕
コントロール群由来の組織の染色像を図3に示す。図3a、dは、抗GFP抗体染色像を示す。また、図3dで示す領域における抗CD31抗体(内皮細胞マーカー)染色像を、図3cに示す。図3bは、これら抗GFP抗体染色像と抗CD31抗体染色像を重ね合わせた像である。これらに示されるように、GFP陽性細胞はわずかに観察されたが、GFP陽性でありかつCD31陽性である細胞は、ほとんど見られなかった。
[Control group]
A stained image of the tissue from the control group is shown in FIG. 3a and 3d show anti-GFP antibody stained images. In addition, an anti-CD31 antibody (endothelial cell marker) stained image in the region shown in FIG. 3d is shown in FIG. 3c. FIG. 3b is an image obtained by superimposing these anti-GFP antibody stained image and anti-CD31 antibody stained image. As shown in these figures, GFP-positive cells were slightly observed, but GFP-positive and CD31-positive cells were hardly seen.

〔四塩化炭素投与群〕
四塩化炭素投与群における組織の抗GFP抗体染色像を、図2、図4a、図4dに示す。図2、図4a、図4dに示されるとおり、肝小葉におけるGFP陽性細胞の大半の細胞は、門脈域から中心静脈域にかけて、網目構造状に広がっており、肝実質細胞の中にはほとんど観察されなかった。このことから、GFP陽性細胞は類洞内皮細胞に密接に関係すると考えられる。
また、内皮細胞マーカーである抗CD31抗体染色像を図4cに示し、同領域の抗GFP抗体染色像(図4d)との重ね合わせた像を図4bに示す。図4b中の矢印は、GFP陽性であるとともにCD31陽性である細胞を示す。これらに示されるように、GFP陽性細胞の大半が、CD31陽性であった。このことから、移植された骨髄細胞は、類洞内皮細胞に特異的に分化したものと考えられる。
[Carbon tetrachloride administration group]
The anti-GFP antibody dyeing | staining image of the structure | tissue in a carbon tetrachloride administration group is shown to FIG. 2, FIG. 4a, FIG. As shown in FIG. 2, FIG. 4a, and FIG. 4d, most of the GFP positive cells in the hepatic lobule spread in a network structure from the portal vein region to the central vein region. Not observed. This suggests that GFP positive cells are closely related to sinusoidal endothelial cells.
Also, an anti-CD31 antibody staining image as an endothelial cell marker is shown in FIG. 4c, and an image superimposed with an anti-GFP antibody staining image (FIG. 4d) in the same region is shown in FIG. 4b. The arrows in FIG. 4b indicate cells that are GFP positive and CD31 positive. As shown, most of the GFP positive cells were CD31 positive. From this, it is considered that the transplanted bone marrow cells specifically differentiated into sinusoidal endothelial cells.

〔四塩化炭素+ダルテパリンナトリウム投与群〕
四塩化炭素投与群における組織の抗GFP抗体染色像および抗CD31抗体染色像を、図5に示す。図5a、dは抗GFP抗体染色像を、図5cは抗CD31抗体染色像を、図5bは図5dと図5cとの重ね合わせた像である。これらに示されるように、四塩化炭素投与群に比べて、GFP陽性細胞の顕著な増加が観察された。また、GFP陽性細胞の大半は、CD31陽性であった。
[Carbon tetrachloride + dalteparin sodium administration group]
FIG. 5 shows an anti-GFP antibody stained image and an anti-CD31 antibody stained image of the tissue in the carbon tetrachloride administration group. 5a and 5d are anti-GFP antibody stained images, FIG. 5c is an anti-CD31 antibody stained image, and FIG. 5b is an image obtained by superimposing FIGS. 5d and 5c. As shown in these, a significant increase in GFP positive cells was observed compared to the carbon tetrachloride administration group. Most of the GFP positive cells were CD31 positive.

〔分化誘導効率の定量的比較〕
得られた染色像をもとに、GFP陽性かつCD31陽性細胞(GFP+CD31+細胞)の単位領域中における数を求め、上の3群間で比較した(図6)。図6に示されるように、コントロール群では1領域あたり1.0±1.2ときわめて少数であったのに対し、四塩化炭素投与群では1領域あたり3.8±1.3と多数であった。また、四塩化炭素+ダルテパリンナトリウム投与群では1領域あたり8.3±1.3であり、骨髄細胞から分化した類洞内皮細胞数の顕著な増加が観察された(四塩化炭素投与群との対比でp<0.05)。以上のことから、肝炎を発症した肝臓に骨髄細胞を移植した場合、類洞内皮細胞に分化することが明らかになり、また、ダルテパリンナトリウムの投与により、この分化誘導効率が顕著に上昇することが明らかになった。
[Quantitative comparison of differentiation induction efficiency]
Based on the obtained stained images, the number of GFP-positive and CD31-positive cells (GFP + CD31 + cells) in the unit region was determined and compared among the above three groups (FIG. 6). As shown in FIG. 6, the control group had a very small number of 1.0 ± 1.2 per region, whereas the carbon tetrachloride administration group had a large number of 3.8 ± 1.3 per region. there were. In the carbon tetrachloride + dalteparin sodium administration group, 8.3 ± 1.3 per region, and a marked increase in the number of sinusoidal endothelial cells differentiated from bone marrow cells was observed (with the carbon tetrachloride administration group and P <0.05). From the above, it is clear that when bone marrow cells are transplanted into a liver that has developed hepatitis, it differentiates into sinusoidal endothelial cells, and the administration of dalteparin sodium significantly increases this differentiation induction efficiency. Became clear.

Claims (21)

ヘパリンまたはその塩を有効成分とする骨髄細胞から内皮細胞への分化誘導剤。   An agent for inducing differentiation of bone marrow cells into endothelial cells, comprising heparin or a salt thereof as an active ingredient. ヘパリンが低分子ヘパリンである請求項1記載の分化誘導剤。   The differentiation inducer according to claim 1, wherein the heparin is low molecular weight heparin. 骨髄細胞が、移植された骨髄細胞である請求項1または2記載の分化誘導剤。   The differentiation inducer according to claim 1 or 2, wherein the bone marrow cells are transplanted bone marrow cells. 対象組織に骨髄細胞を移植した後、ヘパリンまたはその塩を投与するものである請求項3記載の分化誘導剤。   The differentiation inducer according to claim 3, wherein heparin or a salt thereof is administered after bone marrow cells are transplanted into the target tissue. 対象組織が肝臓である請求項4記載の分化誘導剤。   The differentiation inducer according to claim 4, wherein the target tissue is liver. 対象組織が肝炎を発症している肝臓である請求項5記載の分化誘導剤。   6. The differentiation inducer according to claim 5, wherein the target tissue is a liver developing hepatitis. 内皮細胞が、肝類洞内皮細胞である請求項1〜6のいずれか1項記載の分化誘導剤。   The differentiation inducer according to any one of claims 1 to 6, wherein the endothelial cell is a hepatic sinusoidal endothelial cell. ヘパリンまたはその塩を有効量投与することを特徴とする骨髄細胞から内皮細胞への分化誘導方法。   A method for inducing differentiation from bone marrow cells to endothelial cells, comprising administering an effective amount of heparin or a salt thereof. ヘパリンが低分子ヘパリンである請求項8記載の分化誘導方法。   9. The differentiation induction method according to claim 8, wherein the heparin is a low molecular weight heparin. 骨髄細胞が、移植された骨髄細胞である請求項8または9記載の分化誘導方法。   The differentiation induction method according to claim 8 or 9, wherein the bone marrow cells are transplanted bone marrow cells. 対象組織に骨髄細胞を移植した後、ヘパリンまたはその塩を投与するものである請求項10記載の分化誘導方法。   The differentiation induction method according to claim 10, wherein heparin or a salt thereof is administered after bone marrow cells are transplanted into a target tissue. 対象組織が肝臓である請求項11記載の分化誘導方法。   The differentiation induction method according to claim 11, wherein the target tissue is a liver. 対象組織が肝炎を発症している肝臓である請求項12記載の分化誘導方法。   The differentiation induction method according to claim 12, wherein the target tissue is a liver developing hepatitis. 内皮細胞が、肝類洞内皮細胞である請求項8〜13のいずれか1項記載の分化誘導方法。   The differentiation induction method according to any one of claims 8 to 13, wherein the endothelial cells are hepatic sinusoidal endothelial cells. 骨髄細胞から内皮細胞への分化誘導剤の製造のためのヘパリンまたはその塩の使用。   Use of heparin or a salt thereof for the production of an agent for inducing differentiation of bone marrow cells into endothelial cells. ヘパリンが低分子ヘパリンである請求項15記載の使用。   The use according to claim 15, wherein the heparin is a low molecular weight heparin. 骨髄細胞が、移植された骨髄細胞である請求項15または16記載の使用。   The use according to claim 15 or 16, wherein the bone marrow cells are transplanted bone marrow cells. 対象組織に骨髄細胞を移植した後、ヘパリンまたはその塩を投与するものである請求項17記載の使用。   The use according to claim 17, wherein heparin or a salt thereof is administered after bone marrow cells are transplanted into a target tissue. 対象組織が肝臓である請求項18記載の使用。   The use according to claim 18, wherein the target tissue is liver. 対象組織が肝炎を発症している肝臓である請求項19記載の使用。   The use according to claim 19, wherein the target tissue is a liver developing hepatitis. 内皮細胞が、肝類洞内皮細胞である請求項15〜20のいずれか1項記載の使用。   The use according to any one of claims 15 to 20, wherein the endothelial cells are hepatic sinusoidal endothelial cells.
JP2008502669A 2006-02-28 2007-02-28 Differentiation inducer Pending JPWO2007099711A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006053683 2006-02-28
JP2006053683 2006-02-28
PCT/JP2007/000141 WO2007099711A1 (en) 2006-02-28 2007-02-28 Differentiation inducer

Publications (1)

Publication Number Publication Date
JPWO2007099711A1 true JPWO2007099711A1 (en) 2009-07-16

Family

ID=38458832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008502669A Pending JPWO2007099711A1 (en) 2006-02-28 2007-02-28 Differentiation inducer

Country Status (2)

Country Link
JP (1) JPWO2007099711A1 (en)
WO (1) WO2007099711A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012020101A1 (en) * 2010-08-12 2012-02-16 Alexander Gerbes Method for producing cells having characteristics of hepatocytes

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE377427T1 (en) * 2004-03-09 2007-11-15 Tohoku Technoarch Co Ltd USE OF HEPATOCYTE GROWTH FACTOR TO PROMOTE THE INDUCTION OF VASCULAR DIFFERENTIATION

Also Published As

Publication number Publication date
WO2007099711A1 (en) 2007-09-07

Similar Documents

Publication Publication Date Title
Terai et al. Status of and candidates for cell therapy in liver cirrhosis: overcoming the “point of no return” in advanced liver cirrhosis
Kudo et al. Autologous transplantation of peripheral blood endothelial progenitor cells (CD34^ sup+^) for therapeutic angiogenesis in patients with critical limb ischemia
Callow et al. Platelet—arterial synthetic graft interaction and its modification
Rojas et al. Human adult bone marrow-derived stem cells decrease severity of lipopolysaccharide-induced acute respiratory distress syndrome in sheep
RU2010114044A (en) APPLICATION OF PROTEIN BAND 3 (824-829) AND / OR THE INHIBITION FACTOR OF MELANOTROPINE RELEASE AS A THERAPEUTIC AGAINST TREATMENT OF PSEUDOMONAS AERUGINOSA INFECTION
EP1880721A1 (en) Agent for improving circulatory disorder
JP2012523432A (en) Methods for treating edema associated with ischemia-reperfusion
US11351190B2 (en) Composition for treating tissue lesions
JP2021046440A (en) Acute respiratory distress syndrome therapeutic agent
Pawlaczyk et al. Animal models of peritoneal dialysis: thirty years of our own experience
Zhou et al. Protective effect of ginsenoside Rb1 nanoparticles against contrast-induced nephropathy by inhibiting high mobility group box 1 Gene/toll-like receptor 4/NF-κB signaling pathway
JP5562939B2 (en) Actin cytoskeletal rearrangement and method of regulation of intercellular gap formation
JPWO2004100972A1 (en) Preventive and / or therapeutic agent for diseases associated with tissue destruction
JPH09176040A (en) Medicinal use of heparin cofactor-ii
Tomizawa et al. The effects of a neutrophil elastase inhibitor (ONO-5046· Na) and neutrophil depletion using a granulotrap (G-1) column on lung reperfusion injury in dogs
JPWO2007099711A1 (en) Differentiation inducer
Wang et al. Hepatocyte transplantation: a potential treatment for acute liver failure
RU2010114035A (en) APPLICATION OF RFRP INDIVIDUALLY OR IN COMBINATION WITH NEUROKININ AS A THERAPEUTIC
WO2007102562A1 (en) Novel antithrombotic agent
CA2253629A1 (en) Agent for preventing and/or treating cachexia
WO2005039621A1 (en) Fibroblast-mobilizing agent containing g-csf and wound remedy
KR20200132550A (en) A composition for preventing or treating of blood vessel disease comprising tonsil-derived mesenchymal stem cell or conditioned medium thereof
Zeng et al. Neutrophil Nanodecoys Inhibit Tumor Metastasis by Blocking the Interaction between Tumor Cells and Neutrophils
RU2489168C1 (en) Pharmaceutical composition producing antioxidant, antimicrobial, antitoxic human lactoferrin protein, method for preparing it, and method of therapy
JP6865457B2 (en) Pig liver disorder model