JPWO2007091300A1 - Proportional solenoid valve - Google Patents

Proportional solenoid valve Download PDF

Info

Publication number
JPWO2007091300A1
JPWO2007091300A1 JP2007557692A JP2007557692A JPWO2007091300A1 JP WO2007091300 A1 JPWO2007091300 A1 JP WO2007091300A1 JP 2007557692 A JP2007557692 A JP 2007557692A JP 2007557692 A JP2007557692 A JP 2007557692A JP WO2007091300 A1 JPWO2007091300 A1 JP WO2007091300A1
Authority
JP
Japan
Prior art keywords
iron core
peripheral surface
movable
movable iron
fixed iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007557692A
Other languages
Japanese (ja)
Other versions
JP4612059B2 (en
Inventor
猛美 加藤
猛美 加藤
功一 寺木
功一 寺木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koganei Corp
Original Assignee
Koganei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koganei Corp filed Critical Koganei Corp
Publication of JPWO2007091300A1 publication Critical patent/JPWO2007091300A1/en
Application granted granted Critical
Publication of JP4612059B2 publication Critical patent/JP4612059B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0658Armature and valve member being one single element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/32Details
    • F16K1/34Cutting-off parts, e.g. valve members, seats

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

この比例電磁弁10は固定鉄心40が固定されるコイル24と、コイル24の内部に固定鉄心40と同軸状に軸方向に移動自在に組み込まれる可動鉄心43と、可動鉄心43の先端に設けられる弁体46とを有し、可動鉄心43には弁体46を初期位置に付勢する圧縮コイルばね44が設けられている。固定鉄心40の先端部には凹部52が形成され、可動鉄心43の基端部には凹部52の内周面56に隙間を介して対向する外周面57が形成された嵌合部55が設けられている。固定鉄心40の内周面56は先端面に向けて大径となる方向に傾斜され、嵌合部55の外周面は基端面に向けて小径となる方向に傾斜されており、外周面57の傾斜角度α2は内周面56の傾斜角度α1よりも大きくなっている。The proportional solenoid valve 10 is provided at a coil 24 to which a fixed iron core 40 is fixed, a movable iron core 43 that is incorporated in the coil 24 so as to be movable in the axial direction coaxially with the fixed iron core 40, and a tip of the movable iron core 43. The movable iron core 43 is provided with a compression coil spring 44 that urges the valve body 46 to the initial position. A concave portion 52 is formed at the distal end portion of the fixed iron core 40, and a fitting portion 55 is provided at the proximal end portion of the movable iron core 43. It has been. The inner peripheral surface 56 of the fixed iron core 40 is inclined in the direction of increasing the diameter toward the distal end surface, and the outer peripheral surface of the fitting portion 55 is inclined in the direction of decreasing in the diameter toward the proximal end surface. The inclination angle α2 is larger than the inclination angle α1 of the inner peripheral surface 56.

Description

本発明は、流路内を流れる圧縮空気や液体の流量や圧力を無段階に変化させるための比例電磁弁に関する。   The present invention relates to a proportional solenoid valve for steplessly changing the flow rate and pressure of compressed air and liquid flowing in a flow path.

空気圧制御回路には流路内を流れる圧縮空気の流量や圧力を無段階に制御するために比例電磁弁が使用されている。比例電磁弁は空気圧制御回路を構成する流体流路のバルブ開度を調整する弁体と、コイルに供給される駆動電流に応じた磁力を発生させるソレノイドとを有している。比例電磁弁の弁体にはばね部材により流体流路を閉じる方向または開く方向のばね力が加えられており、ばね力に抗してソレノイドに発生する磁力により弁体は磁力の大きさに応じて流体流路の開度を無段階に変化させる。   In the pneumatic control circuit, a proportional solenoid valve is used to control the flow rate and pressure of compressed air flowing in the flow path in a stepless manner. The proportional solenoid valve has a valve body that adjusts the valve opening degree of the fluid flow path that constitutes the pneumatic control circuit, and a solenoid that generates a magnetic force according to the drive current supplied to the coil. A spring force in the direction of closing or opening the fluid flow path is applied to the valve body of the proportional solenoid valve by the spring member, and the valve body responds to the magnitude of the magnetic force by the magnetic force generated in the solenoid against the spring force. Thus, the opening degree of the fluid flow path is changed steplessly.

比例電磁弁のコイル内部には、特許文献1に記載されるように、固定鉄心つまりコアと可動鉄心つまりプランジャとが組み込まれ、可動鉄心には弁体が設けられている。コイルに通電すると、コイルの外側に配置される磁気フレームを介して固定鉄心と可動鉄心は励磁されて、可動鉄心はばね力に抗して固定鉄心に向けて軸方向に駆動され、弁開度が制御される。
特開2004−324788号公報
As described in Patent Document 1, a fixed iron core, that is, a core, and a movable iron core, that is, a plunger are incorporated in the coil of the proportional solenoid valve, and a valve body is provided on the movable iron core. When the coil is energized, the fixed iron core and the movable iron core are excited through a magnetic frame arranged outside the coil, and the movable iron core is driven axially toward the fixed iron core against the spring force, and the valve opening degree Is controlled.
JP 2004-324788 A

弁開度はコイルに供給される駆動電流によって制御されるので、駆動電流と弁開度とを高精度で対応させるようにできれば、流体の流量や圧力を高い精度で制御することができる。しかしながら、可動鉄心の軸方向の位置に応じて、可動鉄心の基端面とこれに対向する固定鉄心の先端面との間の距離が変化するので、固定鉄心と可動鉄心との間に作用する磁力が可動鉄心の位置により変化することになる。このため、可動鉄心のストロークにより設定されるバルブ開度は、駆動電流の変化に対して一定とはならず、駆動電流とバルブ開度との間に直線性が得られなくなる。   Since the valve opening is controlled by the drive current supplied to the coil, the flow rate and pressure of the fluid can be controlled with high accuracy if the drive current and the valve opening can be matched with high accuracy. However, since the distance between the base end surface of the movable iron core and the front end surface of the fixed iron core facing the movable iron core changes according to the axial position of the movable iron core, the magnetic force acting between the fixed iron core and the movable iron core. Changes depending on the position of the movable iron core. For this reason, the valve opening set by the stroke of the movable iron core is not constant with respect to changes in the drive current, and linearity cannot be obtained between the drive current and the valve opening.

固定鉄心の先端部に凹部を形成し、可動鉄心の基端部に形成された小径部を凹部内に入り込ませることにより、固定鉄心の先端部と可動鉄心の基端部とを軸方向に一部オーバーラップさせると、オーバーラップした部分において径方向に横断する磁界が形成されることになり、駆動電流と弁開度との間の直線性が向上することが判明しているが、空気圧作動機器や液体圧作動機器によっては、より十分な直線性を持った比例電磁弁が求められている。   A concave portion is formed at the distal end of the fixed core, and a small diameter portion formed at the proximal end of the movable core is inserted into the concave portion so that the distal end of the fixed core and the proximal end of the movable core are aligned in the axial direction. It has been found that a linear magnetic field between the drive current and the valve opening is improved when a part is overlapped. Some devices and fluid pressure actuated devices require proportional solenoid valves with sufficient linearity.

本発明の目的は、弁開度の変化量がコイルに供給される駆動電流の変化量に直線的に変化する高精度の比例電磁弁を提供することにある。   An object of the present invention is to provide a high-accuracy proportional solenoid valve in which the amount of change in valve opening varies linearly with the amount of change in drive current supplied to a coil.

本発明の比例電磁弁は、固定鉄心が内部に固定されるコイルと、前記コイルの内部に前記固定鉄心と同軸状に軸方向に摺動自在に組み込まれる可動鉄心と、前記可動鉄心の先端に設けられるとともに、弁座に接触して一次側流路と二次側流路との連通開度を調整する弁体と、前記可動鉄心と前記固定鉄心との間に配置され前記弁体を初期位置に付勢するばね部材とを有する比例電磁弁であって、前記固定鉄心の先端部に凹部を形成する一方、前記可動鉄心の基端部に前記凹部の内周面に隙間を介して対向する外周面が形成された嵌合部を前記可動鉄心の基端部に形成し、前記固定鉄心の先端部の外周面に先端面に向けて小径となるテーパ面を形成する一方、前記可動鉄心の基端部に前記嵌合部から連なり前記可動鉄心の先端部に向けて大径となるテーパ面を形成し、前記固定鉄心の前記内周面を先端面に向けて大径となる方向に傾斜させる一方、前記嵌合部の前記外周面を基端面に向けて小径となる方向に傾斜させるとともに、前記外周面の傾斜角度を前記内周面の傾斜角度よりも大きく傾斜させることを特徴とする。   The proportional solenoid valve of the present invention includes a coil in which a fixed iron core is fixed, a movable iron core that is slidably incorporated in the coil in the axial direction coaxially with the fixed iron core, and a tip of the movable iron core. A valve body that is provided between the movable iron core and the fixed iron core, and is arranged between the movable iron core and the fixed iron core to adjust the communication opening degree of the primary flow passage and the secondary flow passage in contact with the valve seat. A proportional electromagnetic valve having a spring member biased to a position, wherein a concave portion is formed at a distal end portion of the fixed iron core, and a base end portion of the movable iron core is opposed to an inner peripheral surface of the concave portion via a gap. A fitting portion formed with an outer peripheral surface is formed at a proximal end portion of the movable core, and a tapered surface having a small diameter toward the distal end surface is formed on the outer peripheral surface of the distal end portion of the fixed core, while the movable core The base end of the armature is connected to the fitting portion and has a large diameter toward the tip of the movable core. The inner peripheral surface of the fixed iron core is inclined in the direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion is decreased in the direction of decreasing the diameter toward the proximal end surface. In addition to inclining, the inclination angle of the outer peripheral surface is inclined larger than the inclination angle of the inner peripheral surface.

本発明の比例電磁弁においては、前記外周面の傾斜角度は5度であり、前記内周面の傾斜角度は4度であることを特徴とする。   In the proportional solenoid valve of the present invention, the inclination angle of the outer peripheral surface is 5 degrees, and the inclination angle of the inner peripheral surface is 4 degrees.

本発明の比例電磁弁においては、前記固定鉄心の前記凹部の底面である対向面の深さ寸法は2.5mmであることを特徴とする。   In the proportional solenoid valve of the present invention, the depth dimension of the opposing surface which is the bottom surface of the concave portion of the fixed iron core is 2.5 mm.

本発明によれば、固定鉄心の凹部の内周面を先端面に向けて大径となる方向に傾斜させる一方、可動鉄心の嵌合部の外周面を基端面に向けて小径となる方向に傾斜させるとともに、可動鉄心の嵌合部の外周面の傾斜角度を固定鉄心の凹部の内周面の傾斜角度よりも大きく傾斜させることにより、弁開度の変化量をコイルに供給される駆動電流の変化量に対し直線的に変化させることができ、比例電磁弁の作動特性を高精度とすることができる。特に、可動鉄心の固定鉄心の外周面の傾斜角度を5度とし内周面の傾斜角度を4度とすることにより、作動特性を高めることができ、さらに、凹部の深さ寸法を2.5mmとすることにより作動特性を高めることができる。   According to the present invention, the inner peripheral surface of the concave portion of the fixed iron core is inclined in the direction of increasing the diameter toward the distal end surface, while the outer peripheral surface of the fitting portion of the movable iron core is decreased in the direction of decreasing the diameter toward the base end surface. The drive current supplied to the coil with the amount of change in the valve opening is made by inclining and the inclination angle of the outer peripheral surface of the fitting portion of the movable core larger than the inclination angle of the inner peripheral surface of the concave portion of the fixed core Therefore, the operating characteristic of the proportional solenoid valve can be made highly accurate. In particular, by setting the inclination angle of the outer peripheral surface of the fixed iron core of the movable iron core to 5 degrees and the inclination angle of the inner peripheral surface to 4 degrees, the operating characteristics can be improved, and the depth dimension of the recess is 2.5 mm. Thus, the operating characteristics can be enhanced.

本発明の一実施の形態である比例電磁弁を示す斜視図である。It is a perspective view which shows the proportional solenoid valve which is one embodiment of this invention. 図1におけるA−A線断面図である。It is the sectional view on the AA line in FIG. 図2におけるB−B線断面図である。It is the BB sectional view taken on the line in FIG. 図2の一部拡大断面図である。It is a partially expanded sectional view of FIG. 圧縮コイルばねを取り除いた状態における図4の一部拡大断面図である。It is a partially expanded sectional view of FIG. 4 in the state which removed the compression coil spring. (A)〜(F)は、比例電磁弁の作動特性を示す特性線図である。(A)-(F) are characteristic diagrams which show the operating characteristic of a proportional solenoid valve.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

図1に示すように、比例電磁弁10は、流路ブロック11とこれに取り付けられるソレノイド12とを有し、ソレノイド12に固定される締結プレート13を流路ブロック11にねじ止めすることによりソレノイド12は流路ブロック11に取り付けられている。流路ブロック11はほぼ直方体の金属材料により形成されており、図3に示されるように、流路ブロック11には一次側流路つまり一次側ポート14と、二次側流路つまり二次側ポート15とが長手方向に同軸状に形成されている。一次側ポート14は弁室16の中心部に連通孔17を介して連通され、二次側ポート15は弁室16の外周部に連通孔18を介して連通されている。連通孔17の弁室16側の開口部周囲は弁座19となっており、連通孔17の内径Tは弁座19の内径となっている。   As shown in FIG. 1, the proportional solenoid valve 10 includes a flow path block 11 and a solenoid 12 attached to the flow path block 11, and a fastening plate 13 fixed to the solenoid 12 is screwed to the flow path block 11. Reference numeral 12 denotes a flow path block 11. The flow path block 11 is formed of a substantially rectangular parallelepiped metal material. As shown in FIG. 3, the flow path block 11 includes a primary side flow path, that is, a primary side port 14, and a secondary side flow path, that is, a secondary side. The port 15 is formed coaxially in the longitudinal direction. The primary side port 14 is communicated with the central portion of the valve chamber 16 via the communication hole 17, and the secondary side port 15 is communicated with the outer peripheral portion of the valve chamber 16 via the communication hole 18. The periphery of the opening on the valve chamber 16 side of the communication hole 17 is a valve seat 19, and the inner diameter T of the communication hole 17 is the inner diameter of the valve seat 19.

図2に示すように、ソレノイド12は樹脂モールド体21により覆われるソレノイド組立体22を有している。ソレノイド組立体22は円筒部23aとこれの両端に一体に設けられたフランジ23b,23cとを備えたボビン23を有し、ボビン23の外側にはコイル24が巻き付けられている。ボビン23は磁気フレーム25の内部に組み込まれており、磁気フレーム25は鉄製の板材を四辺形に折り曲げ加工することにより、正面壁25a、背面壁25bおよび上下の端壁25c,25dとを有する断面四辺形となっている。ボビン23はそのフランジ23bが端壁25cの内面に接触し、フランジ23cが端壁25dの内面に接触した状態となって磁気フレーム25内に組み込まれる。ボビン23は端壁25c,25dに形成された貫通孔26に嵌合する磁気リング27により磁気フレーム25に固定される。   As shown in FIG. 2, the solenoid 12 has a solenoid assembly 22 covered with a resin mold body 21. The solenoid assembly 22 has a bobbin 23 provided with a cylindrical portion 23a and flanges 23b and 23c integrally provided at both ends thereof, and a coil 24 is wound around the outside of the bobbin 23. The bobbin 23 is incorporated in a magnetic frame 25. The magnetic frame 25 has a front wall 25a, a back wall 25b, and upper and lower end walls 25c, 25d by bending an iron plate into a quadrilateral shape. It is a quadrilateral. The bobbin 23 is incorporated in the magnetic frame 25 with its flange 23b in contact with the inner surface of the end wall 25c and the flange 23c in contact with the inner surface of the end wall 25d. The bobbin 23 is fixed to the magnetic frame 25 by a magnetic ring 27 fitted in a through hole 26 formed in the end walls 25c and 25d.

磁気フレーム25の正面壁25aには、2つの給電端子28a,28bが固定されたプリント基板29が配置され、プリント基板29にはコイル24の両端部が接続されるようになっており、プリント基板29にはコイル24の両端部をそれぞれの給電端子28a,28bに電気的に接続するための配線パターンが設けられている。プリント基板29の表面にはL字形状に折り曲げられたアース端子30が配置され、このアース端子30には磁気フレーム25の係合孔に係合する係合片30aが設けられている。プリント基板29とアース端子30は磁気フレーム25にねじ部材31により固定されている。   A printed circuit board 29 to which two power supply terminals 28a and 28b are fixed is disposed on the front wall 25a of the magnetic frame 25, and both ends of the coil 24 are connected to the printed circuit board 29. 29 is provided with a wiring pattern for electrically connecting both ends of the coil 24 to the power supply terminals 28a and 28b. A ground terminal 30 bent in an L shape is disposed on the surface of the printed circuit board 29, and an engagement piece 30 a that engages with an engagement hole of the magnetic frame 25 is provided on the ground terminal 30. The printed circuit board 29 and the ground terminal 30 are fixed to the magnetic frame 25 by a screw member 31.

図2に示すようにねじ部材31の基端部には磁気フレーム25に形成されたねじ孔に締結される雄ねじ部31aが設けられ、先端の露出面32に開口するねじ孔33がねじ部材31の先端部に形成されている。このように、ソレノイド組立体22はボビン23に巻き付けられたコイル24と磁気フレーム25とを有しており、ソレノイド組立体22を樹脂成形用の金型内に配置して溶融樹脂を金型内に充填することによりソレノイド組立体22と樹脂モールド体21とを有するソレノイド12を製造することができる。樹脂成形時には、ねじ部材31の露出面32を金型内面に接触させることにより金型内でのソレノイド組立体22のずれが防止される。ただし、樹脂モールド体21を設けることなく、磁気フレーム25をケースとした比例電磁弁としても良い。   As shown in FIG. 2, a male screw portion 31 a that is fastened to a screw hole formed in the magnetic frame 25 is provided at the base end portion of the screw member 31, and the screw hole 33 that opens to the exposed surface 32 at the distal end is formed in the screw member 31. It is formed in the front-end | tip part. Thus, the solenoid assembly 22 has the coil 24 and the magnetic frame 25 wound around the bobbin 23. The solenoid assembly 22 is placed in a mold for resin molding, and the molten resin is placed in the mold. The solenoid 12 having the solenoid assembly 22 and the resin mold body 21 can be manufactured. At the time of resin molding, the exposed surface 32 of the screw member 31 is brought into contact with the inner surface of the mold, thereby preventing the solenoid assembly 22 from being displaced in the mold. However, a proportional solenoid valve using the magnetic frame 25 as a case without providing the resin mold body 21 may be used.

図1に示すように、ソレノイド12の正面には給電端子28a,28bとアース端子30とが突出しており、これらの端子28a,28b,30にはコネクタ34がゴム製のシール部材35を介して装着されるようになっている。コネクタ34には給電ケーブル36a,36bとアースケーブル37とが設けられ、それぞれの端子28a,28b,30をコネクタ34に設けられた凹部に挿入させると、それぞれの端子28a,28b,30はケーブル36a,36b,37にそれぞれ電気的に接続される。コネクタ34をソレノイド12に締結するために、コネクタ34には貫通孔38が形成され、コネクタ34にはねじ部材31に形成されたねじ孔33にねじ止めされるねじ部材39が貫通孔38に取り付けられるようになっている。   As shown in FIG. 1, power supply terminals 28 a and 28 b and a ground terminal 30 protrude from the front of the solenoid 12, and a connector 34 is interposed between these terminals 28 a, 28 b and 30 via a rubber seal member 35. It comes to be installed. The connector 34 is provided with power supply cables 36a, 36b and a ground cable 37. When the terminals 28a, 28b, 30 are inserted into the recesses provided in the connector 34, the terminals 28a, 28b, 30 are connected to the cable 36a. , 36b, 37 are electrically connected to each other. In order to fasten the connector 34 to the solenoid 12, a through hole 38 is formed in the connector 34, and a screw member 39 that is screwed into a screw hole 33 formed in the screw member 31 is attached to the through hole 38. It is supposed to be.

図2に示すように、ソレノイド12には固定鉄心40が組み込まれ、固定鉄心40の基端部にねじ止めされるナット41により固定鉄心40はソレノイド12に固定されるようになっている。固定鉄心40には図2および図4に示すように、非磁性であるステンレス製のガイドチューブ42が固定されている。このガイドチューブ42の中には軸方向に移動自在に可動鉄心43が固定鉄心40と同軸状に組み込まれるとともに固定鉄心40と可動鉄心43との間には圧縮コイルばね44つまりばね部材が組み込まれようになっている。圧縮コイルばね44は可動鉄心43に形成された収容孔43a内に先端部が収容されている。   As shown in FIG. 2, a fixed iron core 40 is incorporated in the solenoid 12, and the fixed iron core 40 is fixed to the solenoid 12 by a nut 41 screwed to the base end portion of the fixed iron core 40. As shown in FIGS. 2 and 4, a non-magnetic stainless steel guide tube 42 is fixed to the fixed iron core 40. In the guide tube 42, a movable iron core 43 is incorporated coaxially with the fixed iron core 40 so as to be movable in the axial direction, and a compression coil spring 44, that is, a spring member is incorporated between the fixed iron core 40 and the movable iron core 43. It is like that. The tip of the compression coil spring 44 is housed in a housing hole 43 a formed in the movable iron core 43.

可動鉄心43にはガイドチューブ42の内周面に摺動接触するウエアリング45が装着され、可動鉄心43の先端部には、流路ブロック11に形成された弁座19に接触するポペットタイプの弁体46が取り付けられている。弁体46がばね力に抗して弁座19から離れる距離に応じて弁開度が設定される。したがって、この比例電磁弁10は、弁体46が弁座19に接触する閉弁時を初期位置として、コイル24に通電すると、ばね力に抗して弁体46が弁座19から離れて開弁状態となる。   A wear ring 45 slidably contacting the inner peripheral surface of the guide tube 42 is attached to the movable iron core 43, and a poppet type of contact with the valve seat 19 formed in the flow path block 11 is attached to the tip of the movable iron core 43. A valve body 46 is attached. The valve opening is set according to the distance that the valve body 46 moves away from the valve seat 19 against the spring force. Therefore, the proportional solenoid valve 10 opens the valve body 46 away from the valve seat 19 against the spring force when the coil 24 is energized in the initial position when the valve body 46 contacts the valve seat 19. It becomes a valve state.

固定鉄心40は中空部材により形成されており、圧縮コイルばね44のばね力を調整するために、圧縮コイルばね44の端部に接触する調整ねじ47が固定鉄心40の中空孔40aに組み込まれ、固定鉄心40に形成された雌ねじ40bに調整ねじ47の雄ねじ47aがねじ結合されている。したがって、調整ねじ47を回転させて固定鉄心40に対する調整ねじ47の軸方向位置を変化させることによって圧縮コイルばね44により可動鉄心43に加えられるばね力が調整される。可動鉄心43には可動鉄心43と固定鉄心40との間の隙間と弁室16とを連通させるために連通孔48が形成されており、可動鉄心43に加えられる弁室16内の圧力は連通孔48を介して可動鉄心43の両端面に加わる。つまり、可動鉄心43に軸方向に加わる圧力は相殺されるので、可動鉄心43には弁室16内の圧力による軸方向推力は加わらない。   The fixed iron core 40 is formed of a hollow member. In order to adjust the spring force of the compression coil spring 44, an adjustment screw 47 that contacts the end of the compression coil spring 44 is incorporated in the hollow hole 40a of the fixed iron core 40. A male screw 47 a of the adjusting screw 47 is screwed to a female screw 40 b formed on the fixed iron core 40. Accordingly, the spring force applied to the movable iron core 43 by the compression coil spring 44 is adjusted by rotating the adjustment screw 47 to change the axial position of the adjustment screw 47 with respect to the fixed iron core 40. The movable iron core 43 is formed with a communication hole 48 for communicating the gap between the movable iron core 43 and the fixed iron core 40 with the valve chamber 16, and the pressure in the valve chamber 16 applied to the movable iron core 43 is communicated. It is added to both end faces of the movable iron core 43 through the holes 48. That is, since the pressure applied to the movable core 43 in the axial direction is canceled out, the axial thrust due to the pressure in the valve chamber 16 is not applied to the movable core 43.

比例電磁弁10の弁開度は駆動電流値を変化させることにより制御され、駆動電流は駆動電圧のパルス幅をPWM制御によって変化される。このように、PWM制御によって駆動電流値を制御すると、可動鉄心43は微振動しながら軸方向に駆動されることになり、駆動電流を変化させることにより、一次側ポート14から二次側ポート15に流れる圧縮空気や液体の圧力や流量が調整され、駆動電流値が所定値以下となると、ばね力によって弁体46が弁座19に接触して流体の流れが遮断される。   The valve opening degree of the proportional solenoid valve 10 is controlled by changing the drive current value, and the drive current is changed by PWM control of the pulse width of the drive voltage. As described above, when the drive current value is controlled by PWM control, the movable iron core 43 is driven in the axial direction while slightly vibrating, and the primary side port 14 to the secondary side port 15 are changed by changing the drive current. When the pressure or flow rate of the compressed air or liquid flowing through the valve is adjusted and the drive current value becomes a predetermined value or less, the valve body 46 comes into contact with the valve seat 19 by the spring force and the fluid flow is interrupted.

図4および図5に示されるように、固定鉄心40の先端部には、環状の先端面50に向かうに従って外径が小径となる固定側のテーパ面51が形成されるとともに中心部に凹部52が形成され、凹部52内には非磁性材料からなるスペーサ53が設けられている。このスペーサ53は凹部52の底面である対向面54に接触している。図5に示すように、固定鉄心40の外径寸法はD1、先端面50の外径寸法はD2、先端面50の内径寸法はD3、凹部52の深さ寸法はPとなっており、スペーサ53の厚み寸法はRとなっている。   As shown in FIGS. 4 and 5, a fixed-side taper surface 51 whose outer diameter decreases toward the annular front end surface 50 is formed at the front end of the fixed iron core 40, and a recess 52 is formed in the center. And a spacer 53 made of a nonmagnetic material is provided in the recess 52. The spacer 53 is in contact with the facing surface 54 that is the bottom surface of the recess 52. As shown in FIG. 5, the outer diameter of the fixed core 40 is D1, the outer diameter of the tip 50 is D2, the inner diameter of the tip 50 is D3, and the depth of the recess 52 is P. The thickness dimension of 53 is R.

一方、可動鉄心43の基端部には固定鉄心40の凹部52内に隙間を介して入り込む嵌合部55が形成されている。この嵌合部55は、凹部52の内周面56に隙間を介してオーバーラップする外周面57を有し、可動鉄心43の基端面58が固定鉄心40の凹部52の対向面54に対向した状態となって、可動鉄心43は軸方向にガイドチューブ42内を移動する。   On the other hand, a fitting portion 55 is formed at the base end portion of the movable iron core 43 so as to enter the recess 52 of the fixed iron core 40 through a gap. The fitting portion 55 has an outer peripheral surface 57 that overlaps the inner peripheral surface 56 of the concave portion 52 via a gap, and the base end surface 58 of the movable iron core 43 faces the opposing surface 54 of the concave portion 52 of the fixed iron core 40. In this state, the movable iron core 43 moves in the guide tube 42 in the axial direction.

可動鉄心43には嵌合部55に連なって可動鉄心43の先端部側に向かうに従って外径が大径となる可動側のテーパ面59が形成されており、このテーパ面59は固定鉄心40のテーパ面51に対向している。このようにテーパ面59が形成された部分と嵌合部55とが可動鉄心43の基端部に形成されている。図5に示すように、可動鉄心43の外径寸法はd1、基端面58の外径寸法はd2、基端面58の内径寸法つまり圧縮コイルばね44を収容する収容孔43aの内径はd3となっている。   The movable iron core 43 is formed with a movable taper surface 59 whose outer diameter becomes larger as it goes to the distal end side of the movable iron core 43 and continues to the fitting portion 55. It faces the tapered surface 51. Thus, the portion where the tapered surface 59 is formed and the fitting portion 55 are formed at the base end portion of the movable iron core 43. As shown in FIG. 5, the outer diameter dimension of the movable iron core 43 is d1, the outer diameter dimension of the base end face 58 is d2, and the inner diameter dimension of the base end face 58, that is, the inner diameter of the accommodation hole 43a for accommodating the compression coil spring 44 is d3. ing.

固定鉄心40の先端部に形成された凹部52の内周面56は、先端面50に向けて内径が大きくなるように傾斜しており、その傾斜角度はα1となっている。これに対して可動鉄心43の嵌合部55の外周面57は、基端面58に向けて外径が小さくなるように傾斜しており、その傾斜角度はα2となっており、傾斜角度α2は傾斜角度α1よりも大きく設定されている。さらに、固定鉄心40の固定側のテーパ面51の傾斜角度はθ1となっており、可動鉄心43の可動側のテーパ面59の傾斜角度はθ2となっている。   The inner peripheral surface 56 of the recess 52 formed at the distal end portion of the fixed iron core 40 is inclined so that the inner diameter increases toward the distal end surface 50, and the inclination angle is α1. On the other hand, the outer peripheral surface 57 of the fitting portion 55 of the movable iron core 43 is inclined so that the outer diameter becomes smaller toward the base end surface 58, the inclination angle is α2, and the inclination angle α2 is It is set larger than the inclination angle α1. Further, the inclination angle of the taper surface 51 on the fixed side of the fixed iron core 40 is θ1, and the inclination angle of the taper surface 59 on the movable side of the movable iron core 43 is θ2.

図2は、可動鉄心43の先端に設けられた弁体46が圧縮コイルばね44のばね力により弁座19に接触して流路ブロック11内の流路が閉じられている初期状態を示している。この状態のもとでコイル24に通電すると、固定鉄心40と可動鉄心43が励磁されて、可動鉄心43は固定鉄心40に向けてばね力に抗して移動し、弁体46は弁座19から離れて一次側ポート14から二次側ポート15に向けて流体が流れることになる。弁体46が弁座19から離れるに従って、弁体46と弁座19との間により設定される弁開度は徐々に大きくなる。弁体46が所定距離だけ離れた位置が弁開度最大となり、それ以上離れても一次側ポート14から二次側ポート15に流れる流体流量は増加することなくほぼ一定となる。この流量最大値となる弁体46の最大ストロークは、弁座19の内径Tに対応した値となる。   FIG. 2 shows an initial state in which the valve body 46 provided at the tip of the movable iron core 43 contacts the valve seat 19 by the spring force of the compression coil spring 44 and the flow path in the flow path block 11 is closed. Yes. When the coil 24 is energized in this state, the fixed iron core 40 and the movable iron core 43 are excited, the movable iron core 43 moves against the spring force toward the fixed iron core 40, and the valve body 46 moves to the valve seat 19. The fluid flows away from the primary side port 14 toward the secondary side port 15. As the valve body 46 moves away from the valve seat 19, the valve opening set between the valve body 46 and the valve seat 19 gradually increases. The position at which the valve body 46 is separated by a predetermined distance is the maximum valve opening, and the flow rate of the fluid flowing from the primary side port 14 to the secondary side port 15 is substantially constant without increasing even if the valve body 46 is further away. The maximum stroke of the valve body 46 that becomes the maximum flow rate is a value corresponding to the inner diameter T of the valve seat 19.

弁開度が最大となる弁体46の最大ストロークSは、図示する弁座19の内径が2mmであるので、寸法のバラツキを考慮して約1.5mmに設定されている。図5において、可動鉄心43は弁体46が弁座19に接触しているときに対応した位置として実線で示されており、可動鉄心43が二点鎖線で示す最大ストロークSの位置まで固定鉄心40に向けて接近すると、弁開度が最大となる。この最大ストロークSの位置は、可動鉄心43の基端面58がスペーサ53には接触しない位置に設定されており、これ以上可動鉄心43が移動すると、基端面58が非磁性のスペーサ53に衝突するので基端面58が直接固定鉄心40に衝突することが防止される。   The maximum stroke S of the valve body 46 at which the valve opening is maximized is set to about 1.5 mm in consideration of variation in dimensions because the illustrated inner diameter of the valve seat 19 is 2 mm. In FIG. 5, the movable iron core 43 is shown by a solid line as a position corresponding to when the valve body 46 is in contact with the valve seat 19, and the movable iron core 43 reaches the position of the maximum stroke S indicated by the two-dot chain line. When approaching 40, the valve opening is maximized. The position of the maximum stroke S is set at a position where the base end surface 58 of the movable iron core 43 does not contact the spacer 53, and the base end surface 58 collides with the nonmagnetic spacer 53 when the movable iron core 43 moves further. Therefore, it is possible to prevent the base end face 58 from directly colliding with the fixed iron core 40.

コイル24に通電することにより、固定鉄心40と可動鉄心43が励磁され、固定鉄心40の先端部と可動鉄心43の基端部は相互に逆極性となり、可動鉄心43は固定鉄心40に向けて磁力により吸引されることになる。この磁力は、コイル24に供給する駆動電流値が大きくなると大きくなるが、駆動電流値が同じであれば、可動鉄心43の基端面58が固定鉄心40に対して軸方向同一の位置となるようにすることが、弁開度の変化量をコイル24に供給される駆動電流の変化量に直線的に変化させて高精度の比例電磁弁とするためには望ましい。   By energizing the coil 24, the fixed iron core 40 and the movable iron core 43 are excited, the distal end portion of the fixed iron core 40 and the base end portion of the movable iron core 43 have opposite polarities, and the movable iron core 43 faces the fixed iron core 40. It will be attracted by magnetic force. This magnetic force increases as the drive current value supplied to the coil 24 increases. However, if the drive current value is the same, the base end surface 58 of the movable iron core 43 is positioned at the same axial position with respect to the fixed iron core 40. It is desirable that the change amount of the valve opening is linearly changed to the change amount of the drive current supplied to the coil 24 to obtain a highly accurate proportional solenoid valve.

固定鉄心40から可動鉄心43に対して軸方向の推力となる磁力は、両方の鉄心の間を軸方向に形成される磁界の強度に大きく依存しており、固定鉄心40の先端部の内周面56と可動鉄心43の嵌合部55の外周面57とがオーバーラップする領域には径方向に磁界が横断することになり可動鉄心43を軸方向に固定鉄心40に向けて吸引させる推力には寄与しない無効磁界となる。   The magnetic force that is an axial thrust from the fixed iron core 40 to the movable iron core 43 greatly depends on the strength of the magnetic field formed in the axial direction between both iron cores, and the inner periphery of the tip of the fixed iron core 40. In the region where the surface 56 and the outer peripheral surface 57 of the fitting portion 55 of the movable iron core 43 overlap, the magnetic field crosses in the radial direction, and the thrust force attracts the movable iron core 43 toward the fixed iron core 40 in the axial direction. Becomes a reactive magnetic field that does not contribute.

上述のように、固定鉄心40の先端部には先端面50に向けて小径となるように角度θ1で傾斜した固定側のテーパ面51が形成されるとともに凹部52が形成されている。一方、可動鉄心43の基端部には可動鉄心43の凹部52の内周面56に隙間を介して入り込む嵌合部55が形成されるとともに嵌合部55の外周面57に連なって可動鉄心43の先端部に向けて大径となるように角度θ2で傾斜した可動側のテーパ面59が形成されている。さらに、可動鉄心43の外周面57の傾斜角度α2は、固定鉄心40の内周面56の傾斜角度α1よりも大きく設定されている。   As described above, the fixed iron core 40 is formed with the fixed-side taper surface 51 inclined at the angle θ1 so as to have a small diameter toward the front-end surface 50 and the concave portion 52. On the other hand, a fitting portion 55 is formed at the base end portion of the movable iron core 43 so as to enter the inner circumferential surface 56 of the concave portion 52 of the movable iron core 43 through a gap and is connected to the outer circumferential surface 57 of the fitting portion 55. A movable-side taper surface 59 inclined at an angle θ2 is formed so as to have a large diameter toward the tip of 43. Furthermore, the inclination angle α2 of the outer peripheral surface 57 of the movable iron core 43 is set larger than the inclination angle α1 of the inner peripheral surface 56 of the fixed iron core 40.

これにより、弁体46が弁座19に接触して流路が閉じられた状態から弁体46が弁座19から離れて固定鉄心40に向けて移動するときには、主として対向面54と基端面58との間を軸方向に横断する磁界によって可動鉄心43は固定鉄心40に向けて吸引されることになるが、可動鉄心43が吸引されるに従い、内周面56と外周面57とのオーバーラップ寸法が大きくなるので、その部分で径方向に横断する無効磁界も大きくなる。   Thereby, when the valve body 46 moves away from the valve seat 19 and moves toward the fixed iron core 40 from the state where the valve body 46 contacts the valve seat 19 and the flow path is closed, the opposed surface 54 and the base end surface 58 are mainly used. The movable iron core 43 is attracted toward the fixed iron core 40 by a magnetic field that crosses between the inner peripheral surface 56 and the outer peripheral surface 57 as the movable iron core 43 is attracted. Since the dimension increases, the reactive magnetic field that traverses in the radial direction at that portion also increases.

このように、固定鉄心40にテーパ面51が形成され可動鉄心43にテーパ面59が形成されていることと相俟って、外周面57の傾斜角度α2を内周面56の傾斜角度α1よりも大きく設定すると、可動鉄心43が固定鉄心40に接近しても、無効磁界が大きくなることから、可動鉄心43に固定鉄心40から加えられる吸引力は一定に保持される。しかも、外周面57の傾斜角度α2が内周面56の傾斜角度α1よりも大きく設定されているので、可動鉄心43が固定鉄心40に接近するに従って、その基端面58の外周エッジは内周面56から離れることになり、可動鉄心43が駆動電流によって微振動しても、嵌合部55が内周面56に接触することが防止される。これにより、コイル24に供給される駆動電流値の変化量と弁体46の開度とが直線的に変化し高精度の比例電磁弁となる。   Thus, in combination with the taper surface 51 formed on the fixed iron core 40 and the taper surface 59 formed on the movable iron core 43, the inclination angle α2 of the outer peripheral surface 57 is made larger than the inclination angle α1 of the inner peripheral surface 56. Is set to a large value, the ineffective magnetic field increases even when the movable iron core 43 approaches the fixed iron core 40, so that the attractive force applied to the movable iron core 43 from the fixed iron core 40 is kept constant. Moreover, since the inclination angle α2 of the outer peripheral surface 57 is set to be larger than the inclination angle α1 of the inner peripheral surface 56, the outer peripheral edge of the base end surface 58 becomes the inner peripheral surface as the movable iron core 43 approaches the fixed iron core 40. Even if the movable iron core 43 slightly vibrates due to the drive current, the fitting portion 55 is prevented from coming into contact with the inner peripheral surface 56. As a result, the amount of change in the drive current value supplied to the coil 24 and the opening of the valve body 46 change linearly, resulting in a highly accurate proportional solenoid valve.

図6(A)〜図6(F)は本発明の比例電磁弁の作動特性を示す特性線図である。図6(A)〜図6(F)は実施例1〜6を示し、それぞれの実施例においては、内周面56の傾斜角度α1を4度とし、外周面57の傾斜角度α2をα1よりも1度大きい5度とした。さらに、固定鉄心40の外径寸法D1を12mmとし、先端面50の外径寸法D2を9.5mmとし、先端面50の内径寸法D3を9mmとした。また、可動鉄心43の外径寸法はd1を11.3mmとし、基端面58の外径寸法はd2を8.2mmとし、基端面58の内径寸法d3を4mmとした。傾斜角度θ2はそれぞれの実施例において45度である。   6 (A) to 6 (F) are characteristic diagrams showing operating characteristics of the proportional solenoid valve of the present invention. 6 (A) to 6 (F) show Examples 1 to 6. In each example, the inclination angle α1 of the inner peripheral surface 56 is set to 4 degrees, and the inclination angle α2 of the outer peripheral surface 57 is determined from α1. Was also 5 degrees, which was 1 degree larger. Furthermore, the outer diameter D1 of the fixed iron core 40 was 12 mm, the outer diameter D2 of the tip face 50 was 9.5 mm, and the inner diameter D3 of the tip face 50 was 9 mm. The outer diameter of the movable iron core 43 was d1 11.3 mm, the outer diameter of the base end face 58 was 8.2 mm, and the inner diameter d3 of the base end face 58 was 4 mm. The inclination angle θ2 is 45 degrees in each embodiment.

実施例1〜3においてはテーパ面51の傾斜角度θ1を25度とし、実施例4〜6においてはテーパ面51の傾斜角度α1を30度とした。   In Examples 1 to 3, the inclination angle θ1 of the taper surface 51 was 25 degrees, and in Examples 4 to 6, the inclination angle α1 of the taper surface 51 was 30 degrees.

実施例1〜3では、凹部52の深さ寸法Pを2.5と3.0と3.5に相違させ、可動鉄心43がスペーサ53に接触したときにおける可動鉄心43の基端面58と固定鉄心40の対向面54との距離が1mmとなるように、凹部52の深さ寸法Pに対応させてスペーサ53の厚みを相違させた。同様に、実施例4〜6においても、凹部52の深さ寸法を2.5と3.0と3.5に相違させ、可動鉄心43がスペーサ53に接触したときにおける可動鉄心43の基端面58と固定鉄心40の対向面54との距離が1mmとなるように、凹部52の深さ寸法Pに対応させてスペーサ53の厚みを相違させた。   In the first to third embodiments, the depth dimension P of the recess 52 is set to 2.5, 3.0, and 3.5, and the base end surface 58 of the movable iron core 43 and the fixed portion when the movable iron core 43 contacts the spacer 53 are fixed. The spacers 53 have different thicknesses corresponding to the depth dimension P of the recess 52 so that the distance from the facing surface 54 of the iron core 40 is 1 mm. Similarly, in Examples 4 to 6, the depth dimension of the recess 52 is set to 2.5, 3.0, and 3.5, and the base end surface of the movable core 43 when the movable core 43 contacts the spacer 53. The thickness of the spacer 53 is made to correspond to the depth dimension P of the recess 52 so that the distance between the surface 58 and the facing surface 54 of the fixed iron core 40 is 1 mm.

図6は、それぞれの実施例1〜6において、300mAと200mAと100mAの3種類の駆動電流をそれぞれ供給し、可動鉄心43をその基端面58がスペーサ53から0.3mm離れた位置から1.5mm離れた位置となるまで可動鉄心43を移動して、それぞれについて0.1mm毎に駆動電流と可動鉄心43に作用する吸引力との関係を測定した。基端面58がスペーサ53から0.3mm離れた位置では基端面58は対向面54から1.3mm離れた位置になり、基端面58がスペーサ53から0.8mm離れた位置では基端面58は対向面54から1.8mm離れた位置になる。   FIG. 6 shows that each of Examples 1 to 6 supplies three types of drive currents of 300 mA, 200 mA, and 100 mA, and moves the movable iron core 43 from the position where the base end surface 58 is 0.3 mm away from the spacer 53. The movable iron core 43 was moved to a position 5 mm away, and the relationship between the drive current and the suction force acting on the movable iron core 43 was measured for each 0.1 mm. When the base end surface 58 is 0.3 mm away from the spacer 53, the base end surface 58 is 1.3 mm away from the facing surface 54, and when the base end surface 58 is 0.8 mm away from the spacer 53, the base end surface 58 is opposed. The position is 1.8 mm away from the surface 54.

その結果、α1を4度とし、α2を5度とするとともに、凹部52の深さ寸法Pを2.5mmに設定すると、図6(A)(D)に示すようにθ1を25度としても30度としてもいずれも良好な作動特性となった。特に、θ1を25度(図6(A))とする方が、30度(図6(D))とするよりも作動特性が良好であった。また、可動鉄心43のストロークが0.9mmの範囲では、図6(B)に示すように凹部52の深さ寸法Pを3.0mmとしても作動特性は良好であることが判明した。一方、θ1を30度とし、凹部52の深さ寸法Pを3.0mmとした場合には、図6(E)に示すように可動鉄心43の基端面58が対向面54から0.8mm以上離れると、吸引力が一定とならなかった。   As a result, if α1 is set to 4 degrees, α2 is set to 5 degrees, and the depth dimension P of the recess 52 is set to 2.5 mm, θ1 can be set to 25 degrees as shown in FIGS. Even at 30 degrees, good operating characteristics were obtained. In particular, the operating characteristics were better when θ1 was 25 degrees (FIG. 6A) than when it was 30 degrees (FIG. 6D). Further, it was found that when the stroke of the movable iron core 43 is in the range of 0.9 mm, the operating characteristics are good even when the depth dimension P of the recess 52 is 3.0 mm as shown in FIG. On the other hand, when θ1 is 30 degrees and the depth dimension P of the recess 52 is 3.0 mm, the base end surface 58 of the movable iron core 43 is 0.8 mm or more from the facing surface 54 as shown in FIG. When separated, the suction force was not constant.

弁体46が弁座19に接触している閉弁状態から可動鉄心43が固定鉄心40に向けて移動して弁体46が全開状態となるのは、図6に示すストロークでは1.0mmから0.3mmの範囲であるので、凹部52の深さ寸法Pが2.5mmであって、傾斜角度θ1が25度または30度とすると、最適な作動特性の比例電磁弁10が得られ。特に、傾斜角度θ1を25度とすることが好ましいことが実測値から判明した。   The movable core 43 moves toward the fixed core 40 from the closed state where the valve body 46 is in contact with the valve seat 19 and the valve body 46 is fully opened from 1.0 mm in the stroke shown in FIG. Since the depth dimension P of the recess 52 is 2.5 mm and the inclination angle θ1 is 25 degrees or 30 degrees, the proportional solenoid valve 10 having optimum operating characteristics can be obtained. In particular, it has been found from measured values that the inclination angle θ1 is preferably 25 degrees.

本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。図示した比例電磁弁10は空気圧回路に使用されるが、油圧回路に使用される比例電磁弁についても同様とすることができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. The illustrated proportional solenoid valve 10 is used in a pneumatic circuit, but the same can be applied to a proportional solenoid valve used in a hydraulic circuit.

産業上の利用分野Industrial application fields

空気圧回路等の流体圧回路に使用され流体の流量や圧力を制御するための比例電磁弁として使用することができる。   It is used in a fluid pressure circuit such as a pneumatic circuit, and can be used as a proportional solenoid valve for controlling the flow rate and pressure of fluid.

Claims (3)

固定鉄心が内部に固定されるコイルと、前記コイルの内部に前記固定鉄心と同軸状に軸方向に摺動自在に組み込まれる可動鉄心と、前記可動鉄心の先端に設けられるとともに、弁座に接触して一次側流路と二次側流路との連通開度を調整する弁体と、前記可動鉄心と前記固定鉄心との間に配置され前記弁体を初期位置に付勢するばね部材とを有する比例電磁弁であって、
前記固定鉄心の先端部に凹部を形成する一方、前記可動鉄心の基端部に前記凹部の内周面に隙間を介して対向する外周面が形成された嵌合部を前記可動鉄心の基端部に形成し、
前記固定鉄心の先端部の外周面に先端面に向けて小径となるテーパ面を形成する一方、前記可動鉄心の基端部に前記嵌合部から連なり前記可動鉄心の先端部に向けて大径となるテーパ面を形成し、
前記固定鉄心の前記内周面を先端面に向けて大径となる方向に傾斜させる一方、前記嵌合部の前記外周面を基端面に向けて小径となる方向に傾斜させるとともに、前記外周面の傾斜角度を前記内周面の傾斜角度よりも大きく傾斜させることを特徴とする比例電磁弁。
A coil in which a fixed iron core is fixed, a movable iron core that is slidably incorporated in the coil in the axial direction coaxially with the fixed iron core, provided at the tip of the movable iron core, and in contact with the valve seat A valve body that adjusts the opening degree of communication between the primary flow path and the secondary flow path, and a spring member that is arranged between the movable iron core and the fixed iron core and biases the valve body to an initial position. A proportional solenoid valve having
While forming the recessed part in the front-end | tip part of the said fixed iron core, the base part of the said movable iron core has the fitting part by which the outer peripheral surface which opposes through the clearance gap between the inner peripheral surface of the said recessed part was formed. Formed in the part,
A tapered surface having a small diameter toward the distal end surface is formed on the outer peripheral surface of the distal end portion of the fixed iron core, while a large diameter is formed from the fitting portion to the proximal end portion of the movable core toward the distal end portion of the movable core. Forming a tapered surface
While the inner peripheral surface of the fixed iron core is inclined in the direction of increasing the diameter toward the distal end surface, the outer peripheral surface of the fitting portion is inclined in the direction of decreasing the diameter toward the base end surface, and the outer peripheral surface The proportional solenoid valve is characterized in that the inclination angle of the is inclined larger than the inclination angle of the inner peripheral surface.
請求項1記載の比例電磁弁において、前記外周面の傾斜角度は5度であり、前記内周面の傾斜角度は4度であることを特徴とする比例電磁弁。   2. The proportional solenoid valve according to claim 1, wherein an inclination angle of the outer peripheral surface is 5 degrees and an inclination angle of the inner peripheral surface is 4 degrees. 請求項1記載の比例電磁弁において、前記固定鉄心の前記凹部の底面である対向面の深さ寸法は2.5mmであることを特徴とする比例電磁弁。   2. The proportional solenoid valve according to claim 1, wherein a depth dimension of an opposing surface which is a bottom surface of the concave portion of the fixed iron core is 2.5 mm.
JP2007557692A 2006-02-07 2006-02-07 Proportional solenoid valve Active JP4612059B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/302041 WO2007091300A1 (en) 2006-02-07 2006-02-07 Proportional solenoid valve

Publications (2)

Publication Number Publication Date
JPWO2007091300A1 true JPWO2007091300A1 (en) 2009-06-25
JP4612059B2 JP4612059B2 (en) 2011-01-12

Family

ID=38344908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007557692A Active JP4612059B2 (en) 2006-02-07 2006-02-07 Proportional solenoid valve

Country Status (2)

Country Link
JP (1) JP4612059B2 (en)
WO (1) WO2007091300A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4937937B2 (en) * 2008-02-15 2012-05-23 日立オートモティブシステムズ株式会社 Normally open type solenoid valve and normally closed type solenoid valve
JP5712419B2 (en) * 2010-11-29 2015-05-07 新電元メカトロニクス株式会社 solenoid
JP7072831B2 (en) 2017-11-30 2022-05-23 アドバンス電気工業株式会社 solenoid valve

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280123A (en) * 1994-04-12 1995-10-27 Riken Corp Solenoid valve
WO1997009727A1 (en) * 1995-09-08 1997-03-13 Toto Ltd. Solenoid and solenoid valve
JPH1172177A (en) * 1997-06-30 1999-03-16 Nok Corp Solenoid valve

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012435A (en) * 1996-04-25 1998-01-16 Fuji Electric Co Ltd Electromagnetic solenoid
JP3577918B2 (en) * 1997-10-27 2004-10-20 豊田工機株式会社 solenoid valve
JP2002332962A (en) * 2001-05-10 2002-11-22 Toyota Industries Corp Control valve for variable displacement compressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07280123A (en) * 1994-04-12 1995-10-27 Riken Corp Solenoid valve
WO1997009727A1 (en) * 1995-09-08 1997-03-13 Toto Ltd. Solenoid and solenoid valve
JPH1172177A (en) * 1997-06-30 1999-03-16 Nok Corp Solenoid valve

Also Published As

Publication number Publication date
JP4612059B2 (en) 2011-01-12
WO2007091300A1 (en) 2007-08-16

Similar Documents

Publication Publication Date Title
KR101783540B1 (en) Solenoid operated fluid control valve
EP1050703B1 (en) Pilot operated control valves
EP1848013B1 (en) Proportional solenoid and flow control valve employing it
US6405757B1 (en) Low power solenoid valve assembly
JP5931742B2 (en) Solenoid valve
JPH0250348B2 (en)
US20110147630A1 (en) Solenoid Valve
JP2015083873A (en) Solenoid valve
US20060169936A1 (en) Solenoid Valves
WO2005103541A1 (en) Flow rate characteristic adjustment mechanism of solenoid proportional valve and flow rate characteristic adjustment method using the same
JP4612059B2 (en) Proportional solenoid valve
JP2006118701A (en) Solenoid-operated valve
US5918856A (en) Electropneumatic valve
US6184766B1 (en) Solenoid valve
CN109519549B (en) Electromagnetic gas valve, gas regulating valve and gas cooking appliance
CN112824717A (en) Gas proportional valve
JP4492649B2 (en) Bleed valve device
KR20030019175A (en) Solenoid operated valve with integral magnetic separator
JP3478997B2 (en) Proportional control valve
US4944328A (en) Solenoid controlled valve
JP2005310838A (en) Electromagnetic drive unit
WO2020226101A1 (en) Solenoid valve
US4850384A (en) Electric vacuum regulator
JPH0633267Y2 (en) Solenoid hydraulic valve
KR20190131234A (en) Solenoid valve

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100921

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4612059

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250