JPWO2007069626A1 - Composite semipermeable membrane, production method thereof, and use thereof - Google Patents
Composite semipermeable membrane, production method thereof, and use thereof Download PDFInfo
- Publication number
- JPWO2007069626A1 JPWO2007069626A1 JP2007501635A JP2007501635A JPWO2007069626A1 JP WO2007069626 A1 JPWO2007069626 A1 JP WO2007069626A1 JP 2007501635 A JP2007501635 A JP 2007501635A JP 2007501635 A JP2007501635 A JP 2007501635A JP WO2007069626 A1 JPWO2007069626 A1 JP WO2007069626A1
- Authority
- JP
- Japan
- Prior art keywords
- chloride
- semipermeable membrane
- group
- composite semipermeable
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 172
- 239000002131 composite material Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000000926 separation method Methods 0.000 claims abstract description 67
- 125000001424 substituent group Chemical group 0.000 claims abstract description 57
- 239000002346 layers by function Substances 0.000 claims abstract description 51
- 239000004952 Polyamide Substances 0.000 claims abstract description 50
- 229920002647 polyamide Polymers 0.000 claims abstract description 50
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 35
- 150000001491 aromatic compounds Chemical class 0.000 claims abstract description 35
- 229910052796 boron Inorganic materials 0.000 claims abstract description 35
- 150000001875 compounds Chemical class 0.000 claims abstract description 35
- 239000003960 organic solvent Substances 0.000 claims abstract description 34
- 125000003118 aryl group Chemical group 0.000 claims abstract description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 47
- 239000002253 acid Substances 0.000 claims description 41
- 150000001412 amines Chemical class 0.000 claims description 41
- 150000004820 halides Chemical class 0.000 claims description 41
- 239000000243 solution Substances 0.000 claims description 38
- 239000007864 aqueous solution Substances 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 26
- 238000012696 Interfacial polycondensation Methods 0.000 claims description 21
- -1 4-chlorocarbonylmethoxyphthaloyl chloride 2-chlorocarbonylmethoxyisophthaloyl chloride Chemical compound 0.000 claims description 18
- 230000035699 permeability Effects 0.000 claims description 16
- 239000013535 sea water Substances 0.000 claims description 15
- 125000001931 aliphatic group Chemical group 0.000 claims description 12
- 125000004122 cyclic group Chemical group 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 9
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 9
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003277 amino group Chemical group 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 6
- VQJNKKBNZMOELS-UHFFFAOYSA-N 2-[4-(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCC(OCC(Cl)=O)CC1 VQJNKKBNZMOELS-UHFFFAOYSA-N 0.000 claims description 3
- FUWCOOOJEXYFSD-UHFFFAOYSA-N 2-[4-(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC=C(OCC(Cl)=O)C=C1 FUWCOOOJEXYFSD-UHFFFAOYSA-N 0.000 claims description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 3
- 125000005843 halogen group Chemical group 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 229910052717 sulfur Inorganic materials 0.000 claims description 3
- ANCGWXHMOFECMR-UHFFFAOYSA-N 2,3-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=CC(C(Cl)=O)=C1OCC(Cl)=O ANCGWXHMOFECMR-UHFFFAOYSA-N 0.000 claims description 2
- MXXAEHREJGOQQZ-UHFFFAOYSA-N 2,3-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCCC(C(Cl)=O)C1OCC(Cl)=O MXXAEHREJGOQQZ-UHFFFAOYSA-N 0.000 claims description 2
- YMONCLAPVVGYKT-UHFFFAOYSA-N 2,4-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=C(C(Cl)=O)C(OCC(Cl)=O)=C1 YMONCLAPVVGYKT-UHFFFAOYSA-N 0.000 claims description 2
- RXVOWQMBDWAGMF-UHFFFAOYSA-N 2,4-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCC(C(Cl)=O)C(OCC(Cl)=O)C1 RXVOWQMBDWAGMF-UHFFFAOYSA-N 0.000 claims description 2
- XDAMRHKPGOULHI-UHFFFAOYSA-N 2,5-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=C(OCC(Cl)=O)C(C(Cl)=O)=C1 XDAMRHKPGOULHI-UHFFFAOYSA-N 0.000 claims description 2
- RJNHQXLEGHEUQW-UHFFFAOYSA-N 2,5-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCC(OCC(Cl)=O)C(C(Cl)=O)C1 RJNHQXLEGHEUQW-UHFFFAOYSA-N 0.000 claims description 2
- IUQPLOSPDOIRIJ-UHFFFAOYSA-N 2,6-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=CC(OCC(Cl)=O)=C1C(Cl)=O IUQPLOSPDOIRIJ-UHFFFAOYSA-N 0.000 claims description 2
- NLUHVJKFGHNZFV-UHFFFAOYSA-N 2,6-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCCC(OCC(Cl)=O)C1C(Cl)=O NLUHVJKFGHNZFV-UHFFFAOYSA-N 0.000 claims description 2
- XUQWHYCDLALTFW-UHFFFAOYSA-N 2-(2-chloro-2-oxoethoxy)benzene-1,4-dicarbonyl chloride Chemical compound ClC(=O)COC1=CC(C(Cl)=O)=CC=C1C(Cl)=O XUQWHYCDLALTFW-UHFFFAOYSA-N 0.000 claims description 2
- XHZGIQCTPMVGKN-UHFFFAOYSA-N 2-(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=CC=C1C(Cl)=O XHZGIQCTPMVGKN-UHFFFAOYSA-N 0.000 claims description 2
- PASFXYDQDACECL-UHFFFAOYSA-N 2-(2-chloro-2-oxoethoxy)cyclohexane-1,4-dicarbonyl chloride Chemical compound ClC(=O)COC1CC(C(Cl)=O)CCC1C(Cl)=O PASFXYDQDACECL-UHFFFAOYSA-N 0.000 claims description 2
- FWLMGDYUOAFLED-UHFFFAOYSA-N 2-[2,3-bis(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCCC(OCC(Cl)=O)C1OCC(Cl)=O FWLMGDYUOAFLED-UHFFFAOYSA-N 0.000 claims description 2
- JIDUAQSDCSUBBI-UHFFFAOYSA-N 2-[2,3-bis(2-chloro-2-oxoethoxy)cyclopentyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCC(OCC(Cl)=O)C1OCC(Cl)=O JIDUAQSDCSUBBI-UHFFFAOYSA-N 0.000 claims description 2
- HFEMFCAHQJLKIJ-UHFFFAOYSA-N 2-[2,3-bis(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC=CC(OCC(Cl)=O)=C1OCC(Cl)=O HFEMFCAHQJLKIJ-UHFFFAOYSA-N 0.000 claims description 2
- HTKSSGFZGREDEB-UHFFFAOYSA-N 2-[2-(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCCCC1OCC(Cl)=O HTKSSGFZGREDEB-UHFFFAOYSA-N 0.000 claims description 2
- OMJWAUSDLLHCNF-UHFFFAOYSA-N 2-[2-(2-chloro-2-oxoethoxy)cyclopentyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCCC1OCC(Cl)=O OMJWAUSDLLHCNF-UHFFFAOYSA-N 0.000 claims description 2
- DPOOMESCNQUGCQ-UHFFFAOYSA-N 2-[2-(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC=CC=C1OCC(Cl)=O DPOOMESCNQUGCQ-UHFFFAOYSA-N 0.000 claims description 2
- WXUVYAFGERNAHA-UHFFFAOYSA-N 2-[3,4-bis(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCC(OCC(Cl)=O)C(OCC(Cl)=O)C1 WXUVYAFGERNAHA-UHFFFAOYSA-N 0.000 claims description 2
- LNMAIIBSIWTVEZ-UHFFFAOYSA-N 2-[3,5-bis(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC(OCC(Cl)=O)=CC(OCC(Cl)=O)=C1 LNMAIIBSIWTVEZ-UHFFFAOYSA-N 0.000 claims description 2
- FYQKYNBEHZHDOT-UHFFFAOYSA-N 2-[3-(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCCC(OCC(Cl)=O)C1 FYQKYNBEHZHDOT-UHFFFAOYSA-N 0.000 claims description 2
- MVIXBHMAQOCODE-UHFFFAOYSA-N 2-[3-(2-chloro-2-oxoethoxy)cyclopentyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CCC(OCC(Cl)=O)C1 MVIXBHMAQOCODE-UHFFFAOYSA-N 0.000 claims description 2
- BLMYHTRAPIKFQT-UHFFFAOYSA-N 2-[3-(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC=CC(OCC(Cl)=O)=C1 BLMYHTRAPIKFQT-UHFFFAOYSA-N 0.000 claims description 2
- FLPNZSRHZVCFLX-UHFFFAOYSA-N 3,4-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=C(C(Cl)=O)C=C1OCC(Cl)=O FLPNZSRHZVCFLX-UHFFFAOYSA-N 0.000 claims description 2
- OSIAMVJKOHDBOB-UHFFFAOYSA-N 3,4-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCC(C(Cl)=O)CC1OCC(Cl)=O OSIAMVJKOHDBOB-UHFFFAOYSA-N 0.000 claims description 2
- WPIKRXGFBYOPBU-UHFFFAOYSA-N 3,5-bis(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC(OCC(Cl)=O)=CC(C(Cl)=O)=C1 WPIKRXGFBYOPBU-UHFFFAOYSA-N 0.000 claims description 2
- JZCVIILARKGZBN-UHFFFAOYSA-N 3,5-bis(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CC(OCC(Cl)=O)CC(C(Cl)=O)C1 JZCVIILARKGZBN-UHFFFAOYSA-N 0.000 claims description 2
- LTQAFUFQMDMKHN-UHFFFAOYSA-N 3-(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=CC(C(Cl)=O)=C1 LTQAFUFQMDMKHN-UHFFFAOYSA-N 0.000 claims description 2
- NAYBCZMSSJAHJK-UHFFFAOYSA-N 3-(2-chloro-2-oxoethoxy)cyclohexane-1,2-dicarbonyl chloride Chemical compound ClC(=O)COC1CCCC(C(Cl)=O)C1C(Cl)=O NAYBCZMSSJAHJK-UHFFFAOYSA-N 0.000 claims description 2
- PUWBGFDVJKRZRT-UHFFFAOYSA-N 3-(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCCC(C(Cl)=O)C1 PUWBGFDVJKRZRT-UHFFFAOYSA-N 0.000 claims description 2
- RKMUIVHHCAXATI-UHFFFAOYSA-N 4-(2-chloro-2-oxoethoxy)benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1=CC=C(C(Cl)=O)C=C1C(Cl)=O RKMUIVHHCAXATI-UHFFFAOYSA-N 0.000 claims description 2
- LBWQXRBMXPYFIC-UHFFFAOYSA-N 4-(2-chloro-2-oxoethoxy)benzoyl chloride Chemical compound ClC(=O)COC1=CC=C(C(Cl)=O)C=C1 LBWQXRBMXPYFIC-UHFFFAOYSA-N 0.000 claims description 2
- WYRATTBXFWCRGQ-UHFFFAOYSA-N 4-(2-chloro-2-oxoethoxy)cyclohexane-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1CCC(C(Cl)=O)CC1C(Cl)=O WYRATTBXFWCRGQ-UHFFFAOYSA-N 0.000 claims description 2
- IPMSVYNUJYAZCF-UHFFFAOYSA-N 4-(2-chloro-2-oxoethoxy)cyclohexane-1-carbonyl chloride Chemical compound ClC(=O)COC1CCC(C(Cl)=O)CC1 IPMSVYNUJYAZCF-UHFFFAOYSA-N 0.000 claims description 2
- FCKSVDYYVYQLAL-UHFFFAOYSA-N 5-(2-chloro-2-oxoethoxy)benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 FCKSVDYYVYQLAL-UHFFFAOYSA-N 0.000 claims description 2
- WETWJCDKMRHUPV-UHFFFAOYSA-N acetyl chloride Chemical compound CC(Cl)=O WETWJCDKMRHUPV-UHFFFAOYSA-N 0.000 claims description 2
- 239000012346 acetyl chloride Substances 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000014509 gene expression Effects 0.000 claims 2
- LEODGSXGUROFAW-UHFFFAOYSA-N 2-[3,4-bis(2-chloro-2-oxoethoxy)phenoxy]acetyl chloride Chemical compound ClC(=O)COC1=CC=C(OCC(Cl)=O)C(OCC(Cl)=O)=C1 LEODGSXGUROFAW-UHFFFAOYSA-N 0.000 claims 1
- LQDKOPBZIBOPSS-UHFFFAOYSA-N 2-[3,5-bis(2-chloro-2-oxoethoxy)cyclohexyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CC(OCC(Cl)=O)CC(OCC(Cl)=O)C1 LQDKOPBZIBOPSS-UHFFFAOYSA-N 0.000 claims 1
- FAXBJGATRRQVPA-UHFFFAOYSA-N 5-(2-chloro-2-oxoethoxy)cyclohexane-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1CC(C(Cl)=O)CC(C(Cl)=O)C1 FAXBJGATRRQVPA-UHFFFAOYSA-N 0.000 claims 1
- 125000004429 atom Chemical group 0.000 claims 1
- UCVODTZQZHMTPN-UHFFFAOYSA-N heptanoyl chloride Chemical compound CCCCCCC(Cl)=O UCVODTZQZHMTPN-UHFFFAOYSA-N 0.000 claims 1
- 230000000903 blocking effect Effects 0.000 abstract description 9
- 150000003839 salts Chemical class 0.000 abstract description 9
- 230000007935 neutral effect Effects 0.000 abstract description 5
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 abstract description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 30
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 16
- 239000011148 porous material Substances 0.000 description 15
- 230000004907 flux Effects 0.000 description 14
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000000203 mixture Substances 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229920002492 poly(sulfone) Polymers 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 239000013078 crystal Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 238000010612 desalination reaction Methods 0.000 description 5
- 239000004744 fabric Substances 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- DIOQZVSQGTUSAI-UHFFFAOYSA-N decane Chemical compound CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 4
- 239000002274 desiccant Substances 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 239000012044 organic layer Substances 0.000 description 4
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 4
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 4
- WZCQRUWWHSTZEM-UHFFFAOYSA-N 1,3-phenylenediamine Chemical compound NC1=CC=CC(N)=C1 WZCQRUWWHSTZEM-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- UWCPYKQBIPYOLX-UHFFFAOYSA-N benzene-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1=CC(C(Cl)=O)=CC(C(Cl)=O)=C1 UWCPYKQBIPYOLX-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000003651 drinking water Substances 0.000 description 3
- 235000020188 drinking water Nutrition 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 229940018564 m-phenylenediamine Drugs 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000012982 microporous membrane Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 238000012856 packing Methods 0.000 description 3
- 239000000376 reactant Substances 0.000 description 3
- 238000001223 reverse osmosis Methods 0.000 description 3
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RGSFGYAAUTVSQA-UHFFFAOYSA-N Cyclopentane Chemical compound C1CCCC1 RGSFGYAAUTVSQA-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- GLUUGHFHXGJENI-UHFFFAOYSA-N Piperazine Chemical compound C1CNCCN1 GLUUGHFHXGJENI-UHFFFAOYSA-N 0.000 description 2
- 239000005708 Sodium hypochlorite Substances 0.000 description 2
- 125000002723 alicyclic group Chemical group 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- JSYBAZQQYCNZJE-UHFFFAOYSA-N benzene-1,2,4-triamine Chemical compound NC1=CC=C(N)C(N)=C1 JSYBAZQQYCNZJE-UHFFFAOYSA-N 0.000 description 2
- GGNQRNBDZQJCCN-UHFFFAOYSA-N benzene-1,2,4-triol Chemical compound OC1=CC=C(O)C(O)=C1 GGNQRNBDZQJCCN-UHFFFAOYSA-N 0.000 description 2
- RPHKINMPYFJSCF-UHFFFAOYSA-N benzene-1,3,5-triamine Chemical compound NC1=CC(N)=CC(N)=C1 RPHKINMPYFJSCF-UHFFFAOYSA-N 0.000 description 2
- 239000012267 brine Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000012230 colorless oil Substances 0.000 description 2
- 229940125898 compound 5 Drugs 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000010335 hydrothermal treatment Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- YDCHPLOFQATIDS-UHFFFAOYSA-N methyl 2-bromoacetate Chemical compound COC(=O)CBr YDCHPLOFQATIDS-UHFFFAOYSA-N 0.000 description 2
- RNVFYQUEEMZKLR-UHFFFAOYSA-N methyl 3,5-dihydroxybenzoate Chemical compound COC(=O)C1=CC(O)=CC(O)=C1 RNVFYQUEEMZKLR-UHFFFAOYSA-N 0.000 description 2
- YKUCHDXIBAQWSF-UHFFFAOYSA-N methyl 3-hydroxybenzoate Chemical compound COC(=O)C1=CC=CC(O)=C1 YKUCHDXIBAQWSF-UHFFFAOYSA-N 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N monobenzene Natural products C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229910000027 potassium carbonate Inorganic materials 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- GHMLBKRAJCXXBS-UHFFFAOYSA-N resorcinol Chemical compound OC1=CC=CC(O)=C1 GHMLBKRAJCXXBS-UHFFFAOYSA-N 0.000 description 2
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- AMBFNDRKYCJLNH-UHFFFAOYSA-N 1-(3-piperidin-1-ylpropyl)piperidine Chemical compound C1CCCCN1CCCN1CCCCC1 AMBFNDRKYCJLNH-UHFFFAOYSA-N 0.000 description 1
- YAMSSCHPQFCSMM-UHFFFAOYSA-N 2-(2-chloro-2-oxoethoxy)benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1=C(C(Cl)=O)C=CC=C1C(Cl)=O YAMSSCHPQFCSMM-UHFFFAOYSA-N 0.000 description 1
- RLZAAARWJIDEGK-UHFFFAOYSA-N 2-(2-chloro-2-oxoethoxy)cyclohexane-1,3-dicarbonyl chloride Chemical compound ClC(=O)COC1C(C(Cl)=O)CCCC1C(Cl)=O RLZAAARWJIDEGK-UHFFFAOYSA-N 0.000 description 1
- NGNBDVOYPDDBFK-UHFFFAOYSA-N 2-[2,4-di(pentan-2-yl)phenoxy]acetyl chloride Chemical compound CCCC(C)C1=CC=C(OCC(Cl)=O)C(C(C)CCC)=C1 NGNBDVOYPDDBFK-UHFFFAOYSA-N 0.000 description 1
- BNGHHPVIPQWEHN-UHFFFAOYSA-N 2-[3,4-bis(2-chloro-2-oxoethoxy)cyclopentyl]oxyacetyl chloride Chemical compound ClC(=O)COC1CC(OCC(Cl)=O)C(OCC(Cl)=O)C1 BNGHHPVIPQWEHN-UHFFFAOYSA-N 0.000 description 1
- UENRXLSRMCSUSN-UHFFFAOYSA-N 3,5-diaminobenzoic acid Chemical group NC1=CC(N)=CC(C(O)=O)=C1 UENRXLSRMCSUSN-UHFFFAOYSA-N 0.000 description 1
- HSSYVKMJJLDTKZ-UHFFFAOYSA-N 3-phenylphthalic acid Chemical compound OC(=O)C1=CC=CC(C=2C=CC=CC=2)=C1C(O)=O HSSYVKMJJLDTKZ-UHFFFAOYSA-N 0.000 description 1
- QIYAUZGAYNVJLV-UHFFFAOYSA-N 4-(2-chloro-2-oxoethoxy)cyclohexane-1,2-dicarbonyl chloride Chemical compound ClC(=O)COC1CCC(C(Cl)=O)C(C(Cl)=O)C1 QIYAUZGAYNVJLV-UHFFFAOYSA-N 0.000 description 1
- RKEBHOTVOKFKKT-UHFFFAOYSA-N 4-methoxybenzene-1,2,3-tricarbonyl chloride Chemical compound COC1=CC=C(C(Cl)=O)C(C(Cl)=O)=C1C(Cl)=O RKEBHOTVOKFKKT-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- JKIXCEBEIMQUBW-UHFFFAOYSA-N O=C(COC(C(Cl)=O)OC(C=C1)=CC=C1OCC(Cl)=O)Cl Chemical compound O=C(COC(C(Cl)=O)OC(C=C1)=CC=C1OCC(Cl)=O)Cl JKIXCEBEIMQUBW-UHFFFAOYSA-N 0.000 description 1
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical group ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 230000010933 acylation Effects 0.000 description 1
- 238000005917 acylation reaction Methods 0.000 description 1
- PWAXUOGZOSVGBO-UHFFFAOYSA-N adipoyl chloride Chemical compound ClC(=O)CCCCC(Cl)=O PWAXUOGZOSVGBO-UHFFFAOYSA-N 0.000 description 1
- 150000007824 aliphatic compounds Chemical group 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 150000004982 aromatic amines Chemical class 0.000 description 1
- DMLAVOWQYNRWNQ-UHFFFAOYSA-N azobenzene Chemical compound C1=CC=CC=C1N=NC1=CC=CC=C1 DMLAVOWQYNRWNQ-UHFFFAOYSA-N 0.000 description 1
- FDQSRULYDNDXQB-UHFFFAOYSA-N benzene-1,3-dicarbonyl chloride Chemical compound ClC(=O)C1=CC=CC(C(Cl)=O)=C1 FDQSRULYDNDXQB-UHFFFAOYSA-N 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 230000006315 carbonylation Effects 0.000 description 1
- 238000005810 carbonylation reaction Methods 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229940125904 compound 1 Drugs 0.000 description 1
- 229940125782 compound 2 Drugs 0.000 description 1
- 229940126214 compound 3 Drugs 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- AKXTUELRIVKQSN-UHFFFAOYSA-N cyclobutane-1,2,3-tricarbonyl chloride Chemical compound ClC(=O)C1CC(C(Cl)=O)C1C(Cl)=O AKXTUELRIVKQSN-UHFFFAOYSA-N 0.000 description 1
- MLCGVCXKDYTMRG-UHFFFAOYSA-N cyclohexane-1,1-dicarbonyl chloride Chemical compound ClC(=O)C1(C(Cl)=O)CCCCC1 MLCGVCXKDYTMRG-UHFFFAOYSA-N 0.000 description 1
- SSJXIUAHEKJCMH-UHFFFAOYSA-N cyclohexane-1,2-diamine Chemical compound NC1CCCCC1N SSJXIUAHEKJCMH-UHFFFAOYSA-N 0.000 description 1
- HIZMBMVNMBMUEE-UHFFFAOYSA-N cyclohexane-1,3,5-tricarbonyl chloride Chemical compound ClC(=O)C1CC(C(Cl)=O)CC(C(Cl)=O)C1 HIZMBMVNMBMUEE-UHFFFAOYSA-N 0.000 description 1
- VKIRRGRTJUUZHS-UHFFFAOYSA-N cyclohexane-1,4-diamine Chemical compound NC1CCC(N)CC1 VKIRRGRTJUUZHS-UHFFFAOYSA-N 0.000 description 1
- WMPOZLHMGVKUEJ-UHFFFAOYSA-N decanedioyl dichloride Chemical compound ClC(=O)CCCCCCCCC(Cl)=O WMPOZLHMGVKUEJ-UHFFFAOYSA-N 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- DOSDTCPDBPRFHQ-UHFFFAOYSA-N dimethyl 5-hydroxybenzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC(O)=CC(C(=O)OC)=C1 DOSDTCPDBPRFHQ-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 239000002384 drinking water standard Substances 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 238000000445 field-emission scanning electron microscopy Methods 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- DMEGYFMYUHOHGS-UHFFFAOYSA-N heptamethylene Natural products C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000005374 membrane filtration Methods 0.000 description 1
- 229940120152 methyl 3-hydroxybenzoate Drugs 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- WUQGUKHJXFDUQF-UHFFFAOYSA-N naphthalene-1,2-dicarbonyl chloride Chemical compound C1=CC=CC2=C(C(Cl)=O)C(C(=O)Cl)=CC=C21 WUQGUKHJXFDUQF-UHFFFAOYSA-N 0.000 description 1
- 239000012454 non-polar solvent Substances 0.000 description 1
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- LSHSZIMRIAJWRM-UHFFFAOYSA-N oxolane-2,3-dicarbonyl chloride Chemical compound ClC(=O)C1CCOC1C(Cl)=O LSHSZIMRIAJWRM-UHFFFAOYSA-N 0.000 description 1
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 1
- 229960001553 phloroglucinol Drugs 0.000 description 1
- GHAIYFTVRRTBNG-UHFFFAOYSA-N piperazin-1-ylmethanamine Chemical compound NCN1CCNCC1 GHAIYFTVRRTBNG-UHFFFAOYSA-N 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920006149 polyester-amide block copolymer Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- IREVRWRNACELSM-UHFFFAOYSA-J ruthenium(4+);tetrachloride Chemical compound Cl[Ru](Cl)(Cl)Cl IREVRWRNACELSM-UHFFFAOYSA-J 0.000 description 1
- YBCAZPLXEGKKFM-UHFFFAOYSA-K ruthenium(iii) chloride Chemical compound [Cl-].[Cl-].[Cl-].[Ru+3] YBCAZPLXEGKKFM-UHFFFAOYSA-K 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- LXEJRKJRKIFVNY-UHFFFAOYSA-N terephthaloyl chloride Chemical compound ClC(=O)C1=CC=C(C(Cl)=O)C=C1 LXEJRKJRKIFVNY-UHFFFAOYSA-N 0.000 description 1
- TYLYVJBCMQFRCB-UHFFFAOYSA-K trichlororhodium;trihydrate Chemical compound O.O.O.[Cl-].[Cl-].[Cl-].[Rh+3] TYLYVJBCMQFRCB-UHFFFAOYSA-K 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/56—Polyamides, e.g. polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/025—Reverse osmosis; Hyperfiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0002—Organic membrane manufacture
- B01D67/0006—Organic membrane manufacture by chemical reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/10—Supported membranes; Membrane supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/1213—Laminated layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/12—Composite membranes; Ultra-thin membranes
- B01D69/125—In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/76—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74
- B01D71/82—Macromolecular material not specifically provided for in a single one of groups B01D71/08 - B01D71/74 characterised by the presence of specified groups, e.g. introduced by chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
- C02F1/441—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/30—Cross-linking
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2323/00—Details relating to membrane preparation
- B01D2323/36—Introduction of specific chemical groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/20—Specific permeability or cut-off range
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/108—Boron compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/08—Seawater, e.g. for desalination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
高い塩除去率であり、かつ、中性領域で非解離であるホウ素に対しても高い阻止性能を示す複合半透膜を提供する。微多孔性支持膜上にポリアミド分離機能層を形成させる際に、ポリアミド分離機能層を構成するポリアミドの分子中に、「特定の置換基を2つ以上有し、かつそのうちの少なくとも1つはβ位もしくはγ位にカルボニル基を有するヘテロ原子結合を含むものである環状脂肪族基あるいは芳香族基」で表される部分構造を含むこととなるように、特定の環状脂肪族化合物もしくは芳香族化合物を含む有機溶媒溶液を用い、複合半透膜を製造する。Provided is a composite semipermeable membrane having a high salt removal rate and high blocking performance against boron which is non-dissociated in a neutral region. When the polyamide separation functional layer is formed on the microporous support membrane, the polyamide molecule constituting the polyamide separation functional layer contains “two or more specific substituents, and at least one of them is β A specific cycloaliphatic compound or aromatic compound so as to include a partial structure represented by “a cycloaliphatic group or aromatic group containing a heteroatom bond having a carbonyl group at the position or γ-position” A composite semipermeable membrane is produced using an organic solvent solution.
Description
本発明は、液状混合物の選択分離用として有用な複合半透膜およびその製造方法に関する。例えば、海水やかん水からホウ素等の溶質成分を除去するにあたって好適に用いることができる、微多孔性支持膜上にポリアミド分離機能層を形成した複合半透膜、およびその製造方法に関する。 The present invention relates to a composite semipermeable membrane useful for selective separation of a liquid mixture and a method for producing the same. For example, the present invention relates to a composite semipermeable membrane in which a polyamide separation functional layer is formed on a microporous support membrane, which can be suitably used for removing solute components such as boron from seawater or brine, and a method for producing the same.
近年、複合半透膜を用いた海水の淡水化が試みられ、世界中の水処理プラントで実用化されてきている。複合半透膜は、一般に、微多孔性支持膜上に分離機能層を被覆した複合膜の構造をとる。その分離機能層を架橋芳香族ポリアミドから形成した場合には、ベンゼン環を含むことによって剛直性に富む利点や、芳香族多官能アミンと芳香族多官能酸ハロゲン化物との界面重縮合により容易に製膜できる利点があり、さらに高塩除去率、高透過流束という利点がある(特許文献1、2を参照)。
In recent years, seawater desalination using a composite semipermeable membrane has been attempted and has been put to practical use in water treatment plants around the world. The composite semipermeable membrane generally has a structure of a composite membrane in which a separation functional layer is coated on a microporous support membrane. When the separation functional layer is formed from a cross-linked aromatic polyamide, it can be easily obtained by the advantage of being rigid due to the inclusion of a benzene ring and the interfacial polycondensation of an aromatic polyfunctional amine and an aromatic polyfunctional acid halide. There is an advantage that a film can be formed, and further, there are advantages such as a high salt removal rate and a high permeation flux (see
最近は、複合半透膜で淡水化処理して得られる淡水に対し高度な水質基準が要求され、複合半透膜の除去性能に対する要求が厳しくなってきている。特に海水中に微量含まれるホウ素の除去性能についての要求水準がますます厳しくなってきている。 Recently, advanced water quality standards are required for fresh water obtained by desalinating with a composite semipermeable membrane, and the requirements for the removal performance of the composite semipermeable membrane are becoming stricter. In particular, the required level for the removal performance of boron contained in trace amounts in seawater is becoming stricter.
しかしながら、従来の通常の複合半透膜による淡水化処理では飲料水に使用可能な濃度水準までホウ素含有量を低減させることが困難である。 However, it is difficult to reduce the boron content to a concentration level that can be used for drinking water by a conventional desalination treatment using a normal composite semipermeable membrane.
そこで、複合半透膜のホウ素除去性能を向上させる手段として、例えば、複合半透膜モジュールを熱水処理する方法(特許文献3参照)、形成されたポリアミド分離機能層を臭素含有遊離塩素水溶液に接触させる方法(特許文献4参照)などが提案されている。ところが、これらの複合半透膜では、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透過させて淡水化処理したときに、膜透過流束が0.5m3/m2/日以下であって、ホウ素除去率は高くても91〜92%程度と未だ不十分であり、さらに高いホウ素阻止性能を有する複合半透膜の開発が望まれていた。Therefore, as means for improving the boron removal performance of the composite semipermeable membrane, for example, a method of hydrothermally treating the composite semipermeable membrane module (see Patent Document 3), the formed polyamide separation functional layer is converted into a bromine-containing free chlorine aqueous solution. A method of contacting (see Patent Document 4) has been proposed. However, in these composite semipermeable membranes, when the seawater with 25 ° C., pH 6.5, boron concentration of 5 ppm, TDS concentration of 3.5 wt% was permeated at an operating pressure of 5.5 MPa, the membrane permeated. Development of a composite semipermeable membrane having a flux of 0.5 m 3 / m 2 / day or less and a boron removal rate of about 91 to 92% is still insufficient even at a high level and has a higher boron blocking performance. It was desired.
複合半透膜の溶質阻止性能を向上させるためには、複合半透膜の分離機能層中の孔径を小さくすればよいと考えられるが、同時に、十分な透水性能を得るために孔径を適度に大きくする必要もある。一方、複合半透膜の分離機能層中の孔径が小さくても、孔数が多く半透膜中に占める空孔量が多い場合は、透水量は増加するが、その反面で、溶質阻止性能は低下する傾向にある。従って、溶質阻止性能を向上させ、かつ透水量を適正水準に維持するためには、複合半透膜の分離機能層中の孔径および空孔量の両方を適度に調整する必要がある。 In order to improve the solute blocking performance of the composite semipermeable membrane, the pore size in the separation functional layer of the composite semipermeable membrane may be reduced, but at the same time, the pore size should be set appropriately to obtain sufficient water permeability. It is also necessary to enlarge it. On the other hand, even if the pore size in the separation functional layer of the composite semipermeable membrane is small, if the number of pores is large and the amount of pores in the semipermeable membrane is large, the water permeability increases, but on the other hand, the solute blocking performance Tend to decline. Therefore, in order to improve the solute blocking performance and maintain the water permeability at an appropriate level, it is necessary to appropriately adjust both the pore diameter and the amount of pores in the separation functional layer of the composite semipermeable membrane.
そこで、微多孔質支持膜上にポリアミド分離機能層を形成してなる複合半透膜の性能を、分離機能層中の孔径および空孔量の両方を適度に調整することにより向上させることが検討されている。その解決手段の一つとして、反応薬液中に新規な反応剤を添加することにより孔径および空孔量の両方を適度に調整する方法が挙げられる。例えば、複合半透膜において、分子中に2以上のアミノ基を有するポリアミン成分と、新規な反応剤として、分子中に2以上のハロゲン化アシル基を有する線状脂肪族ポリ酸ハライドを含有する酸成分とを反応させて架橋ポリアミドを形成する方法が提案されている(特許文献5参照)。この方法は、従来の製造方法に多少の変更を加えるだけで実施でき、簡便な改善方法として有用であり、高い塩阻止率と高い透過流束を有する複合半透膜を製造できると記されている。しかし、この方法によってもホウ素阻止率を十分な水準まで向上させるには至っていなかった。
本発明は、高い塩除去率とともに、ホウ酸のような中性領域では非解離の物質に対しても高い阻止性能を示す複合半透膜を提供すること、およびその製造方法を提供することを目的とする。 The present invention provides a composite semipermeable membrane that exhibits a high salt removal rate and a high blocking performance against non-dissociated substances in a neutral region such as boric acid, and a method for producing the same. Objective.
上記目的を達成するための本発明は、以下のように特定される。 The present invention for achieving the above object is specified as follows.
微多孔性支持膜上にポリアミド分離機能層を形成してなる複合半透膜であって、該ポリアミド分離機能層を構成するポリアミドは、分子鎖中に、環状脂肪族基及び/又は芳香族基を含むポリアミドであり、かつ、該環状脂肪族基及び/又は芳香族基は、置換基として下記式(1)又は(2)のいずれかで表される基を2つ以上有し、その置換基のうちの少なくとも1つは下記式(1)で表される基であることを特徴とする複合半透膜。 A composite semipermeable membrane in which a polyamide separation functional layer is formed on a microporous support membrane, and the polyamide constituting the polyamide separation functional layer includes a cyclic aliphatic group and / or an aromatic group in a molecular chain And the cycloaliphatic group and / or aromatic group has two or more groups represented by any of the following formulas (1) or (2) as substituents, and the substitution thereof A composite semipermeable membrane, wherein at least one of the groups is a group represented by the following formula (1).
(式中、nは0又は1を示す。XはO、S、又はNR5を示す。R1、R2、R5は水素原子あるいは炭素数1〜3のアルキル基を示す。ただし、R1、R2のうちの少なくとも一方は水素原子である。R3、R4は水素原子あるいは、カルボキシ基以外の置換基を有していてもよい炭素数1〜12のアルキル基もしくは芳香族基である。R1、R3の原子間で共有結合し環構造を形成していてもよい。Aは水酸基あるいはポリアミド分子中のアミノ基を示し、2つ以上の置換基のうちの少なくとも一つにおけるAはポリアミド分子中のアミノ基である。)
ここで、ポリアミド分離機能層を構成するポリアミドは、多官能アミン水溶液と、下記式(3)又は(4)のいずれかで表される基を2つ以上、置換基として有し、その置換基のうちの少なくとも1つは下記式(3)で表される基である環状脂肪族化合物及び/又は芳香族化合物を含有する有機溶媒溶液とを、微多孔性支持膜上で接触させ界面重縮合させることにより得られる架橋ポリアミドである。(In the formula, n represents 0 or 1. X represents O, S, or NR 5. R 1 , R 2 , and R 5 represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms. At least one of R 1 and R 2 is a hydrogen atom, and R 3 and R 4 are a hydrogen atom or an alkyl or aromatic group having 1 to 12 carbon atoms that may have a substituent other than a carboxy group. R 1 and R 3 may be covalently bonded to form a ring structure, and A represents a hydroxyl group or an amino group in a polyamide molecule, and represents at least one of two or more substituents. A is an amino group in the polyamide molecule.)
Here, the polyamide constituting the polyamide separation functional layer has a polyfunctional amine aqueous solution and two or more groups represented by any of the following formulas (3) or (4) as substituents. At least one of them is brought into contact with an organic solvent solution containing a cycloaliphatic compound and / or an aromatic compound, which is a group represented by the following formula (3), on a microporous support membrane and interfacial polycondensation It is a cross-linked polyamide obtained by making it.
(式中、n、X、R1〜R5は前記記載の定義に従う。Zはハロゲン原子を示す。)
そして、上記した本発明の複合半透膜は、次の方法により製造することができる。(In the formula, n, X and R 1 to R 5 are as defined above. Z represents a halogen atom.)
And the above-mentioned composite semipermeable membrane of the present invention can be manufactured by the following method.
微多孔性支持膜上にポリアミド分離機能層を形成する際、多官能アミン水溶液と、多官能酸ハロゲン化物を含有するとともに、前記式(3)又は(4)のいずれかで表される基を2つ以上、置換基として有し、その置換基のうちの少なくとも1つは前記式(3)で表される基である環状脂肪族化合物及び/又は芳香族化合物を、前記多官能酸ハロゲン化物に対して5mol%以上含有する有機溶媒溶液とを、微多孔性支持膜上で接触させることによりポリアミド分離機能層を形成せしめる。 When the polyamide separation functional layer is formed on the microporous support membrane, the polyfunctional amine aqueous solution and the polyfunctional acid halide are contained, and the group represented by either the formula (3) or (4) is added. Two or more substituents, and at least one of the substituents is a cyclic aliphatic compound and / or an aromatic compound that is a group represented by the formula (3), the polyfunctional acid halide A polyamide separation functional layer is formed by bringing a 5 mol% or more organic solvent solution into contact with the microporous support membrane.
本発明によれば、脱塩性能が高く、かつ、中性領域で非解離の物質も高い除去率で阻止することができる複合半透膜とすることができる。即ち、本発明の複合半透膜を水処理用の分離膜として用い、特に海水の脱塩処理を行う場合、従来技術では高度に阻止することが難しかったホウ素を十分に高い除去率でもって阻止することができる。その結果、海水の逆浸透処理による淡水化処理によって、高度な飲料水基準に適合する良質な水を製造することが可能になる。 ADVANTAGE OF THE INVENTION According to this invention, it can be set as the composite semipermeable membrane which has high desalination performance and can also block the non-dissociation substance in a neutral region with a high removal rate. That is, when the composite semipermeable membrane of the present invention is used as a separation membrane for water treatment, especially when seawater desalination treatment is performed, boron, which has been difficult to block with the prior art, is blocked with a sufficiently high removal rate. can do. As a result, it becomes possible to produce high-quality water that complies with advanced drinking water standards through desalination treatment by reverse osmosis treatment of seawater.
本発明の複合半透膜は、微多孔性支持膜上にポリアミド分離機能層を形成してなる複合半透膜であって、該ポリアミド分離機能層を構成するポリアミドが、分子鎖中に特定の環状脂肪族基及び/又は芳香族基を含むものである。 The composite semipermeable membrane of the present invention is a composite semipermeable membrane formed by forming a polyamide separation functional layer on a microporous support membrane, and the polyamide constituting the polyamide separation functional layer has a specific molecular chain. It contains a cyclic aliphatic group and / or an aromatic group.
この特定の環状脂肪族基及び/又は芳香族基は、置換基として、下記式(1)又は(2)のいずれかで表される基を合わせて2つ以上有するものであり、かつ、その置換基のうちの少なくとも1つは下記式(1)で表される基であることにより特定される。即ち、下記式(1)で表されるβ位もしくはγ位にカルボニル基を有するヘテロ原子結合を含むものである。このように特定される環状脂肪族基及び/又は芳香族基は、以下、「特定置換基をもつ環状脂肪族基及び/又は芳香族基」という。この特定置換基をもつ環状脂肪族基及び/又は芳香族基は、下記式(1)で表される基と下記式(2)で表される基とを置換基としてそれぞれ1つ以上有する環状脂肪族基及び/又は芳香族基である場合、及び、下記式(1)で表される基を置換基として2つ以上有する環状脂肪族基及び/又は芳香族基である場合に大別することができる。 This specific cycloaliphatic group and / or aromatic group has two or more groups represented by any of the following formulas (1) or (2) as substituents, and At least one of the substituents is specified by being a group represented by the following formula (1). That is, it includes a heteroatom bond having a carbonyl group at the β-position or γ-position represented by the following formula (1). The cycloaliphatic group and / or aromatic group specified in this way is hereinafter referred to as “cycloaliphatic group and / or aromatic group having a specific substituent”. The cyclic aliphatic group and / or aromatic group having the specific substituent is a cyclic group having at least one group represented by the following formula (1) and one group represented by the following formula (2) as a substituent. It is roughly classified into an aliphatic group and / or an aromatic group, and a cyclic aliphatic group and / or an aromatic group having two or more groups represented by the following formula (1) as substituents. be able to.
(式中、n、X、R1〜R5、Aは、前記した記載の定義に従う。)
この特定置換基をもつ環状脂肪族基及び/又は芳香族基をポリアミドの分子鎖中に導入させるためには、多官能アミンと多官能酸ハロゲン化物とを界面重縮合させる際に、下記式(3)又は(4)のいずれかで表される基を置換基として有する特定の環状脂肪族化合物及び/又は芳香族化合物を併存させればよい。(In the formula, n, X, R 1 to R 5 , and A follow the definition described above.)
In order to introduce the cycloaliphatic group and / or aromatic group having the specific substituent into the molecular chain of the polyamide, when polyfunctional amine and polyfunctional acid halide are subjected to interfacial polycondensation, the following formula ( A specific cycloaliphatic compound and / or aromatic compound having the group represented by either 3) or (4) as a substituent may be present together.
この特定の環状脂肪族化合物及び/又は芳香族化合物は、置換基として下記式(3)又は(4)のいずれかで表される基を2つ以上有するものであり、かつ、その置換基のうちの少なくとも1つは下記式(3)で表される基であることにより特定される。このように特定される環状脂肪族化合物及び/又は芳香族化合物を、以下、「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」という。この特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物は、下記式(3)で表される基と下記式(4)で表される基とを置換基としてそれぞれ1つ以上有する環状脂肪族化合物及び/又は芳香族化合物である場合、及び、下記式(3)で表される基を置換基として2つ以上有する環状脂肪族化合物及び/又は芳香族化合物である場合に大別することができる。 This specific cycloaliphatic compound and / or aromatic compound has two or more groups represented by any of the following formulas (3) or (4) as substituents, and At least one of them is specified by being a group represented by the following formula (3). The cycloaliphatic compound and / or aromatic compound thus specified is hereinafter referred to as “cycloaliphatic compound and / or aromatic compound having a specific substituent”. The cyclic aliphatic compound and / or aromatic compound having the specific substituent is a cyclic group having at least one group represented by the following formula (3) and one group represented by the following formula (4) as a substituent. When it is an aliphatic compound and / or an aromatic compound, and when it is a cyclic aliphatic compound and / or an aromatic compound having two or more groups represented by the following formula (3) as substituents be able to.
(式中、n、X、R1〜R5は前記した記載の定義に従う。Zはハロゲン原子を示す。)
具体的には、多官能アミン水溶液と、上記した特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物を含有する有機溶媒溶液とを、微多孔性支持膜上で接触させ界面重縮合させることにより、微多孔性支持膜上にポリアミド分離機能層を形成することにより製造される。ここで、上記した特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物を含有する有機溶媒溶液は、さらに多官能酸ハロゲン化物を含んでいることが好ましい。また、多官能アミンまたは多官能酸ハロゲン化物のうちの少なくとも一方が3官能以上の化合物を含んでいることが好ましい。(In the formula, n, X, and R 1 to R 5 are as defined above. Z represents a halogen atom.)
Specifically, the polyfunctional amine aqueous solution and the organic solvent solution containing the above-described cyclic aliphatic compound and / or aromatic compound having the specific substituent are brought into contact with each other on the microporous support membrane to cause interfacial polycondensation. Thus, it is produced by forming a polyamide separation functional layer on the microporous support membrane. Here, it is preferable that the organic solvent solution containing the cyclic aliphatic compound and / or the aromatic compound having the specific substituent described above further contains a polyfunctional acid halide. Moreover, it is preferable that at least one of the polyfunctional amine or the polyfunctional acid halide contains a trifunctional or higher functional compound.
さらに具体的には、本発明の複合半透膜は、後述するように、微多孔性支持膜上にポリアミド分離機能層を形成することにより複合半透膜を製造する方法において、多官能アミン水溶液と、多官能酸ハロゲン化物を含有するとともに、上記した特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物を前記多官能酸ハロゲン化物に対して5mol%以上含有する有機溶媒溶液とを、微多孔性支持膜上で接触させ界面重縮合させることによりポリアミド分離機能層を形成せしめることにより製造することができる。 More specifically, as described later, the composite semipermeable membrane of the present invention is a polyfunctional amine aqueous solution in a method for producing a composite semipermeable membrane by forming a polyamide separation functional layer on a microporous support membrane. And an organic solvent solution containing a polyfunctional acid halide and containing 5 mol% or more of the above-described cyclic aliphatic compound and / or aromatic compound having the specific substituent with respect to the polyfunctional acid halide, It can be produced by forming a polyamide separation functional layer by contacting and interfacial polycondensation on a microporous support membrane.
複合半透膜におけるポリアミド分離機能層の厚みは、十分な分離性能および透過水量の機能を得るために、通常0.01〜1μmの範囲内とし、好ましくは0.1〜0.5μmの範囲内とすればよい。 The thickness of the polyamide separation functional layer in the composite semipermeable membrane is usually within a range of 0.01 to 1 μm, preferably within a range of 0.1 to 0.5 μm, in order to obtain sufficient separation performance and a function of the amount of permeated water. And it is sufficient.
ここで、多官能アミンとは、一分子中に少なくとも2個の一級および/または二級アミノ基を有するアミンをいい、例えば、2個のアミノ基がオルト位やメタ位、パラ位のいずれかの位置関係でベンゼンに結合したフェニレンジアミン、キシリレンジアミン、1,3,5−トリアミノベンゼン、1,2,4−トリアミノベンゼン、3,5−ジアミノ安息香酸などの芳香族多官能アミン、エチレンジアミン、プロピレンジアミンなどの脂肪族アミン、1,2−ジアミノシクロヘキサン、1,4−ジアミノシクロヘキサン、ピペラジン、1,3−ビスピペリジルプロパン、4−アミノメチルピペラジンなどの脂環式多官能アミン等を挙げることができる。中でも、膜の選択分離性や透過性、耐熱性を考慮すると一分子中に2〜4個の一級および/または二級アミノ基を有する芳香族多官能アミンであることが好ましく、このような多官能芳香族アミンとしては、m−フェニレンジアミン、p−フェニレンジアミン、1,3,5−トリアミノベンゼンが好適に用いられる。中でも、入手の容易性や取り扱いのしやすさから、m−フェニレンジアミンを用いることがより好ましい。これらの多官能アミンは、単独で用いてもよいし、2種以上を混合して用いてもよい。 Here, the polyfunctional amine refers to an amine having at least two primary and / or secondary amino groups in one molecule. For example, two amino groups are any of ortho, meta, and para positions. Aromatic polyfunctional amines such as phenylenediamine, xylylenediamine, 1,3,5-triaminobenzene, 1,2,4-triaminobenzene and 3,5-diaminobenzoic acid bonded to benzene in the positional relationship of Aliphatic amines such as ethylenediamine and propylenediamine, alicyclic polyfunctional amines such as 1,2-diaminocyclohexane, 1,4-diaminocyclohexane, piperazine, 1,3-bispiperidylpropane and 4-aminomethylpiperazine be able to. Of these, aromatic polyfunctional amines having 2 to 4 primary and / or secondary amino groups in one molecule are preferred in consideration of selective separation, permeability, and heat resistance of the membrane. As the functional aromatic amine, m-phenylenediamine, p-phenylenediamine, and 1,3,5-triaminobenzene are preferably used. Among these, it is more preferable to use m-phenylenediamine from the standpoint of availability and ease of handling. These polyfunctional amines may be used alone or in combination of two or more.
多官能酸ハロゲン化物とは、一分子中に少なくとも2個のハロゲン化カルボニル基を有する酸ハロゲン化物をいう。例えば、3官能酸ハロゲン化物では、トリメシン酸クロリド、1,3,5−シクロヘキサントリカルボン酸トリクロリド、1,2,4−シクロブタントリカルボン酸トリクロリドなどを挙げることができ、2官能酸ハロゲン化物では、ビフェニルジカルボン酸ジクロリド、アゾベンゼンジカルボン酸ジクロリド、テレフタル酸クロリド、イソフタル酸クロリド、ナフタレンジカルボン酸クロリドなどの芳香族2官能酸ハロゲン化物、アジポイルクロリド、セバコイルクロリドなどの脂肪族2官能酸ハロゲン化物、シクロペンタンジカルボン酸ジクロリド、シクロヘキサンジカルボン酸ジクロリド、テトラヒドロフランジカルボン酸ジクロリドなどの脂環式2官能酸ハロゲン化物を挙げることができる。多官能アミンとの反応性を考慮すると、多官能酸ハロゲン化物は多官能酸塩化物であることが好ましく、また、膜の選択分離性、耐熱性を考慮すると、一分子中に2〜4個の塩化カルボニル基を有する多官能芳香族酸塩化物であることが好ましい。中でも、入手の容易性や取り扱いのしやすさの観点から、トリメシン酸クロリドを用いるとより好ましい。これらの多官能酸ハロゲン化物は、単独で用いてもよいし、2種以上を混合して用いてもよい。 The polyfunctional acid halide refers to an acid halide having at least two carbonyl halide groups in one molecule. Examples of trifunctional acid halides include trimesic acid chloride, 1,3,5-cyclohexanetricarboxylic acid trichloride, 1,2,4-cyclobutanetricarboxylic acid trichloride, and bifunctional acid halides include biphenyl dicarboxylic acid. Aromatic difunctional acid halides such as acid dichloride, azobenzene dicarboxylic acid dichloride, terephthalic acid chloride, isophthalic acid chloride, naphthalene dicarboxylic acid chloride, aliphatic difunctional acid halides such as adipoyl chloride, sebacoyl chloride, cyclopentane Examples thereof include alicyclic difunctional acid halides such as dicarboxylic acid dichloride, cyclohexane dicarboxylic acid dichloride, and tetrahydrofuran dicarboxylic acid dichloride. Considering the reactivity with the polyfunctional amine, the polyfunctional acid halide is preferably a polyfunctional acid chloride, and considering the selective separation property and heat resistance of the membrane, 2 to 4 per molecule. The polyfunctional aromatic acid chloride having a carbonyl chloride group is preferred. Among them, it is more preferable to use trimesic acid chloride from the viewpoint of easy availability and easy handling. These polyfunctional acid halides may be used alone or in combination of two or more.
本発明の複合半透膜は、微多孔性支持膜上に形成される分離機能層を構成するポリアミドの分子鎖中に、前述した「特定置換基をもつ環状脂肪族基及び/又は芳香族基」を含むものであり、これにより、従来技術に比し高いホウ素除去性能を示すことができるものである。 The composite semipermeable membrane of the present invention has the above-mentioned “cyclic aliphatic group and / or aromatic group having a specific substituent” in the molecular chain of the polyamide constituting the separation functional layer formed on the microporous support membrane. Thus, boron removal performance higher than that of the prior art can be exhibited.
また、「特定置換基をもつ環状脂肪族基及び/又は芳香族基」を、分離機能層を構成するポリアミド分子鎖中に部分構造として存在させるための方法は特に限定されるものではないが、例えば、多官能アミンと多官能酸ハロゲン化物との界面重縮合により形成された分離機能層の表面上に、前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含有する溶液を接触させる方法により「特定置換基をもつ環状脂肪族基及び/又は芳香族基」を導入してもよいし、または、多官能アミンと多官能芳香族酸ハロゲン化物とを界面重縮合させる際に前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を共存させることにより、分離機能層を構成するポリアミド中に共有結合させる方法によって「特定置換基をもつ環状脂肪族基及び/又は芳香族基」を導入してもよい。 Further, the method for causing the “cyclic aliphatic group and / or aromatic group having a specific substituent” to exist as a partial structure in the polyamide molecular chain constituting the separation functional layer is not particularly limited, For example, a solution containing the “cycloaliphatic compound and / or aromatic compound having the specific substituent” on the surface of the separation functional layer formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide. "Cyclic aliphatic group and / or aromatic group having a specific substituent" may be introduced by the method of contacting with each other, or when polyfunctional amine and polyfunctional aromatic acid halide are subjected to interfacial polycondensation The “cyclic ring having a specific substituent” can be covalently bonded to the polyamide constituting the separation functional layer by allowing the “cycloaliphatic compound and / or aromatic compound having the specific substituent” to coexist in It may be introduced an aliphatic group and / or an aromatic group ".
すなわち、微多孔性支持膜上にポリアミド分離機能層を形成するにあたり、多官能アミン水溶液と、多官能酸ハロゲン化物を含む有機溶媒溶液と、前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含む有機溶媒溶液とを、微多孔性支持膜上で接触させ界面重縮合させることによりポリアミド分離機能層を形成させてもよいし、また、多官能アミン水溶液と、多官能酸ハロゲン化物および前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含有する有機溶媒溶液とを、微多孔性支持膜上で接触させ界面重縮合させることによりポリアミド分離機能層を形成させてもよい。 That is, in forming the polyamide separation functional layer on the microporous support membrane, a polyfunctional amine aqueous solution, an organic solvent solution containing a polyfunctional acid halide, the above-mentioned cyclic aliphatic compound having a specific substituent and / or A polyamide separation functional layer may be formed by contacting an organic solvent solution containing an "aromatic compound" on a microporous support membrane to cause interfacial polycondensation, or a polyfunctional amine aqueous solution and a polyfunctional acid. A polyamide separation functional layer is obtained by contacting a halide and an organic solvent solution containing the above-mentioned “cycloaliphatic compound and / or aromatic compound having a specific substituent” on a microporous support membrane to cause interfacial polycondensation. It may be formed.
特に、多官能アミン水溶液と、多官能酸ハロゲン化物および前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含有する有機溶媒溶液(多官能酸ハロゲン化物に対する「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」の割合は5mol%以上が好ましい。)とを、微多孔性支持膜上で接触させ界面重縮合させることによりポリアミド分離機能層を形成する方法により製造される複合半透膜は、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透過させたときに、下式(5)を満たすことができ、さらには、膜透過流束が0.5m3/m2/日以上かつホウ素除去率が94%以上を満たすことができるので、従来技術に比し高いホウ素除去性能を示すことができる。In particular, a polyfunctional amine aqueous solution, a polyfunctional acid halide, and an organic solvent solution containing the above-mentioned “cyclic aliphatic compound and / or aromatic compound having the specific substituent” The ratio of “cycloaliphatic compound and / or aromatic compound” is preferably 5 mol% or more) and is produced by a method in which a polyamide separation functional layer is formed by contact and polycondensation on a microporous support membrane. The composite semipermeable membrane satisfies the following formula (5) when seawater having a pH of 6.5, a boron concentration of 5 ppm, and a TDS concentration of 3.5 wt% is permeated at an operating pressure of 5.5 MPa. Furthermore, since the membrane permeation flux is 0.5 m 3 / m 2 / day or more and the boron removal rate can satisfy 94% or more, the boron removal performance is higher than that of the prior art. be able to.
かかる「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」のうち、前記式(3)で表される基と前記式(4)で表される基とを置換基としてそれぞれ1つ以上有するものとしては、2−クロロカルボニルメトキシベンゾイルクロリド、3−クロロカルボニルメトキシベンゾイルクロリド、4−クロロカルボニルメトキシベンゾイルクロリド、2,3−ビスクロロカルボニルメトキシベンゾイルクロリド、2,4−ビスクロロカルボニルメトキシベンゾイルクロリド、2,5−ビスクロロカルボニルメトキシベンゾイルクロリド、2,6−ビスクロロカルボニルメトキシベンゾイルクロリド、3,4−ビスクロロカルボニルメトキシベンゾイルクロリド、3,5−ビスクロロカルボニルメトキシベンゾイルクロリド、2−クロロカルボニルメトキシシクロヘキサンカルボニルクロリド、3−クロロカルボニルメトキシシクロヘキサンカルボニルクロリド、4−クロロカルボニルメトキシシクロヘキサンカルボニルクロリド、2,3−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、2,4−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、2,5−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、2,6−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、3,4−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、3,5−ビスクロロカルボニルメトキシシクロヘキサンカルボニルクロリド、3−クロロカルボニルメトキシフタロイルクロリド、4−クロロカルボニルメトキシフタロイルクロリド、2−クロロカルボニルメトキシイソフタロイルクロリド、4−クロロカルボニルメトキシイソフタロイルクロリド、5−クロロカルボニルメトキシイソフタロイルクロリド、2−クロロカルボニルメトキシテレフタロイルクロリド、1−クロロカルボニルメトキシシクロヘキサン−2,3−ジカルボニルジクロリド、1−クロロカルボニルメトキシシクロヘキサン−2,4−ジカルボニルジクロリド、1−クロロカルボニルメトキシシクロヘキサン−2,5−ジカルボニルジクロリド、1−クロロカルボニルメトキシシクロヘキサン−2,6−ジカルボニルジクロリド、1−クロロカルボニルメトキシシクロヘキサン−3,4−ジカルボニルジクロリド、1−クロロカルボニルメトキシシクロヘキサン−3,5−ジカルボニルジクロリド、などが挙げられる。 Among such “cycloaliphatic compounds and / or aromatic compounds having a specific substituent”, one group represented by the formula (3) and one group represented by the formula (4) are used as substituents. Those having the above include 2-chlorocarbonylmethoxybenzoyl chloride, 3-chlorocarbonylmethoxybenzoyl chloride, 4-chlorocarbonylmethoxybenzoyl chloride, 2,3-bischlorocarbonylmethoxybenzoyl chloride, 2,4-bischlorocarbonylmethoxybenzoyl Chloride, 2,5-bischlorocarbonylmethoxybenzoyl chloride, 2,6-bischlorocarbonylmethoxybenzoyl chloride, 3,4-bischlorocarbonylmethoxybenzoyl chloride, 3,5-bischlorocarbonylmethoxybenzoyl chloride, 2-chlorocarbon Bonylmethoxycyclohexanecarbonyl chloride, 3-chlorocarbonylmethoxycyclohexanecarbonyl chloride, 4-chlorocarbonylmethoxycyclohexanecarbonyl chloride, 2,3-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 2,4-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 2, 5-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 2,6-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 3,4-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 3,5-bischlorocarbonylmethoxycyclohexanecarbonyl chloride, 3-chlorocarbonyl Methoxyphthaloyl chloride, 4-chlorocarbonylmeth Cyphthaloyl chloride, 2-chlorocarbonylmethoxyisophthaloyl chloride, 4-chlorocarbonylmethoxyisophthaloyl chloride, 5-chlorocarbonylmethoxyisophthaloyl chloride, 2-chlorocarbonylmethoxyterephthaloyl chloride, 1-chlorocarbonylmethoxycyclohexane -2,3-dicarbonyl dichloride, 1-chlorocarbonylmethoxycyclohexane-2,4-dicarbonyl dichloride, 1-chlorocarbonylmethoxycyclohexane-2,5-dicarbonyl dichloride, 1-chlorocarbonylmethoxycyclohexane-2,6- Dicarbonyl dichloride, 1-chlorocarbonylmethoxycyclohexane-3,4-dicarbonyl dichloride, 1-chlorocarbonylmethoxycyclohexane-3,5-dica And lubonyl dichloride.
また、「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」のうち、前記式(3)で表される基を置換基として2つ以上有するものとしては、(2−クロロカルボニルメトキシフェノキシ)アセチルクロリド、(3−クロロカルボニルメトキシフェノキシ)アセチルクロリド、(4−クロロカルボニルメトキシフェノキシ)アセチルクロリド、(2,3−ビスクロロカルボニルメトキシフェノキシ)アセチルクロリド、(2,4−ビスクロロカルボニルメトキシフェノキシ)アセチルクロリド、(3,5−ビスクロロカルボニルメトキシフェノキシ)アセチルクロリド、(2−クロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(3−クロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(4−クロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(2,3−ビスクロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(2,4−ビスクロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(3,5−ビスクロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド、(2―クロロカルボニルメトキシシクロペンタニルオキシ)アセチルクロリド、(3―クロロカルボニルメトキシシクロペンタニルオキシ)アセチルクロリド、(2,3−ビスクロロカルボニルメトキシシクロペンタニルオキシ)アセチルクロリド、(2,4−ビスクロロカルボニルメトキシシクロペンタニルオキシ)アセチルクロリド、などが挙げられる。 In addition, among the “cycloaliphatic compound and / or aromatic compound having a specific substituent”, those having two or more groups represented by the formula (3) as substituents include (2-chlorocarbonylmethoxy Phenoxy) acetyl chloride, (3-chlorocarbonylmethoxyphenoxy) acetyl chloride, (4-chlorocarbonylmethoxyphenoxy) acetyl chloride, (2,3-bischlorocarbonylmethoxyphenoxy) acetyl chloride, (2,4-bischlorocarbonylmethoxy) (Phenoxy) acetyl chloride, (3,5-bischlorocarbonylmethoxyphenoxy) acetyl chloride, (2-chlorocarbonylmethoxycyclohexyloxy) acetyl chloride, (3-chlorocarbonylmethoxycyclohexyloxy) acetyl chloride, (4 Chlorocarbonylmethoxycyclohexyloxy) acetyl chloride, (2,3-bischlorocarbonylmethoxycyclohexyloxy) acetyl chloride, (2,4-bischlorocarbonylmethoxycyclohexyloxy) acetyl chloride, (3,5-bischlorocarbonylmethoxycyclohexyloxy) ) Acetyl chloride, (2-chlorocarbonylmethoxycyclopentanyloxy) acetyl chloride, (3-chlorocarbonylmethoxycyclopentanyloxy) acetyl chloride, (2,3-bischlorocarbonylmethoxycyclopentanyloxy) acetyl chloride, ( 2,4-bischlorocarbonylmethoxycyclopentanyloxy) acetyl chloride, and the like.
上記した化合物は単独で用いてもよいし、また、2種以上を同時に使用してもよい。 The above compounds may be used alone or in combination of two or more.
このような製造方法により得られる複合半透膜は、25℃、pH6.5、ホウ素濃度5ppm、TDS濃度3.5重量%の海水を5.5MPaの操作圧力で透過させたときのTDS透過係数が0.1×10−8m/s以上3×10−8m/s以下となるような膜構造とすると、特に優れたホウ素除去性能向上を得ることができる。ここで、TDSはTotal Dissolved Solid (全溶存固形物質)を意味し、TDS濃度は海水の塩濃度を表す指標である。The composite semipermeable membrane obtained by such a production method has a TDS permeability coefficient when seawater having a temperature of 6.5 ° C., a pH of 6.5, a boron concentration of 5 ppm, and a TDS concentration of 3.5 wt% is permeated at an operating pressure of 5.5 MPa. When the film structure is such that is 0.1 × 10 −8 m / s or more and 3 × 10 −8 m / s or less, particularly excellent boron removal performance can be obtained. Here, TDS means Total Dissolved Solid, and the TDS concentration is an index representing the salt concentration of seawater.
なお、TDS透過係数は、溶質の透過係数を求める以下の方法により求めることができる。非平衡熱力学に基づいた逆浸透法の輸送方程式として、以下の式が知られている。 The TDS permeability coefficient can be obtained by the following method for obtaining the solute permeability coefficient. The following equation is known as a transport equation of the reverse osmosis method based on non-equilibrium thermodynamics.
ここで、Jvは膜透過体積流束(m3/m2/s)、Lpは純水透過係数(m3/m2/s/Pa)、ΔPは膜両側の圧力差(Pa)、σは溶質反射係数、Δπは膜両側の浸透圧差(Pa)、Jsは溶質の膜透過流束(mol/m2/s)、Pは溶質の透過係数(m/s)、Cmは溶質の膜面濃度(mol/m3)、Cpは透過液濃度(mol/m3)、Cは膜両側の濃度(mol/m3)、である。膜両側の平均濃度Cは、逆浸透膜のように両側の濃度差が非常に大きな場合には実質的な意味を持たない。そこで(9)式を膜厚について積分した次式(10)が、近似式として多用されている。Here, Jv is the membrane permeation volume flux (m 3 / m 2 / s), Lp is the pure water permeability coefficient (m 3 / m 2 / s / Pa), ΔP is the pressure difference (Pa) on both sides of the membrane, σ Is the solute reflection coefficient, Δπ is the osmotic pressure difference (Pa) on both sides of the membrane, Js is the solute permeation flux (mol / m 2 / s), P is the solute permeability (m / s), and Cm is the solute membrane. The surface concentration (mol / m 3 ), Cp is the permeate concentration (mol / m 3 ), and C is the concentration on both sides of the membrane (mol / m 3 ). The average concentration C on both sides of the membrane has no substantial meaning when the concentration difference between the two sides is very large as in a reverse osmosis membrane. Therefore, the following formula (10) obtained by integrating the formula (9) with respect to the film thickness is frequently used as an approximate formula.
ただし、Fは次式(11)であり、また、Rは真の阻止率であって、次式(12)で定義される。 However, F is following Formula (11) and R is a true rejection rate, Comprising: It defines by following Formula (12).
ここで、ΔPを種々変化させることにより(7)式からLpを算出でき、またJvを種々変化させてRを測定し、Rと1/Jvをプロットしたものに対して(9)、(10)式をカーブフィッティングすることにより、P(溶質透過係数)とσ(溶質反射係数)を同時に求めることができる。 Here, by changing ΔP variously, Lp can be calculated from the equation (7), R is measured by changing Jv variously, and R and 1 / Jv are plotted (9), (10 P (solute permeability coefficient) and σ (solute reflection coefficient) can be obtained simultaneously by curve fitting.
本発明の複合半透膜において、微多孔性支持膜は、実質的にイオン等の分離性能を有さない微多孔膜であって、かつ、実質的に分離機能層に強度を与えることができるものである。その微多孔の孔サイズや分布は特に限定されないが、例えば、均一で微細な孔、あるいは分離機能層が形成される側の表面からもう一方の面まで徐々に大きな微細孔をもち、かつ、分離機能層が形成される側の表面で微細孔の大きさが0.1nm以上100nm以下であるような支持膜が好ましい
微多孔性支持膜に使用する材料やその形状は特に限定されないが、例えば、ポリエステルまたは芳香族ポリアミドから選ばれる少なくとも1種のポリマを主成分とする繊維製布帛により強化された、ポリスルホン、酢酸セルロース、ポリ塩化ビニル、あるいはそれらの混合物からなる微多孔膜が好ましい。なかでも、化学的、機械的、熱的に安定性の高いポリスルホンを使用した微多孔膜が特に好ましい。具体的には、次の化学式に示す繰り返し単位からなるポリスルホンが挙げられ、このポリスルホンは、孔径が制御しやすく、寸法安定性が高いという利点があり、好ましい。In the composite semipermeable membrane of the present invention, the microporous support membrane is a microporous membrane having substantially no separation performance of ions or the like, and can substantially give strength to the separation functional layer. Is. The size and distribution of the microporous holes are not particularly limited. For example, the microporous pores have gradually large pores from the surface on the side where the separation functional layer is formed to the other surface, and are separated. A support membrane in which the size of the micropores is 0.1 nm or more and 100 nm or less on the surface on the side where the functional layer is formed is not particularly limited, but the material used for the microporous support membrane and the shape thereof are not particularly limited. A microporous membrane made of polysulfone, cellulose acetate, polyvinyl chloride, or a mixture thereof reinforced with a fiber fabric mainly composed of at least one polymer selected from polyester or aromatic polyamide is preferred. Among these, a microporous membrane using polysulfone having high chemical, mechanical and thermal stability is particularly preferable. Specific examples include polysulfone composed of repeating units represented by the following chemical formula, and this polysulfone is preferable because of its advantages that the pore diameter is easy to control and dimensional stability is high.
例えば、上記ポリスルホンのN,N−ジメチルホルムアミド溶液を、密に織ったポリエステル繊維製の編織布もしくは不織布(基布)の上に、一定の厚さで注型した後、水中で湿式凝固させることによって、表面の大部分で直径数10nm以下の微細孔を有する微多孔性支持膜を製造することができる。 For example, the N, N-dimethylformamide solution of polysulfone is cast on a densely woven polyester fiber woven fabric or non-woven fabric (base fabric) with a certain thickness and then wet coagulated in water. By this, a microporous support membrane having micropores with a diameter of several tens of nm or less on the most part of the surface can be produced.
上記した微多孔性支持体(基布も含む)の厚みは、複合半透膜の強度およびその膜をエレメントにしたときの膜充填密度に影響を与える。十分な機械的強度および十分な膜充填密度を得るためには、50〜300μmの範囲内にあることが好ましく、より好ましくは100〜250μmの範囲内である。この厚みが薄過ぎる場合には十分な機械的強度が得られ難く、逆に、厚過ぎる場合には十分な膜充填密度が得られ難い。また、微多孔性支持体のうちの基布を除く部分(以下、多孔質層という)の厚みは、10〜200μmの範囲内にあることが好ましく、より好ましくは30〜100μmの範囲内である。 The thickness of the above-described microporous support (including the base fabric) affects the strength of the composite semipermeable membrane and the membrane packing density when the membrane is used as an element. In order to obtain sufficient mechanical strength and sufficient film packing density, it is preferably in the range of 50 to 300 μm, more preferably in the range of 100 to 250 μm. If this thickness is too thin, it is difficult to obtain sufficient mechanical strength. Conversely, if it is too thick, it is difficult to obtain a sufficient film packing density. Moreover, it is preferable that the thickness of the part (henceforth a porous layer) except a base fabric among microporous supports exists in the range of 10-200 micrometers, More preferably, it exists in the range of 30-100 micrometers. .
多孔質層の膜形態は、走査型電子顕微鏡や透過型電子顕微鏡、原子間顕微鏡により観察できる。例えば、走査型電子顕微鏡で観察するのであれば、基布から多孔質層を剥がした後、これを凍結割断法で切断して断面観察のサンプルとし、このサンプルに、白金、白金−パラジウムもしくは四塩化ルテニウム(好ましくは四塩化ルテニウム)を薄くコーティングして、3〜6kVの加速電圧で高分解能電界放射型走査電子顕微鏡(UHR−FE−SEM)で観察すればよい。高分解能電界放射型走査電子顕微鏡としては、(株)日立製作所製のS−900型電子顕微鏡などが使用できる。得られた電子顕微鏡写真から多孔質層の膜厚や表面孔径を決定する。なお、本発明における厚みや孔径は平均値を意味するものである。 The film form of the porous layer can be observed with a scanning electron microscope, a transmission electron microscope, or an atomic microscope. For example, when observing with a scanning electron microscope, after removing the porous layer from the base fabric, it is cut by the freeze cleaving method to obtain a sample for cross-sectional observation. Ruthenium chloride (preferably ruthenium tetrachloride) may be thinly coated and observed with a high-resolution field emission scanning electron microscope (UHR-FE-SEM) at an acceleration voltage of 3 to 6 kV. As a high resolution field emission scanning electron microscope, an S-900 electron microscope manufactured by Hitachi, Ltd. can be used. The film thickness and surface pore diameter of the porous layer are determined from the obtained electron micrograph. In addition, the thickness and the hole diameter in this invention mean an average value.
次に、本発明の複合半透膜の製造方法について説明する。 Next, the manufacturing method of the composite semipermeable membrane of this invention is demonstrated.
複合半透膜におけるポリアミド分離機能層は、例えば、前述した多官能アミンを含有する水溶液と、多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」とを含有する有機溶媒溶液(ここでの有機溶媒は水と非混和性の有機溶媒である。)とを用い、微多孔性支持膜の表面上でそれら成分を界面重縮合させることによりポリアミド骨格を形成させて製造することができる。 The polyamide separation functional layer in the composite semipermeable membrane includes, for example, the above-described aqueous solution containing a polyfunctional amine, a polyfunctional acid halide, and the above-mentioned “cyclic aliphatic compound and / or aromatic compound having a specific substituent”. A polyamide skeleton is formed by interfacial polycondensation of these components on the surface of the microporous support membrane using the organic solvent solution (the organic solvent here is an organic solvent immiscible with water). Can be manufactured.
ここで、多官能アミン水溶液における多官能アミンの濃度は2.5〜10重量%の範囲内であることが好ましく、さらに好ましくは3〜5重量%の範囲内である。この範囲であると、得られる半透膜に十分な塩除去性能および透水性を付与することができ、溶質透過係数を3×10−8m/s以下とすることができる。多官能アミン水溶液には、多官能アミンと多官能酸ハロゲン化物との反応を阻害しないものであれば、界面活性剤、有機溶媒、アルカリ性化合物、及び、酸化防止剤などが含まれていてもよい。界面活性剤は、微多孔性支持膜の表面の濡れ性を向上させ、アミン水溶液と非極性溶媒との間の界面張力を減少させる効果があるので、また、有機溶媒は界面重縮合反応の触媒として働くことがあるので、それらを添加することにより界面重宿合反応を効率よく行える場合がある。Here, the concentration of the polyfunctional amine in the polyfunctional amine aqueous solution is preferably in the range of 2.5 to 10% by weight, more preferably in the range of 3 to 5% by weight. Within this range, sufficient salt removal performance and water permeability can be imparted to the resulting semipermeable membrane, and the solute permeability coefficient can be 3 × 10 −8 m / s or less. As long as the polyfunctional amine aqueous solution does not inhibit the reaction between the polyfunctional amine and the polyfunctional acid halide, a surfactant, an organic solvent, an alkaline compound, and an antioxidant may be contained. . Since the surfactant has the effect of improving the wettability of the surface of the microporous support membrane and reducing the interfacial tension between the aqueous amine solution and the nonpolar solvent, the organic solvent is a catalyst for the interfacial polycondensation reaction. In some cases, the interfacial heavy reaction can be efficiently performed by adding them.
界面重縮合を微多孔性支持膜上で行うためには、まず、上述の多官能アミン水溶液を微多孔性支持膜の表面に接触させる。その接触は、微多孔性支持膜面上に均一にかつ連続的に行うことが好ましい。具体的には、例えば、多官能アミン水溶液を微多孔性支持膜にコーティングする方法や微多孔性支持膜を多官能アミン水溶液に浸漬する方法を挙げることができる。微多孔性支持膜表面と多官能アミン水溶液との接触時間は、1〜10分間の範囲内であることが好ましく、1〜3分間の範囲内であることがさらに好ましい。 In order to perform interfacial polycondensation on the microporous support membrane, first, the above-mentioned polyfunctional amine aqueous solution is brought into contact with the surface of the microporous support membrane. The contact is preferably performed uniformly and continuously on the surface of the microporous support membrane. Specific examples include a method of coating a polyfunctional amine aqueous solution on a microporous support membrane and a method of immersing the microporous support membrane in a polyfunctional amine aqueous solution. The contact time between the microporous support membrane surface and the polyfunctional amine aqueous solution is preferably within a range of 1 to 10 minutes, and more preferably within a range of 1 to 3 minutes.
多官能アミン水溶液を微多孔性支持膜表面に接触させた後は、支持膜上に液滴が残らないように十分に液切りする。支持膜上に液滴が残存すると、その液的残存部分が分離機能層の形成後に膜欠点となるので、膜欠点がなく膜性能に優れた複合半透膜を製造するためには、十分に液切りすることが必要である。液切りの方法としては、例えば、多官能アミン水溶液接触後の多孔性支持膜を垂直方向に把持して過剰の水溶液を自然流下させる方法や、エアーノズルから窒素などの風を吹き付け、強制的に液切りする方法などを採用することができる。また、液切り後には、膜面を乾燥させ、付着した水の一部を除去するようにしてもよい。 After bringing the polyfunctional amine aqueous solution into contact with the surface of the microporous support membrane, the solution is sufficiently drained so that no droplets remain on the support membrane. If the liquid droplets remain on the support membrane, the liquid residual portion becomes a membrane defect after the formation of the separation functional layer, so that it is sufficient to produce a composite semipermeable membrane having no membrane defect and excellent membrane performance. It is necessary to drain the liquid. As a method of draining, for example, the porous support membrane after contacting with the polyfunctional amine aqueous solution is vertically gripped to allow the excess aqueous solution to flow down naturally, or air such as nitrogen is blown from an air nozzle to force A method of draining can be employed. Further, after draining, the membrane surface may be dried to remove a part of the attached water.
次いで、多官能アミン水溶液を接触させた後の支持膜上に、多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」とを含む有機溶媒溶液を接触させ、多官能アミンと多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」との界面重縮合により架橋ポリアミド分離機能層の骨格を形成させる。 Next, an organic solvent solution containing the polyfunctional acid halide and the above-mentioned “cycloaliphatic compound and / or aromatic compound having the specific substituent” is brought into contact with the support film after contacting with the polyfunctional amine aqueous solution. The skeleton of the cross-linked polyamide separation functional layer is formed by interfacial polycondensation of the polyfunctional amine, the polyfunctional acid halide, and the “cycloaliphatic compound and / or aromatic compound having the specific substituent”.
有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であることが好ましく、0.02〜2.0重量%の範囲内であることがさらに好ましい。この範囲内であると、十分な反応速度が得られ、また副反応の発生を抑制することができる。また、この有機溶媒溶液中に、N,N−ジメチルホルムアミドのようなカルボニル化触媒を含有させることにより、界面重縮合を促進させることができるので、さらに好ましい。 The concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2.0% by weight. Within this range, a sufficient reaction rate can be obtained, and the occurrence of side reactions can be suppressed. In addition, it is more preferable to include a carbonylation catalyst such as N, N-dimethylformamide in the organic solvent solution because interfacial polycondensation can be promoted.
ここで用いる有機溶媒は、水と非混和性の有機溶媒であり、さらに、多官能酸ハロゲン化物を溶解することができ、微多孔性支持膜を破壊しないものであることが望ましく、多官能アミン化合物および多官能酸ハロゲン化物に対して不活性であるものを用いることができる。その有機溶媒の好ましい例として、例えば、n−ヘキサン、n−オクタン、n−デカンなどの炭化水素化合物が挙げられる。 The organic solvent used here is an organic solvent that is immiscible with water, and is preferably capable of dissolving the polyfunctional acid halide and not destroying the microporous support membrane. Those inert to the compound and the polyfunctional acid halide can be used. Preferable examples of the organic solvent include hydrocarbon compounds such as n-hexane, n-octane and n-decane.
多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」とを含む有機溶媒溶液を、支持膜上の多官能アミン水溶液と接触させるためには、前述した多官能アミン水溶液の微多孔性支持膜表面への被覆と同様な方法により、その有機溶媒溶液を被覆させればよい。 In order to bring the organic solvent solution containing the polyfunctional acid halide and the “cycloaliphatic compound and / or aromatic compound having the specific substituent” into contact with the polyfunctional amine aqueous solution on the support membrane, The organic solvent solution may be coated by the same method as the coating of the functional amine aqueous solution on the surface of the microporous support membrane.
上述したように、多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」とを含む有機溶媒溶液を接触させて界面重縮合を行い、多孔性支持膜上に架橋ポリアミドを含む分離機能層を形成した後は、余剰の有機溶媒を液切りすることが好ましい。液切りの方法は、例えば、膜を垂直方向に把持して過剰の有機溶媒を自然流下して除去する方法を用いることができる。この場合、垂直方向に把持する時間としては、1〜5分間であることが好ましく、1〜3分間であることがより好ましい。短すぎると分離機能層が完全に形成できず、長すぎると有機溶媒が過乾燥となり欠点が発生しやすく、膜性能低下を起こしやすい。 As described above, interfacial polycondensation is performed by bringing an organic solvent solution containing a polyfunctional acid halide and the above-mentioned “cyclic aliphatic compound and / or aromatic compound having a specific substituent” into contact with each other on the porous support membrane. After forming the separation functional layer containing crosslinked polyamide, it is preferable to drain off excess organic solvent. As a method for draining, for example, a method in which a film is held in a vertical direction and excess organic solvent is allowed to flow down and removed can be used. In this case, the time for gripping in the vertical direction is preferably 1 to 5 minutes, and more preferably 1 to 3 minutes. If it is too short, the separation functional layer cannot be formed completely, and if it is too long, the organic solvent is excessively dried, so that defects are likely to occur and membrane performance is liable to deteriorate.
そして、本発明の複合半透膜の製造方法においてポリアミド分離機能層を形成させるためには、例えば、前述した多官能酸ハロゲン化物と共に前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含有する有機溶媒溶液を、支持膜上に接触している多官能アミン水溶液と、支持膜上で接触させて界面重縮合させればよい。または、支持膜上に接触している多官能アミン水溶液に、支持膜上で多官能酸ハロゲン化物を接触せしめて界面重縮合させ支持膜上に架橋ポリアミドを含む分離機能層を形成した後、さらに、前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を含有する有機溶媒溶液を、支持膜上の分離機能層のポリアミドと接触させて反応させればよい。 In order to form the polyamide separation functional layer in the method for producing a composite semipermeable membrane of the present invention, for example, together with the polyfunctional acid halide described above, the “cycloaliphatic compound and / or aromatic having the specific substituent” is used. The organic solvent solution containing the “compound” may be brought into contact with the polyfunctional amine aqueous solution in contact with the support membrane on the support membrane and subjected to interfacial polycondensation. Alternatively, after the polyfunctional amine aqueous solution in contact with the support membrane is brought into contact with the polyfunctional acid halide on the support membrane to perform interfacial polycondensation to form a separation functional layer containing a crosslinked polyamide on the support membrane, The organic solvent solution containing the “cycloaliphatic compound and / or aromatic compound having the specific substituent” may be brought into contact with the polyamide of the separation functional layer on the support membrane to cause the reaction.
そして、この際の有機溶媒溶液中の多官能酸ハロゲン化物の濃度は、0.01〜10重量%の範囲内であることが好ましく、0.02〜2重量%の範囲内であることがさらに好ましい。0.01重量%以上とすることにより十分な反応速度が得られ、また、10重量%以下とすることで副反応の発生を抑制することができるためである。さらに、この有機溶媒溶液にN,N−ジメチルホルムアミドのようなアシル化触媒を含有させると、界面重縮合が促進され、さらに好ましい。 In this case, the concentration of the polyfunctional acid halide in the organic solvent solution is preferably in the range of 0.01 to 10% by weight, and more preferably in the range of 0.02 to 2% by weight. preferable. This is because a sufficient reaction rate can be obtained when the content is 0.01% by weight or more, and the occurrence of side reactions can be suppressed when the content is 10% by weight or less. Further, it is more preferable that an acylation catalyst such as N, N-dimethylformamide is contained in the organic solvent solution because interfacial polycondensation is promoted.
前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」を、多官能アミンと多官能酸ハロゲン化物との界面重縮合により実質的な分離機能層を形成した後に接触させる場合、その量は、多官能酸ハロゲン化物に対して5mol%以上であることが好ましい。5mol%を下回るとホウ素阻止の効果が不十分となり易い。また、100mol%を越えるほどに多量に用いてもホウ素阻止効果をさらに増加させることができず、むしろ、多量の未反応試薬による環境悪化や処理のための経済的負担が増大するので、多くとも100mol%以下であることが好ましい。そして、5〜50mol%の範囲内であることがより好ましい。一方、多官能酸ハロゲン化物と前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」とを単一の有機溶媒溶液にし、多官能アミンと分離膜上で接触させて反応させ分離機能層を形成する場合は、前記「特定置換基をもつ環状脂肪族化合物及び/又は芳香族化合物」の量を多官能酸ハロゲン化物の量に対して5mol%以上の量とすること、さらに5〜50mol%の範囲内とすることが好ましく、5〜30mol%の範囲内とすることが特に好ましい。5mol%以上とすることにより、ホウ素除去性能向上効果を十分に発揮させることができ、また、50mol%以下とすることにより塩除去性能および透過流束の低下を抑制することができるためである。
In the case where the “cycloaliphatic compound and / or aromatic compound having a specific substituent” is brought into contact after a substantial separation functional layer is formed by interfacial polycondensation of a polyfunctional amine and a polyfunctional acid halide, The amount is preferably 5 mol% or more based on the polyfunctional acid halide. If it is less than 5 mol%, the effect of blocking boron tends to be insufficient. Further, even if it is used in a large amount exceeding 100 mol%, the boron blocking effect cannot be further increased. Rather, the environmental burden due to a large amount of unreacted reagent and the economic burden for treatment increase, so at most. It is preferable that it is 100 mol% or less. And it is more preferable that it exists in the range of 5-50 mol%. On the other hand, the polyfunctional acid halide and the above-mentioned “cycloaliphatic compound and / or aromatic compound having a specific substituent” are made into a single organic solvent solution and brought into contact with the polyfunctional amine on the separation membrane to be separated. When forming the functional layer, the amount of the “cycloaliphatic compound and / or aromatic compound having the specific substituent” is 5 mol% or more based on the amount of the polyfunctional acid halide, and further 5 It is preferable to be in the range of ˜50 mol%, and it is particularly preferable to be in the range of 5 to 30 mol%. This is because by making the
上述の方法により得られた複合半透膜は、その後に、50〜150℃の範囲内、好ましくは70〜130℃の範囲内の熱水で、1〜10分間、より好ましくは2〜8分間、熱水処理することが好ましく、この熱水処理工程を経ることにより、複合半透膜の排除性能や透水性をより一層向上させることができる。 The composite semipermeable membrane obtained by the above method is then heated with hot water in the range of 50 to 150 ° C., preferably in the range of 70 to 130 ° C., for 1 to 10 minutes, more preferably for 2 to 8 minutes. It is preferable to perform the hydrothermal treatment, and through this hydrothermal treatment step, the exclusion performance and water permeability of the composite semipermeable membrane can be further improved.
このようにして製造される本発明の複合半透膜は、分離膜を配設してなる半透膜エレメントにおける分離膜として使用される。例えば、本発明の平膜状複合半透膜を、プラスチックネットなどの原水流路材と、トリコットなどの透過水流路材と、必要に応じて耐圧性を高めるためのフィルムと共に、多数の孔を穿設した筒状の集水管の周りにスパイラル状に巻回すことにより、スパイラル型複合半透膜エレメントが作製される。 The composite semipermeable membrane of the present invention produced as described above is used as a separation membrane in a semipermeable membrane element in which a separation membrane is provided. For example, the flat membrane-like composite semipermeable membrane of the present invention has a large number of holes, together with a raw water channel material such as a plastic net, a permeate channel material such as tricot, and a film for increasing pressure resistance as necessary. A spiral type composite semipermeable membrane element is produced by spirally winding around the perforated cylindrical water collecting pipe.
さらに、この複合半透膜エレメントは、流体分離エレメントを配設してなる流体分離装置における流体分離エレメントとして使用される。例えば、上記複合半透膜エレメントを直列または並列に接続して圧力容器内に収納し、複合半透膜モジュールが製作され、これら複合半透膜エレメントや複合半透膜モジュールに原水を供給するポンプや、その原水を前処理する装置などと組み合わせて、流体分離装置を作製する。この流体分離装置を用いて、原水を半透膜処理することにより、飲料水などの透過水と、膜を透過しなかった濃縮水とに分離され、目的水質にあった水を得ることができる。 Further, the composite semipermeable membrane element is used as a fluid separation element in a fluid separation device provided with a fluid separation element. For example, the above composite semipermeable membrane elements are connected in series or in parallel and housed in a pressure vessel to produce a composite semipermeable membrane module, and a pump that supplies raw water to these composite semipermeable membrane elements and composite semipermeable membrane modules In addition, a fluid separation device is manufactured in combination with a device for pretreating the raw water. By using this fluid separator, the raw water is subjected to a semi-permeable membrane treatment, so that it is separated into permeated water such as drinking water and concentrated water that has not permeated the membrane, and water suitable for the target water quality can be obtained. .
流体分離装置の操作圧力は高い方がホウ素除去率は向上するが、同時に運転に必要なエネルギーも上昇し、複合半透膜の耐久性が低下し易いので、複合半透膜を被処理水が透過する際の操作圧力は、1.0MPa以上、10MPa以下とすることが好ましい。半透膜に供給する被処理水の温度は、高くなるほどホウ素除去率が低下し、低くなるほど膜透過流束が減少する傾向にあるので、5℃以上、45℃以下とすることが好ましい。また、供給する水のpHは、高くなるほど供給水中のホウ素がホウ酸イオンに解離してホウ素除去率が向上する。しかし、海水などの高塩濃度の供給水の場合には、pHが高いほどマグネシウムなどのスケールが発生する恐れがあり、また、高pH運転による膜の劣化が懸念される。従って、供給水のpHは中性領域とすることが好ましい。 The higher the operating pressure of the fluid separator, the higher the boron removal rate, but at the same time the energy required for operation increases, and the durability of the composite semipermeable membrane tends to decrease. The operating pressure for permeation is preferably 1.0 MPa or more and 10 MPa or less. As the temperature of the water to be treated supplied to the semipermeable membrane increases, the boron removal rate tends to decrease, and the membrane permeation flux tends to decrease as the temperature decreases. Therefore, the temperature is preferably 5 ° C. or higher and 45 ° C. or lower. Further, as the pH of the supplied water increases, boron in the supplied water dissociates into borate ions and the boron removal rate improves. However, in the case of feed water having a high salt concentration such as seawater, there is a concern that scales such as magnesium may be generated as the pH is higher, and membrane deterioration due to high pH operation is a concern. Accordingly, the pH of the feed water is preferably in the neutral range.
実施例および比較例における複合半透膜の特性は、複合半透膜に、温度25℃、pH6.5に調整した海水(TDS濃度約3.5%、ホウ素濃度約5.0ppm)を、操作圧力5.5MPaで供給して膜ろ過処理を行ない、得られる透過水の水質と、供給水の水質とを測定することにより求めた。測定した値や算出式は次のとおりである。 The characteristics of the composite semipermeable membranes in the examples and comparative examples were obtained by operating seawater (TDS concentration of about 3.5%, boron concentration of about 5.0 ppm) adjusted to a temperature of 25 ° C. and pH 6.5 on the composite semipermeable membrane. Membrane filtration was performed by supplying at a pressure of 5.5 MPa, and the water quality of the obtained permeated water and the quality of the supplied water were measured. The measured values and calculation formulas are as follows.
(TDS除去率)
透過水中のTDS濃度と供給水中のTDS濃度を測定し、次式によりTDS除去率(%)を算出する。(TDS removal rate)
The TDS concentration in the permeated water and the TDS concentration in the supply water are measured, and the TDS removal rate (%) is calculated by the following equation.
(膜透過流束)
供給水(海水)の膜透過水量を、膜面1平方メートル当たり、1日あたりの透水量(立方メートル)に換算して、膜透過流束(m3/m2/日)を表す。(Membrane permeation flux)
The membrane permeation flux (m 3 / m 2 / day) is expressed by converting the membrane permeation amount of the supplied water (seawater) into a permeation amount per cubic meter of membrane surface per day (cubic meter).
(ホウ素除去率)
供給水中のホウ素濃度と透過水中のホウ素濃度とをICP発光分析装置で分析し、次の式からホウ素除去率(%)を求める。(Boron removal rate)
The boron concentration in the feed water and the boron concentration in the permeated water are analyzed with an ICP emission spectrometer, and the boron removal rate (%) is obtained from the following equation.
(TDS透過係数)
「膜処理技術大系」、上巻、p171、中垣正幸 監修,フジテクノシステム(1991)記載の以下の計算式によりTDS透過係数(m/s)を算出した。(TDS transmission coefficient)
The TDS transmission coefficient (m / s) was calculated by the following calculation formula described in “Membrane Processing Technology Series”, first volume, p171, supervised by Masayuki Nakagaki, Fuji Techno System (1991).
また、複合半透膜中の分離機能層のポリマ組成は、次の方法により評価することができる。 The polymer composition of the separation functional layer in the composite semipermeable membrane can be evaluated by the following method.
分離機能層のポリアミド分子鎖中における前記「特定置換基をもつ環状脂肪族基及び/又は芳香族基」の存在は、支持膜から剥離させた分離機能層を、固体NMRスペクトルを測定することにより、または、強アルカリ水溶液で加熱することにより加水分解した試料をHPLC測定や1H−NMRスペクトル測定することによって分析することができる。
(参考例)
表1記載の化合物1〜5を、以下に記載する方法により合成した。The presence of the “cycloaliphatic group and / or aromatic group having a specific substituent” in the polyamide molecular chain of the separation functional layer is determined by measuring the solid functional NMR spectrum of the separation functional layer separated from the support membrane. Alternatively, a sample hydrolyzed by heating with a strong alkaline aqueous solution can be analyzed by HPLC measurement or 1 H-NMR spectrum measurement.
(Reference example)
(参考例1) (4−クロロカルボニルメトキシフェノキシ)アセチルクロリド(化合物1)の合成
ヒドロキノン5.51g(50.0mmol)およびブロモ酢酸メチル16.1g(105.0mmol)をN,N−ジメチルホルムアミド(以下、DMFと略す。)50.0mlに溶解し、炭酸カリウム20.7g(150.0mmol)を加えて12時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した後、有機層を合わせ、炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。乾燥剤を除去して減圧濃縮し、得られた残渣を塩化メチレン/n−ヘキサンより再結晶したところ、無色の結晶10.7gが得られた。Reference Example 1 Synthesis of (4-chlorocarbonylmethoxyphenoxy) acetyl chloride (Compound 1) Hydroquinone 5.51 g (50.0 mmol) and methyl bromoacetate 16.1 g (105.0 mmol) were mixed with N, N-dimethylformamide ( Hereinafter, abbreviated as DMF.) Dissolved in 50.0 ml, added 20.7 g (150.0 mmol) of potassium carbonate and stirred for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layers were combined, washed with an aqueous sodium hydrogen carbonate solution, water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was removed and the filtrate was concentrated under reduced pressure. The resulting residue was recrystallized from methylene chloride / n-hexane to obtain 10.7 g of colorless crystals.
この結晶7.80gをメタノール30.0mlに溶解し、2規定の水酸化ナトリウム水溶液46.0ml(92.0mmol)を20分間かけて加え、室温で12時間撹拌した。反応混合物に、氷冷下で塩酸を少しずつ加えて酸性(pH2)にした後、メタノールを減圧留去した。析出した固形物をろ過、減圧乾燥したところ、白色固体6.94gが得られた。 7.80 g of this crystal was dissolved in 30.0 ml of methanol, and 46.0 ml (92.0 mmol) of 2N aqueous sodium hydroxide solution was added over 20 minutes, followed by stirring at room temperature for 12 hours. To the reaction mixture, hydrochloric acid was added little by little under ice-cooling to make it acidic (pH 2), and then methanol was distilled off under reduced pressure. The precipitated solid was filtered and dried under reduced pressure to obtain 6.94 g of a white solid.
この白色固体2.98gをジクロロエタン40.0mlに溶解し、ニ塩化オキサリル3.39ml(39.5mmol)および0.01mlのDMFを加えて室温で5時間撹拌した。反応混合物をろ過した後、ろ液を減圧濃縮し、得られた残渣を塩化メチレン/n−ヘキサンより再結晶したところ、化合物1の淡褐色結晶1.84g(6.99mmol)が得られた。総収率は45%であった。
2.98 g of this white solid was dissolved in 40.0 ml of dichloroethane, 3.39 ml (39.5 mmol) of oxalyl dichloride and 0.01 ml of DMF were added, and the mixture was stirred at room temperature for 5 hours. After the reaction mixture was filtered, the filtrate was concentrated under reduced pressure, and the resulting residue was recrystallized from methylene chloride / n-hexane to obtain 1.84 g (6.99 mmol) of light brown crystals of
(参考例2)
参考例1においてヒドロキノンをレソルシノールに変更した以外、参考例1と同様にして化合物2を合成した。(Reference Example 2)
(参考例3)
参考例1においてヒドロキノンをフロログルシノールに変更した以外、参考例1と同様にして化合物3を合成した。(Reference Example 3)
(参考例4)
参考例1においてヒドロキノンを1,2,4−トリヒドロキシベンゼンに変更した以外、参考例1と同様にして化合物4を合成した。(Reference Example 4)
Compound 4 was synthesized in the same manner as in Reference Example 1, except that hydroquinone was changed to 1,2,4-trihydroxybenzene in Reference Example 1.
(参考例5) (4−クロロカルボニルメトキシシクロヘキシルオキシ)アセチルクロリド(化合物5)の合成
ヒドロキノン5.51g(50.0mmol)およびブロモ酢酸メチル16.1g(105.0mmol)をDMF50.0mlに溶解し、炭酸カリウム20.7g(150.0mmol)を加えて12時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した後、有機層を合わせ、炭酸水素ナトリウム水溶液、水、飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。乾燥剤を除去して減圧濃縮し、得られた残渣を塩化メチレン/n−ヘキサンより再結晶したところ、無色の結晶10.7gが得られた。Reference Example 5 Synthesis of (4-chlorocarbonylmethoxycyclohexyloxy) acetyl chloride (Compound 5) Hydroquinone 5.51 g (50.0 mmol) and methyl bromoacetate 16.1 g (105.0 mmol) were dissolved in DMF 50.0 ml. Then, 20.7 g (150.0 mmol) of potassium carbonate was added and stirred for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layers were combined, washed with an aqueous sodium hydrogen carbonate solution, water and saturated brine, and dried over anhydrous sodium sulfate. The desiccant was removed and the filtrate was concentrated under reduced pressure. The resulting residue was recrystallized from methylene chloride / n-hexane to obtain 10.7 g of colorless crystals.
この結晶254mgおよび三塩化ロジウム三水和物526mg(2.0mmol)にエタノール20.0mlを加えて室温で2時間撹拌した後、水素化ホウ素ナトリウム378mg(10.0mmol)のエタノール溶液20.0mlを30分間かけて滴下し、室温で12時間撹拌した。反応混合物をろ過した後、ろ液に1規定の塩酸を少しずつ加えて酸性(pH2)にし、エタノールを減圧留去した。つづいて、酢酸エチルで抽出し、有機層を合わせ、水、飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。乾燥剤を除去して減圧濃縮したところ、無色のオイル171mgが得られた。 After adding 20.0 ml of ethanol to 254 mg of this crystal and 526 mg (2.0 mmol) of rhodium trichloride trihydrate and stirring at room temperature for 2 hours, 20.0 ml of an ethanol solution of 378 mg (10.0 mmol) of sodium borohydride was added. The solution was added dropwise over 30 minutes and stirred at room temperature for 12 hours. After the reaction mixture was filtered, 1N hydrochloric acid was gradually added to the filtrate to make it acidic (pH 2), and ethanol was distilled off under reduced pressure. Subsequently, the mixture was extracted with ethyl acetate, the organic layers were combined, washed with water and saturated brine, and dried over anhydrous sodium sulfate. Removal of the desiccant and concentration under reduced pressure gave 171 mg of colorless oil.
このオイルをメタノール20.0mlに溶解し、1規定の水酸化ナトリウム水溶液5.93mlを5分間かけて滴下し、室温で終夜撹拌した。メタノールを留去し、氷冷下、1規定の塩酸を少しずつ加えて酸性(pH2)にした後、酢酸エチルで3回抽出し、有機層を合わせ、水、飽和食塩水で洗浄し、無水硫酸ナトリウムを加えて乾燥した。乾燥剤を除去して減圧濃縮したところ、無色のオイル122mgが得られた。 This oil was dissolved in 20.0 ml of methanol, 5.93 ml of 1N aqueous sodium hydroxide solution was added dropwise over 5 minutes, and the mixture was stirred overnight at room temperature. Methanol was distilled off, 1N hydrochloric acid was added little by little under ice cooling to make it acidic (pH 2), and the mixture was extracted 3 times with ethyl acetate. The organic layers were combined, washed with water and saturated brine, and anhydrous. Sodium sulfate was added and dried. Removal of the desiccant and concentration under reduced pressure gave 122 mg of a colorless oil.
このオイル118mgをジクロロエタン 10.0mlに溶解し、ニ塩化オキサリル0.132ml(1.52mmol)および0.01mlのDMFを加えて40℃で1時間撹拌した。反応混合物を減圧濃縮したところ、化合物5の黄色オイル170mgが得られた。総収率は47%であった。
118 mg of this oil was dissolved in 10.0 ml of dichloroethane, 0.132 ml (1.52 mmol) of oxalyl dichloride and 0.01 ml of DMF were added, and the mixture was stirred at 40 ° C. for 1 hour. The reaction mixture was concentrated under reduced pressure to obtain 170 mg of a yellow oil of
(参考例6)
参考例1においてヒドロキノンを3−ヒドロキシ安息香酸メチルに変更した以外、参考例1と同様にして化合物6を合成した。(Reference Example 6)
Compound 6 was synthesized in the same manner as in Reference Example 1 except that hydroquinone was changed to methyl 3-hydroxybenzoate in Reference Example 1.
(参考例7)
参考例1においてヒドロキノンを5−ヒドロキシイソフタル酸ジメチルに変更した以外、参考例1と同様にして化合物7を合成した。(Reference Example 7)
Compound 7 was synthesized in the same manner as in Reference Example 1 except that hydroquinone was changed to dimethyl 5-hydroxyisophthalate in Reference Example 1.
(参考例8)
参考例1においてヒドロキノンを3,5−ジヒドロキシ安息香酸メチルに変更した以外、参考例1と同様にして化合物8を合成した。(Reference Example 8)
Compound 8 was synthesized in the same manner as in Reference Example 1, except that hydroquinone was changed to
(実施例1〜15、比較例1〜3)
ポリエステル不織布(通気度0.5〜1cc/cm2・sec)上にポリスルホンの15.3重量%ジメチルホルムアミド(DMF)溶液を200μmの厚みとなるように室温(25℃)でキャストし、直ちに純水中に浸漬して5分間放置することによって微多孔性支持膜を作製した。(Examples 1-15, Comparative Examples 1-3)
A 15.3% by weight dimethylformamide (DMF) solution of polysulfone was cast on a polyester nonwoven fabric (air permeability 0.5 to 1 cc / cm 2 · sec) at room temperature (25 ° C.) to a thickness of 200 μm, and immediately purified. A microporous support membrane was prepared by immersing in water and allowing to stand for 5 minutes.
このようにして得られた微多孔性支持膜(厚さ210〜215μm)を、m−フェニレンジアミン3.4重量%水溶液中に2分間浸漬した後、該支持膜を垂直方向にゆっくりと引き上げ、エアーノズルから窒素を吹き付け、支持膜表面から余分な水溶液を取り除いた。その後、トリメシン酸クロリド0.175重量%と表2に記載した濃度、種類の環状脂肪族化合物又は芳香族化合物とを含むn−デカン溶液を、表面が完全に濡れるように塗布して1分間静置した。次に、膜から余分な溶液を除去するために、膜を1分間垂直に把持して液切りした。その後、90℃の熱水で2分間洗浄した後、pH7、塩素濃度200mg/lに調整した次亜塩素酸ナトリウム水溶液に2分間浸漬し、次いで亜硫酸水素ナトリウム濃度が1,000mg/lの水溶液中に浸漬することで、余分な次亜塩素酸ナトリウムを還元除去した。さらに、この膜を95℃の熱水で2分間再洗浄した。 The microporous support membrane (thickness 210 to 215 μm) thus obtained was immersed in a 3.4 wt% aqueous solution of m-phenylenediamine for 2 minutes, and then the support membrane was slowly pulled up in the vertical direction. Nitrogen was blown from the air nozzle to remove excess aqueous solution from the surface of the support membrane. Thereafter, an n-decane solution containing 0.175% by weight of trimesic acid chloride and the concentrations and types of cycloaliphatic compounds or aromatic compounds described in Table 2 was applied so that the surface was completely wetted and allowed to stand for 1 minute. I put it. Next, in order to remove excess solution from the membrane, the membrane was held vertically for 1 minute and drained. Thereafter, after washing with hot water at 90 ° C. for 2 minutes, it was immersed in an aqueous sodium hypochlorite solution adjusted to pH 7 and a chlorine concentration of 200 mg / l for 2 minutes, and then in an aqueous solution having a sodium bisulfite concentration of 1,000 mg / l. The excess sodium hypochlorite was removed by reduction. Furthermore, this membrane was rewashed with hot water at 95 ° C. for 2 minutes.
得られた複合半透膜を評価したところ、膜透過流束、TDS除去率、ホウ素除去率、TDS透過係数はそれぞれ表2に示す値であった。膜透過流束とホウ素除去率の関係を図1に示す。 When the obtained composite semipermeable membrane was evaluated, the membrane permeation flux, TDS removal rate, boron removal rate, and TDS permeability coefficient were values shown in Table 2, respectively. The relationship between the membrane permeation flux and the boron removal rate is shown in FIG.
本発明の複合半透膜は、高塩除去率、高透過流束を達成でき、また、ホウ素のような中性領域では非解離の物質に対しても高い阻止性能を示すので、原子力発電所の冷却水やメッキ廃水を処理する用途、高濃度かん水や海水を淡水化処理して飲料水等を製造する用途、等に好適に用いることができる。 The composite semipermeable membrane of the present invention can achieve a high salt removal rate and a high permeation flux, and also exhibits high blocking performance against non-dissociated substances in a neutral region such as boron. It can be suitably used for applications such as treating cooling water and plating wastewater, and using desalinated high-concentration brine or seawater to produce drinking water and the like.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007501635A JP5200535B2 (en) | 2005-12-16 | 2006-12-13 | Composite semipermeable membrane and method for producing the same |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005362934 | 2005-12-16 | ||
JP2005362934 | 2005-12-16 | ||
JP2005367584 | 2005-12-21 | ||
JP2005367584 | 2005-12-21 | ||
JP2006117579 | 2006-04-21 | ||
JP2006117579 | 2006-04-21 | ||
JP2007501635A JP5200535B2 (en) | 2005-12-16 | 2006-12-13 | Composite semipermeable membrane and method for producing the same |
PCT/JP2006/324808 WO2007069626A1 (en) | 2005-12-16 | 2006-12-13 | Composite semipermeable membrane, process for production of the same, and use thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007069626A1 true JPWO2007069626A1 (en) | 2009-05-21 |
JP5200535B2 JP5200535B2 (en) | 2013-06-05 |
Family
ID=38162933
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007501635A Expired - Fee Related JP5200535B2 (en) | 2005-12-16 | 2006-12-13 | Composite semipermeable membrane and method for producing the same |
Country Status (6)
Country | Link |
---|---|
US (1) | US8602222B2 (en) |
JP (1) | JP5200535B2 (en) |
KR (1) | KR101337851B1 (en) |
CN (1) | CN101325998B (en) |
TW (1) | TW200732031A (en) |
WO (1) | WO2007069626A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101928256B1 (en) * | 2010-02-23 | 2018-12-11 | 도레이 카부시키가이샤 | Composite semipermeable membrane and process for production thereof |
KR101296108B1 (en) * | 2010-12-24 | 2013-08-20 | 웅진케미칼 주식회사 | High boron rejection polyamide composite membrane and manufacturing method thereof |
US8968828B2 (en) | 2011-01-24 | 2015-03-03 | Dow Global Technologies Llc | Composite polyamide membrane |
KR102002760B1 (en) * | 2012-01-06 | 2019-07-23 | 다우 글로벌 테크놀로지스 엘엘씨 | Composite polyamide membrane |
JP6166351B2 (en) | 2012-04-09 | 2017-07-19 | スリーエム イノベイティブ プロパティズ カンパニー | Thin film composite membrane structure |
US9211507B2 (en) | 2012-11-21 | 2015-12-15 | Lg Chem, Ltd. | Water-treatment separating membrane of high flux having good chlorine resistance and method of manufacturing the same |
CN103958037B (en) | 2012-11-21 | 2016-08-24 | Lg化学株式会社 | The high flux water with good chlorine resistance processes separation film |
US9289729B2 (en) | 2013-03-16 | 2016-03-22 | Dow Global Technologies Llc | Composite polyamide membrane derived from carboxylic acid containing acyl halide monomer |
US9051227B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | In-situ method for preparing hydrolyzed acyl halide compound |
US9051417B2 (en) | 2013-03-16 | 2015-06-09 | Dow Global Technologies Llc | Method for solubilizing carboxylic acid-containing compound in hydrocarbon solvent |
US9808769B2 (en) | 2013-12-02 | 2017-11-07 | Dow Global Technologies Llc | Composite polyamide membrane post treated with nitrious acid |
CN106170333B (en) | 2013-12-02 | 2019-02-15 | 陶氏环球技术有限责任公司 | Composite polyamide membrane treated with dihydroxyaryl compound and nitrous acid |
JP6535011B2 (en) | 2014-01-09 | 2019-06-26 | ダウ グローバル テクノロジーズ エルエルシー | Composite polyamide film having azo content and high acid content |
KR102289354B1 (en) | 2014-01-09 | 2021-08-12 | 다우 글로벌 테크놀로지스 엘엘씨 | Composite polyamide membrane having high acid content and low azo content |
US9555378B2 (en) | 2014-01-09 | 2017-01-31 | Dow Global Technologies Llc | Composite polyamide membrane having preferred azo content |
WO2015167759A1 (en) | 2014-04-28 | 2015-11-05 | Dow Global Technologies Llc | Composite polyamide membrane post-treated with nitrous acid |
US9943810B2 (en) | 2014-05-14 | 2018-04-17 | Dow Global Technologies Llc | Composite polyamide membrane post-treated with nitrous acid |
CN106457165B (en) * | 2014-06-30 | 2020-07-07 | 东丽株式会社 | Composite semipermeable membrane |
US20170136422A1 (en) * | 2014-06-30 | 2017-05-18 | Toray Industries, Inc. | Composite semipermeable membrane |
JP6645729B2 (en) | 2014-09-25 | 2020-02-14 | 日東電工株式会社 | Spiral type membrane element |
CN105983147A (en) * | 2015-01-28 | 2016-10-05 | 王寿梅 | Hemodialysis filter for nephrology department |
SG10201912708RA (en) | 2015-12-17 | 2020-02-27 | Univ Singapore Technology & Design | Boron removal and measurement in aqueous solutions |
JP6933902B2 (en) * | 2017-02-02 | 2021-09-08 | オルガノ株式会社 | Method for modifying reverse osmosis membrane and method for treating uncharged substance-containing water |
CN110290866B9 (en) * | 2017-02-09 | 2023-04-04 | 加州理工学院 | Water purification using porous carbon electrodes |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4761234A (en) * | 1985-08-05 | 1988-08-02 | Toray Industries, Inc. | Interfacially synthesized reverse osmosis membrane |
JPH01180208A (en) | 1988-01-11 | 1989-07-18 | Toray Ind Inc | Production of compound semipermeable membrane |
JP2727594B2 (en) | 1988-10-25 | 1998-03-11 | 東レ株式会社 | Method for producing composite semipermeable membrane |
JP3031763B2 (en) * | 1990-09-14 | 2000-04-10 | 日東電工株式会社 | Composite reverse osmosis membrane and method for producing the same |
JPH0810595A (en) * | 1994-06-29 | 1996-01-16 | Nitto Denko Corp | Composite reverse osmosis membrane |
US5693227A (en) * | 1994-11-17 | 1997-12-02 | Ionics, Incorporated | Catalyst mediated method of interfacial polymerization on a microporous support, and polymers, fibers, films and membranes made by such method |
JP3489922B2 (en) * | 1994-12-22 | 2004-01-26 | 日東電工株式会社 | Method for producing highly permeable composite reverse osmosis membrane |
JPH1119493A (en) | 1997-07-03 | 1999-01-26 | Nitto Denko Corp | Reverse osmotic membrane module and treatment of sea water |
JP4289757B2 (en) | 2000-03-23 | 2009-07-01 | 日東電工株式会社 | Method for producing composite reverse osmosis membrane |
US7279097B2 (en) * | 2003-06-18 | 2007-10-09 | Toray Industries, Inc. | Composite semipermeable membrane, and production process thereof |
JP2005095856A (en) * | 2003-06-18 | 2005-04-14 | Toray Ind Inc | Compound semi-permeable membrane and production method therefor |
NL1030346C2 (en) * | 2004-11-15 | 2006-09-20 | Toray Industries | Semi-permeable composite membrane, production method thereof, and element, fluid separation plant and method for treatment of water using the same. |
US7727434B2 (en) * | 2005-08-16 | 2010-06-01 | General Electric Company | Membranes and methods of treating membranes |
-
2006
- 2006-12-13 JP JP2007501635A patent/JP5200535B2/en not_active Expired - Fee Related
- 2006-12-13 CN CN2006800466912A patent/CN101325998B/en not_active Expired - Fee Related
- 2006-12-13 US US12/085,676 patent/US8602222B2/en not_active Expired - Fee Related
- 2006-12-13 WO PCT/JP2006/324808 patent/WO2007069626A1/en active Application Filing
- 2006-12-13 KR KR1020087014434A patent/KR101337851B1/en not_active IP Right Cessation
- 2006-12-15 TW TW095146980A patent/TW200732031A/en unknown
Also Published As
Publication number | Publication date |
---|---|
TW200732031A (en) | 2007-09-01 |
US8602222B2 (en) | 2013-12-10 |
JP5200535B2 (en) | 2013-06-05 |
CN101325998B (en) | 2011-12-21 |
WO2007069626A1 (en) | 2007-06-21 |
KR20080078834A (en) | 2008-08-28 |
US20090071903A1 (en) | 2009-03-19 |
KR101337851B1 (en) | 2013-12-06 |
CN101325998A (en) | 2008-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5200535B2 (en) | Composite semipermeable membrane and method for producing the same | |
US7279097B2 (en) | Composite semipermeable membrane, and production process thereof | |
EP0211633B2 (en) | Semipermeable composite membrane | |
Li et al. | Recent developments in reverse osmosis desalination membranes | |
JP5859676B2 (en) | Chlorine-resistant high permeated water treatment separation membrane and method for producing the same | |
WO2010042250A2 (en) | Semipermeable polymers and method for producing same | |
JP2010094641A (en) | Method of treating composite semipermeable film | |
JP2015504369A (en) | Polyamide-based water treatment separation membrane excellent in contamination resistance and method for producing the same | |
JPH04244222A (en) | Reverse osmosis membrane of polyamide urethane | |
JP2008080187A (en) | Composite semipermeable membrane and use thereof | |
KR20100078822A (en) | Manufacturing method for polyamide-based reverse osmosis membrane and polyamide-based reverse osmosis membrane manufactured thereby | |
JP2005095856A (en) | Compound semi-permeable membrane and production method therefor | |
JP5177056B2 (en) | Composite semipermeable membrane | |
JP2009262089A (en) | Manufacturing method of composite semi-permeable membrane | |
JP5062136B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP5050335B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP4872800B2 (en) | Method for treating composite semipermeable membrane and method for producing salt-treated composite semipermeable membrane | |
JP3852211B2 (en) | Composite semipermeable membrane and method for producing the same | |
JP4470472B2 (en) | Composite semipermeable membrane and method for producing water using the same | |
JP2009220023A (en) | Method for manufacturing composite semi-permeable membrane | |
JP5131027B2 (en) | Manufacturing method of composite semipermeable membrane | |
JP2003200027A (en) | Method for manufacturing composite semipermeable membrane | |
JP2005246207A (en) | Method for producing composite semi-permeable membrane | |
KR20000031681A (en) | Process for the preparation of polyamide composite separating film | |
JP2020195937A (en) | Method of producing fresh water |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091023 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20091023 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121024 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130115 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160222 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |