JPWO2007043640A1 - Drugs for treating or preventing HCV infection - Google Patents

Drugs for treating or preventing HCV infection Download PDF

Info

Publication number
JPWO2007043640A1
JPWO2007043640A1 JP2007539995A JP2007539995A JPWO2007043640A1 JP WO2007043640 A1 JPWO2007043640 A1 JP WO2007043640A1 JP 2007539995 A JP2007539995 A JP 2007539995A JP 2007539995 A JP2007539995 A JP 2007539995A JP WO2007043640 A1 JPWO2007043640 A1 JP WO2007043640A1
Authority
JP
Japan
Prior art keywords
peptide
amino acid
hcv
seq
acid sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007539995A
Other languages
Japanese (ja)
Inventor
正幸 須藤
正幸 須藤
洋 坂本
洋 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Pharmaceutical Co Ltd
Original Assignee
Chugai Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Pharmaceutical Co Ltd filed Critical Chugai Pharmaceutical Co Ltd
Publication of JPWO2007043640A1 publication Critical patent/JPWO2007043640A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2770/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
    • C12N2770/00011Details
    • C12N2770/24011Flaviviridae
    • C12N2770/24211Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
    • C12N2770/24222New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/005Assays involving biological materials from specific organisms or of a specific nature from viruses
    • G01N2333/08RNA viruses
    • G01N2333/18Togaviridae; Flaviviridae
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本発明者らは、HCVタンパク質およびスフィンゴ脂質の結合部位の特定および、結合能について検討を行った。その結果、ラフトの構成成分であるスフィンゴミエリンと、HCVタンパク質であるHCV-NS5Bが特定の部位において強く結合すること、およびこれらの結合によりHCVウイルスの複製が行われていることが明らかとなった。また、スフィンゴミエリンとHCVタンパク質の結合を阻害することにより、HCVウイルスの複製を抑制出来ることが明らかとなった。The inventors of the present invention have identified the binding site of HCV protein and sphingolipid and examined the binding ability. As a result, it was clarified that sphingomyelin, which is a component of raft, and HCV-NS5B, which is an HCV protein, bind strongly at specific sites, and that HCV virus is replicated by these bonds. . It was also revealed that replication of HCV virus can be suppressed by inhibiting the binding of sphingomyelin and HCV protein.

Description

本発明は、スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤に関する。また、HCV感染症を治療または予防するための薬剤のスクリーニング方法、およびこれらに用いるためのキットに関する。   The present invention relates to a drug for treating or preventing HCV infection, which contains a compound that inhibits the binding of sphingomyelin and HCV protein as an active ingredient. Moreover, it is related with the screening method of the drug for treating or preventing HCV infection, and the kit for using these.

HCVの感染者は世界で1〜2億人、日本国内では200万人以上と推測されている。これらの患者の約50%が慢性肝炎に移行し、そのうち約20%が感染後30年以上たって肝硬変、肝癌となる。肝癌の約90%の原因がC型肝炎といわれている。日本国内では、毎年3万人以上の患者がHCV感染に伴う肝癌により死亡している。   It is estimated that there are 1 to 200 million people infected with HCV worldwide and more than 2 million people in Japan. About 50% of these patients transition to chronic hepatitis, of which about 20% develop cirrhosis and liver cancer more than 30 years after infection. About 90% of liver cancer is said to be caused by hepatitis C. In Japan, more than 30,000 patients die from liver cancer associated with HCV infection every year.

HCVは1989年に輸血後の非A非B型肝炎の主要な原因ウイルスとして発見された。HCVはエンベロープを有するRNAウイルスであり、そのゲノムは1本鎖(+)RNAからなり、フラビウイルス科のヘパチウイルス(Hepacivirus)属に分類される。   HCV was discovered in 1989 as a major causative virus for non-A non-B hepatitis after blood transfusion. HCV is an RNA virus having an envelope, and its genome consists of single-stranded (+) RNA, and is classified into the genus Hepacivirus of the Flaviviridae family.

HCVは、いまだ明らかでない原因により宿主の免疫機構を回避するため、免疫機構の発達した大人に感染した場合でも持続感染が成立することが多く、慢性肝炎、肝硬変、肝癌へと進行し、手術により摘出しても、非癌部で引き続き起こる炎症のため肝癌が再発する患者が多いことも知られている。   HCV avoids the immune system of the host due to an unclear cause, so persistent infection is often established even when infected with an adult with an advanced immune system, which progresses to chronic hepatitis, cirrhosis, and liver cancer. It is also known that even after excision, there are many patients whose liver cancer recurs due to inflammation that continues in the non-cancerous part.

よって、C型肝炎の有効な治療法の確立が望まれており、その中でも、抗炎症剤により炎症を抑える対処療法とは別に、患部である肝臓においてHCVを減らすあるいは根絶させる薬剤の開発が強く望まれている。   Therefore, establishment of an effective treatment method for hepatitis C is desired. In particular, apart from coping therapy that suppresses inflammation with anti-inflammatory agents, development of drugs that reduce or eradicate HCV in the affected liver is strong. It is desired.

現在、HCV排除の唯一の有効な治療法としてインターフェロン治療が知られている。しかしインターフェロンが有効な患者は、全患者の1/3程度である。特にHCVゲノタイプ1bに対するインターフェロンの奏効率は非常に低い。従って、インターフェロンに代わる、もしくはそれと併用し得る抗HCV薬の開発が強く望まれている。   Currently, interferon therapy is known as the only effective treatment for HCV exclusion. However, about 1/3 of all patients have effective interferon. In particular, the response rate of interferon against HCV genotype 1b is very low. Therefore, development of an anti-HCV drug that can replace or be used in combination with interferon is strongly desired.

近年、リバビリン(Ribavirin:1−β−D−リボフラノシル−1H−1,2,4−トリアゾール−3−カルボキシアミド)がインターフェロンとの併用によるC型肝炎治療薬として市販されているが、有効率は依然低く、更なる新規なC型肝炎治療薬が望まれている。また、インターフェロンアゴニスト、インターロイキン−12アゴニストなど、患者の免疫力を増強させることによってウイルスを排除する手段も試みられているが、いまだ有効とされる薬剤は見出されていない。   In recent years, ribavirin (1-β-D-ribofuranosyl-1H-1,2,4-triazole-3-carboxamide) has been marketed as a therapeutic agent for hepatitis C in combination with interferon. It is still low and further novel hepatitis C therapeutics are desired. In addition, attempts have been made to eliminate viruses by enhancing the immunity of patients, such as interferon agonists and interleukin-12 agonists, but no effective drug has been found yet.

HCV遺伝子がクローニングされて以来、ウイルス遺伝子の機構と機能、各ウイルスのタンパク質の機能などについての分子生物学的解析は急速に進展したが、ホスト細胞内でのウイルスの複製、持続感染、病原性などのメカニズムは十分に解明されておらず、信頼できる培養細胞を用いたHCV感染実験系は構築されていなかった。従って従来、抗HCV薬の評価をするにあたり他の近縁ウイルスを用いた代替ウイルスアッセイ法を用いなければならなかった。   Since the HCV gene was cloned, molecular biological analysis of viral gene mechanisms and functions, protein functions of each virus, etc. has rapidly progressed, but virus replication, persistent infection, and pathogenicity in host cells. Such a mechanism has not been fully elucidated, and a reliable HCV infection experiment system using cultured cells has not been established. Therefore, in the past, alternative virus assays using other closely related viruses had to be used to evaluate anti-HCV drugs.

しかし近年、HCVの非構造領域部分を用いてインビトロでのHCV複製を観測することが可能になったことにより、レプリコンアッセイ法によって抗HCV薬を容易に評価することができるようになった(非特許文献1)。この系でのHCV RNA複製のメカニズムは、肝細胞に感染した全長HCV RNAゲノムの複製と同一であると考えられている。従って、この系は、HCVの複製を阻害する化合物の同定に有用な細胞に基づくアッセイ系ということができる。   However, in recent years, it has become possible to observe HCV replication in vitro using a non-structural region portion of HCV, so that anti-HCV drugs can be easily evaluated by a replicon assay method (non- Patent Document 1). The mechanism of HCV RNA replication in this system is thought to be identical to the replication of the full-length HCV RNA genome infected with hepatocytes. Thus, this system can be referred to as a cell-based assay system useful for identifying compounds that inhibit HCV replication.

なお、本出願の発明に関連する先行技術文献情報を以下に示す。
国際公開公報WO98/56755号パンフレット 国際公開公報WO04/71503号パンフレット 国際公開公報WO05/05372号パンフレット ブイ・ローマンなど著、サイエンス(Science)、1999年、第285巻、第110-113頁
Prior art document information related to the invention of the present application is shown below.
International Publication WO98 / 56755 Pamphlet International Publication WO04 / 71503 Pamphlet International Publication WO05 / 05372 Pamphlet Buoy Lohmann et al., Science, 1999, 285, 110-113

本願発明者らは、国際公開公報WO98/56755号(特許文献1)に開示されており、オーレオバシディウム(Aureobasidium)属などの微生物に由来する一連の化合物が、上記レプリコンアッセイ法で高いHCVの複製阻害活性を有することを見出した(特許文献2)。また本願発明者らは、該化合物がインビトロの細胞毒性については軽微であり、HCV感染症の予防剤または治療剤として極めて有用であることを見出し、さらに該化合物および誘導体の合成方法を構築した(特許文献3)。また本願発明者らは、スフィンゴ脂質生合成がHCV感染に関与すること、およびスフィンゴ脂質生合成に関わる酵素の活性や発現を阻害する化合物が、HCV感染症の極めて有用な治療剤または予防剤となることを明らかにした(WO2006/16657)。   The inventors of the present application are disclosed in International Publication No. WO98 / 56755 (Patent Document 1), and a series of compounds derived from microorganisms such as the genus Aureobasidium have high HCV in the above replicon assay method. It was found to have a replication inhibitory activity (Patent Document 2). In addition, the present inventors have found that the compound has minimal in vitro cytotoxicity and is extremely useful as a preventive or therapeutic agent for HCV infection, and further constructed a method for synthesizing the compound and derivative ( Patent Document 3). In addition, the present inventors also found that sphingolipid biosynthesis is involved in HCV infection, and compounds that inhibit the activity and expression of enzymes involved in sphingolipid biosynthesis are extremely useful therapeutic or preventive agents for HCV infection. It was made clear (WO2006 / 16657).

スフィンゴ脂質であるスフィンゴミエリンは細胞膜上のラフトの構成成分であり、インフルエンザ、HIV等のウイルスがラフトを介して複製される(Takeda M. et al. (2003) PNAS, 100, 25、Lucero H. A., et al. (2004) Archives of Biochemistry and Biophysics, 426, 208、Simons K. (1997) Nature, 387, 569、G.−Z. Leu et al. (2004))。
これらのことから本発明者らは、HCVがラフトを介して複製されると予想し、スフィンゴ脂質を含むラフトを介したHCVウイルス複製について、詳細な機構の解明を試みた。
Sphingomyelin, a sphingolipid, is a constituent of rafts on cell membranes, and viruses such as influenza and HIV are replicated via rafts (Takeda M. et al. (2003) PNAS, 100, 25, Lucero HA, et al. (2004) Archives of Biochemistry and Biophysics, 426, 208, Simons K. (1997) Nature, 387, 569, G.-Z. Leu et al. (2004)).
From these facts, the present inventors predicted that HCV is replicated via rafts, and attempted to elucidate the detailed mechanism of HCV virus replication via rafts containing sphingolipids.

本発明は、このような状況に鑑みてなされたものであり、その目的は、スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤を提供することにある。また、HCV感染症を治療または予防するための薬剤のスクリーニング方法、およびこれらに用いるためのキットの提供も目的とする。   The present invention has been made in view of such a situation, and the object thereof is a drug for treating or preventing HCV infection, which contains a compound that inhibits the binding of sphingomyelin and HCV protein as an active ingredient. Is to provide. Another object of the present invention is to provide a method for screening a drug for treating or preventing HCV infection and a kit for use in the method.

上記課題を解決するために、本願発明者らはHCVタンパク質およびスフィンゴ脂質(スフィンゴミエリン)の結合部位の特定および、結合能について検討を行った。
まず、HCVタンパク質の中に、スフィンゴ脂質結合領域があるか探索するために、類似する構造をCEプログラムにより検索した。その結果、NS5Bの配列E230-G263において、へリックス・ターン・へリックスのモチーフを持った類似構造が認められた(図1)。
In order to solve the above-mentioned problems, the present inventors have investigated the binding site and binding ability of HCV protein and sphingolipid (sphingomyelin).
First, in order to search for a sphingolipid-binding region in the HCV protein, a similar structure was searched by the CE program. As a result, a similar structure having a helix-turn-helix motif was observed in NS5B sequence E230-G263 (Fig. 1).

次に、Biacore S51を用いて、NS5Bスフィンゴ結合領域(NS5B-SBD)とスフィンゴミエリン(SM)との結合能を確認したところ、NS5B-SBDペプチドは、濃度依存的にスフィンゴミエリンと結合することが明らかとなった(図2A)。また、プリオンタンパク質(PrP)においても同様な結合が認められた(図2B)。
さらに、NS5Bスフィンゴ結合領域ペプチドおよびその誘導体のHCVレプリコン阻害活性を測定したところ、これらのペプチドは有意な抗HCV複製阻害活性を示すことが明らかとなった(図3)。
上記の結果よりラフトの構成成分であるスフィンゴミエリンと、HCVタンパク質であるHCV-NS5Bが特定の部位において強く結合すること、およびこれらの結合によりHCVウイルスの複製が行われていることが明らかとなった。また、スフィンゴミエリンとHCVタンパク質の結合を阻害することにより、HCVウイルスの複製を抑制出来ることが明らかとなった。
Next, Biacore S51 was used to confirm the binding ability of the NS5B sphingo-binding domain (NS5B-SBD) and sphingomyelin (SM). The NS5B-SBD peptide could bind to sphingomyelin in a concentration-dependent manner. It became clear (Fig. 2A). Similar binding was also observed in prion protein (PrP) (FIG. 2B).
Furthermore, when HCV replicon inhibitory activity of NS5B sphingo-binding domain peptides and derivatives thereof was measured, it was revealed that these peptides exhibited significant anti-HCV replication inhibitory activity (FIG. 3).
From the above results, it is clear that sphingomyelin, which is a component of raft, and HCV-NS5B, which is an HCV protein, bind strongly at a specific site, and that the HCV virus is replicated by these bonds. It was. It was also revealed that replication of HCV virus can be suppressed by inhibiting the binding of sphingomyelin and HCV protein.

即ち、本発明者らは、スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤を開発することに成功し、これにより本発明を完成するに至った。   That is, the present inventors have succeeded in developing a drug for treating or preventing HCV infection, which contains a compound that inhibits the binding of sphingomyelin and HCV protein as an active ingredient. It came to be completed.

本発明は、より具体的には、以下の〔1〕〜〔14〕を提供する。
〔1〕スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤。
〔2〕スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドである、〔1〕に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
〔3〕スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドをコードするオリゴヌクレオチドである、〔1〕に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
〔4〕スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドを認識する抗体である、〔1〕に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
〔5〕HCVタンパク質がHCV-NS5Bである〔1〕〜〔4〕のいずれかに記載の薬剤。
〔6〕HCV感染症が、C型肝炎、肝硬変、肝繊維化、または肝癌である、〔1〕〜〔5〕のいずれかに記載の薬剤。
〔7〕以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤のスクリーニング方法。
(A)以下の(a)または(b)に記載のペプチドに被検化合物を接触させる工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)(A)に記載のペプチドと被検化合物の結合を検出する工程
(C)(A)に記載のペプチドと結合する被検化合物を選択する工程
〔8〕以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤のスクリーニング方法。
(A)被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定する工程
(C)被検化合物を添加しない場合に比べて、上記結合能を低下させた被検化合物を選択する工程
〔9〕HCV感染症が、C型肝炎、肝硬変、肝繊維化、または肝癌である、〔7〕または〔8〕に記載のスクリーニング方法。
〔10〕〔7〕〜〔9〕のいずれかに記載のスクリーニング方法に用いるためのキット。
〔11〕以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤の効力の評価方法。
(A)以下の(a)または(b)に記載のペプチドに被検化合物を接触させる工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)(A)に記載のペプチドと被検化合物の結合を検出する工程
(C)(A)に記載のペプチドと結合する被検化合物の、HCV感染症の治療または予防効果の効力を評価する工程
〔12 〕以下の(A)および(B)の工程を含む、HCV感染症を治療または予防するための薬剤の効力の評価方法。
(A)被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定することによる、HCV感染症の治療または予防効果の効力を評価する工程
〔13〕〔11〕または〔12〕のいずれかに記載の評価方法に用いるためのキット。
〔14〕以下の(a)または(b)に記載のペプチド。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
More specifically, the present invention provides the following [1] to [14].
[1] A drug for treating or preventing HCV infection, comprising as an active ingredient a compound that inhibits the binding of sphingomyelin and HCV protein.
[2] The drug according to [1], wherein the compound that inhibits the binding of sphingomyelin and HCV protein is the peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 A peptide comprising an amino acid sequence in which an amino acid is substituted, deleted, added and / or inserted [3] A compound that inhibits the binding of sphingomyelin and HCV protein encodes the peptide described in (a) or (b) below: The drug according to [1], which is an oligonucleotide.
(A) a peptide comprising the amino acid sequence described in any one of SEQ ID NOs: 1 to 4, 10 or 11 (b) one or more of the amino acid sequences described in any one of SEQ ID NOs: 1 to 4, 10 or 11 A peptide comprising an amino acid sequence substituted, deleted, added and / or inserted [4] A compound that inhibits the binding of sphingomyelin and HCV protein recognizes the peptide described in (a) or (b) below The drug according to [1], wherein
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 The peptide according to any one of [1] to [4], wherein the peptide [5] HCV protein consisting of an amino acid sequence substituted, deleted, added and / or inserted is HCV-NS5B.
[6] The drug according to any one of [1] to [5], wherein the HCV infection is hepatitis C, cirrhosis, liver fibrosis, or liver cancer.
[7] A screening method for a drug for treating or preventing HCV infection, comprising the following steps (A) to (C):
(A) A step of bringing a test compound into contact with the peptide described in (a) or (b) below: (a) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 (b A peptide (B) (A) comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 1 to 4, 10 or 11 Step (C) for detecting the binding of the described peptide to the test compound (C) The step of selecting the test compound that binds to the peptide described in (A) [8] The following steps (A) to (C) are included: A screening method for drugs for treating or preventing HCV infection.
(A) A step of adding a test compound to sphingomyelin simultaneously with the peptide described in (a) or (b) below: (a) the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 A peptide (b) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 ) Step of measuring the binding ability of the peptide described in (a) or (b) above and sphingomyelin (C) Select a test compound having a reduced binding ability compared to the case where no test compound is added [9] The screening method according to [7] or [8], wherein the HCV infection is hepatitis C, cirrhosis, liver fibrosis, or liver cancer.
[10] A kit for use in the screening method according to any one of [7] to [9].
[11] A method for evaluating the efficacy of a drug for treating or preventing HCV infection, comprising the following steps (A) to (C):
(A) A step of bringing a test compound into contact with the peptide described in (a) or (b) below: (a) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 (b A peptide (B) (A) comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 1 to 4, 10 or 11 Step (C) for detecting the binding of the described peptide to the test compound (C) The step [12] for evaluating the efficacy of the therapeutic or prophylactic effect of HCV infection of the test compound binding to the peptide described in (A) A method for evaluating the efficacy of a drug for treating or preventing HCV infection, comprising the steps of (A) and (B).
(A) A step of adding a test compound to sphingomyelin simultaneously with the peptide described in (a) or (b) below: (a) the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 A peptide (b) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 ) Step [13] [11] or [12] for evaluating the efficacy of the therapeutic or prophylactic effect of HCV infection by measuring the binding ability of the peptide described in (a) or (b) above and sphingomyelin A kit for use in the evaluation method according to any one of the above.
[14] The peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted

Aは、HCV-NS5Bの配列E230-G263およびV3ループのアミノ酸配列を示す図である。Bは、HCV-NS5Bの構造を示す図である。縦線はHCV-NS5Bの同定した推定のスフィンゴ脂質結合領域。斜線はHIV-1 V3ループのスフィンゴ脂質結合領域を示す。Cは、HCV-NS5Bにおけるへリックス・ターン・へリックスのモチーフを示す図である。A is a figure which shows the amino acid sequence of sequence E230-G263 and V3 loop of HCV-NS5B. B is a figure which shows the structure of HCV-NS5B. The vertical line is the putative sphingolipid binding region identified by HCV-NS5B. The diagonal line indicates the sphingolipid binding region of the HIV-1 V3 loop. C is a diagram showing a helix-turn-helix motif in HCV-NS5B. Biacoreを用いたHCV-NS5Bスフィンゴ結合領域ペプチド(NS5B-SBD、配列番号:1)とスフィンゴミエリン(SM)との結合検討の結果を示す図である。Aは、NS5B-SBDペプチドのセンサグラムを示す図であり、NS5B-SBDペプチドは濃度依存的にスフィンゴミエリンとの結合を認めた。Bは、NS5B-SBDペプチドとプリオンタンパク質(PrP、配列番号:2)の、スフィンゴミエリンへの結合能を比較したものである。センサグラム80s時のRU値を示す。It is a figure which shows the result of the binding examination of HCV-NS5B sphingo binding region peptide (NS5B-SBD, sequence number: 1) and sphingomyelin (SM) using Biacore. A is a diagram showing a sensorgram of NS5B-SBD peptide, and NS5B-SBD peptide was found to bind to sphingomyelin in a concentration-dependent manner. B is a comparison of the binding ability of NS5B-SBD peptide and prion protein (PrP, SEQ ID NO: 2) to sphingomyelin. Indicates the RU value at sensorgram 80s. NS5Bスフィンゴ結合領域ペプチドおよびその誘導体のHCVレプリコン阻害活性測定の結果を示す図である。It is a figure which shows the result of the HCV replicon inhibitory activity measurement of NS5B sphingo binding domain peptide and its derivative (s). スフィンゴ脂質合成経路(パルミトイルCoAからスフィンゴミエリンまでの合成経路)を示す図である。It is a figure which shows the sphingolipid synthetic pathway (synthetic pathway from palmitoyl CoA to sphingomyelin). ノザンブロット解析によるミリオシンのHCV RNA複製阻害活性を示す写真である。横軸はミリオシンの濃度を表す。It is a photograph which shows the HCV RNA replication inhibitory activity of myriocin by Northern blot analysis. The horizontal axis represents the concentration of myriocin. ノザンブロット解析による式(II)で表される化合物のHCV RNA複製阻害活性を示す写真である。横軸は式(II)で表される化合物の濃度を表す。It is a photograph which shows the HCV RNA replication inhibitory activity of the compound represented by Formula (II) by Northern blot analysis. The horizontal axis represents the concentration of the compound represented by formula (II). ウェスタンブロット解析によるミリオシンのHCVタンパク合成阻害活性を示す写真である。横軸はミリオシンの濃度を表す。It is a photograph which shows the HCV protein synthesis inhibitory activity of myriocin by Western blot analysis. The horizontal axis represents the concentration of myriocin. ウェスタンブロット解析による式(II)で表される化合物のHCVタンパク合成阻害活性を示す写真である。横軸は式(II)で表される化合物の濃度を表す。It is a photograph which shows the HCV protein synthesis inhibitory activity of the compound represented by Formula (II) by Western blot analysis. The horizontal axis represents the concentration of the compound represented by formula (II). フモニシンB1のHCVレプリコン阻害活性を示す図である。It is a figure which shows the HCV replicon inhibitory activity of fumonisin B1. siRNAによるセリンパルミトイル転移酵素(LCB1)のタンパク質発現阻害を示す写真である。It is a photograph which shows protein expression inhibition of serine palmitoyltransferase (LCB1) by siRNA. siRNAによるHCVレプリコン阻害活性および細胞毒性の影響を示す図である。It is a figure which shows the influence of HCV replicon inhibitory activity and cytotoxicity by siRNA. 式(II)で表される化合物によるHCVレプリコンの阻害及び宿主細胞への毒性を示す図である。It is a figure which shows inhibition of the HCV replicon by the compound represented by Formula (II), and toxicity to a host cell. 式(II)で表される化合物によるHCV-NS3タンパク質の発現阻害を示す写真である。免疫染色の後、蛍光顕微鏡にて観察した。白色はNS3タンパク質、灰色はヘキスト33342で染色された核を示す。2 is a photograph showing inhibition of expression of HCV-NS3 protein by a compound represented by formula (II). After immunostaining, it was observed with a fluorescence microscope. White indicates NS3 protein and gray indicates nuclei stained with Hoechst 33342. 式(II)で表される化合物によるNS3、NS5A、およびNS-5Bタンパク質の発現阻害を示す写真である。各タンパク質の発現は、ウェスタンブロット解析により行った。2 is a photograph showing inhibition of NS3, NS5A, and NS-5B protein expression by a compound represented by formula (II). Each protein was expressed by Western blot analysis. 式(II)で表される化合物によるSPT阻害活性を示す図である。It is a figure which shows SPT inhibitory activity by the compound represented by Formula (II). 式(II)で表される化合物によるセラミド、スフィンゴミエリンのde novo合成阻害を示す写真である。2 is a photograph showing inhibition of de novo synthesis of ceramide and sphingomyelin by a compound represented by formula (II). C2−セラミドによる式(II)で表される化合物のHCV複製阻害の抑制を示す写真である。It is a photograph which shows suppression of HCV replication inhibition of the compound represented by Formula (II) by C2-ceramide. ラフト生合成関連低分子化合物によるHCV複製阻害を示す図である。It is a figure which shows HCV replication inhibition by the raft biosynthesis related low molecular weight compound. 式(II)で表される化合物によるラフトタンパク質への影響を示す写真である。It is a photograph which shows the influence on the raft protein by the compound represented by Formula (II). 式(II)で表される化合物によるラフトタンパク質への影響を示す図である。It is a figure which shows the influence on raft protein by the compound represented by Formula (II).

本発明は、スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤に関する。   The present invention relates to a drug for treating or preventing HCV infection, which contains a compound that inhibits the binding of sphingomyelin and HCV protein as an active ingredient.

本発明において、スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物とは、スフィンゴミエリンとHCVタンパク質の結合反応を、直接的もしくは間接的に阻害するものであれば如何なる化合物であってもよい。また、これらの阻害剤を生成または増加させる化合物であって、スフィンゴミエリンとHCVタンパク質の結合反応を間接的に阻害する化合物であってもよい。   In the present invention, the compound that inhibits the binding between sphingomyelin and HCV protein may be any compound that can directly or indirectly inhibit the binding reaction between sphingomyelin and HCV protein. Moreover, it is a compound which produces | generates or increases these inhibitors, Comprising: The compound which indirectly inhibits the binding reaction of sphingomyelin and HCV protein may be sufficient.

本発明において、HCVタンパク質としては、HCV-NS2、HCV-NS3、HCV-NS4A、HCV-NS4B、HCV-NS5A、HCV-NS5Bを挙げることが出来るが、より好ましくは、HCV-NS5Bを挙げることができる。   In the present invention, examples of the HCV protein include HCV-NS2, HCV-NS3, HCV-NS4A, HCV-NS4B, HCV-NS5A, and HCV-NS5B, more preferably HCV-NS5B. it can.

本発明のスフィンゴミエリンとHCVタンパク質の結合を阻害する化合物の好ましい例としては、以下の(a)または(b)に記載のペプチドを挙げることができる。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
Preferable examples of the compound that inhibits the binding of sphingomyelin and HCV protein of the present invention include the peptides described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted

配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において例えば1〜10個、好ましくは1〜5個のアミノ酸残基が、置換、欠失、付加、および/または挿入されたアミノ酸配列を含み、配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチドと機能的に同等なペプチドもこれらのペプチドに含まれる。変異するアミノ酸残基においては、アミノ酸側鎖の性質が保存されている別のアミノ酸に変異されることが望ましい。例えばアミノ酸側鎖の性質としては、疎水性アミノ酸(A、I、L、M、F、P、W、Y、V)、親水性アミノ酸(R、D、N、C、E、Q、G、H、K、S、T)、脂肪族側鎖を有するアミノ酸(G、A、V、L、I、P)、水酸基含有側鎖を有するアミノ酸(S、T、Y)、硫黄原子含有側鎖を有するアミノ酸(C、M)、カルボン酸及びアミド含有側鎖を有するアミノ酸(D、N、E、Q)、塩基含有側鎖を有するアミノ酸(R、K、H)、芳香族含有側鎖を有するアミノ酸(H、F、Y、W)を挙げることができる(括弧内はいずれもアミノ酸の一文字標記を表す)。あるアミノ酸配列に対する1又は複数個のアミノ酸残基の欠失、付加及び/又は他のアミノ酸による置換により修飾されたアミノ酸配列を有するポリペプチドがその生物学的活性を維持することはすでに知られている。   In the amino acid sequence described in any one of SEQ ID NOs: 1 to 4, 10 or 11, for example, 1 to 10, preferably 1 to 5 amino acid residues are substituted, deleted, added, and / or inserted. A peptide that includes an amino acid sequence and is functionally equivalent to the peptide consisting of the amino acid sequence described in any of SEQ ID NOs: 1 to 4, 10, or 11 is also included in these peptides. The amino acid residue to be mutated is preferably mutated to another amino acid in which the properties of the amino acid side chain are conserved. For example, amino acid side chain properties include hydrophobic amino acids (A, I, L, M, F, P, W, Y, V), hydrophilic amino acids (R, D, N, C, E, Q, G, H, K, S, T), amino acids having aliphatic side chains (G, A, V, L, I, P), amino acids having hydroxyl group-containing side chains (S, T, Y), sulfur atom-containing side chains Amino acids having amino acids (C, M), amino acids having carboxylic acid and amide-containing side chains (D, N, E, Q), amino acids having base-containing side chains (R, K, H), aromatic-containing side chains The amino acids (H, F, Y, W) that can be used can be listed (the parentheses indicate the single letter of the amino acid). It is already known that a polypeptide having an amino acid sequence modified by deletion, addition and / or substitution by one or more amino acid residues to a certain amino acid sequence maintains its biological activity. Yes.

配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチドとしては、配列番号:5〜7のいずれかに記載のアミノ酸からなるペプチドを挙げることが出来る。
これらのペプチドは、スフィンゴミエリンにおけるHCVタンパク質結合部位に特異的に結合し、そのためスフィンゴミエリンとHCVタンパク質の結合活性を低下させることが考えられる。その結果として、ラフトを介したHCVウイルスの複製が抑制されるものと考えられる。
The peptide consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 includes SEQ ID NOs: 5 to 5. Peptides consisting of the amino acids described in any of 7 can be mentioned.
These peptides are considered to specifically bind to the HCV protein binding site in sphingomyelin, and thus reduce the binding activity between sphingomyelin and HCV protein. As a result, it is considered that replication of HCV virus via rafts is suppressed.

本発明のスフィンゴミエリンとHCVタンパク質の結合を阻害する化合物の好ましい例としては、以下の(a)または(b)に記載のペプチドをコードするオリゴヌクレオチドを挙げることが出来る。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
本発明のオリゴヌクレオチドは、該ペプチドを発現しうる形で適当なベクターに組み込んで用いることもできる。
Preferable examples of the compound that inhibits the binding of sphingomyelin and HCV protein of the present invention include oligonucleotides encoding the peptides described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 A peptide comprising an amino acid sequence in which an amino acid is substituted, deleted, added and / or inserted. The oligonucleotide of the present invention can be used by incorporating it into an appropriate vector in a form capable of expressing the peptide.

本明細書中、該ペプチドをコードするポリヌクレオチドを「発現しうる形で含む」とは、該ポリヌクレオチドが発現ベクターに挿入されており、動物の細胞内に侵入した場合に、該細胞内で所定のペプチドを発現させうる形態で含むことをいう。すなわち、例えば、投与される動物種および投与部位に適したプロモータの制御下に該コードDNAが配置されていることを指す。   In the present specification, the phrase "comprising an expressible form" of a polynucleotide encoding the peptide means that the polynucleotide is inserted into an expression vector and enters the animal cell. It means that a predetermined peptide is included in a form that can be expressed. That is, for example, it means that the coding DNA is arranged under the control of a promoter suitable for the animal species to be administered and the administration site.

本発明のスフィンゴミエリンとHCVタンパク質の結合を阻害する化合物の好ましい例としては、以下の(a)または(b)に記載のペプチドを認識する抗体を挙げることが出来る。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
本発明における抗体の由来は特に限定されるものではないが、好ましくは哺乳動物由来であり、より好ましくはヒト由来の抗体を挙げることが出来る。
Preferable examples of the compound that inhibits the binding of sphingomyelin and HCV protein of the present invention include antibodies that recognize the peptides described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 A peptide comprising an amino acid sequence in which amino acids are substituted, deleted, added and / or inserted. The origin of the antibody in the present invention is not particularly limited, but is preferably derived from a mammal, more preferably a human-derived antibody. Can be mentioned.

本発明で使用される該ペプチドを認識する抗体は、公知の手段を用いてポリクローナル又はモノクローナル抗体として得ることができる。本発明で使用される該ペプチドを認識する抗体として、特に哺乳動物由来のモノクローナル抗体が好ましい。哺乳動物由来のモノクローナル抗体としては、ハイブリドーマに産生されるもの、および遺伝子工学的手法により抗体遺伝子を含む発現ベクターで形質転換した宿主に産生されるものがある。この抗体はHCVタンパク質と結合することにより、HCVタンパク質とスフィンゴミエリンの結合を阻害する。その結果として、ラフトを介したHCVウイルスの複製が抑制されるものと考えられる。   The antibody that recognizes the peptide used in the present invention can be obtained as a polyclonal or monoclonal antibody using a known means. As an antibody that recognizes the peptide used in the present invention, a monoclonal antibody derived from a mammal is particularly preferable. Mammal-derived monoclonal antibodies include those produced by hybridomas and those produced by hosts transformed with expression vectors containing antibody genes by genetic engineering techniques. This antibody inhibits the binding of HCV protein and sphingomyelin by binding to HCV protein. As a result, it is considered that replication of HCV virus via rafts is suppressed.

該ペプチドを認識する抗体産生ハイブリドーマは、基本的には公知技術を使用し、以下のようにして作製できる。すなわち、該ペプチドを感作抗原として使用して、これを通常の免疫方法にしたがって免疫し、得られる免疫細胞を通常の細胞融合法によって公知の親細胞と融合させ、通常のスクリーニング法により、モノクローナルな抗体産生細胞をスクリーニングすることによって作製できる。   An antibody-producing hybridoma that recognizes the peptide can be basically produced using a known technique as follows. That is, using the peptide as a sensitizing antigen, this is immunized according to a normal immunization method, the resulting immune cells are fused with a known parent cell by a normal cell fusion method, and a monoclonal antibody is obtained by a normal screening method. It is possible to prepare by screening for an antibody-producing cell.

具体的には、該ペプチドを認識する抗体を作製するには次のようにすればよい。
該ペプチドをコードする塩基配列を公知の発現ベクター系に挿入して適当な宿主細胞を形質転換させた後、その宿主細胞中又は、培養上清中から目的の該ペプチドを公知の方法で精製し、この精製ペプチドを感作抗原として用いればよい。また、該ペプチドと他の蛋白質との融合蛋白質を感作抗原として用いてもよい。
Specifically, an antibody that recognizes the peptide may be prepared as follows.
A base sequence encoding the peptide is inserted into a known expression vector system to transform an appropriate host cell, and then the desired peptide is purified from the host cell or culture supernatant by a known method. This purified peptide may be used as a sensitizing antigen. Moreover, you may use the fusion protein of this peptide and another protein as a sensitizing antigen.

本明細書において「治療」という記載は、本発明の薬物を被験者に投与することによって、HCVを消滅あるいは軽減させること、さらなるHCVの広がりを抑制すること、HCVの感染による症状を軽減することを意味する。また「予防」という記載は、HCVが感染する前に、被験者に投与され、HCVの感染を防いだり、増殖を抑制させることを意味する。HCVの感染による症状としては、好ましくはC型肝炎、肝硬変、肝繊維化、肝癌などが挙げられる。   In the present specification, the term “treatment” means that HCV is extinguished or reduced, further spread of HCV is suppressed, and symptoms due to HCV infection are reduced by administering the drug of the present invention to a subject. means. Moreover, the description of "prevention" means that it is administered to a subject before HCV is infected to prevent infection of HCV or suppress proliferation. Symptoms caused by HCV infection preferably include hepatitis C, cirrhosis, liver fibrosis, liver cancer and the like.

本発明の化合物は、医薬に使用することができる。上記塩としては薬理学的に許容されるものであれば特に限定されず、例えば、塩酸、硫酸、硝酸、リン酸、臭化水素酸などの鉱酸との塩;酢酸、酒石酸、乳酸、クエン酸、フマル酸、マレイン酸、コハク酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、ショウノウスルホン酸などの有機酸との塩;ナトリウム、カリウム、カルシウムなどのアルカリ金属又はアルカリ土類金属などとの塩などを挙げることができる。
上記医薬製剤に含まれる有効成分化合物の量は、特に限定されず広範囲に適宜選択されるが、例えば、0.1〜99.5重量%、好ましくは0.5〜90重量%である。
The compounds of the present invention can be used in medicine. The salt is not particularly limited as long as it is pharmacologically acceptable, and examples thereof include salts with mineral acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrobromic acid; acetic acid, tartaric acid, lactic acid, citric acid. Salts with organic acids such as acid, fumaric acid, maleic acid, succinic acid, methane sulfonic acid, ethane sulfonic acid, benzene sulfonic acid, toluene sulfonic acid, naphthalene sulfonic acid and camphor sulfonic acid; alkali such as sodium, potassium and calcium Examples thereof include salts with metals or alkaline earth metals.
The amount of the active ingredient compound contained in the pharmaceutical preparation is not particularly limited and is appropriately selected within a wide range, and is, for example, 0.1 to 99.5% by weight, preferably 0.5 to 90% by weight.

本発明の化合物を、常法に従って主薬として、賦形剤、結合剤、崩壊剤、滑沢剤、矯味矯臭剤、溶解補助剤、懸濁剤、コーティング剤などの医薬の製剤技術分野において通常使用し得る既知の補助剤を用いて製剤化することができる。錠剤の形態に成形するに際しては、担体としてこの分野で従来公知のものを広く使用でき、例えば乳糖、白糖、塩化ナトリウム、グルコース、尿素、澱粉、炭酸カルシウム、カオリン、結晶セルロース、ケイ酸などの賦形剤;水、エタノール、プロパノール、単シロップ、グルコース液、澱粉液、ゼラチン溶液、カルボキシメチルセルロース、セラック、メチルセルロース、リン酸カリウム、ポリビニルピロリドンなどの結合剤;乾燥澱粉、アルギン酸ナトリウム、寒天末、ラミナラン末、炭酸水素ナトリウム、炭酸カルシウム、ポリオキシエチレンソルビタン脂肪酸エステル、ラウリル硫酸ナトリウム、ステアリン酸モノグリセリド、澱粉、乳糖などの崩壊剤;白糖、ステアリン、カカオバター、水素添加油などの崩壊抑制剤;第4級アンモニウム塩類、ラウリル硫酸ナトリウムなどの吸収促進剤;グリセリン、澱粉などの保湿剤;澱粉、乳糖、カオリン、ベントナイト、コロイド状ケイ酸などの吸着剤;精製タルク、ステアリン酸塩、硼酸末、ポリエチレングリコールなどの潤沢剤などが例示できる。   The compounds of the present invention are usually used in the pharmaceutical formulation technical field as excipients, binders, disintegrants, lubricants, flavoring agents, solubilizers, suspension agents, coating agents, etc. Can be formulated using known adjuvants. In molding into tablets, conventionally known carriers can be widely used as carriers, such as lactose, sucrose, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, silicic acid and the like. Binders such as water, ethanol, propanol, simple syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium phosphate, polyvinylpyrrolidone; dry starch, sodium alginate, agar powder, laminaran powder , Disintegrating agents such as sodium bicarbonate, calcium carbonate, polyoxyethylene sorbitan fatty acid ester, sodium lauryl sulfate, monoglyceride stearate, starch and lactose; disintegration inhibitors such as sucrose, stearin, cocoa butter and hydrogenated oil; quaternary Ann Absorption promoters such as nium salts and sodium lauryl sulfate; humectants such as glycerin and starch; adsorbents such as starch, lactose, kaolin, bentonite and colloidal silicic acid; purified talc, stearate, boric acid powder, polyethylene glycol, etc. Examples of such abundant agents can be given.

さらに錠剤は、必要に応じ、通常の剤皮を施した錠剤、例えば、糖衣錠、ゼラチン被包錠、腸溶被錠、フィルムコーティング錠あるいは二重錠、多層錠とすることができる。丸剤の形態に成形するに際しては、担体としてこの分野で従来公知のものを広く使用でき、例えばグルコース、乳糖、カカオバター、澱粉、硬化植物油、カオリン、タルクなどの賦形剤;アラビアゴム末、トラガント末、ゼラチン、エタノールなどの結合剤;ラミナラン寒天などの崩壊剤などが例示できる。坐剤の形態に成形するに際しては、担体としてこの分野で従来公知のものを広く使用でき、例えばポリエチレングリコール、カカオバター、高級アルコール、高級アルコールのエステル類、ゼラチン、半合成グリセリドなどを挙げることができる。注射剤として調製される場合には、液剤および懸濁剤は殺菌され、かつ血液と等張であるのが好ましく、これら液剤、乳剤および懸濁剤の形態に成形するに際しては、希釈剤としてこの分野で慣用されているものをすべて使用でき、例えば、水、エタノール、プロピレングリコール、エトキシ化イソステアリルアルコール、ポリオキシ化イソステアリルアルコール、ポリオキシエチレンソルビタン脂肪酸エステル類などを挙げることができる。なお、この場合、等張性の溶液を調製するのに充分な量の食塩、グルコース、あるいはグリセリンを医薬製剤中に含有せしめてもよく、また通常の溶解補助剤、緩衝剤、無痛化剤などを添加してもよい。さらに必要に応じて着色剤、保存剤、香料、風味剤、甘味剤などや他の医薬品を含有することもできる。   Furthermore, the tablets can be made into tablets with ordinary coatings, if necessary, such as sugar-coated tablets, gelatin-encapsulated tablets, enteric-coated tablets, film-coated tablets, double tablets, and multilayer tablets. In molding into the form of pills, those conventionally known in this field can be widely used as carriers, for example, excipients such as glucose, lactose, cocoa butter, starch, hydrogenated vegetable oil, kaolin, talc; Examples include binders such as tragacanth powder, gelatin and ethanol; disintegrants such as laminaran agar. In molding into the form of suppository, conventionally known carriers can be widely used as carriers, such as polyethylene glycol, cocoa butter, higher alcohols, esters of higher alcohols, gelatin, semisynthetic glycerides and the like. it can. When prepared as injections, the solutions and suspensions are preferably sterilized and isotonic with blood, and when formed into these solutions, emulsions and suspensions, this is used as a diluent. Any of those commonly used in the field can be used, and examples thereof include water, ethanol, propylene glycol, ethoxylated isostearyl alcohol, polyoxylated isostearyl alcohol, and polyoxyethylene sorbitan fatty acid esters. In this case, a sufficient amount of sodium chloride, glucose, or glycerin to prepare an isotonic solution may be contained in the pharmaceutical preparation, and a normal solubilizer, buffer, soothing agent, etc. May be added. Furthermore, a coloring agent, a preservative, a fragrance | flavor, a flavor agent, a sweetening agent, etc. and other pharmaceuticals can be contained as needed.

上記医薬組成物は、投与単位形態で投与することが好ましく、経口投与、組織内投与(皮下投与、筋肉内投与、静脈内投与など)、局所投与(経皮投与など)又は経直腸的に投与することができる。上記医薬組成物は、これらの投与方法に適した剤型で投与されることは当然である。   The pharmaceutical composition is preferably administered in dosage unit form, and is administered orally, intra-tissue (subcutaneous, intramuscular, intravenous, etc.), topical (transdermal etc.) or rectally. can do. Of course, the pharmaceutical composition is administered in a dosage form suitable for these administration methods.

本発明の化合物を医薬として投与する場合、抗ウイルス剤としての用量は、年齢、体重などの患者の状態、投与経路、病気の性質と程度などを考慮した上で調整することが望ましいが、通常は、ヒトについては、成人に対して本発明の有効成分量として、一日当たり、0.1〜2000mgの範囲である。上記範囲未満の用量で足りる場合もあるが、逆に上記範囲を超える用量を必要とする場合もある。多量に投与するときは、一日数回に分割して投与することが望ましい。   When the compound of the present invention is administered as a medicine, the dose as an antiviral agent is preferably adjusted in consideration of the patient's condition such as age and weight, administration route, nature and degree of disease, etc. For humans, the amount of the active ingredient of the present invention for adults is in the range of 0.1 to 2000 mg per day. In some cases, a dose lower than the above range may be sufficient, and conversely, a dose exceeding the above range may be required. When administering a large amount, it is desirable to divide the dose into several times a day.

上記経口投与は、固形、粉末又は液状の用量単位で行うことができ、例えば、末剤、散剤、錠剤、糖衣剤、カプセル剤、ドロップ剤、舌下剤、その他の剤型などにより行うことができる。   The oral administration can be performed in solid, powder or liquid dosage units, for example, powders, powders, tablets, dragees, capsules, drops, sublingual agents, other dosage forms, and the like. .

上記組織内投与は、例えば、溶液や懸濁剤などの皮下、筋肉内又は静脈内注射用の液状用量単位形態を用いることによって行うことができる。これらのものは、本発明の化合物の一定量を、例えば、水性や油性の媒体などの注射目的に適合する非毒性の液状担体に懸濁又は溶解し、ついで上記懸濁液又は溶液を滅菌することにより製造される。   The intra-tissue administration can be performed, for example, by using a liquid dosage unit form for subcutaneous, intramuscular or intravenous injection such as a solution or suspension. These suspend or dissolve a certain amount of a compound of the invention in a non-toxic liquid carrier suitable for injection purposes, such as an aqueous or oily medium, and then sterilize the suspension or solution. It is manufactured by.

上記局所投与(経皮投与など)は、例えば、液剤、クリーム剤、粉末剤、ペースト剤、ゲル剤、軟膏剤などの外用製剤の形態を用いることによって行うことができる。これらのものは、本発明の化合物の一定量を、外用製剤の目的に適合する香料、着色料、充填剤、界面活性剤、保湿剤、皮膚軟化剤、ゲル化剤、担体、保存剤、安定剤などのうちの一種以上と組み合わせることにより製造される。   The above-mentioned topical administration (transdermal administration etc.) can be performed by using forms of external preparations such as liquids, creams, powders, pastes, gels, ointments and the like. These compounds can be used for a certain amount of the compound of the present invention, such as a fragrance, a coloring agent, a filler, a surfactant, a moisturizer, an emollient, a gelling agent, a carrier, a preservative, It is manufactured by combining with one or more of agents.

上記経直腸的投与は、本発明の化合物の一定量を、例えば、パルミチン酸ミリスチルエステルなどの高級エステル類、ポリエチレングリコール、カカオ脂、これらの混合物などからなる低融点固体に混入した座剤などを用いて行うことができる。   In the above-mentioned rectal administration, a certain amount of the compound of the present invention is mixed with a suppository mixed with a low-melting-point solid comprising, for example, higher esters such as myristyl palmitate, polyethylene glycol, cocoa butter, and mixtures thereof. Can be used.

上記投与は、例えば、溶液や懸濁剤などの皮下、筋肉内又は静脈内注射用の液状用量単位形態を用いることによって行うことができる。これらのものは、本発明の化合物の一定量を、例えば、水性や油性の媒体などの注射の目的に適合する非毒性の液状担体に懸濁又は溶解し、ついで上記懸濁液又は溶液を滅菌することにより製造される。
本発明のペプチド或いは抗体などのタンパク質を細胞内で作用させるために細胞内に当該タンパク質を輸送する手法として、例えば、細胞膜透過機能を有するペプチド(例えばPegelin やPenetratinなど)を付加すること(Martine Mazel etal., Doxorubicin-peptide conjugates overcome multidrug resistance. Anti-Cancer Drugs 2001, 12、Dcrossi D. et al., The third helix of the antennapedia homeodomain translocates through biological membranes, J. Biol. Chem. 1994, 269, 10444-10450.)により本発明のタンパク質を細胞内に輸送させることが可能である。
The administration can be performed, for example, by using a liquid dosage unit form for subcutaneous, intramuscular or intravenous injection such as a solution or suspension. These are those in which a certain amount of a compound of the invention is suspended or dissolved in a non-toxic liquid carrier adapted to the purpose of injection, for example, an aqueous or oily medium, and the suspension or solution then sterilized. It is manufactured by doing.
As a technique for transporting a protein such as the peptide or antibody of the present invention into a cell in order to act in the cell, for example, adding a peptide having a cell membrane permeation function (for example, Pegelin or Penetratin) (Martine Mazel) etal., Doxorubicin-peptide conjugates overcome multidrug resistance.Anti-Cancer Drugs 2001, 12, Dcrossi D. et al., The third helix of the antennapedia homeodomain translocates through biological membranes, J. Biol. Chem. 1994, 269, 10444- 10450.), the protein of the present invention can be transported into cells.

また、本発明のペプチドを細胞内に導入する方法としては、(1)ウイルスベクター(たとえば、アデノウイルス)にペプチド配列をコードする遺伝子を1コピー又は複数コピー連結し、このウイルスを感染させることによって導入する方法、(2)目的のペプチドを静脈注射によって直接導入する方法、(3)目的のペプチド又はそれをコードするDNAを物理的に細胞や組織に導入する方法(たとえば、パーティクルガン)等を挙げることが出来る。パーティクルガンは、極めて強力な遺伝子導入法で、金またはタングステンの微粒子(マイクロキャリア)に付着させた核酸をヘリウムガスの圧力によって標的細胞に導入する方法である。この方法は、マイクロインジェクション法に比べ、操作が非常に簡単であり、細胞種に関わらず広範囲な応用が期待できる。このことを利用して、ペプチドの導入にも応用することが期待される。   In addition, the method of introducing the peptide of the present invention into cells includes (1) linking one or more copies of a gene encoding a peptide sequence to a viral vector (for example, adenovirus) and infecting the virus. (2) a method of directly introducing the target peptide by intravenous injection, (3) a method of physically introducing the target peptide or DNA encoding it into a cell or tissue (for example, a particle gun), etc. I can list them. The particle gun is a very powerful gene transfer method that introduces nucleic acid attached to gold or tungsten fine particles (microcarriers) into target cells by the pressure of helium gas. This method is much easier to operate than the microinjection method, and a wide range of applications can be expected regardless of the cell type. Utilizing this fact, it is expected to be applied to the introduction of peptides.

本発明は、HCV感染症を治療または予防するための薬剤のスクリーニング方法に関する。
本発明のスクリーニング方法の第一の態様としては、まず、以下の(a)または(b)に記載のペプチドに被検化合物を接触させる。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
The present invention relates to a method for screening a drug for treating or preventing HCV infection.
As a first aspect of the screening method of the present invention, first, a test compound is brought into contact with the peptide described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted

第一の態様に用いられるペプチドの状態としては、特に制限はなく、例えば、精製された状態、細胞内に発現した状態、細胞抽出液内に発現した状態などであってもよい。該ペプチドが発現している細胞としては、外来性のペプチドを発現している細胞が挙げられる。上記外来性のペプチドを発現している細胞は、例えば、該ペプチドをコードするDNAを含むベクターを細胞に導入することで作製できる。ベクターの細胞への導入は、一般的な方法、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法、リポフェタミン法、マイクロインジェクション法等によって実施することができる。このような外来性のペプチドが導入される細胞が由来する生物種としては、哺乳類に限定されず、外来タンパク質を細胞内に発現させる技術が確立されている生物種であればよい。   The state of the peptide used in the first embodiment is not particularly limited, and may be, for example, a purified state, a state expressed in a cell, a state expressed in a cell extract, or the like. Examples of cells expressing the peptide include cells expressing a foreign peptide. A cell expressing the exogenous peptide can be prepared, for example, by introducing a vector containing DNA encoding the peptide into the cell. Introduction of the vector into the cells can be carried out by a general method such as calcium phosphate precipitation, electric pulse perforation, lipophetamine, microinjection and the like. The biological species from which the cell into which such an exogenous peptide is introduced is derived is not limited to mammals, and any biological species may be used as long as a technique for expressing a foreign protein in the cell is established.

ペプチドが発現している細胞抽出液は、例えば、試験管内転写翻訳系に含まれる細胞抽出液に、ペプチドをコードするDNAを含むベクターを添加したものを挙げることができる。該試験管内転写翻訳系としては、特に制限はなく、市販の試験管内転写翻訳キットなどを使用することが可能である。   Examples of the cell extract in which the peptide is expressed include those obtained by adding a vector containing DNA encoding the peptide to the cell extract contained in the in vitro transcription / translation system. The in vitro transcription / translation system is not particularly limited, and a commercially available in vitro transcription / translation kit can be used.

本発明の方法における「被検化合物」としては、特に制限はなく、例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチド等の単一化合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、原核細胞抽出物、真核単細胞抽出物もしくは動物細胞抽出物等を挙げることができる。上記被検化合物は必要に応じて適宜標識して用いることができる。標識としては、例えば、放射標識、蛍光標識等を挙げることができる。また、「複数の被検化合物」としては、特に制限はなく、例えば、上記被検化合物に加えて、これらの被検化合物を複数種混合した混合物も含まれる。   There is no restriction | limiting in particular as "test compound" in the method of this invention, For example, a single compound, such as a natural compound, an organic compound, an inorganic compound, protein, a peptide, and an expression product of a compound library and a gene library And cell extracts, cell culture supernatants, fermented microorganism products, marine organism extracts, plant extracts, prokaryotic cell extracts, eukaryotic single cell extracts, animal cell extracts, and the like. The test compound can be appropriately labeled and used as necessary. Examples of the label include a radiolabel and a fluorescent label. Moreover, there is no restriction | limiting in particular as "a some test compound", For example, in addition to the said test compound, the mixture which mixed multiple types of these test compounds is also contained.

本発明において「接触」は、ペプチドの状態に応じて行う。例えば、ペプチドが精製された状態であれば、精製標品に被検化合物を添加することにより行うことができる。また、細胞内に発現した状態または細胞抽出液内に発現した状態であれば、それぞれ、細胞の培養液または該細胞抽出液に被検化合物を添加することにより行うことができる。本発明における細胞としては、特に制限されないが、酵母またはヒトを含む哺乳動物由来の細胞が好ましい。被検化合物がタンパク質の場合には、例えば、該タンパク質をコードするDNAを含むベクターを、該ペプチドが発現している細胞へ導入する、または該ベクターをペプチドが発現している細胞抽出液に添加することで行うことも可能である。また、例えば、酵母または動物細胞等を用いた 2ハイブリッド法を利用することも可能である。   In the present invention, “contact” is performed depending on the state of the peptide. For example, if the peptide is in a purified state, it can be carried out by adding a test compound to the purified preparation. Moreover, if it is the state expressed in the cell or the state expressed in the cell extract, it can be carried out by adding a test compound to the cell culture solution or the cell extract, respectively. Although it does not restrict | limit especially as a cell in this invention, The cell derived from mammals including yeast or a human is preferable. When the test compound is a protein, for example, a vector containing DNA encoding the protein is introduced into a cell in which the peptide is expressed, or the vector is added to a cell extract in which the peptide is expressed. It is also possible to do this. For example, a two-hybrid method using yeast or animal cells can be used.

第一の態様では、次いで、上記ペプチドと被検化合物の結合を検出する。タンパク質間の結合を検出または測定する手段は、例えばタンパク質に付した標識を利用することにより行うことができる。標識の種類は、例えば、蛍光標識、放射標識等が挙げられる。また、酵素ツーハイブリット法や、BIACOREを用いた測定方法等、公知の方法によって測定することもできる。本方法においては、ついで、上記ペプチドと結合した被検化合物を選択する。選択された被検化合物の中には、HCV感染症を治療または予防するための薬剤が含まれる。また、選択された被検化合物を、以下のスクリーニングの被検化合物として用いてもよい。   Next, in the first embodiment, the binding between the peptide and the test compound is detected. The means for detecting or measuring the binding between proteins can be performed, for example, by using a label attached to the protein. Examples of the type of label include a fluorescent label and a radiolabel. Further, it can also be measured by a known method such as an enzyme two-hybrid method or a measurement method using BIACORE. In this method, a test compound bound to the peptide is then selected. Among the selected test compounds are agents for treating or preventing HCV infection. In addition, the selected test compound may be used as a test compound for the following screening.

本発明のスクリーニング方法の第二の態様としては、まず、被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
As a second embodiment of the screening method of the present invention, first, a test compound is added to sphingomyelin simultaneously with the peptide described in (a) or (b) below.
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted

第二の態様では、次いで、上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定する。結合能の測定は上記に記載の方法で行うことが出来る。
本方法においては、ついで、被検化合物を添加しない場合と比較して、上記結合能を低下させた場合に、被検化合物を、HCV感染症を治療または予防するための薬剤として選択する。
Next, in the second embodiment, the binding ability of the peptide described in (a) or (b) above and sphingomyelin is measured. The binding ability can be measured by the method described above.
In the present method, the test compound is then selected as a drug for treating or preventing HCV infection when the binding ability is reduced as compared to the case where no test compound is added.

また、本発明は、HCV感染症を治療または予防するための薬剤の効力の評価方法に関する。
本発明の薬剤の評価方法の第一の態様としては、まず、以下の(a)または(b)に記載のペプチドに被検化合物を接触させる。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
第一の態様では、ついで、上記ペプチドと被検化合物の結合を検出する。ペプチドと被検化合物の結合の検出は、上記に記載の方法により行うことが出来る。ついで、上記ペプチドと結合した被検化合物の、HCV感染症の治療または予防効果の効力を評価する。上記ペプチドに対する被検化合物の結合能(例えば、平衡結合定数、結合速度定数、解離速度定数、等)を検出することで、該被検化合物のHCV感染症の治療または予防効果の効力を評価することが出来る。例えば、被検化合物が上記ペプチドに対し有意な結合能を示す場合には、該被検化合物はHCV感染症の有意な治療または予防効果を示すと評価することが出来る。
The present invention also relates to a method for evaluating the efficacy of a drug for treating or preventing HCV infection.
As a first aspect of the method for evaluating a drug of the present invention, first, a test compound is brought into contact with the peptide described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptide consisting of an amino acid sequence in which amino acids are substituted, deleted, added and / or inserted In the first embodiment, the binding between the peptide and the test compound is then detected. Detection of the binding between the peptide and the test compound can be performed by the method described above. Subsequently, the efficacy of the therapeutic or prophylactic effect of HCV infection of the test compound bound to the peptide is evaluated. By detecting the binding ability of the test compound to the peptide (for example, equilibrium binding constant, binding rate constant, dissociation rate constant, etc.), the efficacy of the test compound for treating or preventing HCV infection is evaluated. I can do it. For example, when the test compound shows a significant binding ability to the peptide, it can be evaluated that the test compound shows a significant therapeutic or preventive effect on HCV infection.

本発明の薬剤の評価方法の第二の態様としては、まず、被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
As a second aspect of the method for evaluating a drug of the present invention, first, a test compound is added to sphingomyelin simultaneously with the peptide described in the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted

第二の態様では、次いで、上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定し、該被検化合物のHCV感染症の治療または予防効果の効力を評価する。結合能の測定は上記に記載の方法で行うことが出来る。上記ペプチドとスフィンゴミエリンの結合能(例えば、平衡結合定数、結合速度定数、解離速度定数、等)を検出することで、該被検化合物の、上記ペプチドとスフィンゴミエリンの結合阻害能を検出することができる。さらに、これらの値を基にして、該被検化合物のHCV感染症の治療または予防効果の効力を評価することが出来る。例えば、被検化合物を添加することにより、被検化合物を添加しない場合に比べて、上記ペプチドとスフィンゴミエリンの結合能を有意に低下させた場合には、該被検化合物はHCV感染症の有意な治療または予防効果を示すと評価することができる。   In the second embodiment, the binding ability of the peptide described in (a) or (b) above and sphingomyelin is then measured, and the efficacy of the test compound for treating or preventing HCV infection is evaluated. The binding ability can be measured by the method described above. Detecting the binding inhibitory ability of the test compound to the peptide and sphingomyelin by detecting the binding ability of the peptide and sphingomyelin (eg, equilibrium binding constant, binding rate constant, dissociation rate constant, etc.) Can do. Furthermore, based on these values, the efficacy of the test compound for treating or preventing HCV infection can be evaluated. For example, when the test compound is added and the binding ability of the peptide and sphingomyelin is significantly reduced compared to the case where the test compound is not added, the test compound is significantly different from HCV infection. It can be evaluated that it shows an effective therapeutic or preventive effect.

本発明の上記記載の評価方法は、HCV感染症を治療又は予防するための新規薬剤を見出すためのスクリーニング方法のみに限らず、医薬候補化合物の開発のための薬効の効力の評価や医薬品の製造供給の際に必要な品質管理のための効力の評価を行う場合の評価方法としても有用である。
本発明は、上記に記載のスクリーニング方法または評価方法に用いるためのキットに関する。このようなキットには、上記に記載のスクリーニング方法または評価方法の検出工程や測定工程に使用されるものを含みうる。例えば、該ペプチドと、スフィンゴミエリンの結合能測定に必要とされる試薬、機器等を挙げることができる。その他、蒸留水、塩、緩衝液、タンパク質安定剤、保存剤等が含まれていてもよい。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に組み入れられる。
The above-described evaluation method of the present invention is not limited to a screening method for finding a new drug for treating or preventing HCV infection, but also evaluation of efficacy and drug production for the development of drug candidate compounds. It is also useful as an evaluation method when evaluating the efficacy for quality control required at the time of supply.
The present invention relates to a kit for use in the screening method or evaluation method described above. Such a kit may include those used in the detection process and measurement process of the screening method or evaluation method described above. For example, there can be mentioned reagents and instruments required for measuring the binding ability of the peptide and sphingomyelin. In addition, distilled water, salt, buffer solution, protein stabilizer, preservative and the like may be contained.
It should be noted that all prior art documents cited in the present specification are incorporated herein by reference.

以下、本発明を実施例によりさらに具体的に説明するが本発明はこれら実施例に制限されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.

〔実施例1〕HCV-NS5Bのスフィンゴ脂質結合モチーフの探索
HIV-1gp120 由来のV3ループ(図1A、配列番号:4)やプリオン由来のPrPタンパク質は、スフィンゴ脂質結合ドメインをもっている。HCVタンパク質の中に、スフィンゴ脂質結合領域があるかどうか探索するために、これらと類似する構造をCEプログラム(cl.sdsc.edu/ce.html)を用いて検索した。その結果、図1に示すようにHCV-NS5Bの配列E230-G263(図1A、配列番号:3)において、へリックス・ターン・へリックスのモチーフ(図1)をもった類似構造が認められた。HCV-NS5B全長の塩基配列を配列番号:8に、アミノ酸配列を配列番号:9に示す。この構造ドメインのサイズはV3ループとほぼ一致した(図1Bは、HCV-NS5Bの構造。縦線はHCV-NS5Bの同定した推定のスフィンゴ脂質結合領域。斜線はHIV-1 V3ループのスフィンゴ脂質結合領域)。
[Example 1] Search for sphingolipid-binding motif of HCV-NS5B
HIV-1 gp120-derived V3 loop (FIG. 1A, SEQ ID NO: 4) and prion-derived PrP protein have a sphingolipid-binding domain. In order to search for a sphingolipid binding region in HCV protein, structures similar to these were searched using the CE program (cl.sdsc.edu/ce.html). As a result, as shown in FIG. 1, in HCV-NS5B sequence E230-G263 (FIG. 1A, SEQ ID NO: 3), a similar structure having a helix-turn-helix motif (FIG. 1) was observed. . The full length base sequence of HCV-NS5B is shown in SEQ ID NO: 8, and the amino acid sequence is shown in SEQ ID NO: 9. The size of this structural domain almost coincided with the V3 loop (Fig. 1B shows the structure of HCV-NS5B. The vertical line is the putative sphingolipid binding region identified by HCV-NS5B. The diagonal line is the sphingolipid binding of the HIV-1 V3 loop. region).

〔実施例2〕推定のNS5Bスフィンゴ結合領域ペプチド(NS5B-SBD) とスフィンゴミエリン(SM) との結合
Biacore S51を使用して、NS5B-SBDペプチドとSMとの結合能を検討した。 SMをクロロホルムに溶解し、真空乾固したあと、PBS緩衝液を加え、10mMとなるよう懸濁した。懸濁液は凍結融解を繰り返し、ポアサイズ50 nmのメンブレンに通し、リポソームを調製し、センサチップL1に固定化した。合成ペプチドは、NS5B(DIRVEESIYQCCDLAPEARQAIKSLTERLY(配列番号:1), Sigma genosysにより合成)、及びPrP(KQHTVTTTTKGENFTETDVKMMER(配列番号:2), Sigma genosysにより合成)を使用した。特異的結合量は、ペプチドを加えていないセンサグラムをブランクとし、各濃度のセンサグラムから差し引いたものを結合量の測定に用いた。その結果、NS5B-SBDペプチドは、濃度依存的にスフィンゴミエリンとの結合を認めた(図2A、NS5B-SBDペプチドのセンサグラム)。プリオンタンパク質(PrP)においても同様な結合が認められた(図2B、図2Aのセンサグラム80s時のRU値)。
[Example 2] Binding of putative NS5B sphingo-binding domain peptide (NS5B-SBD) to sphingomyelin (SM)
The binding ability of NS5B-SBD peptide and SM was examined using Biacore S51. After SM was dissolved in chloroform and vacuum-dried, PBS buffer was added and suspended to 10 mM. The suspension was repeatedly frozen and thawed, passed through a membrane with a pore size of 50 nm, liposomes were prepared, and immobilized on the sensor chip L1. NS5B (DIRVEESIYQCCDLAPEARQAIKSLTERLY (SEQ ID NO: 1), synthesized by Sigma genosys) and PrP (KQHTVTTTTKGENFTETDVKMMER (SEQ ID NO: 2), synthesized by Sigma genosys) were used as synthetic peptides. As the specific binding amount, a sensorgram to which no peptide was added was used as a blank, and the amount subtracted from the sensorgram at each concentration was used for the measurement of the binding amount. As a result, NS5B-SBD peptide was found to bind to sphingomyelin in a concentration-dependent manner (FIG. 2A, sensorgram of NS5B-SBD peptide). Similar binding was also observed in the prion protein (PrP) (RU value at 80 s in the sensorgram of FIG. 2B and FIG. 2A).

上記の結果よりラフトの構成成分であるスフィンゴミエリンと、HCVタンパク質であるHCV-NS5Bが特定の部位において強く結合すること、およびこれらの結合によりHCVウイルスの複製が行われていることが明らかとなった。これらの知見により、スフィンゴミエリンとHCVタンパク質の結合を阻害することにより、HCVウイルスの複製を抑制することが出来るものと示唆された。   From the above results, it is clear that sphingomyelin, which is a component of raft, and HCV-NS5B, which is an HCV protein, bind strongly at a specific site, and that the HCV virus is replicated by these bonds. It was. These findings suggest that replication of HCV virus can be suppressed by inhibiting the binding of sphingomyelin and HCV protein.

〔実施例3〕NS5Bスフィンゴ結合領域ペプチドおよびその誘導体のHCVレプリコン阻害活性測定
次に、HCVレプリコン細胞を用いて、NS5bスフィンゴ結合領域ペプチド(配列番号:1)およびその誘導体ペプチド(配列番号:10、11)のHCVレプリコン阻害活性を測定した。

Figure 2007043640
HCVレプリコン細胞を96穴プレートの1穴当たり10,000細胞(0.1mL)入れ、5%Fetal Bovine Serum(以下FBS)(HyClone, Cat. No. SH30071)を含むDulbecco's Modified Eagle Medium(以下DMEM) (Invitrogen, Cat. No. 10569-010)中で37℃、5%CO存在下20時間培養した。96穴プレートの培地を捨て、FBSを含まないDMEMを0.1mL加えた。BioPORTER (Gene Therapy System, Cat. No.BP502401)をクロロホルムで溶解し、風乾にてフィルム化した。これをPhosphate Buffered Saline(Sigma, Cat. No. D8537)に溶解したペプチド(2mg/mL)で再溶解した。5分後、96穴プレートに0.01mLの上記各ペプチドを添加し、37℃、5%CO存在下で3〜4時間培養した。10%FBSを含むDMEMを0.1mL加え、更に培養を行なった。ペプチド添加から20時間および40時間後に、Steady-Glo Luciferase Assay System (Promega, Cat. No. E2520)でレプリコン活性を測定した。ネガティブペプチドとして配列番号:12に記載のアミノ酸配列からなるペプチドを使用した。
その結果、NS5Bスフィンゴ結合領域ペプチドおよびその誘導体は終濃度0.1mg/mLにおいて、20〜30%の抗HCV複製阻害を示すことが明らかとなった(図3)。一方、ネガティブペプチドでは阻害が観測されなかった。[Example 3] Measurement of HCV replicon inhibitory activity of NS5B sphingo binding domain peptide and derivatives thereof Next, NS5b sphingo binding domain peptide (SEQ ID NO: 1) and its derivative peptide (SEQ ID NO: 10, 11) HCV replicon inhibitory activity was measured.
Figure 2007043640
HCV replicon cells are put in 10,000 cells (0.1 mL) per well of a 96-well plate. Dulbecco's Modified Eagle Medium (hereinafter DMEM) containing 5% Fetal Bovine Serum (hereinafter FBS) (HyClone, Cat. No. SH30071) (Invitrogen, Cat. No. 10569-010) was cultured at 37 ° C. in the presence of 5% CO 2 for 20 hours. The medium in the 96-well plate was discarded, and 0.1 mL of DMEM without FBS was added. BioPORTER (Gene Therapy System, Cat. No. BP502401) was dissolved in chloroform and formed into a film by air drying. This was redissolved with a peptide (2 mg / mL) dissolved in Phosphate Buffered Saline (Sigma, Cat. No. D8537). After 5 minutes, 0.01 mL of each peptide was added to a 96-well plate and cultured at 37 ° C. in the presence of 5% CO 2 for 3 to 4 hours. 0.1 mL of DMEM containing 10% FBS was added and further cultured. Replicon activity was measured with Steady-Glo Luciferase Assay System (Promega, Cat. No. E2520) 20 and 40 hours after peptide addition. A peptide consisting of the amino acid sequence shown in SEQ ID NO: 12 was used as a negative peptide.
As a result, it was revealed that NS5B sphingo-binding domain peptide and derivatives thereof exhibited 20-30% anti-HCV replication inhibition at a final concentration of 0.1 mg / mL (FIG. 3). On the other hand, no inhibition was observed with the negative peptide.

以下に参考例として、WO2006/16657に記載された実施例を例示する。
〔参考例1〕ノザンブロット解析によるミリオシンまたはオーレオバシディウム(Aureobasidium)属などの微生物に由来する式(II)で表される化合物のHCV RNA複製阻害活性の測定
ミリオシン又は以下の式(II)で表される化合物を1pMから100μMの範囲でレプリコン細胞Huh-3-1に与え、5%CO2存在下、37度にて培養した。
式(II):
Examples described in WO2006 / 16657 are given below as reference examples.
[Reference Example 1] Measurement of HCV RNA replication inhibitory activity of a compound represented by the formula (II) derived from microorganisms such as Myriocin or Aureobasidium by Northern blot analysis Myriocin or the following formula (II) The compounds represented were given to the replicon cells Huh-3-1 in the range of 1 pM to 100 μM and cultured at 37 degrees in the presence of 5% CO 2 .
Formula (II):

Figure 2007043640
Figure 2007043640

72時間後に細胞を回収し、全RNAを抽出した後で、Ambion社のノザンマックスキットの方法に従いネオマイシン耐性遺伝子をプローブとしてノザン解析を行った。
ノザン解析は以下のものを用いた。すなわち、NorthernMax transfer buffer (Ambion #8672), 転写膜 BrightStar-Plus (Ambion #10100), ろ紙(Sigma P-6664), ULTRAhyb (Ambion #8670)。プローブの標識はBiotinStar Psoralen-Biotin kit (Ambion #9860G3)でビオチン化標識した。High Stringency buffer (Amibion #8674); BrightStar BioDetect kit (Wash buffer, Ambion #8650G; Blocking buffer, Ambion #8651G; Streptavidin-Alkaline Phosphatase, Ambion #2374G; Assay buffer, Ambion #8652G;CDP-Star, Ambion #8653G)
After 72 hours, cells were collected and total RNA was extracted, and then Northern analysis was performed using a neomycin resistance gene as a probe according to the method of Northern Max Kit of Ambion.
The Northern analysis used the following. That is, NorthernMax transfer buffer (Ambion # 8672), transfer film BrightStar-Plus (Ambion # 10100), filter paper (Sigma P-6664), ULTRAhyb (Ambion # 8670). The probe was labeled with biotinylated with BiotinStar Psoralen-Biotin kit (Ambion # 9860G3). High Stringency buffer (Amibion # 8674); BrightStar BioDetect kit (Wash buffer, Ambion # 8650G; Blocking buffer, Ambion # 8651G; Streptavidin-Alkaline Phosphatase, Ambion # 2374G; Assay buffer, Ambion # 8652G; CDP-Star, Ambion # 8653G )

1%アガロースゲルで1μgのトータルRNAを泳動し、泳動後エチジウムブロミドでRNAを染色して写真をとり、脱色後NorthernMax transfer bufferを用いて転写膜に2時間転写した。湿ったままの状態でUVクロスリンカーにてRNAを転写膜に固定化した。ハイブリローターを用いて、ULTRAhybにて42度、30分間の回転前処理の後、前処理液を捨て、ビオチン化したネオマイシン耐性遺伝子と10mlのULTRAhyb液を加えて42度一夜振とう処理した。   1 μg of total RNA was electrophoresed on a 1% agarose gel, and after electrophoresis, RNA was stained with ethidium bromide and photographed. After decolorization, it was transferred to a transfer membrane for 2 hours using a NorthernMax transfer buffer. In a wet state, RNA was immobilized on the transfer membrane with a UV crosslinker. Using a hybrid rotor, after pre-rotation treatment with ULTRAhyb at 42 degrees for 30 minutes, the pretreatment liquid was discarded, biotinylated neomycin resistance gene and 10 ml of ULTRAhyb liquid were added, and the mixture was shaken at 42 degrees overnight.

ULTRAhyb液を捨て、42度に保温したHigh Stringency bufferを15ml加え42度で30分間振とうした。同様の操作をもう一度繰り返した。浸る程度のWash bufferで転写膜を洗浄した。転写膜をBlocking bufferで30分間振とうした。液を捨て、10mlのBlocking bufferに2μlのStreptavidin-Alkaline Phosphataseを加えたもので室温30分間振とうした。転写膜を浸る程度のBlocking bufferで10分間振とうした。Wash bufferで5分間洗浄し、Wash bufferで転写膜を洗浄した後、CDP-Starで転写膜を覆い、5分後に余分な液を除き、1時間後にX線フィルムに感光させ、バンドの濃さからRNA量を比較した。その結果、ミリオシン及び式(II)で表される化合物に1-10nMの濃度でレプリコンRNAを50%減少させる効果が認められた(図5、6)。   The ULTRAhyb solution was discarded, 15 ml of High Stringency buffer kept at 42 degrees was added, and the mixture was shaken at 42 degrees for 30 minutes. The same operation was repeated once more. The transfer film was washed with a wash buffer soaked. The transfer membrane was shaken with Blocking buffer for 30 minutes. The solution was discarded and 2 μl of Streptavidin-Alkaline Phosphatase was added to 10 ml of Blocking buffer and shaken at room temperature for 30 minutes. Shake for 10 minutes with Blocking buffer soaking the transfer membrane. Wash with Wash buffer for 5 minutes, wash the transfer film with Wash buffer, cover the transfer film with CDP-Star, remove excess liquid after 5 minutes, expose to X-ray film after 1 hour, and darken the band. RNA amount was compared. As a result, the effect of reducing replicon RNA by 50% at a concentration of 1-10 nM was observed in myriocin and the compound represented by formula (II) (FIGS. 5 and 6).

〔参考例2〕ウェスタンブロット解析によるミリオシンまたは式(II)で表される化合物のHCVタンパク合成阻害の測定
ウェスタン解析は以下の方法でおこなった。ミリオシン又は式(II)で表される化合物を1pMから100μMの範囲でレプリコン細胞Huh-3-1に与え、5%CO2存在下、37度にて培養した。72時間後に培地を捨て、PBS(Phosphate buffered saline)を加え、ピペッティングにより細胞をはがし、遠心により細胞を回収した。Phosphate用溶解液(50 mM Tris-HCl(pH7.5),0.5% Triton, 3 mM EDTA, 150 mM NaCl, 12mM glycerophosphate, 50 mM NaF, 1 mM Na3VO4, 0.5 mM PMSF, 0.5 mM aporotinin)を加えてピペッティングにより細胞を破壊し、高速遠心により上清を回収した。Dye Reagent (Nacalai tesque #074-27)にてタンパク定量をおこなった(ウシγグロブリン標準液、BIO-RAD#500-0005)。得られたタンパク質5μgを9−11%グラジエントゲル(第一化学薬品、#317552)でトリス‐グリシン‐SDS緩衝液(BIO-RAD#161-0772)で電気泳動した。分子量サイズマーカーはRainbow molecular weight markers(AmershamBioscience#RPN756)を用いた。電気泳動したタンパク質をミニトランスブロットセル(BIO-RAD#170-3930)にてメンブレン(PROTRAN BA85, Nitrocellulose transfer membrane(Shleicher&Schuell #10401196)に転写した。HCVタンパク由来の抗NS3ウサギ抗体を用いてウエスタン解析を行った。内部標準として抗アクチンウサギ抗体を用いた。その結果、 ミリオシン及び式(II)で表される化合物に1-10nMの濃度でHCVタンパク質の発現を50%減少させる効果が認められた(図7、8)。
[Reference Example 2] Measurement of inhibition of HCV protein synthesis by myriocin or compound represented by formula (II) by Western blot analysis Western analysis was performed by the following method. Myriocin or a compound represented by formula (II) was given to replicon cells Huh-3-1 in the range of 1 pM to 100 μM and cultured at 37 ° C. in the presence of 5% CO 2 . After 72 hours, the medium was discarded, PBS (Phosphate buffered saline) was added, the cells were removed by pipetting, and the cells were collected by centrifugation. Phosphate solution (50 mM Tris-HCl (pH 7.5), 0.5% Triton, 3 mM EDTA, 150 mM NaCl, 12 mM glycerophosphate, 50 mM NaF, 1 mM Na 3 VO 4 , 0.5 mM PMSF, 0.5 mM aporotinin) The cells were disrupted by pipetting and the supernatant was recovered by high speed centrifugation. Protein quantification was performed with Dye Reagent (Nacalai tesque # 074-27) (bovine γ globulin standard solution, BIO-RAD # 500-0005). 5 μg of the obtained protein was electrophoresed on a 9-11% gradient gel (Daiichi Kagaku, # 317552) with Tris-Glycine-SDS buffer (BIO-RAD # 161-0772). Rainbow molecular weight markers (AmershamBioscience # RPN756) were used as molecular weight size markers. The electrophoresed protein was transferred to a membrane (PROTRAN BA85, Nitrocellulose transfer membrane (Shleicher & Schuell # 10401196)) using a mini-trans blot cell (BIO-RAD # 170-3930), Western analysis using an anti-NS3 rabbit antibody derived from HCV protein The anti-actin rabbit antibody was used as an internal standard, and as a result, the compound represented by myriocin and formula (II) had an effect of reducing HCV protein expression by 50% at a concentration of 1-10 nM. (FIGS. 7 and 8).

〔参考例3〕フモニシンB1のHCVレプリコン阻害活性の測定
スフィンゴ脂質生合成の途中段階において、ジヒドロスフィンゴシンからジヒドロセラミドを生成するジヒドロスフィンゴシン−N−アシル転移酵素を特異的に阻害するフモニシンB1のHCVレプリコン阻害活性を測定した。
ホタル・ルシフェラーゼHCVレプリコン細胞(Huh-3-1)を5%ウシ胎児血清(Hyclone cat. no. SH30071.03)を含むダルベッコMEM(Gibco cat. no. 10569)に懸濁し96穴プレートに5000細胞/Wellで蒔き、5%CO2、37度で一夜培養した。約20時間後、フモニシンB1を順次3倍希釈し、終濃度1.37μMから1000μMになるように加え、さらに3日間培養した。アッセイプレートは2系統用意し、1つは白色プレート、他はクリアプレートでアッセイを行った。培養終了後、白色プレートはSteady-Glo Luciferase Assay System(Promega cat. no. E2520)に用いた。すなわち、Wellあたり100μlの試薬を入れ、3〜4回ピペットで混ぜ、5分間放置後に1450 MicroBeta TRILUX(WALLAC)にてルミネッセンスを測定した。細胞未添加の値をバックグランドとして全ての値から差し引き、薬剤未添加の値を阻害0%として薬剤のIC50(50%阻害濃度)を算出した。一方、細胞毒性試験はセル・カウントキット−8(DOJIN Laboratories, cat. No.341-07761)をWellあたり10μl入れ、3〜4回ピペットで混ぜ、約30分間放置後にOD450nmが1.0程度になった時点で測定した。細胞未添加の値をバックグランドとして全ての値から差し引き、薬剤未添加の値を阻害0%として薬剤のIC50(50%阻害濃度)を算出した。
その結果、フモニシンB1は10-1000μMの濃度で、HCVレプリコン阻害活性を示すことがわかった(図9)。
[Reference Example 3] Measurement of HCV replicon inhibitory activity of fumonisin B1 HCV replicon of fumonisin B1 that specifically inhibits dihydrosphingosine-N-acyltransferase that produces dihydroceramide from dihydrosphingosine during the process of sphingolipid biosynthesis. Inhibitory activity was measured.
Firefly luciferase HCV replicon cells (Huh-3-1) suspended in Dulbecco MEM (Gibco cat. No. 10569) containing 5% fetal calf serum (Hyclone cat. No. SH30071.03) and 5000 cells in a 96-well plate / Welled with Well and cultured overnight at 37 ° C. with 5% CO 2 . After about 20 hours, fumonisin B1 was diluted three-fold sequentially, added to a final concentration of 1.37 μM to 1000 μM, and further cultured for 3 days. Two assay plates were prepared, one for the white plate and the other for the clear plate. After completion of the culture, the white plate was used for Steady-Glo Luciferase Assay System (Promega cat. No. E2520). That is, 100 μl of reagent was added per well, mixed 3-4 times with a pipette, allowed to stand for 5 minutes, and luminescence was measured with 1450 MicroBeta TRILUX (WALLAC). The IC50 (50% inhibitory concentration) of the drug was calculated by subtracting the value without addition of cells from all values as the background, and the value without drug addition as 0% inhibition. On the other hand, in the cytotoxicity test, Cell Count Kit-8 (DOJIN Laboratories, cat. No.341-07761) was put in 10 μl per well, mixed with a pipette 3-4 times, and after standing for about 30 minutes, OD450nm became about 1.0. Measured at the time. The IC50 (50% inhibitory concentration) of the drug was calculated by subtracting the value without addition of cells from all values as the background, and the value without drug addition as 0% inhibition.
As a result, it was found that fumonisin B1 exhibits HCV replicon inhibitory activity at a concentration of 10-1000 μM (FIG. 9).

〔参考例4〕セリンパルミトイル転移酵素のsiRNA合成
SPTの阻害がHCVレプリコン活性を阻害しているかを確認する目的で、LCB1(SPTのヘテロダイマーのうち1サブユニット)を標的としたsiRNAを合成した。2種の特異的なsiRNA (si246、si633)は、LCB1cDNAの配列(GenBank Accession No. Y08685)をもとにデザインし、Qiagen社により合成された。コントロールsiRNA(配列番号:15)は、LCB1の発現に影響しない配列を使用した。合成したsiRNA配列を配列番号:13(si246)および配列番号:14に示した。
〔参考例5〕ウエスタンブロット解析を用いたsiRNAによるLCB1のタンパク質発現阻害
6穴プレートに1.2×105個のHuh-3-1細胞をまき、37℃、5%で一晩培養した。2.3μLの20μM siRNAを100μL のECR buffer(RNAiFect Kit中に含まれるBuffer) に加え、激しく攪拌し、さらに4μLのRNAiFectトランスフェクション試薬 (Qiagen cat. No. 301605) を加え、緩やかに攪拌して室温にて10分間放置した。siRNAは、最終濃度が35 nMになるように加え、4日間培養した。
[Reference Example 4] siRNA synthesis of serine palmitoyltransferase
In order to confirm whether inhibition of SPT inhibits HCV replicon activity, siRNA targeting LCB1 (one subunit of SPT heterodimer) was synthesized. Two specific siRNAs (si246, si633) were designed based on the LCB1 cDNA sequence (GenBank Accession No. Y08685) and synthesized by Qiagen. As a control siRNA (SEQ ID NO: 15), a sequence that does not affect the expression of LCB1 was used. The synthesized siRNA sequences are shown in SEQ ID NO: 13 (si246) and SEQ ID NO: 14.
[Reference Example 5] Inhibition of protein expression of LCB1 by siRNA using Western blot analysis
1.2 × 10 5 Huh-3-1 cells were seeded in a 6-well plate and cultured overnight at 37 ° C. and 5%. Add 2.3 μL of 20 μM siRNA to 100 μL of ECR buffer (Buffer included in RNAiFect Kit), mix vigorously, add 4 μL of RNAiFect transfection reagent (Qiagen cat.No. 301605), mix gently, and mix at room temperature. Left for 10 minutes. siRNA was added to a final concentration of 35 nM and cultured for 4 days.

細胞を細胞溶解用緩衝液(50 mM Tris-HCl (pH 7.5), 0.5% Triton, 3 mM EDTA, 150 mM NaCl, 12 mM glycerophosphate, 50 mM NaF, 1 mM Na3VO4, 0.5 mM PMSF, 0.5 mM aporotinin)に懸濁し、氷上で10分間放置した。15,000×gで10分間遠心し、上清を回収した。タンパク質の定量後、各サンプルの蛋白量を10μgに調製し、1/4量の5×SDSサンプル緩衝液(125 mM Tris-HCl (pH 6.5), 25 % Glycerol, 5% SDS, 0.25 % BPB, 5% 2-Mercaptoethanol)に加え、98℃5分処理する。ポリアクリルアミドゲルPAGミニ9/11(第一化学、cat. No. 317552)で電気泳動後、ゲルをニトロセルロースメンブレンPROTRAN BA85 (Schleicher&Schuell cat. No. 10404496) にブロッティング (70V、3時間) する。メンブレンをBlocking Buffer(10% skim milk, 0.1% Tween 20/PBS)でBlockingを行う。1000倍希釈した抗LCB1抗体(Transduction cat. No. L89820)及び250倍希釈した抗アクチン(20-33) 抗体 (Sigma cat. No. A5060) で2時間室温にて反応させる。メンブレンを0.1%Tween 20/PBSにて洗浄後、二次抗体として、1000倍希釈した抗マウスIgG-HRP(Cell Signaling cat. No. A7076)及び抗ウサギIgG-HRP (Cell Signaling cat. No. A7074)を1時間室温にてそれぞれ反応させる。メンブレンを0.1%Tween 20/PBSにて洗浄後、ECLで1分間反応させ、オートラジオグラフィーにてシグナルを検出した。
その結果、図10に示すように、コントロールsiRNAと比較して、si246、si633はともにLCB1のタンパク質発現量の減少が認められた。特に、si246では強く発現阻害が認められた。
Cell lysis buffer (50 mM Tris-HCl (pH 7.5), 0.5% Triton, 3 mM EDTA, 150 mM NaCl, 12 mM glycerophosphate, 50 mM NaF, 1 mM Na 3 VO 4 , 0.5 mM PMSF, 0.5 suspended in mM aporotinin) and left on ice for 10 minutes. The supernatant was collected by centrifugation at 15,000 × g for 10 minutes. After protein quantification, the amount of protein in each sample was adjusted to 10 μg, and 1/4 volume of 5 × SDS sample buffer (125 mM Tris-HCl (pH 6.5), 25% Glycerol, 5% SDS, 0.25% BPB, 5% 2-Mercaptoethanol), then treat at 98 ° C for 5 minutes. After electrophoresis on polyacrylamide gel PAG mini 9/11 (Daiichi Kagaku, cat. No. 317552), the gel is blotted (70 V, 3 hours) on a nitrocellulose membrane PROTRAN BA85 (Schleicher & Schuell cat. No. 10404496). Block the membrane with Blocking Buffer (10% skim milk, 0.1% Tween 20 / PBS). The reaction is carried out with an anti-LCB1 antibody (Transduction cat. No. L89820) diluted 1000 times and an anti-actin (20-33) antibody (Sigma cat. No. A5060) diluted 250 times at room temperature for 2 hours. After washing the membrane with 0.1% Tween 20 / PBS, the secondary antibodies were diluted 1000-fold with anti-mouse IgG-HRP (Cell Signaling cat. No. A7076) and anti-rabbit IgG-HRP (Cell Signaling cat. No. A7074). ) For 1 hour at room temperature. The membrane was washed with 0.1% Tween 20 / PBS, reacted with ECL for 1 minute, and a signal was detected by autoradiography.
As a result, as shown in FIG. 10, a decrease in the protein expression level of LCB1 was observed for both si246 and si633 as compared to the control siRNA. In particular, si246 strongly inhibited expression.

〔参考例6〕LCB1のノックダウンによるHCVレプリコン阻害活性効果
参考例5の結果にもとづいて、Huh-3-1細胞がLCB1発現を低下する条件下での細胞毒性及びHCVレプリコン活性の影響を以下の方法にて測定した。すなわち、96穴プレートに1ウエルあたり3500個の細胞をまき、37℃、5%で一晩培養した。1.75 μLの2 μM siRNAを23.3μL のECR 緩衝液(RNAiFect Kit中に含まれる緩衝液) に加え、激しく攪拌し、さらに0.31μLのRNAiFectトランスフェクション試薬を加え、緩やかに攪拌して室温にて10分間放置した。siRNAは、最終濃度が35 nMになるように加え、4日間培養した。細胞毒性による影響は、培地に10μLのCell counting kit-8 (DOJIN Laboratories cat. No. 341-07761) を加えて3−4回ピペットで混和し、37℃、1時間放置後、マイクロプレートリーダーEmax (Molecular devices) を用いて450 nmの吸光度で測定した。HCVレプリコン活性は、培養終了後、新しい培地に交換し、Steady-Glo Luciferase Assay System(Promega cat. no. E2520)を用い、Wellあたり100μlの試薬を入れ、3〜4回ピペットで混ぜ、5分間放置後に1450 MicroBeta TRILUX(WALLAC)にてルミネッセンスを測定した。細胞未添加の値をバックグランドとして全ての値から差し引き、薬剤未添加の値を阻害0%として薬剤のIC50(50%阻害濃度)を算出した。
その結果、図11に示すように、LCB1の発現を抑制したsi246、si633処理した細胞では、コントロールsiRNA処理した細胞に対し、有意にHCVレプリコン活性を阻害した。この阻害効果は、LCB1の発現を強く抑制したsi246で強く認められた。また、同条件下においてsiRNA処理による細胞毒性を調べたところ、ほとんど影響が認められなかった。
[Reference Example 6] HCV replicon inhibitory activity effect by LCB1 knockdown Based on the results of Reference Example 5, the effects of cytotoxicity and HCV replicon activity under the condition that Huh-3-1 cells decrease LCB1 expression are as follows: It measured by the method of. That is, 3500 cells per well were seeded in a 96-well plate and cultured overnight at 37 ° C. and 5%. Add 1.75 μL of 2 μM siRNA to 23.3 μL of ECR buffer (buffer included in RNAiFect Kit), stir vigorously, add 0.31 μL of RNAiFect transfection reagent, and gently stir at room temperature for 10 Left for a minute. siRNA was added to a final concentration of 35 nM and cultured for 4 days. To determine the effect of cytotoxicity, add 10 μL of Cell counting kit-8 (DOJIN Laboratories cat. No. 341-07761) to the medium, mix 3-4 times with a pipette, leave at 37 ° C. for 1 hour, then microplate reader Emax The absorbance was measured at 450 nm using (Molecular devices). For the HCV replicon activity, replace the culture medium with fresh one after the culture, add 100 μl of reagent per well using Steady-Glo Luciferase Assay System (Promega cat. No. E2520), mix 3-4 times with pipette, and mix for 5 minutes After standing, luminescence was measured with 1450 MicroBeta TRILUX (WALLAC). The IC50 (50% inhibitory concentration) of the drug was calculated by subtracting the value with no cell added from all values as the background, and setting the value with no drug added to 0% inhibition.
As a result, as shown in FIG. 11, HCV replicon activity was significantly inhibited in the cells treated with si246 and si633 in which the expression of LCB1 was suppressed compared to the cells treated with control siRNA. This inhibitory effect was strongly observed with si246 that strongly suppressed the expression of LCB1. Moreover, when the cytotoxicity by siRNA treatment was investigated under the same conditions, almost no effect was observed.

〔参考例7〕HCVレプリコンアッセイおよび細胞毒性試験
式(I)で表される化合物またはそれらの誘導体について、HCVレプリコンアッセイおよび細胞毒性試験を行った。
まず、HCV−RNAのコピー数を定量するためにHCV−RNAの中にレポーター遺伝子としてホタル由来のルシフェラーゼ遺伝子を導入したものを構築した。Kriegerら(J. Virol.75:4614)の方法に従い、HCV遺伝子のIRES(Internal Ribosome Entry Site)の直下にネオマイシン耐性遺伝子と融合する形でルシフェラーゼ遺伝子を導入した。インビトロで当該RNAを合成後、エレクトロポレーション法でHuh7細胞に導入し、G418耐性クローンとして単離した。ホタル・ルシフェラーゼHCVレプリコン細胞(Huh-3-1)を5%ウシ胎児血清(Hyclone cat. no. SH30071.03)を含むダルベッコMEM(Gibco cat. no. 10569-010)に懸濁し、96穴プレートに5000細胞/ウェルで播種し、5%CO2 37℃で一夜培養した。約20時間後、希釈した試験化合物をウェルあたり10μl加え、さらに3日間培養した。アッセイプレートを2系統用意し、1つは白色プレート、他はクリアープレートでアッセイを行った。培養終了後、白色プレートはSteady-Glo Luciferase Assay System(Promega cat. no. E2520)に用いた。すなわち、ウェルあたり100μlの試薬を入れ、3〜4回ピペットで混ぜ、5分間放置後に1450 MicroBeta TRILUX(WALLAC)にてルミネッセンスを測定した。細胞未添加の値をバックグランドとして全ての値から差し引き、試験化合物未添加の値を阻害0%として薬剤のIC50(50%阻害濃度)を算出した。
[Reference Example 7] HCV Replicon Assay and Cytotoxicity Test The compound represented by formula (I) or a derivative thereof was subjected to HCV replicon assay and cytotoxicity test.
First, in order to quantify the copy number of HCV-RNA, a HCV-RNA having a firefly-derived luciferase gene introduced as a reporter gene was constructed. According to the method of Krieger et al. (J. Virol. 75: 4614), the luciferase gene was introduced in the form of fusing with the neomycin resistance gene directly under the IRES (Internal Ribosome Entry Site) of the HCV gene. After synthesizing the RNA in vitro, it was introduced into Huh7 cells by electroporation and isolated as a G418 resistant clone. Firefly luciferase HCV replicon cells (Huh-3-1) are suspended in Dulbecco's MEM (Gibco cat. No. 10569-010) containing 5% fetal calf serum (Hyclone cat. No. SH30071.03) and 96-well plate Were seeded at 5000 cells / well and cultured overnight at 37 ° C. with 5% CO 2 . After about 20 hours, 10 μl of diluted test compound was added per well and further cultured for 3 days. Two assay plates were prepared, one was a white plate and the other was a clear plate. After completion of the culture, the white plate was used for Steady-Glo Luciferase Assay System (Promega cat. No. E2520). That is, 100 μl of reagent was added per well, mixed 3-4 times with a pipette, allowed to stand for 5 minutes, and luminescence was measured with 1450 MicroBeta TRILUX (WALLAC). The IC 50 (50% inhibitory concentration) of the drug was calculated by subtracting the value with no cell added from all values as the background, and setting the value with no test compound added to 0% inhibition.

また、細胞毒性の測定にはCell counting kit-8(同人堂カタログNo. CK04)を用いた。すなわち、10μlのCell counting kit-8をクリアープレートに添加し、37度で30〜60分間保温した。96穴プレートリーダーにて波長450nm、対照波長630nmで吸光度を測定した。細胞未添加の値をバックグランドとして全ての値から差し引き、薬剤未添加の値を阻害0%として薬剤のCC50(50%細胞阻害濃度)を算出した。
上記のHCVレプリコンアッセイおよび細胞毒性試験の結果を表2および3に示す。
In addition, Cell counting kit-8 (Dojindo catalog No. CK04) was used for the measurement of cytotoxicity. That is, 10 μl of Cell counting kit-8 was added to the clear plate and incubated at 37 degrees for 30-60 minutes. Absorbance was measured with a 96-well plate reader at a wavelength of 450 nm and a control wavelength of 630 nm. The value with no cells added was subtracted from all the values as the background, and the CC 50 (50% cell inhibitory concentration) of the drug was calculated with the value without drug added as 0% inhibition.
The results of the above HCV replicon assay and cytotoxicity test are shown in Tables 2 and 3.

Figure 2007043640
Figure 2007043640

Figure 2007043640
Figure 2007043640

〔参考例8〕式(II)で表される化合物によるHCV レプリコンの阻害及び宿主細胞への毒性
HCVレプリコン細胞に、図12に示された濃度の式(II)で表される化合物で処理を行い、レプリコン複製阻害活性及び細胞生存阻害活性を測定した。 レプリコンによるルシフェラーゼ活性はSteady-GLO luciferase assay system (Promega, cat. no. E2510)、細胞生存阻害活性は、Cell counting counting kit-8 (Dojin Laboratories, cat. no. 341-07761)を用いて測定したその結果図12に示すように、式(II)で表される化合物による処理により濃度依存的にHCVレプリコン阻害活性を認めた(IC50=2 nM)。また、式(II)で表される化合物の細胞毒性は、認められなかった(IC50>50nM)。
[Reference Example 8] Inhibition of HCV replicon by a compound represented by formula (II) and toxicity to host cells
HCV replicon cells were treated with the compound represented by formula (II) at the concentration shown in FIG. 12, and the replicon replication inhibitory activity and cell survival inhibitory activity were measured. The luciferase activity by replicon was measured using Steady-GLO luciferase assay system (Promega, cat.no.E2510), and the cell survival inhibitory activity was measured using Cell counting counting kit-8 (Dojin Laboratories, cat.no. 341-07761). As a result, as shown in FIG. 12, HCV replicon inhibitory activity was recognized in a concentration-dependent manner by treatment with the compound represented by formula (II) (IC50 = 2 nM). Further, cytotoxicity of the compound represented by the formula (II) was not recognized (IC50> 50 nM).

〔参考例9〕免疫染色法による式(II)で表される化合物のHCV-NS3タンパク質発現阻害の確認
HCVレプリコン細胞を100 nMの式(II)で表される化合物で96時間処理した後、細胞を3.7%ホルムアルデヒドで固定した。3% BSAでブロッキング後、NS3抗体(Fホフマン・ラロシュより供与)でインキュベートした後、洗浄した細胞をTexas-RedラベルしたウサギIgG(Molecular probe )でインキュベートし、蛍光顕微鏡で解析した(図13)。その結果、図13に示すように、HCV-NS3タンパク質は核周辺に存在したが、式(II)で表される化合物の添加によりそれが消失した(白色で示された部分はNS3タンパク質、灰色で示された部分はヘキスト33342(Sigma, cat. no. B2261) で染色された核を示す)。
[Reference Example 9] Confirmation of inhibition of HCV-NS3 protein expression of the compound represented by formula (II) by immunostaining
HCV replicon cells were treated with 100 nM of the compound represented by formula (II) for 96 hours, and then the cells were fixed with 3.7% formaldehyde. After blocking with 3% BSA and incubating with NS3 antibody (provided by F. Hoffman Laroche), the washed cells were incubated with Texas-Red labeled rabbit IgG (Molecular probe) and analyzed with a fluorescence microscope (FIG. 13). . As a result, as shown in FIG. 13, the HCV-NS3 protein was present around the nucleus, but disappeared by the addition of the compound represented by the formula (II) (the part shown in white is NS3 protein, gray The part indicated by is a nucleus stained with Hoechst 33342 (Sigma, cat. No. B2261).

〔参考例10〕ウエスタンブロット解析による式(II)で表される化合物のNS3、NS5A及びNS5Bタンパク質の発現阻害
レプリコン細胞を100 nMの式(II)で表される化合物で図14に示された時間(48時間および96時間)処理した。ウエスタンブロット解析は、参考例5と同様の方法にておこなった。その結果、時間依存的にHCVの非構造タンパク質NS3、NS5A及びNS5Bを各抗体で検出した結果、ウイルスタンパク質の発現レベルの低下が認められた(図14)。
[Reference Example 10] Inhibition of NS3, NS5A and NS5B protein expression of compound represented by formula (II) by Western blot analysis Replicon cells were shown in FIG. 14 with 100 nM of compound represented by formula (II). Processed for hours (48 and 96 hours). Western blot analysis was performed in the same manner as in Reference Example 5. As a result, the non-structural proteins NS3, NS5A and NS5B of HCV were detected with each antibody in a time-dependent manner. As a result, a decrease in the expression level of the viral protein was observed (FIG. 14).

〔参考例11〕 式(II)で表される化合物によるSPT阻害活性
in vitroにおけるSPT阻害活性を測定するために、ヒト組み換え型SPT(ヘテロダイマーLCB1及びLCB2)タンパク質を調製した。ヒト肝臓のcDNAライブラリー(Clontech, cat. no. 639307) から、LCB1及びLCB2のcDNAをRT-PCRによって取得し、Hisタグ付きのpBudCE4.1ベクター(Invitogen, cat. no. V532-20)に組み込んだ。HEK293細胞(ATCC, cat. no. CRL-1573)に遺伝子導入し、72時間後、細胞を溶解し、Ni-NTAアガロース(Qiagen, cat. no. 1018244)にてタンパク質を精製した。SPT活性は反応緩衝液[200 mM HEPES buffer (pH 8.0), 5 mM EDTA, 10 mM DTT, 0.05 mM pyridoxal 5-phosphate, 0.2 mM palmitoyl-CoA, 0.1 mM L-serine, and 1 mCi [3H]serine (Amersham, cat. no. TRK308)]に精製したSPTを加え、15分37℃にて反応した。クロロホルム:メタノール(1:2, v/v)で抽出後有機層を水で2回再抽出した後、有機層の放射活性を液体シンチレーションカウンターにて測定した。その結果、図15に示すように、式(II)で表される化合物はIC50約10nM でSPT阻害活性を有していることが明らかとなった。
[Reference Example 11] SPT inhibitory activity of a compound represented by formula (II)
In order to measure SPT inhibitory activity in vitro, human recombinant SPT (heterodimer LCB1 and LCB2) proteins were prepared. From the human liver cDNA library (Clontech, cat. No. 639307), the cDNAs of LCB1 and LCB2 were obtained by RT-PCR and transferred to HisB-tagged pBudCE4.1 vector (Invitogen, cat. No. V532-20). Incorporated. The gene was introduced into HEK293 cells (ATCC, cat. No. CRL-1573), 72 hours later, the cells were lysed, and the protein was purified with Ni-NTA agarose (Qiagen, cat. No. 1018244). SPT activity was measured in reaction buffer [200 mM HEPES buffer (pH 8.0), 5 mM EDTA, 10 mM DTT, 0.05 mM pyridoxal 5-phosphate, 0.2 mM palmitoyl-CoA, 0.1 mM L-serine, and 1 mCi [3H] serine Purified SPT was added to (Amersham, cat. No. TRK308)] and reacted at 37 ° C. for 15 minutes. After extraction with chloroform: methanol (1: 2, v / v), the organic layer was re-extracted twice with water, and then the radioactivity of the organic layer was measured with a liquid scintillation counter. As a result, as shown in FIG. 15, it was revealed that the compound represented by the formula (II) has an SPT inhibitory activity with an IC50 of about 10 nM.

〔参考例12〕式(II)で表される化合物によるセラミド、スフィンゴミエリンのde novo合成阻害
HCVレプリコン細胞を、図16に示された濃度の式(II)で表される化合物で48時間処理した後、 [14C]セリンで3時間標識した。クロロホルム:メタノール(1:2, v/v)で抽出後、de novo合成されたセラミド(図16A)、スフィンゴミエリン(図16B)を薄層クロマトグラフィーにより分離した。その結果、図16に示すように、式(II)で表される化合物は濃度依存的に細胞内のセラミド及びスフィンゴミエリンのde novo合成を阻害した。
[Reference Example 12] Inhibition of de novo synthesis of ceramide and sphingomyelin by the compound represented by formula (II)
HCV replicon cells were treated with the compound represented by formula (II) at the concentration shown in FIG. 16 for 48 hours and then labeled with [14 C] serine for 3 hours. After extraction with chloroform: methanol (1: 2, v / v), de novo synthesized ceramide (FIG. 16A) and sphingomyelin (FIG. 16B) were separated by thin layer chromatography. As a result, as shown in FIG. 16, the compound represented by the formula (II) inhibited de novo synthesis of intracellular ceramide and sphingomyelin in a concentration-dependent manner.

〔参考例13〕C2−セラミドによる式(II)で表される化合物の複製阻害の回復
式(II)で表される化合物によるHCVレプリコン阻害活性が、スフィンゴ脂質生合成経路に依存するか否かを明らかにするために、細胞性浸透性セラミド:C2−セラミド(Sigma, cat. no. A7191)を式(II)で表される化合物と同時にHCVレプリコン細胞に添加し、96時間培養した。細胞抽出物を用いて、実施例5と同様の方法にてウエスタンブロット解析を行った。その結果(図17)、式(II)で表される化合物によるHCV複製阻害はC2セラミドの濃度に依存して抑制されることが明らかとなった。
[Reference Example 13] Recovery of replication inhibition of compound represented by formula (II) by C2-ceramide Whether or not the HCV replicon inhibitory activity by the compound represented by formula (II) depends on the sphingolipid biosynthesis pathway In order to clarify the above, a cellular osmotic ceramide: C2-ceramide (Sigma, cat. No. A7191) was added to the HCV replicon cells simultaneously with the compound represented by the formula (II) and cultured for 96 hours. Western blot analysis was performed by the same method as in Example 5 using the cell extract. As a result (FIG. 17), it was revealed that inhibition of HCV replication by the compound represented by formula (II) is suppressed depending on the concentration of C2 ceramide.

〔参考例14〕ラフト生合成関連低分子化合物によるHCV複製阻害
HCVレプリコン細胞を、既知のSPT阻害剤ミリオシン (Sigma, cat. no. M1177)、セラミド合成阻害剤フモニシン B1(Sigma, cat. no. F1147)、およびセラミド輸送阻害剤HPA-12 [KobayashiらOrg.lett.(2002)の合成方法に準じて合成)で処理した後、72時間後レプリコン活性及び生細胞数を測定した。その結果、いずれの化合物も細胞毒性を認めない濃度でHCVの複製を抑制する効果が認められた(図18)。
[Reference Example 14] Inhibition of HCV replication by raft biosynthesis-related low molecular weight compounds
HCV replicon cells were isolated from the known SPT inhibitor myriocin (Sigma, cat. No. M1177), the ceramide synthesis inhibitor fumonisin B1 (Sigma, cat. No. F1147), and the ceramide transport inhibitor HPA-12 [Kobayashi et al. Org. The replicon activity and the number of viable cells were measured 72 hours later after treatment with lett. (2002). As a result, any compound was found to suppress HCV replication at a concentration at which no cytotoxicity was observed (FIG. 18).

〔参考例15〕式(II)で表される化合物によるラフトタンパク質の影響(1)
HCVレプリコン細胞に1mMの式(II)で表される化合物を72時間添加した後、細胞抽出液を可溶化剤1% Nonidet P-40 (Nacalai tesque, cat. no. 252-23)にて1時間処理した。ショ糖密度勾配分画法により、フラクション1−9まで分離し、ウエスタンブロット解析は、参考例5と同様な方法にて行った。その結果、図19に示すように式(II)で表される化合物は可溶化剤耐性画分のNS5Bの発現レベルを低下させた。しかしながら、NS5Aや宿主のラフト結合タンパク質カベオリン-2において式(II)で表される化合物による影響は認められなかった。カベオリン-2の発現はカベオリン-2抗体(BD Transduction, cat. no. 610684)により確認した。
[Reference Example 15] Influence of raft protein by compound represented by formula (II) (1)
After 1 mM of the compound represented by the formula (II) is added to HCV replicon cells for 72 hours, the cell extract is added with 1% Nonidet P-40 (Nacalai tesque, cat. No. 252-23). Time processed. Fraction 1-9 was separated by sucrose density gradient fractionation, and Western blot analysis was performed in the same manner as in Reference Example 5. As a result, as shown in FIG. 19, the compound represented by the formula (II) decreased the expression level of NS5B in the solubilizer-resistant fraction. However, NS5A and the host raft-binding protein caveolin-2 were not affected by the compound represented by formula (II). The expression of caveolin-2 was confirmed by caveolin-2 antibody (BD Transduction, cat. No. 610684).

〔参考例16〕式(II)で表される化合物によるラフトタンパク質の影響(2)
HCVレプリコン細胞に1mMの式(II)で表される化合物を72時間添加した後、細胞抽出液を1% NP-40で1時間処理した。ショ糖密度勾配分画法により、ラフトタンパク質(可溶化剤耐性)、非ラフトタンパク質を分離し、PBSで希釈し濃縮後ELISA解析により定量した。その結果、式(II)で表される化合物は、NS5Bにおいて有意にラフト上から解離が認められた(図20)。
[Reference Example 16] Influence of raft protein by compound represented by formula (II) (2)
After 1 mM of the compound represented by the formula (II) was added to HCV replicon cells for 72 hours, the cell extract was treated with 1% NP-40 for 1 hour. Raft protein (solubilizing agent resistance) and non-raft protein were separated by sucrose density gradient fractionation, diluted with PBS, concentrated, and then quantified by ELISA analysis. As a result, the compound represented by the formula (II) was significantly dissociated from the raft in NS5B (FIG. 20).

これまで、HCV遺伝子の機構と機能の解明が行われ、HCVの非構造タンパク質を標的としたHCV治療剤の開発が進められていたが、非構造タンパク質自体が複製の過程で変異を起こす可能性があるため、効果的な治療剤の開発が困難であった。   So far, the mechanism and function of the HCV gene has been elucidated, and the development of HCV therapeutic agents targeting non-structural proteins of HCV has been underway, but the possibility of non-structural proteins themselves to mutate during the replication process Therefore, it has been difficult to develop an effective therapeutic agent.

本発明により、スフィンゴ脂質がHCVタンパク質の特定の部位において強く結合することがわかり、ホスト細胞内でのウイルスの複製のメカニズムが明らかとなった。これらの結合を阻害する化合物が、HCV感染症の極めて有用な治療剤または予防剤となるものと考えられる。
本発明の知見は、スフィンゴ脂質およびHCVタンパク質の結合を新規なターゲットとした抗HCV剤の開発に大きく貢献するものである。
According to the present invention, it has been found that sphingolipids bind strongly at specific sites of the HCV protein, and the mechanism of viral replication in the host cell has been clarified. Compounds that inhibit these bindings are considered to be extremely useful therapeutic or preventive agents for HCV infection.
The knowledge of the present invention greatly contributes to the development of anti-HCV agents targeting novel binding of sphingolipids and HCV proteins.

これまでの抗HCV剤は、標的となるカスケードが不明確であり副作用が心配されていたが、本発明の薬剤は標的がスフィンゴ脂質およびHCVタンパク質の結合作用であり、結合部位もより明確であるため、副作用の排除、薬剤の効果の調節等が容易に行えるものと考えられる。   Conventional anti-HCV agents have unclear target cascades and are worried about side effects, but the agents of the present invention have a binding action of sphingolipids and HCV proteins, and the binding site is also clearer Therefore, it is considered that side effects can be easily eliminated and the effect of the drug can be easily adjusted.

Claims (14)

スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物を有効成分として含有する、HCV感染症を治療または予防するための薬剤。   An agent for treating or preventing HCV infection, comprising a compound that inhibits the binding of sphingomyelin and HCV protein as an active ingredient. スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドである、請求項1に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
The drug according to claim 1, wherein the compound that inhibits the binding of sphingomyelin and HCV protein is the peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted
スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドをコードするオリゴヌクレオチドである、請求項1に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
The agent according to claim 1, wherein the compound that inhibits the binding of sphingomyelin and HCV protein is an oligonucleotide encoding the peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted
スフィンゴミエリンとHCVタンパク質の結合を阻害する化合物が、以下の(a)または(b)に記載のペプチドを認識する抗体である、請求項1に記載の薬剤。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
The drug according to claim 1, wherein the compound that inhibits the binding between sphingomyelin and HCV protein is an antibody that recognizes the peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted
HCVタンパク質がHCV-NS5Bである請求項1〜4のいずれかに記載の薬剤。   The drug according to any one of claims 1 to 4, wherein the HCV protein is HCV-NS5B. HCV感染症が、C型肝炎、肝硬変、肝繊維化、または肝癌である、請求項1〜5のいずれかに記載の薬剤。   The drug according to any one of claims 1 to 5, wherein the HCV infection is hepatitis C, cirrhosis, liver fibrosis, or liver cancer. 以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤のスクリーニング方法。
(A)以下の(a)または(b)に記載のペプチドに被検化合物を接触させる工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)(A)に記載のペプチドと被検化合物の結合を検出する工程
(C)(A)に記載のペプチドと結合する被検化合物を選択する工程
A method for screening a drug for treating or preventing HCV infection, comprising the following steps (A) to (C):
(A) A step of bringing a test compound into contact with the peptide described in (a) or (b) below: (a) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 (b A peptide (B) (A) comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 1 to 4, 10 or 11 A step of detecting the binding between the peptide described and a test compound (C) A step of selecting a test compound binding to the peptide described in (A)
以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤のスクリーニング方法。
(A)被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定する工程
(C)被検化合物を添加しない場合に比べて、上記結合能を低下させた被検化合物を選択する工程
A method for screening a drug for treating or preventing HCV infection, comprising the following steps (A) to (C):
(A) A step of adding a test compound to sphingomyelin simultaneously with the peptide described in (a) or (b) below: (a) the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 A peptide (b) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 ) Step of measuring the binding ability of the peptide described in (a) or (b) above and sphingomyelin (C) Select a test compound having a reduced binding ability compared to the case where no test compound is added Process
HCV感染症が、C型肝炎、肝硬変、肝繊維化、または肝癌である、請求項7または8に記載のスクリーニング方法。   The screening method according to claim 7 or 8, wherein the HCV infection is hepatitis C, cirrhosis, liver fibrosis, or liver cancer. 請求項7〜9のいずれかに記載のスクリーニング方法に用いるためのキット。   A kit for use in the screening method according to any one of claims 7 to 9. 以下の(A)〜(C)の工程を含む、HCV感染症を治療または予防するための薬剤の効力の評価方法。
(A)以下の(a)または(b)に記載のペプチドに被検化合物を接触させる工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)(A)に記載のペプチドと被検化合物の結合を検出する工程
(C)(A)に記載のペプチドと結合する被検化合物の、HCV感染症の治療または予防効果の効力を評価する工程
A method for evaluating the efficacy of a drug for treating or preventing HCV infection, comprising the following steps (A) to (C):
(A) A step of bringing a test compound into contact with the peptide described in (a) or (b) below: (a) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 (b A peptide (B) (A) comprising an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of SEQ ID NO: 1 to 4, 10 or 11 The step of detecting the binding between the peptide described and the test compound (C) The step of evaluating the efficacy of the therapeutic or prophylactic effect of the test compound binding to the peptide described in (A) on the HCV infection
以下の(A)および(B)の工程を含む、HCV感染症を治療または予防するための薬剤の効力の評価方法。
(A)被検化合物を以下の(a)または(b)に記載のペプチドと同時に、スフィンゴミエリンに添加する工程
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
(B)上記(a)または(b)に記載のペプチドと、スフィンゴミエリンの結合能を測定することによる、HCV感染症の治療または予防効果の効力を評価する工程
A method for evaluating the efficacy of a drug for treating or preventing HCV infection, comprising the following steps (A) and (B):
(A) A step of adding a test compound to sphingomyelin simultaneously with the peptide described in (a) or (b) below: (a) the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 A peptide (b) consisting of an amino acid sequence in which one or more amino acids are substituted, deleted, added and / or inserted in the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10 or 11 ) A step of evaluating the efficacy of the therapeutic or prophylactic effect of HCV infection by measuring the binding ability of the peptide described in (a) or (b) above and sphingomyelin
請求項11または12のいずれかに記載の評価方法に用いるためのキット。   A kit for use in the evaluation method according to claim 11. 以下の(a)または(b)に記載のペプチド。
(a)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列からなるペプチド
(b)配列番号:1から4、10または11のいずれかに記載のアミノ酸配列において1または複数のアミノ酸が置換、欠失、付加および/もしくは挿入されたアミノ酸配列からなるペプチド
The peptide according to the following (a) or (b).
(A) a peptide comprising the amino acid sequence of any one of SEQ ID NOs: 1 to 4, 10, or 11 (b) one or more of the amino acid sequences of SEQ ID NOs: 1 to 4, 10 or 11 Peptides consisting of amino acid sequences in which amino acids are substituted, deleted, added and / or inserted
JP2007539995A 2005-10-14 2006-10-13 Drugs for treating or preventing HCV infection Withdrawn JPWO2007043640A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005301059 2005-10-14
JP2005301059 2005-10-14
PCT/JP2006/320440 WO2007043640A1 (en) 2005-10-14 2006-10-13 Substance for use in treatment or prevention of hcv infection

Publications (1)

Publication Number Publication Date
JPWO2007043640A1 true JPWO2007043640A1 (en) 2009-04-16

Family

ID=37942861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007539995A Withdrawn JPWO2007043640A1 (en) 2005-10-14 2006-10-13 Drugs for treating or preventing HCV infection

Country Status (2)

Country Link
JP (1) JPWO2007043640A1 (en)
WO (1) WO2007043640A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010061881A1 (en) 2008-11-26 2010-06-03 中外製薬株式会社 Oligoribonucleotide or peptide nucleic acid capable of inhibiting activity of hepatitis c virus
JP2013121935A (en) 2011-12-12 2013-06-20 Institute Of Microbial Chemistry Compound and asymmetric synthesis reaction

Also Published As

Publication number Publication date
WO2007043640A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
Wang et al. Zika virus infection induces host inflammatory responses by facilitating NLRP3 inflammasome assembly and interleukin-1β secretion
Lin et al. Dissociation of a MAVS/IPS-1/VISA/Cardif-IKKε molecular complex from the mitochondrial outer membrane by hepatitis C virus NS3-4A proteolytic cleavage
Lee et al. The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein
Wang et al. Oxysterol-binding protein is a phosphatidylinositol 4-kinase effector required for HCV replication membrane integrity and cholesterol trafficking
Goh et al. Cellular RNA helicase p68 relocalization and interaction with the hepatitis C virus (HCV) NS5B protein and the potential role of p68 in HCV RNA replication
Blanchard et al. Hepatitis C virus entry depends on clathrin-mediated endocytosis
Amako et al. Role of oxysterol binding protein in hepatitis C virus infection
Fahmy et al. The autophagy elongation complex (ATG5-12/16L1) positively regulates HCV replication and is required for wild-type membranous web formation
Poncet et al. An anti-apoptotic viral protein that recruits Bax to mitochondria
JP2010506166A (en) Dengue diagnosis and treatment
Kumar et al. Dengue virus capsid interacts with DDX3X–a potential mechanism for suppression of antiviral functions in dengue infection
Tang et al. Classic swine fever virus NS2 protein leads to the induction of cell cycle arrest at S-phase and endoplasmic reticulum stress
US20100203498A1 (en) Methods and compositions for identifying anti-hcv agents
Giovannoni et al. Dengue non-structural protein 5 polymerase complexes with promyelocytic leukemia protein (PML) isoforms III and IV to disrupt PML-nuclear bodies in infected cells
JP4849622B2 (en) Drugs for treating or preventing HCV infection
Bhuvanakantham et al. Human Sec3 protein is a novel transcriptional and translational repressor of flavivirus
Lin et al. Rab5 enhances classical swine fever virus proliferation and interacts with viral NS4B protein to facilitate formation of NS4B related complex
Hsu et al. The untranslated regions of classic swine fever virus RNA trigger apoptosis
EP3738603A1 (en) Ntcp inhibitor
Georgopoulou et al. The protein phosphatase 2A represents a novel cellular target for hepatitis C virus NS5A protein
Ren et al. Identification of syntaxin 4 as an essential factor for the hepatitis C virus life cycle
Nitahara-Kasahara et al. Cellular vimentin content regulates the protein level of hepatitis C virus core protein and the hepatitis C virus production in cultured cells
JPWO2007043640A1 (en) Drugs for treating or preventing HCV infection
Udawatte et al. Dengue virus downregulates TNFR1-and TLR3-stimulated NF-κB activation by targeting RIPK1
KR101871199B1 (en) Pharmaceutical composition for prevention and treatment for Hepatitis C containing Rab32 expression or activity inhibitors

Legal Events

Date Code Title Description
AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120327

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20120525