JPWO2007018252A1 - Plant seedling production method - Google Patents

Plant seedling production method Download PDF

Info

Publication number
JPWO2007018252A1
JPWO2007018252A1 JP2007529615A JP2007529615A JPWO2007018252A1 JP WO2007018252 A1 JPWO2007018252 A1 JP WO2007018252A1 JP 2007529615 A JP2007529615 A JP 2007529615A JP 2007529615 A JP2007529615 A JP 2007529615A JP WO2007018252 A1 JPWO2007018252 A1 JP WO2007018252A1
Authority
JP
Japan
Prior art keywords
plant
culture
dark
growth
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007529615A
Other languages
Japanese (ja)
Other versions
JP4191236B2 (en
Inventor
博志 大川
博志 大川
昇 大西
昇 大西
間宮 幹士
幹士 間宮
Original Assignee
キリンアグリバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キリンアグリバイオ株式会社 filed Critical キリンアグリバイオ株式会社
Application granted granted Critical
Publication of JP4191236B2 publication Critical patent/JP4191236B2/en
Publication of JPWO2007018252A1 publication Critical patent/JPWO2007018252A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H3/00Processes for modifying phenotypes, e.g. symbiosis with bacteria
    • A01H3/02Processes for modifying phenotypes, e.g. symbiosis with bacteria by controlling duration, wavelength, intensity, or periodicity of illumination
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • A01H4/008Methods for regeneration to complete plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

この発明は、暗所または光合成光量子束密度5.7μmole/m2/sec以下の弱光下で植物体を培養増殖した後に、該植物体を無作為切断し、それによって得られた組織片を培養することを含む、植物苗の生産方法に関する。この発明は、植物苗を効率的に生産することを可能にする。In the present invention, a plant body is cultured and proliferated in a dark place or under a weak light having a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, then the plant body is randomly cut, and a tissue piece obtained thereby is cultured. The present invention relates to a method for producing plant seedlings. This invention makes it possible to efficiently produce plant seedlings.

Description

本発明は、液体培地を用いた組織培養による大量増殖法を改善することによって増殖率及び作業効率を高め、従来法に比してより効率的且つ低コストで植物苗を生産する方法を提供する。より詳しく言えば、植物体増殖時の暗所または弱光条件と言う、明所条件に比して投入資源(照明・温度制御設備、ランニングコストなど)を大幅に減少させ得る環境にて植物体を急速且つ大量に増殖し、続く工程にて、それら植物体を無作為切断(以下、「ランダムカット」とも称する)し、それらから選別することなく芽を誘導する方法を言う。全工程において(増殖率および作業効率の)高効率、低コスト、大量生産の容易化などを追及した方法である。本発明の方法は、花卉、野菜、穀物等の幅広い植物体の大量増殖場面(但し、塊茎、球根、などの貯蔵組織の増殖は含まない)に適用が可能である。特に節間が伸長する植物に有効である。  The present invention provides a method for producing plant seedlings more efficiently and at a lower cost than conventional methods by improving the growth rate and work efficiency by improving the mass growth method by tissue culture using a liquid medium. . More specifically, the plant body in an environment where the input resources (lighting / temperature control equipment, running cost, etc.) can be significantly reduced compared to the light place condition, which is the dark place or low light condition when growing the plant body. In a rapid and large-scale growth, and in the subsequent step, the plants are randomly cut (hereinafter also referred to as “random cut”), and buds are induced without sorting from them. This method pursues high efficiency (in terms of growth rate and work efficiency), low cost, and ease of mass production in all processes. The method of the present invention can be applied to large-scale growth scenes of a wide range of plants such as flower buds, vegetables, and grains (however, it does not include growth of storage tissues such as tubers and bulbs). It is especially effective for plants where internodes are elongated.

組織培養法は様々な植物において有効な増殖法として長年用いられている。しかし、この方法は、通常、固体培地(寒天やゲルライト等で固化された培地)を用いる方法であり増殖率が低いため、手工業的手法以外では大量の増殖が困難である。また、増殖を繰り返す際には、増殖された組織を芽を含む組織に1つずつ切り分け、更にそれらを1つずつ固体培地に移植する作業となる為、作業効率が低い。それらの理由により組織培養を用いた植物苗は高コストとなる。
上記の課題を解決する1つの手段として、液体培地を含む培養槽を用いた培養法(液体培養法)が試みられている(Paekら,In Vitro Cell.Dev.Biol.−Plant37,p149,2001(非特許文献1))。この方法は、液体培地と大型容器の培養槽が用いられる為、従来の固体培養法に比して増殖率が高く且つ増殖終了時の容器からの回収が容易であるという長所を持ち、大量増殖法として優れている。しかしこの手法においても、回収後に1個ずつ芽を含む茎片等の組織を認識しながらカットする作業は従来の固体培養法と変わらない(Paekら,In Vitro Cell.Dev.Biol.−Plant 37,p149,2001)。また、液体培養では固体培養に比して植物体自体が大型となり、葉、根など移植に不必要な部位も大型、多量となるため、移植用の芽を含む組織に分割する作業は、通常の固体培養法よりも作業効率が劣る。さらにまた、無菌作業が望まれる場合は、大型の植物を扱うことになるため、雑菌による汚染のリスクも高くなる。加えて、培養は通常固体培養法と同じく光条件下で行われるため、設備(照明設備、空調設備など)、ランニングコストなどの面では投入資源の削減にはつながりにくく、場合によっては設備面では従来の固体培養法に比して多額の初期投資が必要とさえなる。
一方、暗黒(すなわち、暗所)下で特定の種類の植物組織または植物体を培養し増殖したのち、植物体を分割(切断)、培養し、植物を再生する方法が知られている。例えば日本国特開2000−93031号公報には、サトイモ科植物の組織または植物体を暗黒下で培養し増殖させて多芽苗を得ること、地上部と根を除き基部(V字型もしくはY字型)を得るように多芽苗を分割すること、および明条件下で健苗化させることを含むサトイモ科植物の増殖方法が開示されている。また、日本国特開2005−137291号公報には、カンゾウ属植物の腋芽組織を暗黒下で液体培養してストロン様組織を誘導すること、ストロン様組織を腋芽を含むように切断すること、ストロン様組織を暗黒下で液体培養し増殖すること、ストロン様組織を明所で培養してカンゾウ属植物を再生することを含むカンゾウ属植物の再生方法が開示されている。さらに、日本国特開2000−4702号公報には、暗黒下でシュートを増殖させることを含むムラサキ科植物の大量増殖方法が開示されている。しかし、これらに開示される方法によれば、多芽苗またはストロン様組織の分割(すなわち、切断)は、基部(成長点を含むV字型もしくはY字型形状)のみかまたは腋芽を含むように行わねばならないため、従来法と同様に作業効率は劣る。
さらにまた、低光度下での植物組織の培養方法も知られている。例えば、日本国特許第2638768号公報には、植物成長調節物質の存在下、低光度下で生長点を含む組織を培養することを含むフトモモ科植物の増殖または発根苗化方法が記載されている。また、日本国特開平8−23807号公報には、組織培養での不定芽分化および/または伸長の際に2000ルックス以下の青色光を照射することを特徴とするチューリップの植物体組織または培養細胞の培養方法が記載されている。
The tissue culture method has been used for many years as an effective growth method in various plants. However, this method is usually a method using a solid medium (a medium solidified with agar, gellite or the like) and has a low growth rate, so that a large amount of growth is difficult except for a handicraft technique. In addition, when the growth is repeated, the work efficiency is low because the proliferated tissues are cut into tissues containing buds one by one and further transplanted into a solid medium one by one. For these reasons, plant seedlings using tissue culture are expensive.
As one means for solving the above problems, a culture method (liquid culture method) using a culture tank containing a liquid medium has been attempted (Paek et al., In Vitro Cell. Dev. Biol.-Plant 37, p149, 2001). (Non-Patent Document 1)). Since this method uses a liquid culture medium and a large vessel culture tank, it has the advantage that it has a higher growth rate than the conventional solid culture method and can be easily recovered from the vessel at the end of growth. It is excellent as a law. However, even in this method, the work of cutting while recognizing tissues such as stem pieces containing buds one by one after collection is not different from the conventional solid culture method (Paek et al., In Vitro Cell. Dev. Biol.-Plant 37 , P149, 2001). In liquid culture, the plant itself is larger than solid culture, and the parts that are unnecessary for transplantation, such as leaves and roots, are large and large. Work efficiency is inferior to the solid culture method. Furthermore, when an aseptic operation is desired, a large plant is handled, so the risk of contamination by various bacteria increases. In addition, since culture is usually performed under light conditions as in the case of the solid culture method, it is difficult to reduce input resources in terms of equipment (lighting equipment, air conditioning equipment, etc.), running costs, etc. A large initial investment is required compared to the conventional solid culture method.
On the other hand, a method is known in which a specific type of plant tissue or plant body is cultured and grown in the dark (that is, in the dark), and then the plant body is divided (cut) and cultured to regenerate the plant. For example, Japanese Patent Application Laid-Open No. 2000-93031 discloses that a tissue or a plant of a taro family plant is cultured in the dark and proliferated to obtain a multi-shoot seedling. A method of proliferating taro family plants is disclosed which comprises dividing a multi-plant seedling so as to obtain a (letter shape) and making it a healthy seedling under light conditions. Further, Japanese Patent Application Laid-Open No. 2005-137291 discloses that a bud tissue of a licorice plant is liquid-cultured in the dark to induce a stron-like tissue, a stron-like tissue is cut so as to contain a bud, A method for regenerating a licorice plant is disclosed, which comprises culturing and growing a like tissue in the dark and cultivating a stron-like tissue in a light place to regenerate the licorice plant. Furthermore, Japanese Patent Application Laid-Open No. 2000-4702 discloses a method for mass-growing purple plant that includes growing shoots in the dark. However, according to the methods disclosed therein, splitting (ie, cutting) of multi-bud seedlings or stron-like tissues is such that only the base (V-shaped or Y-shaped including growth points) or buds are included. Therefore, the work efficiency is inferior as in the conventional method.
Furthermore, a method for culturing plant tissues under low light intensity is also known. For example, Japanese Patent No. 2,638,768 describes a method for breeding or rooting seedlings of a myrtaceae plant that includes culturing a tissue containing a growth point under low light intensity in the presence of a plant growth regulator. . JP-A-8-23807 discloses a tulip plant tissue or cultured cells characterized by irradiating blue light of 2000 lux or less during adventitious bud differentiation and / or elongation in tissue culture. The culture method is described.

明所にて培養した植物は、生育が良いほど葉や茎が大型化し、その茎葉は、1芽ずつにカットする従来法では勿論のこと、またランダムなカットにおいても、作業効率を低下させる。また、ランダムカットの場合に芽を含まない残渣が多くなる。更にそれらの残渣は次工程にて枯死しやすく、芽の伸長が阻害されることが多い。また、明所にて増殖した材料では節間が詰まっている為、次工程にて1つの切片から複数の芽が得られる場合もあり、馴化時の作業効率が低下する。従来の固体培地を用いた培養法と同様に液体培地を用いた大量培養法においても、塊茎、球根などの貯蔵組織そのものを誘導するとき以外は光は必須条件とされており(高山真策、クローン増殖と人工種子、p119、1989年、オーム社、東京、日本国)、光強度を増す条件が液体大量培養の重要検討要因とされている(Paekら,In Vitro Cell Dev.Biol.−Plant 37,p149,2001)。植物の増殖に伴い培養槽内部には光が届きにくくなる為、内部に照明を設置するなどによって改善さえも試みられている(日本国特開平07−008263号公報)。
暗所条件での植物の生育は、明所に比して顕著に劣ることが報告されている(Hasegawaら,J.Amer.Soc.98(2),p143,1973;KikutaとOkazawa,Physiol.Plant.,61,p8,1984)。光は植物の生育に必須、又は暗所条件が生育に適さない為、光のない暗所条件で増殖を行う検討は、上記の開示以外殆ど行われてこなかった。例外的に球根、塊茎などの貯蔵組織そのものの誘導においては暗所培養が用いられるケースがあるが、それらは自然条件下でも土中という暗所条件で生じる現象である。一方、貯蔵組織の肥大には植物自体の生育・増殖は伴わない例も多く知られている(日本国特許第3405838号公報、Paekら,In Vitro Cell Dev.Biol.−Plant 37,p149,2001、Vasil,I.K.,Scale−up and automation in plant propagation,p111,1991,Academic press Inc.)。また、貯蔵組織を用いた培養では誘導される組織は貯蔵組織そのものであるか又は節部を殆ど有しない多芽組織であり、本発明に望ましい節間が伸長した生育形態とはならない(高山真策、クローン増殖と人工種子、p129、1989年、オーム社、東京、日本国)。
このような状況において、本発明者らは、植物、特に節間が伸長する植物の増殖、再生において、従来の液体培養法による問題点を解消し、高効率、低コストおよび大量生産が容易な植物苗の大量増殖法について検討した。
本発明者らは鋭意検討の結果、(1)液体培養で大量に増殖した植物体を、芽を個別に確認することなくランダムカットし、それら切り分けた組織を選別することなく次工程にて効率的に芽を誘導しうることを見出した。更に、(2)そのランダムカットするに適した植物体の形態が、ある一定期間、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での培養を経ることによって実現可能であること、(3)このような光条件下での培養にても明所培養と同様に高い効率の増殖が可能であること、(4)植物によっては、ランダムカットした組織を明所培養に先立ってある一定期間暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下にて培養することによって、馴化により適した形態の苗(以下、「良苗」ともいう)が得られること、(5)植物によっては、液体での大量増殖時に、一般に用いられるよりも高濃度のショ糖濃度、基本培地濃度が適していること、を見出し、本発明の完成に至った。
発明の概要
本発明は、以下の特徴を有する。
本発明は、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で植物体を培養増殖した後に、該植物体を無作為切断し、それによって得られた組織片を培養することを含む、植物苗の生産方法を提供する。
本明細書中で使用される「無作為切断」(「ランダムカット」ともいう)という用語は、芽を個別に確認することなく無作為に組織片や植物体を切断することを意味する。それゆえ、植物片は芽を含んでいなくてもよく、この場合、切片から不定芽も誘導されうる場合もある。また、本発明の方法では、切り分けた組織を選別する必要もなく、切断後のすべての組織片を培養に供することができる。
本発明の実施形態により、植物は、節間伸長する植物が好ましい。
本明細書中で使用する「節間伸長する」という用語は、茎がロゼット化せずに生育することを意味する。このような節間伸長する植物には、例えばサツマイモ、ダリア、ジャガイモ、トマト、メロン、カーネーションなどが含まれる。又、明所下では、節間が伸長しない植物であっても本発明の暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下では節間が伸長する植物もある。例えばカスミソウ、プリムラ、スターチス、ガーベラ等である。それらの植物も本発明の方法に適用できる。特に好ましい植物は、サツマイモ、ダリア、ジャガイモ、カーネーションである。しかし、本発明の上記方法によって従来法に比べて効率的に植物苗の生産が可能となる限り、いかなる植物も本発明に含まれるものとする。
本発明の別の実施形態により、上記の暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での培養において、通常より高い濃度の糖ならびに/あるいは通常より高い濃度の窒素およびカリウム成分を含む培地が使用される。
培地としては、植物の組織培養のために通常使用される培地であればいかなる培地も使用できる。好ましい培地はムラシゲ・スクーグ(MS)培地(MurashigeとSkoog,PHYSIOLOGIA PLANTRUM,15,p.473−479,1962)である。本明細書中で使用する「通常より高い」という用語は、植物組織培養において一般的に使用される培地中の糖や窒素およびカリウム成分の通常濃度より高い濃度を意味する。これらの一般的濃度は、糖について2〜3%(W/Vまたは重量/体積)、窒素成分(硝酸態窒素、アンモニア態窒素)について約0.3%(W/V)、カリウム成分について約0.07%(W/V)である。本発明では、好ましくは、糖の濃度が約4〜約8%(W/V)である。また、窒素およびカリウム成分の濃度は、好ましくは通常濃度より高く約3倍以下、より好ましくは1.2〜3倍、最も好ましくは1.5〜2倍である。
本発明の別の実施形態により、上記無作為切断後の組織片の培養において、一定期間、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で定芽の伸長を促進ならびに/あるいは不定芽の誘導および伸長を促進することができる。この条件下での培養は、二酸化炭素ガス処理の前処理として行われる。このような前処理によって、良苗割合が約40〜約50%増加する。この方法は特にサツマイモなどの植物において有効である。
本発明の別の実施形態により、上記無作為切断後の組織片の培養において、上記前処理の後で、あるいは上記前処理なしで、二酸化炭素ガス富化下で定芽の伸長を促進ならびに/あるいは不定芽の誘導および伸長を促進することができる。上記前処理をしない例として、例えばダリアなどの植物は、暗所または光合成光量子束密度5.7μmole/m/sec以下の弱光下での前処理なしに、明所下で二酸化炭素ガス富化下の培養に供することができる。
本明細書中で使用される「二酸化炭素ガス富化下」という用語は、培養の空間におけるCO濃度が0.1〜10ppm、望ましくは0.5〜5ppmであることを意味する。
二酸化炭素ガス富化下での培養は、通常、明所下で行われる。これによって光合成を活発にし植物苗の生長を促進することができる。
本発明により、ランダムカット作業にて大量培養後の作業効率が大幅に向上し、また暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下でのランダムカットに適した形態の大量増殖が可能になり、したがってその増殖、作業効率が更に改善され、また、投入資源が著しく軽減されるなどの利点が得られる。
さらに、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での培養法は明所での手法に比して必要となる投入資源が大幅に少なくて済む。例えば照明設備が不要であり、そのため空調設備も小規模でよい。即ち、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下の培養は設備条件の制約が小さく、需要の大幅な変動にも容易に対応が可能である。一般的な空調とエアー供給設備があれば容易に増産ができ、大きな利点の1つである。
さらにまた、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下の培養から得られた植物体の次工程での苗生産効率は、明所培養で得られた植物体に比してより高い場合さえある。
本明細書は、本願の優先権の基礎である日本国特許出願2005−228349号の明細書および/または図面に記載される内容を包含する。
Plants cultured in the light place have larger leaves and stems as they grow better, and the stems and leaves are reduced in work efficiency not only in the conventional method of cutting each shoot, but also in random cutting. Moreover, the residue which does not contain a bud increases in the case of a random cut. Furthermore, these residues are likely to die in the next step, and bud elongation is often inhibited. In addition, since the material proliferated in the light place is clogged with internodes, a plurality of buds may be obtained from one section in the next step, and the working efficiency during habituation is reduced. In a large-scale culture method using a liquid medium as well as a conventional culture method using a solid medium, light is an essential condition except when inducing storage tissues such as tubers and bulbs (Masaka Takayama, Clone growth and artificial seeds, p119, 1989, Ohm, Tokyo, Japan) Conditions that increase light intensity are considered as important factors for liquid mass culture (Paek et al., In Vitro Cell Dev. Biol.-Plant). 37, p149, 2001). As the plant grows, it becomes difficult for light to reach the inside of the culture tank. Therefore, attempts have been made to improve it by installing lighting (Japanese Patent Laid-Open No. 07-008263).
It has been reported that the growth of plants in dark conditions is significantly inferior to that in light places (Hasegawa et al., J. Amer. Soc. 98 (2), p143, 1973; Kikuta and Okazawa, Physiol. Plant., 61, p8, 1984). Since light is essential for the growth of plants, or dark conditions are not suitable for growth, studies for growing in dark conditions without light have hardly been conducted except for the above disclosure. Exceptionally, there are cases where dark culture is used in the induction of storage tissues such as bulbs and tubers, but these are phenomena that occur under dark conditions in the soil even under natural conditions. On the other hand, there are many examples in which the growth of the storage tissue is not accompanied by the growth and proliferation of the plant itself (Japanese Patent No. 3405838, Paek et al., In Vitro Cell Dev. Biol.-Plant 37, p149, 2001). , Vasil, IK, Scale-up and automation in plant development, p111, 1991, Academic press Inc.). In the culture using a storage tissue, the induced tissue is a storage tissue itself or a multi-bud tissue having almost no nodes, and does not have a growth form in which internodes are elongated in the present invention (Makoto Takayama). Strategy, Clonal Growth and Artificial Seeds, p129, 1989, Ohmsha, Tokyo, Japan).
Under such circumstances, the present inventors have solved the problems caused by the conventional liquid culture method in the growth and regeneration of plants, particularly plants with extended internodes, and facilitated high efficiency, low cost and mass production. The method of mass propagation of plant seedlings was examined.
As a result of intensive studies, the present inventors have (1) cut a large number of plants grown in liquid culture at random without confirming the buds individually, and efficiency in the next step without selecting the separated tissues. It was found that buds could be induced. Furthermore, (2) the form of the plant suitable for the random cut is obtained by culturing under a certain period of time in the dark or under low light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. (3) It is possible to proliferate with high efficiency even in the culture under such light conditions as in the photopic culture. (4) Depending on the plant, a randomly cut tissue may be clarified. The seedlings in a form more suitable for acclimation (hereinafter referred to as “good seedlings”) by culturing in the dark for a certain period of time prior to culturing or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. (5) Depending on the plant, it is found that a high concentration of sucrose and a basic medium concentration are more suitable than those generally used during mass growth in liquid, and the present invention is completed. It came to.
SUMMARY OF THE INVENTION The present invention has the following features.
The present invention relates to a tissue piece obtained by randomly cutting a plant body in a dark place or under low light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, and then randomly cutting the plant body. A method for producing plant seedlings, comprising culturing
As used herein, the term “random cutting” (also referred to as “random cutting”) means cutting tissue pieces or plants randomly without checking the buds individually. Therefore, the plant piece may not contain buds, in which case adventitious buds may also be derived from the section. Further, in the method of the present invention, it is not necessary to select the cut tissue, and all tissue pieces after cutting can be subjected to culture.
According to an embodiment of the present invention, the plant is preferably a plant that extends internodes.
As used herein, the term “internode elongation” means that the stem grows without rosetting. Such internode-extended plants include, for example, sweet potato, dahlia, potato, tomato, melon, carnation and the like. Moreover, even in plants where the internodes do not extend in the bright place, there are also plants in which the internodes extend in the dark place of the present invention or in low light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. . For example, gypsophila, primula, statice, gerbera and the like. Those plants are also applicable to the method of the present invention. Particularly preferred plants are sweet potato, dahlia, potato and carnation. However, any plant shall be included in the present invention as long as the above method of the present invention enables the production of plant seedlings more efficiently than the conventional method.
According to another embodiment of the present invention, a higher concentration of sugar and / or a higher concentration than usual in the above dark place or in the low light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. A medium containing the nitrogen and potassium components of is used.
As the medium, any medium can be used as long as it is a medium normally used for plant tissue culture. A preferred medium is Murashige-Skoog (MS) medium (Murashige and Skoog, PHYSIOLOGIA PLANTRUM, 15, p. 473-479, 1962). As used herein, the term “higher than normal” means a higher concentration than the normal concentration of sugar, nitrogen and potassium components in media commonly used in plant tissue culture. These general concentrations are about 2-3% (W / V or weight / volume) for sugars, about 0.3% (W / V) for nitrogen components (nitrate nitrogen, ammonia nitrogen), and about potassium components. 0.07% (W / V). In the present invention, the sugar concentration is preferably about 4 to about 8% (W / V). The concentration of the nitrogen and potassium components is preferably higher than the normal concentration and about 3 times or less, more preferably 1.2 to 3 times, and most preferably 1.5 to 2 times.
According to another embodiment of the present invention, in the culture of the tissue pieces after random cutting, elongation of buds in a dark period or under weak light with a photosynthetic photon flux density of not more than 5.7 μmole / m 2 / sec. And / or the induction and elongation of adventitious buds. Cultivation under these conditions is performed as a pretreatment for the carbon dioxide gas treatment. Such pretreatment increases the percentage of good seedlings by about 40 to about 50%. This method is particularly effective in plants such as sweet potatoes.
According to another embodiment of the present invention, in the culture of the tissue pieces after the random cutting, after the pretreatment or without the pretreatment, it promotes the elongation of buds under carbon dioxide gas enrichment and / or Alternatively, adventitious bud induction and elongation can be promoted. As an example in which the above pretreatment is not performed, for example, a plant such as dahlia is enriched with carbon dioxide gas in a bright place without pretreatment in the dark place or in a weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. It can be used for culturing.
The term “under carbon dioxide enrichment” as used herein means that the CO 2 concentration in the culture space is 0.1 to 10 ppm, preferably 0.5 to 5 ppm.
Cultivation under carbon dioxide gas enrichment is usually performed in the light. This can activate photosynthesis and promote the growth of plant seedlings.
According to the present invention, work efficiency after large-scale culture is greatly improved by random cut work, and it is suitable for random cut under dark conditions or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. Forms can be proliferated in large quantities, thus providing advantages such as further growth, improved work efficiency, and significantly reduced input resources.
Furthermore, the culture method under dark conditions or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less requires significantly less input resources than the method in the light place. For example, no lighting equipment is required, so the air conditioning equipment may be small. That is, culture in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less has few restrictions on equipment conditions and can easily cope with a large fluctuation in demand. General air conditioning and air supply facilities can easily increase production, which is one of the major advantages.
Furthermore, the seedling production efficiency in the next step of the plant body obtained from the culture in the dark or under the weak light with the photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less is the plant obtained in the light culture. It may even be higher than the body.
This specification includes the contents described in the specification and / or drawings of Japanese Patent Application No. 2005-228349, which is the basis of the priority of the present application.

図1は、サツマイモにおいて二酸化炭素ガス富化前の暗処理の有無がもたらす良苗(左図、暗処理有り)と通常苗(右図、暗処理無し)の親組織からの分離状態を示す写真である。良苗の場合、親組織から容易に分離可能であるが、通常苗の場合、親組織からの分離が困難、馴化は可能である。  Fig. 1 is a photograph showing the separation of the good seedlings (left figure, with dark treatment) and normal seedlings (right figure, without dark treatment) from the parent tissue brought about by the presence or absence of dark treatment before enrichment of carbon dioxide gas in sweet potato It is. In the case of a good seedling, it can be easily separated from the parent tissue, but in the case of a normal seedling, separation from the parent tissue is difficult and habituation is possible.

本発明は、上記のとおり、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下、好ましくは光合成光量子束密度1.2μmole/m/sec以下の極弱光下で、植物体を培養増殖した後に、該植物体の無作為切断によって得られた組織片を培養することを含む、植物苗の生産方法を提供する。
(植物体の増殖)
無作為切断(「ランダムカット」ともいう)に用いる植物は液体培地で増殖するのが望ましい。固体培地に比して増殖率が高く旺盛に生育する。培養を終了する前に、3日以上、望ましくは7日以上、より望ましくは液体培養での全培養期間を暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で培養する。このような光条件で培養することにより、明所培養に比して節間が伸長し、茎が細くなり、葉のサイズが小型化してランダムカットに適した形態となる。
通常の植物組織培養から得られる母株を用意し、この母株を上記暗所または弱光条件下で培養するか、あるいは生長の遅い植物であれば予め明所にて器官培養を行った後で上記暗所または弱光条件下で培養する。
液体培養工程に用いる培地は、上記暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での増殖を促進し、かつ葉や茎のサイズが小型化する培地を選択する。基本培地はMS培地など通常組織培養で用いられる培地でよい。糖源としてショ糖1〜10%、望ましくは2〜8%、および/または、ソルビトール若しくはマンニトール等の糖アルコール類を0.1〜3%、望ましくは0.5〜2%、植物生長調節物質としてサイトカイニン類、望ましくは6−ベンジルアデニン(BA)を0〜5ppm、望ましく0.03〜1ppm、その他のサイトカイニン類としてゼアチン(ZEA)、カイネチン(KN)、6−(ベンジルアミノ)−9−(2−テトラヒドロピラニル)−9H−プリン(PBA)、2−イソペンテニルアデニン(2ip)、チジアズロン(TDZ)等を用いることができる。また、オーキシン類として2,4−ジクロロフェノキシ酢酸(2,4−D)、インドール−3−酢酸(IAA)、インドール−3−酪酸(IBA)、1−ナフタレン酢酸(NAA)、4−クロロフェノキシ酢酸(CPA)、クロロメチルフェノキシ酢酸(MCPA)、2,4,5−トリクロロフェノキシ酢酸(2,4,5−T)、ジクロロメトキシ安息香酸(DICAMBA)、トリクロロアシノピコリン酸(PICLORAM)等を用いることができる。更に他の植物生長調節物質としてジベレリン酸(GA)、アブシジン酸(ABA)、ブラシノステロイド(BS)、アンシミドール(Anc)などを同様の濃度でそれぞれ単独または適宜組み合わせて添加してもよい。適宜上記培地成分を選択することにより、暗所または光合成光量子束密度5.7μmole/m/sec以下の弱光下で増殖が良好且つ茎葉が一層小型化する条件を両立できる。
なお、上記の各種成分を含む培地は、混合調製後、オートクレーブ前に塩酸等の酸や水酸化ナトリウム等のアルカリを用いてpHを通常5.2〜6.4に調整する。また生長点からの培養苗(母株)の誘導や維持に用いる培地は固体培地が望ましく、通常上記pH調整を行った後に固化剤として寒天、或いはゲルライト(和光純薬工業(日本国))をそれぞれ0.7〜1.0%、或いは0.1〜0.3%、添加してからオートクレーブすることで、それぞれ無菌の培地調製を行うことができる。
サツマイモ等の一部植物においては、ショ糖などの糖の濃度及び基本培地組成(特に、窒素及びカリウム成分)の濃度を通常の増殖場面で用いられているよりも高めることによって液体培養工程における増殖率が著しく改善される。糖濃度は、約2〜約8%(W/V)、好ましくは約4〜約8%(W/V)、より好ましくは約5〜約7%(W/V)、窒素及びカリウム成分(例えば硝酸カリウム、硝酸アンモニウムなど)は、植物組織培養で使用される通常培地(例えばMS培地など)の1.2〜3倍、望ましくは1.5〜2倍とする。固体培地及び液体培地に関わらず、植物培養物の増殖には通常2〜3%のショ糖が用いられており(クローン植物大量生産の実際技術、p26、1985年、シーエムシー社、東京、日本国)、それより高い濃度の糖は芽の増殖や植物の生育には適さないとの報告がなされている(AkitaとTakayama,Acta Horticulturae,230,p55,1988;HaradaとYakuwa,J.Fac.Agr.Hokkaido Univ,.vol.61,pt.3,p307,1983)。例外的に、塊茎や球根と言う貯蔵組織を誘導する際にのみ高濃度のショ糖条件は限定的に用いられてきた。上記高濃度のショ糖濃度が増殖を促進する例はこれまでに殆ど知られていない。また、組織培養に通常用いられるMS培地は、無機塩含量が高いので(クローン植物大量生産の実際技術、p25、1985年、シーエムシー社、東京、日本国)、窒素成分などを減らす培養条件の改良はこれまで種々の例があるが(YamamotoとOda,Acta Horticulturae,319,p143,1988)、通常以上の上記成分の濃度は阻害的な報告はあるが(Scale−up and automation in plant propagation,p111,1991,Academic press Inc.)積極的に増殖に用いた例は少ない。
容器については市販されている多くの植物組織培養用の培養槽(例えば柴田科学社(日本国)等からの販売品)を用いることができる。
通気量は、0.005〜0.3vvm、望ましくは0.02〜0.15vvmとする。
暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下の培養期間は、上述の通り、培養終了前に暗所培養を行う場合は3〜21日、望ましくは5〜14日とする。全培養期間を暗所で行う場合は14〜70日、望ましくは25〜50日とする。暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での培養に先立って明所培養を行う際には、光量子束密度5.7〜57μmole/m/sec、望ましくは11.4〜34.2μmole/m/secとする。明所の培養期間は14〜70日、望ましくは25〜50日とする。また、本植物体の増殖に用いる培養苗(上記母株)の調製工程、暗所または光合成光量子束密度5.7μmole/m/sec以下の弱光下での培養に先立つ明所培養、更には本植物体の増殖工程での明期の期間としては、通常12〜24時間/日、望ましくは14〜18時間/日である。
同各種培養工程及び暗所液体培養工程での温度としては、通常15〜35℃、望ましくは20〜30℃である。
植物の種類によって好適な諸条件を設定することができる。例えばダリアの場合は、ランダムカットに用いる植物体は上記暗所または光合成光量子束密度5.7μmole/m/sec以下の弱光下にて、培地にショ糖、ソルビトール及び6−ベンジルアデニン(BA)を加えた培地で培養するのがよい。サツマイモの場合、ランダムカットに用いる植物体は、明所で4〜7週間培養した後に暗所で1〜2週間培養するのがよい。培地中のショ糖は6%程度とし、培地中のNHNO及びKNOの濃度は通常より高くするのがよい。また、より高い増殖率を求める場合及び全期間を暗所とする場合には、培地にBAやジベレリン酸(GA)を添加するのがよい。温度は27〜30℃程度がよい。
(無作為切断(「ランダムカット」))
ランダムカットする茎片等の組織の長さは0.5〜5cm、望ましくは1〜3cmである。例えばダリアの場合、ランダムカットするサイズは1cm程度とし、またサツマイモの場合、ランダムカットのサイズは2cm程度とするのが好ましい。
ランダムカットされた茎片等の組織が定芽(腋芽等)を含む場合は、その定芽が伸長して植物となるが、本定芽を含まない茎片等の組織の場合でもその切片等から不定芽が誘導されることがあるため、本組織に芽が含まれていなくてもよい。
従来法では、腋芽または生長点を含むように非無作為に切断し移植が行われていたため、この工程に多大の時間を要していたのに対して、本発明方法では、約400〜約2,000本の植物体を約20分で切断し移植することができる。本発明のこのような上記暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下での植物体の増殖と植物体のランダムカットの組み合わせは、本願出願前に開示がないことから明らかなように、当業者が容易に想起しえたことではなかった。
ランダムカットの作業を非無菌環境下で行う場合には、培地に静菌剤を添加する。静菌剤としては市販されておりオートクレーブによっても分解されないものが望ましいが、もし分解する場合にはフィルター滅菌によって、オートクレーブ後に十分に培地温度が下がってから添加すればよい。特に固体培地の場合は、固化する直前に添加することが望ましい。
(植物苗の作製)
ランダムカットした組織片を培養する場合、移植する培地は固体培地でもよいが、作業効率をより高めるためには液体培地が望ましい。また、容器については、オートクレーブ(120℃、1気圧、15分)に耐え得るものであれば無菌の培養時に用いる容器は特定されない。容器に液体培地を例えば100〜500ml添加し、これに、ランダムカットした組織片を選別することなく生重量で10〜100gずつばら撒き、1〜5週間明所条件下で培養する。その期間にランダムカットした組織に含まれる芽が伸長、発根し、容易に土(プラグ、ポットなどの容器中)に移植し得る苗となる。サツマイモのように植物の種類によっては、容器にランダムカットした組織片をばらまいた後、すぐに明所培養を行うのではなく、その前に1〜10日、望ましくは3〜7日、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で培養してから明所培養することによって、更に節間が伸長し馴化により適した形態の苗(「良苗」ともいう)が得られる。
この工程に用いられる培地は、MS培地(MurashigeとSkoog,Physiol.Plant.,15,p.143,1962)など通常組織培養に用いられる培地でよい。通常の明所条件ではショ糖は1〜8%、望ましくは2〜5%添加する。植物種によっては、6−ベンジルアデニン(BA)、ジベレリン酸(GA)、アンシミドールなどの植物生長調節剤を0.01〜5ppm、望ましくは0.1〜3ppmで単独又は適宜組み合わせて添加する。なお、二酸化炭素ガスを富化した環境条件下(二酸化炭素ガス富化下)ではショ糖を低濃度で添加するか、若しくは添加しなくてもよい。二酸化炭素ガスの濃度は、培養空間におけるCO濃度が0.1〜10ppm、望ましくは0.5〜5ppmである。またショ糖濃度は通常上記濃度で用いるが、ショ糖を低濃度で添加する場合とは1%以下で用いることを指す。
光条件は、光合成光量子束密度5.7〜57μmole/m/sec、望ましくは11.4〜34.2μmole/m/secとする。日長は、12〜24時間日長(12〜0時間暗所)が望ましい。光源としては市販されている各種蛍光灯であればどのようなものを用いてもよい。
苗は、温室などの開放系に若干の遮光のみの条件下で直接移植することができる。
得られた植物体の栽培の条件を調節することにより、更に利用目的に適した形態の植物体を誘導することも可能である。例えば、ジャガイモにおいては、作出した苗からミニチューバーを誘導できる(The Potato Crop,The scientific basis for improvement,Paul M.Harris編,CHAPMAN & HALL,London,1992,特に図6.12参照)。誘導されたチューバーは長期の貯蔵が可能であり、圃場に植え付けることが可能である。またサツマイモについては、ジャガイモ同様に小さな貯蔵組織である塊根が誘導可能である。
以下、実施例により本発明を更に詳細に説明するが、これらの実施例は本発明の範囲を何ら制限するものではない。
As described above, the present invention is in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, preferably under extremely weak light with a photosynthetic photon flux density of 1.2 μmole / m 2 / sec or less. Then, after the plant body is cultured and grown, a method for producing a plant seedling is provided, which comprises culturing a tissue piece obtained by random cutting of the plant body.
(Plant growth)
Plants used for random cutting (also called “random cuts”) are preferably grown in liquid media. It has a high growth rate compared to solid media and grows vigorously. Before ending the culture, the whole culture period is 3 days or more, preferably 7 days or more, more preferably liquid culture in the dark or under a weak light of photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. Incubate. By culturing under such light conditions, the internodes are elongated, the stem is thinned, the leaf size is reduced, and the form suitable for random cutting is obtained as compared with the photopic culture.
After preparing a mother strain obtained from normal plant tissue culture, cultivate this mother strain in the dark or low light conditions, or after organ culture in advance in a light place if the plant is slow growing Incubate in the dark or low light conditions.
The medium used for the liquid culture process is a medium that promotes growth in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, and that reduces the size of leaves and stems. To do. The basic medium may be a medium usually used in tissue culture such as MS medium. Sucrose as a sugar source 1-10%, preferably 2-8%, and / or sugar alcohols such as sorbitol or mannitol 0.1-3%, preferably 0.5-2%, plant growth regulator As cytokinins, preferably 6-benzyladenine (BA) 0 to 5 ppm, preferably 0.03 to 1 ppm, and other cytokinins as zeatin (ZEA), kinetin (KN), 6- (benzylamino) -9- ( 2-tetrahydropyranyl) -9H-purine (PBA), 2-isopentenyl adenine (2ip), thidiazuron (TDZ), and the like can be used. As auxins, 2,4-dichlorophenoxyacetic acid (2,4-D), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), 1-naphthaleneacetic acid (NAA), 4-chlorophenoxy Acetic acid (CPA), chloromethylphenoxyacetic acid (MCPA), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T), dichloromethoxybenzoic acid (DICAMBA), trichloroacinopicolinic acid (PICLORAM), etc. are used. be able to. Furthermore, gibberellic acid (GA 3 ), abscisic acid (ABA), brassinosteroid (BS), ansimidol (Anc), etc., as other plant growth regulators may be added alone or in appropriate combination in the same concentration. Good. By appropriately selecting the above-mentioned medium components, it is possible to satisfy both the conditions of good growth and further downsizing of the foliage in the dark or under the weak light of the photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less.
In addition, the culture medium containing said various components adjusts pH normally to 5.2-6.4 using acids, such as hydrochloric acid, and alkalis, such as sodium hydroxide, after mixing preparation and before autoclaving. The medium used for the induction and maintenance of the cultured seedling (mother stock) from the growth point is preferably a solid medium. Usually, after adjusting the pH, agar or gellite (Wako Pure Chemical Industries, Japan) is used as a solidifying agent. By adding 0.7 to 1.0% or 0.1 to 0.3%, respectively, and then autoclaving, a sterile medium can be prepared.
In some plants such as sweet potato, growth in liquid culture process by increasing the concentration of sugar such as sucrose and the concentration of basic medium composition (especially nitrogen and potassium components) than in normal growth situations The rate is significantly improved. The sugar concentration is about 2 to about 8% (W / V), preferably about 4 to about 8% (W / V), more preferably about 5 to about 7% (W / V), nitrogen and potassium components ( For example, potassium nitrate, ammonium nitrate, etc.) are 1.2 to 3 times, preferably 1.5 to 2 times the normal medium (eg, MS medium) used in plant tissue culture. Regardless of solid medium or liquid medium, 2-3% sucrose is usually used for the growth of plant cultures (practical technology for mass production of cloned plants, p26, 1985, CMC, Tokyo, Japan). N.), higher concentrations of sugar have been reported to be unsuitable for bud growth or plant growth (Akita and Takayama, Acta Horticulturae, 230, p55, 1988; Harada and Yakuwa, J. Fac. Agr.Hokaido Univ., Vol.61, pt.3, p307, 1983). Exceptionally, high-concentration sucrose conditions have been used exclusively in inducing storage tissues such as tubers and bulbs. Until now, there are few known examples in which the high concentration of sucrose promotes growth. In addition, the MS medium normally used for tissue culture has a high inorganic salt content (practical technology for mass production of cloned plants, p25, 1985, CMC, Tokyo, Japan). There are various examples of improvements so far (Yamamoto and Oda, Acta Horticulturae, 319, p143, 1988), but there are reports that the above-mentioned concentrations of the above-mentioned components are inhibitory (Scale-up and automation in plant propagation, (p111, 1991, Academic press Inc.) There are few examples of active use in proliferation.
As the container, many commercially available culture vessels for plant tissue culture (for example, products sold by Shibata Kagakusha (Japan), etc.) can be used.
The air flow rate is 0.005 to 0.3 vvm, preferably 0.02 to 0.15 vvm.
As described above, the culture period in the dark or in the weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less is 3 to 21 days, preferably 5 to 5 in the dark. 14 days. When the whole culture period is performed in the dark, it is 14 to 70 days, preferably 25 to 50 days. When culturing in a dark place prior to culturing in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, the photon flux density is 5.7 to 57 μmole / m 2 / sec, Desirably, it should be 11.4 to 34.2 μmole / m 2 / sec. The culture period in the light place is 14 to 70 days, preferably 25 to 50 days. In addition, a step of preparing a cultured seedling (the above-mentioned mother strain) used for the growth of the plant body, a bright place culture prior to culturing in a dark place or under low light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, Is usually 12 to 24 hours / day, preferably 14 to 18 hours / day, as the light period in the growth process of the plant body.
The temperature in the same culturing step and dark liquid culturing step is usually 15 to 35 ° C, preferably 20 to 30 ° C.
Suitable conditions can be set according to the type of plant. For example, in the case of dahlia, the plant used for random cutting is sucrose, sorbitol and 6-benzyladenine (BA) in the medium in the dark place or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. It is better to culture in a medium supplemented with). In the case of sweet potatoes, the plant used for random cutting is preferably cultured for 4 to 7 weeks in a light place and then for 1 to 2 weeks in a dark place. The sucrose in the medium should be about 6%, and the concentrations of NH 4 NO 3 and KNO 3 in the medium should be higher than usual. When a higher growth rate is required and when the entire period is dark, it is preferable to add BA or gibberellic acid (GA 3 ) to the medium. The temperature is preferably about 27 to 30 ° C.
(Random cutting (“Random cut”))
The length of a tissue such as a stem piece to be randomly cut is 0.5 to 5 cm, preferably 1 to 3 cm. For example, in the case of dahlia, the size to be randomly cut is preferably about 1 cm, and in the case of sweet potato, the size of the random cut is preferably about 2 cm.
When a tissue such as a stem piece that has been randomly cut contains a fixed bud (such as a sprout bud), the fixed shoot extends to become a plant, but even in the case of a tissue such as a stem piece that does not contain this regular shoot, its slice or the like Since the adventitious buds may be induced from, the buds may not be contained in this tissue.
In the conventional method, transplantation was performed by cutting non-randomly so as to include axillary buds or growth points, and this process took a lot of time, whereas in the method of the present invention, about 400 to about 2,000 plants can be cut and transplanted in about 20 minutes. The combination of the growth of the plant and the random cut of the plant in the above dark place or in the low light of the photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less of the present invention is disclosed before the filing of the present application. As is clear from the fact, it was not easily conceived by those skilled in the art.
When random cutting is performed in a non-sterile environment, a bacteriostatic agent is added to the medium. As a bacteriostatic agent, one that is commercially available and is not decomposed by an autoclave is desirable. However, if it is decomposed, it may be added after the temperature of the medium is sufficiently lowered after autoclaving by filter sterilization. Particularly in the case of a solid medium, it is desirable to add it immediately before solidification.
(Production of plant seedlings)
When cultivating randomly cut tissue pieces, the medium to be transplanted may be a solid medium, but a liquid medium is desirable in order to further improve working efficiency. Moreover, about the container, the container used at the time of an aseptic culture will not be specified if it can endure an autoclave (120 degreeC, 1 atmosphere, 15 minutes). For example, 100 to 500 ml of a liquid medium is added to the container, and 10 to 100 g of the freshly cut tissue pieces are dispersed into the container without selection, and cultured under light conditions for 1 to 5 weeks. The buds contained in the tissue randomly cut during that period elongate and root, and become a seedling that can be easily transplanted to soil (in a container such as a plug or pot). Depending on the type of plant, such as sweet potatoes, instead of immediately culturing in the light place after dispersing the randomly cut tissue pieces in the container, 1-10 days before, preferably 3-7 days, dark place By culturing under low light or photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, and then cultivating in a bright place, the seedlings in a form more suitable for acclimatization can be obtained by extending internodes (also called “good seedlings”). Say).
The medium used in this step may be a medium normally used for tissue culture, such as MS medium (Murashige and Skog, Physiol. Plant., 15, p.143, 1962). Under normal light conditions, sucrose is added at 1-8%, preferably 2-5%. Depending on the plant species, plant growth regulators such as 6-benzyladenine (BA), gibberellic acid (GA 3 ) and ansimidol are added in an amount of 0.01 to 5 ppm, preferably 0.1 to 3 ppm, alone or in appropriate combination. To do. Note that sucrose may be added at a low concentration or may not be added under environmental conditions enriched with carbon dioxide gas (under carbon dioxide gas enrichment). The concentration of carbon dioxide gas is such that the CO 2 concentration in the culture space is 0.1 to 10 ppm, preferably 0.5 to 5 ppm. The sucrose concentration is usually used at the above-mentioned concentration, but when sucrose is added at a low concentration, it means to use it at 1% or less.
The light condition is a photosynthetic photon flux density of 5.7 to 57 μmole / m 2 / sec, preferably 11.4 to 34.2 μmole / m 2 / sec. The day length is preferably 12 to 24 hours long (12 to 0 hours dark). As the light source, any commercially available fluorescent lamp may be used.
Seedlings can be transplanted directly into an open system such as a greenhouse under some light-shielding conditions.
By adjusting the conditions for cultivation of the obtained plant body, it is also possible to induce a plant body in a form suitable for the purpose of use. For example, in potatoes, minitubers can be derived from the seedlings produced (see The Potato Crop, The Scientific Basis for Improvement, edited by Paul M. Harris, CHAPMAN & HALL, London, 1992, especially FIG. 6.12). Induced tubers can be stored for long periods of time and can be planted in the field. As for sweet potatoes, tuberous roots, which are small storage tissues, can be induced like potatoes.
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, these Examples do not restrict | limit the scope of the present invention at all.

<実施例1>
ダリア(品種カロリナレッド、リサホワイト、またはリサダークピンク(いずれも、キリン・グリーンアンドフラワー(株)、日本国))の培養苗を用いて以下の実験を行った。同培養苗は、MS培地にショ糖3%、ゲルライト(和光純薬社、日本国)0.2%を添加しpHを5.8に調整した固体培地上にて、明所(光合成光量子束密度22.8μmole/m/sec、16時間日長)、25±2℃の条件下にて維持された苗の1芽を含む茎片を切り分けて5週間ごとに継代培養しているものである。培養容器には内容積約300mlのものを用いた(プラントボックス、旭テクノグラス社製、日本国)。培養4週目の培養苗16本(草丈約6cm、供試材料)を、MS培地にショ糖1.5%、ソルビトール1.0%、BA0.02ppmを添加した5Lの液体培地(pH5.8)を含む円筒型の培養容器(底面積約190cm、高さ約45cm、内容積約6L)に植え付け、0.06vvmの通気を底面部から行いながら、以下の2種類の光条件にて培養を行った(ともに温度は25±2℃とした)。1)明所区:光合成光量子束密度22.8μmole/m/sec、16時間日長。2)暗所区。5週間培養後には両区とも植物が増殖して培養槽上部まで達し、培養槽は植物で満たされた。それら植物体を取り出しそれぞれの区の葉の大きさ(縦長、幅)を計測した。両区ともに植物の上部から下部までの着生葉につき計測した。その結果を表1に示す。

Figure 2007018252
明所区の葉のサイズは暗所区に比して2倍程度又はそれ以上大きく、ランダムカットを行った際の葉や根といった植物残渣が暗所区に比して著しく多く、また作業効率が著しく悪かったため、次工程に移行するには不適当であった。また、暗所区の植物について1芽ずつを含む茎片に切り分ける作業を試みたが、ランダムなカットが2〜3分の所要時間で作業を終了できたのに比して、数倍〜十数倍の時間を要することが判明し作業を中断した。
次に暗所区の植物を、完全には無菌ではない環境(作業はクリーンベンチ内、植物の回収及びカットに用いる資材は無菌でない)にて、包丁を用いて芽の場所(または有無)を確認することなく約1cmの長さにランダムカットした。それらのカットした組織片を選別することなく、ショ糖3%、BA0.02ppm、静菌剤であるPPM剤(PhytoTechnology Laboratories社、米国)を0.5ml添加したMS液体培地(pH5.8)250mlを入れた透明なプラスティック製の箱型容器(22cm×17cm×7cm、底部にペーパータオルを敷いてある)に50g置床した。その容器を、二酸化炭素ガス濃度を2%に高めた雰囲気中(富化下)にて、25±2℃、明所(光合成光量子束密度22.8μmole/m/sec、16時間日長)の条件下で2週間培養した。培養終了後、得られた植物(1対2葉以上に生育した苗)の数量を計測し、培養槽あたりの苗生産本数を集計した。結果を表2に示す。
Figure 2007018252
二酸化炭素ガス富化下にて最終的に得られた上記の苗は、温室環境下で遮光や加湿等の付加的な環境を無くしても100%に近い生存率を示した。暗所の液体培地で増殖された植物体をランダムカットし、二酸化炭素ガス富化下で苗化する培養法の有効性が明確に示された。
<比較例1>
実施例1と同じ培養4週目の培養苗(供試材料)16本を1芽ずつ含む茎片にカットした後、4週間同じ条件で培養した。得られた植物を更に1芽ずつを含む茎片にカットしたものを同条件にて4週間培養することで、実施例1と形態的にはほぼ類似の発根苗を得た。この方法(従来技術)での苗生産本数は144本(植付け苗数当りの増殖率は9倍)であった。しかも、得られた発根苗が温室条件にて生存するには、強度の遮光及び十分な加湿等の付加的な条件が必要であった。
<実施例2>
容器は実施例1と同じプラントボックスを用い、MS培地にショ糖3%、ゲルライト0.2%を添加した培地(pH5.8)で28±2℃、明所(光合成光量子束密度22.8μmole/m/sec、16時間日長)の条件下で5週間ごとに継代培養したサツマイモ(品種 紅東((株)ベルディ、日本国))の培養苗(草丈約5cm、供試材料)を用いて次の試験を行った。MS培地にショ糖を6%加えた液体培地4Lを入れた実施例1と同じ培養槽に培養苗6本を置床し、明所(光合成光量子束密度11.4μmole/m/sec、16時間日長)、28±2℃で7週間培養を行った。増殖した培養槽から得られた植物に含まれる総節数を計測した。対照には、液体培地のショ糖濃度を3%にした区を用いた。
Figure 2007018252
通常組織培養に用いられるショ糖濃度(2〜3%)より、倍の高濃度の条件がサツマイモ増殖に適していることが確認できた。
<実施例3>
サツマイモ(品種 紅東)の培養苗につき、実施例2の培養槽での培地条件を更に以下の様に変更して検討を行った。
(1)MS培地、ショ糖6%
(2)MS培地でKNO及びNHNOを1.5倍量とした培地、ショ糖6%
(3)MS培地でKNO及びNHNOを2倍量とした培地、ショ糖6%
(4)MS培地でKNO及びNHNOを1.5倍量とした培地、ショ糖3%
(5)MS培地でKNO及びNHNOを2倍量とした培地、ショ糖3%
明所条件で液体培養を5週間行った後、暗所条件にて更に2週間培養を行った。この暗所培養中に、明所培養にて展開した葉は減耗し、また多くの節から葉を殆ど有せず且つ節間が伸長した茎が多数伸長した。培養槽の上部にまで生長したそれら植物を無菌条件下にて取り出し、包丁にて約2cmの長さにランダムカットした(比較例として、明所培養から直接回収した植物を用いたが、葉が暗所培養で得られた植物に比して著しく大きく作業効率が著しく低下したので作業を中断した)。実施例1と同じ箱型容器にMS培地に6%のショ糖を添加した液体培地(pH5.8)を200ml入れ、そこにランダムカットした組織を50g置床した。それらを5日間暗所、28±2℃にて培養した後に実施例1と同じ二酸化炭素ガス富化培養条件にて3週間培養した。暗所培養中にランダムカットした組織に含まれる芽が伸長し、二酸化炭素ガス富化培養後に節間が適度な長さに伸長した馴化に適した形態の苗が多く得られた。上記(1)〜(5)の夫々の条件について、培養槽あたりに生産された苗数を表4に示す。
Figure 2007018252
ショ糖濃度を6%とした上、更に窒素及びカリウム成分を通常の培地よりも1.5倍に高めた条件(上記(2))が明らかに増殖率の向上に最も有効であった。比較例として、供試材料を上記試験と同じ期間にて増殖した区を設け(5週間毎に2回継代培養を実施)、得られる培養苗数を計測したところ、6本の供試材料から54本の苗が得られたにすぎなかった。
<実施例4>
サツマイモ(品種 紅東)の培養苗につき、実施例3と同じ条件で試験を行い(培地はMS+ショ糖6%、pH5.8)、ランダムカットするサイズ(1cmと2cm)及び、二酸化炭素ガス処理前の暗所前処理の有無が、得られる苗数(総苗数)及び馴化により適した形態の苗(「良苗」という)の割合に及ぼす影響を検討した。良苗とは、ランダムカットした組織から次工程中に節間が伸長し、同組織から分離可能なサイズとなった苗を示し、馴化作業が容易になり活着後の苗形態も改善される(図1参照)。結果を表5及び表6に示す。
Figure 2007018252
Figure 2007018252
二酸化炭素ガス富化前の暗処理により、明らかに良苗の割合が向上した。また、ランダムカットのサイズについては、1cmよりも2cmの条件にてより苗数及び良苗率が顕著に向上し、本発明の工程の有効性が証明された。
<実施例5>
実施例4から得られた苗を、温室にて、培養土を充填した128穴のプラグトレイに馴化して植物を得た。それらを昼温約20〜30℃、夜温15〜20℃で追肥を行うことなく栽培したところ、地上部の生育は緩慢であり3ヶ月後には生育が認められなくなった。苗を掘り取ったところ、約6割の苗から生重量で0.1〜0.9gの塊根(ミニチューバー)が得られた。それら塊根は、同様の条件に植え付けたところ萌芽し苗となった。塊根は長期貯蔵が容易であるため、本法は増殖、貯蔵法の有効な手段と確認された。
<実施例6>
サツマイモ(品種:紅東)の培養槽での苗の増殖を、光条件を変えること以外は実施例2と同じ条件にて行い、培養終了時に茎葉重量(生重)及び葉の縦長と幅長を計測した(表7)。その結果、明所では大型の葉が形成されたのでランダムカットが適用できなかった。一方、暗所条件では明所条件に比して葉のサイズは大幅に小さくなったが、茎葉増殖重量の減少も大であった。極弱光条件では、上記2条件の中間的な生育、即ちランダムカットに適した小型の葉を有し且つ茎葉重量も暗所条件より良好な生育が認められ、光合成光量子束密度1.2μmole/m/secという極弱光条件が、ランダムカットに適した増殖に有効であることが確認された。
Figure 2007018252
<実施例7>
サツマイモ(品種:紅東)の培養槽での植物体増殖を、光合成光量子束密度1.2μmole/m/secという極弱光条件にて行ったのち、得られた1培養槽あたりの植物体(約800本)を、芽の存在を意識せず約2cmの長さにランダムカットし、実施例1と同じ二酸化炭素ガス富化処理用の箱型容器に移植する本発明の方法に要する時間は、約20分/培養槽であった。これに対し、明所で増殖した苗から葉や根を除去したのち、必ず芽を含むように1芽カットし、次いでプラントボックスへ植付ける従来の方法でのカットに要する時間は、6時間15分/培養槽であった。
<実施例8>
実施例1と同じ手法にてダリア培養苗(品種リサホワイト)を暗所にて増殖し、ランダムカットの後に透明プラスティック容器に50gずつ置床した。作業時間を計測したところ、ランダムカット及び透明容器への置床に要した時間は、夫々、3分及び18分であった。比較例として、増殖した植物体を1芽ずつに分割し、プラントボックスへ9本ずつ置床するのに必要な作業時間を計測したところ、各々210分、32分であった。前者作業は本発明の70倍、後者作業は同1.8倍の時間が必要であり、本発明の作業効率の高さが示された。
<実施例9>
実施例1と同じ条件にてダリア培養苗(品種カロリナレッド)を増殖させた。暗所区から得られた植物体を、定芽を含む節部を除去し、節間部のみを無菌環境下にて0.5〜1cmのサイズに切り分けた。それら切片を、MS培地にショ糖3%、NAA0.01ppm、BA1.0ppm、ゲルライト0.2%を添加し、かつpHを5.8に調整した固体培地(50ml/プラントボックス)に5個ずつ置床した。それらを明所(光量子束密度32.8μmole/m/sec、16時間日長)、25±2℃の条件下にて6週間培養したところ、切片から不定芽が誘導され、プラントボックスあたり平均17.5個の芽が得られた。本発明が、定芽以外の組織からの増殖にも有効であることが示された。<Example 1>
The following experiment was performed using cultured seedlings of dahlia (variety Carolina Red, Lisa White, or Lisa Dark Pink (all of which are Kirin Green and Flower, Japan)). The cultured seedlings were obtained on a solid medium (photosynthetic photon flux) on a solid medium prepared by adding 3% sucrose and 0.2% gellite (Wako Pure Chemicals, Japan) to MS medium and adjusting the pH to 5.8. (A density of 22.8 μmole / m 2 / sec, 16 hours of day length), a stem piece containing one shoot of a seedling maintained under conditions of 25 ± 2 ° C. is cut and subcultured every 5 weeks It is. A culture vessel having an internal volume of about 300 ml was used (Plant Box, manufactured by Asahi Techno Glass, Japan). Sixteen cultured seedlings (plant height of about 6 cm, test material) at the 4th week of culture were placed in a 5 L liquid medium (pH 5.8) obtained by adding 1.5% sucrose, 1.0% sorbitol and 0.02 ppm BA to MS medium. ) In a cylindrical culture vessel (bottom area: about 190 cm 2 , height: about 45 cm, internal volume: about 6 L), and 0.06 vvm is ventilated from the bottom while culturing under the following two light conditions: (Both temperatures were 25 ± 2 ° C.). 1) Photo place: Photosynthetic photon flux density 22.8 μmole / m 2 / sec, 16 hours long. 2) Dark place. After 5 weeks of cultivation, the plants grew in both sections and reached the top of the culture tank, and the culture tank was filled with plants. These plants were taken out and the size (vertical length, width) of the leaves in each section was measured. In both plots, we measured the number of epiphytic leaves from the top to the bottom of the plant. The results are shown in Table 1.
Figure 2007018252
The size of the leaves in the photo district is about twice or more than that in the dark district, and there are much more plant residues such as leaves and roots in the random cut than in the dark district. Was unsatisfactory for moving to the next step. In addition, we tried to cut the plant in the dark section into stem pieces containing one sprout, but compared to the fact that random cut was completed in a time of 2 to 3 minutes, it was several times to 10 times. It turned out that it took several times longer, and the work was interrupted.
Next, place the plant in the dark area in a non-sterile environment (work is in a clean bench, and the materials used for collecting and cutting the plant are not sterile). Random cuts were made to a length of about 1 cm without confirmation. 250 ml of MS liquid medium (pH 5.8) supplemented with 0.5 ml of sucrose 3%, BA 0.02 ppm, and PPM agent (Physotechnology Laboratories, USA) as a bacteriostatic agent without selecting those cut tissue pieces. 50 g was placed in a transparent plastic box container (22 cm × 17 cm × 7 cm, with a paper towel on the bottom). In an atmosphere (under enrichment) in which the carbon dioxide gas concentration was increased to 2%, the container was 25 ± 2 ° C., bright place (photosynthesis photon flux density 22.8 μmole / m 2 / sec, 16 hours long) For 2 weeks. After completion of the culture, the number of the obtained plants (seedlings grown on one or more leaves) was measured, and the number of seedlings produced per culture tank was counted. The results are shown in Table 2.
Figure 2007018252
The seedlings finally obtained under the carbon dioxide gas enrichment showed a survival rate close to 100% even in the greenhouse environment without additional environment such as shading and humidification. The effectiveness of the culture method in which plants grown in a dark liquid medium were randomly cut and seeded under carbon dioxide gas enrichment was clearly shown.
<Comparative Example 1>
After cutting 16 cultivated seedlings (test material) in the same 4th week of culture as in Example 1 into stem pieces each containing 1 shoot, they were cultured under the same conditions for 4 weeks. The obtained plant was further cut into stem pieces containing one sprout and cultured under the same conditions for 4 weeks, thereby obtaining a rooted seedling that was morphologically similar to Example 1. The number of seedlings produced by this method (prior art) was 144 (the growth rate per number of seedlings planted was 9 times). Moreover, in order for the obtained rooting seedlings to survive under greenhouse conditions, additional conditions such as strong light shielding and sufficient humidification are required.
<Example 2>
The same plant box as in Example 1 was used, and the medium (pH 5.8) in which 3% sucrose and 0.2% gellite were added to the MS medium was 28 ± 2 ° C., light (photosynthetic photon flux density 22.8 μmole). / M 2 / sec, 16-hour day length) cultured seedlings (plant height about 5 cm, test material) of sweet potato (variety Red East (Verdi, Japan)) subcultured every 5 weeks The following tests were conducted using Six cultured seedlings were placed in the same culture tank as in Example 1 in which 4 L of liquid medium in which 6% sucrose was added to MS medium was added, and the photosynthesis (photosynthesis photon flux density 11.4 μmole / m 2 / sec, 16 hours). Day length) and cultured at 28 ± 2 ° C. for 7 weeks. The total number of nodes contained in the plant obtained from the grown culture tank was counted. As a control, a group in which the sucrose concentration of the liquid medium was 3% was used.
Figure 2007018252
It was confirmed that conditions twice as high as the sucrose concentration (2 to 3%) usually used for tissue culture are suitable for sweet potato growth.
<Example 3>
For the cultured seedlings of sweet potato (variety Red East), the medium conditions in the culture tank of Example 2 were further changed as follows.
(1) MS medium, sucrose 6%
(2) Medium with 1.5 times the amount of KNO 3 and NH 4 NO 3 in MS medium, 6% sucrose
(3) A medium in which KNO 3 and NH 4 NO 3 are doubled in MS medium, sucrose 6%
(4) Medium containing 1.5 times the amount of KNO 3 and NH 4 NO 3 in MS medium, sucrose 3%
(5) Medium in which KNO 3 and NH 4 NO 3 are doubled in MS medium, sucrose 3%
After 5 weeks of liquid culture in the light conditions, the culture was further performed in the dark conditions for 2 weeks. During this dark culture, the leaves developed in the light culture were depleted, and many stems with few leaves and extended internodes grew from many nodes. Those plants grown to the top of the culture tank were removed under aseptic conditions, and were randomly cut to a length of about 2 cm with a knife (as a comparative example, a plant directly recovered from photoculture was used, but the leaves were The work was interrupted because it was significantly larger than the plant obtained in the dark culture and the work efficiency was significantly reduced. 200 ml of a liquid medium (pH 5.8) obtained by adding 6% sucrose to MS medium was placed in the same box-type container as in Example 1, and 50 g of the randomly cut tissue was placed there. They were cultured in the dark at 28 ± 2 ° C. for 5 days and then cultured for 3 weeks under the same carbon dioxide gas-enriched culture conditions as in Example 1. Many seedlings in a form suitable for acclimatization were obtained in which the buds contained in the tissue randomly cut during the dark culture were elongated, and the internodes were elongated to an appropriate length after the carbon dioxide gas-enriched culture. Table 4 shows the number of seedlings produced per culture tank for each of the above conditions (1) to (5).
Figure 2007018252
The conditions (above (2)) in which the sucrose concentration was set to 6% and the nitrogen and potassium components were further increased to 1.5 times that of the normal medium were clearly the most effective in improving the growth rate. As a comparative example, a section was prepared in which the test material was grown in the same period as the above test (passaging was performed twice every 5 weeks), and the number of cultured seedlings obtained was measured. Only 54 seedlings were obtained.
<Example 4>
Tests were conducted on sweet potato (variety Red East) seedlings under the same conditions as in Example 3 (medium was MS + sucrose 6%, pH 5.8), random cut sizes (1 cm and 2 cm), and carbon dioxide gas treatment The effect of the presence or absence of pre-dark pretreatment on the number of seedlings obtained (total number of seedlings) and the proportion of seedlings in a form more suitable for acclimatization (referred to as “good seedlings”) was examined. A good seedling refers to a seedling in which the internodes are elongated from the randomly cut tissue during the next process and become a size that can be separated from the same tissue, and the acclimatization work is facilitated and the seedling form after establishment is improved ( (See FIG. 1). The results are shown in Tables 5 and 6.
Figure 2007018252
Figure 2007018252
The dark treatment prior to carbon dioxide enrichment clearly increased the percentage of good seedlings. Further, regarding the size of the random cut, the number of seedlings and the ratio of good seedlings were significantly improved under the condition of 2 cm rather than 1 cm, and the effectiveness of the process of the present invention was proved.
<Example 5>
The seedlings obtained from Example 4 were acclimated to a 128-hole plug tray filled with culture soil in a greenhouse to obtain a plant. When they were cultivated without additional fertilization at a day temperature of about 20-30 ° C. and a night temperature of 15-20 ° C., the growth of the above-ground part was slow and no growth was observed after 3 months. When the seedlings were dug up, 0.1 to 0.9 g of tuberous root (mini tuber) was obtained from about 60% of the seedlings. These tuberous roots sprouted and became seedlings when planted under the same conditions. Since tuberous roots are easy to store for a long time, this method was confirmed to be an effective means of growth and storage.
<Example 6>
Seedling growth in sweet potato (variety: Red East) culture tanks was carried out under the same conditions as in Example 2 except that the light conditions were changed. Were measured (Table 7). As a result, random leaves could not be applied because large leaves were formed in the light. On the other hand, in the dark condition, the leaf size was significantly smaller than in the light condition, but the decrease in the weight of the foliage was also large. Under extremely low light conditions, the growth is intermediate between the above two conditions, that is, having small leaves suitable for random cutting, and the growth of the foliage weight is better than that in the dark place. The photosynthetic photon flux density is 1.2 μmole / It was confirmed that the extremely weak light condition of m 2 / sec is effective for growth suitable for random cut.
Figure 2007018252
<Example 7>
Plant body growth in a sweet potato (variety: Red East) culture tank was carried out under extremely weak light conditions of photosynthetic photon flux density of 1.2 μmole / m 2 / sec, and the resulting plant body per culture tank was obtained. Time required for the method of the present invention in which (about 800) is randomly cut to a length of about 2 cm without being aware of the presence of buds and transplanted to the same carbon dioxide gas-enriched box-type container as in Example 1. Was about 20 minutes / culture tank. On the other hand, after removing leaves and roots from seedlings grown in the light place, one shoot must be cut so as to include shoots, and then the time required for cutting by the conventional method of planting in a plant box is 6 hours 15 Min / culture tank.
<Example 8>
Dahlia cultured seedlings (variety Lisa White) were grown in the dark by the same method as in Example 1, and 50 g each was placed in a transparent plastic container after random cutting. When the working time was measured, the time required for random cutting and placing on the transparent container was 3 minutes and 18 minutes, respectively. As a comparative example, the grown plant bodies were divided into one bud and the work time required to place nine plants in the plant box was measured and found to be 210 minutes and 32 minutes, respectively. The former work requires 70 times the time of the present invention, and the latter work requires 1.8 times the time, indicating the high work efficiency of the present invention.
<Example 9>
Dahlia cultured seedlings (variety Carolina Red) were grown under the same conditions as in Example 1. The plant body obtained from the dark area was removed from the node part including the fixed buds, and only the internode part was cut into a size of 0.5 to 1 cm in a sterile environment. Each of the slices was added to a solid medium (50 ml / plant box) in which 3% sucrose, NAA 0.01 ppm, BA 1.0 ppm and gellite 0.2% were added to MS medium and the pH was adjusted to 5.8. Placed. When they were cultured for 6 weeks under the condition of photoluminescence (density of photon flux 32.8 μmole / m 2 / sec, 16 hours day length), 25 ± 2 ° C., adventitious buds were induced from the sections and averaged per plant box 17.5 shoots were obtained. It was shown that the present invention is also effective for growth from tissues other than buds.

本発明により植物苗を高効率的に大量生産することが可能になり、このことは産業上有用である。
本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。さらにまた、当業者は、本発明に関する上記説明に基づいて本発明の種々の変更および改変が可能であることを理解するであろう。そのような均等物は、添付の請求の範囲に記載された発明を逸脱しない限り、本発明の範囲に包含されるものである。
The present invention makes it possible to mass-produce plant seedlings with high efficiency, which is industrially useful.
All publications, patents and patent applications cited herein are incorporated herein by reference in their entirety. Furthermore, those skilled in the art will appreciate that various changes and modifications of the present invention are possible based on the above description of the invention. Such equivalents are intended to be encompassed in the scope of the present invention without departing from the invention as set forth in the appended claims.

Claims (6)

暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で植物体を培養増殖した後に、該植物体を無作為切断し、それによって得られた組織片を培養することを含む、植物苗の生産方法。Cultivating a plant body in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less, then randomly cutting the plant body, and culturing the resulting tissue piece A method for producing plant seedlings. 植物が節間伸長する植物であることを特徴とする請求項1に記載の方法。  The method according to claim 1, wherein the plant is an internode-extended plant. 節間伸長する植物がサツマイモまたはダリアであることを特徴とする請求項2に記載の方法。  The method according to claim 2, wherein the internode-extending plant is sweet potato or dahlia. 暗所または弱光下での培養において、4〜8%(W/V)の濃度の糖ならびに/あるいは植物組織培養で使用される通常濃度の1.2〜3倍高い濃度の窒素およびカリウム成分を含む培地を使用することを特徴とする請求項1から3のいずれか1項に記載の方法。  Concentrations of 4-8% (W / V) sugar and / or nitrogen and potassium components 1.2-3 times higher than normal concentrations used in plant tissue culture in dark or low light cultures A method according to any one of claims 1 to 3, characterized in that a medium containing is used. 無作為切断後の組織片の培養において、暗所下または光合成光量子束密度5.7μmole/m/sec以下の弱光下で定芽の伸長を促進ならびに/あるいは不定芽の誘導および伸長を促進することを特徴とする請求項1から4のいずれか1項に記載の方法。In the culture of tissue pieces after random cutting, it promotes the growth of fixed shoots and / or promotes the induction and elongation of adventitious buds in the dark or under weak light with a photosynthetic photon flux density of 5.7 μmole / m 2 / sec or less. The method according to any one of claims 1 to 4, characterized in that: 無作為切断後の組織片の培養において、二酸化炭素ガス富化下で定芽の伸長を促進ならびに/あるいは不定芽の誘導および伸長を促進することを特徴とする請求項1から5のいずれか1項に記載の方法。  The culture of tissue pieces after random cutting promotes the growth of fixed buds and / or promotes the induction and extension of adventitious buds under carbon dioxide gas enrichment. The method according to item.
JP2007529615A 2005-08-05 2006-08-03 Plant seedling production method Active JP4191236B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005228349 2005-08-05
JP2005228349 2005-08-05
PCT/JP2006/315781 WO2007018252A1 (en) 2005-08-05 2006-08-03 Method for production of plant seedling

Publications (2)

Publication Number Publication Date
JP4191236B2 JP4191236B2 (en) 2008-12-03
JPWO2007018252A1 true JPWO2007018252A1 (en) 2009-02-19

Family

ID=37727433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007529615A Active JP4191236B2 (en) 2005-08-05 2006-08-03 Plant seedling production method

Country Status (2)

Country Link
JP (1) JP4191236B2 (en)
WO (1) WO2007018252A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2871341B1 (en) 2004-06-15 2006-09-15 Philiomel Horticulture Sa PROCESS FOR PRODUCING YOUNG PLANTS AND / OR MICRO FEET MOTHER OF HERBACEOUS ORNAMENTAL PLANTS.
EP2979539B1 (en) * 2013-03-25 2017-12-20 National University Corporation Tokyo University Of Agriculture and Technology Plant cultivation method
JP2017118847A (en) * 2015-12-28 2017-07-06 キリン株式会社 Mass production method of plants, and mass production equipment, and culture bags used therefor
CN115462303A (en) * 2022-09-06 2022-12-13 北京恒丰亚业科技发展有限公司 Seedling raising method for gramineous plants

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2573952B2 (en) * 1987-06-30 1997-01-22 麒麟麦酒株式会社 Method for forming potato microtube from adventitious buds
JPS645428A (en) * 1987-06-30 1989-01-10 Kirin Brewery Proliferation of potato
JPH01285117A (en) * 1988-05-10 1989-11-16 Mitsui Petrochem Ind Ltd Method for producing cultured seedling
JP2638768B2 (en) * 1993-07-20 1997-08-06 日本製紙株式会社 Methods for Propagation and Rooting of Seedlings
JP2000004702A (en) * 1998-06-26 2000-01-11 Sanei Gen Ffi Inc Massive growth of boraginaceae plant by tissue culture and massive production of shikonin derivative thereby
JP2000093031A (en) * 1998-09-29 2000-04-04 Kubota Corp Growth of araceous plant
JP4452483B2 (en) * 2003-11-07 2010-04-21 独立行政法人理化学研究所 Tissue culture method of licorice plant

Also Published As

Publication number Publication date
WO2007018252A1 (en) 2007-02-15
JP4191236B2 (en) 2008-12-03

Similar Documents

Publication Publication Date Title
Park et al. Improved shoot organogenesis of gloxinia ('Sinningia speciosa') using silver nitrate and putrescine treatment
JPWO2007064028A1 (en) Plant growth method
Aliyu Application of tissue culture to cashew (Anacardium occidentale L.) breeding: An appraisal
JP5177349B2 (en) Raising seedlings
Soneji et al. Somaclonal variation in micropropagated dormant axillary buds of pineapple (Ananas comosus L., Merr.)
Balilashaki et al. In vitro Direct regeneration from node and leaf explants of Phalaenopsis cv. Surabaya
Wu et al. In vitro mass propagation of hermaphroditic Carica papaya cv. Meizhonghong
Bhowmik et al. Micropropagation of commercially important orchid Dendrobium palpebrae Lindl. through in vitro developed pseudobulb culture
Devi et al. In vitro propagation of Arundinaria callosa Munro-an edible bamboo from nodal explants of mature plants
JP4191236B2 (en) Plant seedling production method
Thiruvengadam et al. In vitro regeneration from internodal explants of bitter melon (Momordica charantia L.) via indirect organogenesis
Kumar et al. Review Article In vitro propagation of kiwifruit
Agnihotri et al. In vitro cloning of female and male Carica papaya through tips of shoots and inflorescences
Jiang et al. Direct regeneration of plants derived from in vitro cultured shoot tips and leaves of poplar (Populus× euramericana ‘Neva’)
JP2008228609A (en) Tissue culture method of buckwheat, and plant body of buckwheat
Rittirat et al. Enhanced efficiency for propagation of Phalaenopsis cornu-cervi (Breda) Blume & Rchb. F. using trimmed leaf technique
Beyramizade et al. Optimization of factors affecting organogenesis and somatic embryogenesis of Anthurium andreanum lind. Tera
JP2990687B2 (en) Mass production method of Eucalyptus woody cloned seedlings
KR20110064365A (en) The mass producing method of regenerated plant from the leaf segment of calanthe discolor
JPH0731310A (en) Production method of seedling of curculigo plant
Rittirat et al. In vitro shoot organogenesis in Anthurium andraeanum HC 028 a highly valued cut-flower and potted ornamental plant
JP3787624B2 (en) Method for inducing adventitious roots and adventitious buds in figs
JPH0690630A (en) Method for multiplying large amount of acanthopanax senticosus
CN100387113C (en) Tissue cultivation quick breeding method for red leaf Chinese toon
JP4403764B2 (en) Rooting method of plant tissue

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140926

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250