JPWO2007013487A1 - Method for producing colistin powder - Google Patents

Method for producing colistin powder Download PDF

Info

Publication number
JPWO2007013487A1
JPWO2007013487A1 JP2007528488A JP2007528488A JPWO2007013487A1 JP WO2007013487 A1 JPWO2007013487 A1 JP WO2007013487A1 JP 2007528488 A JP2007528488 A JP 2007528488A JP 2007528488 A JP2007528488 A JP 2007528488A JP WO2007013487 A1 JPWO2007013487 A1 JP WO2007013487A1
Authority
JP
Japan
Prior art keywords
colistin
strain
powder
producing
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007528488A
Other languages
Japanese (ja)
Other versions
JP4958781B2 (en
Inventor
和幸 坂本
和幸 坂本
宮下 隆
隆 宮下
敏秋 永里
敏秋 永里
正岳 川東
正岳 川東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Priority to JP2007528488A priority Critical patent/JP4958781B2/en
Publication of JPWO2007013487A1 publication Critical patent/JPWO2007013487A1/en
Application granted granted Critical
Publication of JP4958781B2 publication Critical patent/JP4958781B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/50Cyclic peptides containing at least one abnormal peptide link
    • C07K7/54Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring
    • C07K7/60Cyclic peptides containing at least one abnormal peptide link with at least one abnormal peptide link in the ring the cyclisation occurring through the 4-amino group of 2,4-diamino-butanoic acid
    • C07K7/62Polymyxins; Related peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

脱色工程による製造時間の増加、コリスチン主成分の収量低下によるコストアップ、さらにカーボン廃棄物の発生による環境負荷などの従来の製造法の問題点を解決する、脱色工程を行わないコリスチン原末の製造法を提供する。白色度の高いコリスチン原末を生産することができる、バチルス・ポリミキサ・バー・コリスチニウス、白色度の高いコリスチン原末、および白色度の高いコリスチン原末を製造する方法。Production of colistin powder without decolorization process, which solves the problems of conventional production methods such as increase in production time due to decolorization process, cost increase due to decrease in yield of colistin main component, and environmental impact due to generation of carbon waste Provide law. A method for producing Bacillus polymixer bar colistinius, high whiteness colistin powder, and high whiteness colistin powder capable of producing high whiteness colistin powder.

Description

本発明は、従来のコリスチン発酵生産に使用される生産菌株と比較して、培養液の着色が大幅に減少した新規な菌株を取得し、これをコリスチン生産菌株として使用することを特徴とする、脱色工程を行うことなく、白色度の高いコリスチン原末を得る製造法に関する。   The present invention is characterized by obtaining a novel strain having a significantly reduced color of the culture solution compared to the production strain used for conventional colistin fermentation production, and using this as a colistin-producing strain, The present invention relates to a production method for obtaining a bulky colistin powder without performing a decolorization step.

コリスチンは、グラム陰性菌に広く殺菌的に作用するペプチド系抗生物質である。その作用機序は、細菌の細胞質膜のホスホリパーゼを活性化することによってリン脂質の分解を引き起こし、溶菌させることによる。コリスチンの選択毒性は低く、腸管から吸収されないことから飼料用添加物として広く用いられている。   Colistin is a peptidic antibiotic that acts broadly on gram-negative bacteria. Its mechanism of action is by causing phospholipid degradation by activating phospholipases in the bacterial cytoplasmic membrane and causing lysis. Colistin has a low selective toxicity and is not absorbed from the intestinal tract, so it is widely used as a feed additive.

微生物の発酵生産によるコリスチンの製造法としては、安価に入手できるでんぷん質などを多く含む天然原料を主原料とした、バチルス(Bacillus)属細菌、特にバチルス・ポリミキサ(Bacilluspolymyxa)による発酵生産の方法が知られている(特許文献1、2参照)。As a production method of colistin by fermentation production of microorganisms, the natural raw materials containing a large amount of such starchy available at low cost was the main raw material, Bacillus (Bacillus) bacteria belonging to the genus, especially the method of fermentation production by Bacillus polymyxa (Bacilluspolymyxa) Known (see Patent Documents 1 and 2).

安価な天然原料を主原料とした、バチルス属細菌、特にバチルス・ポリミキサによりコリスチンの発酵製造を行う場合、発酵が進行するにつれ培養液の着色も濃くなり、目的物であるコリスチンの生産量が最高値に達する発酵終了時まで着色は増す。その為、コリスチンを含有する培養液から、培地栄養源成分や発酵生成したコリスチン以外の代謝物などを除去し、コリスチンの純度を高める目的で精製工程を実施している。しかし、発酵工程で増加した培養液の着色物質については、上記精製工程で完全に除去できず、製品であるコリスチン原末に残存し、結果として着色の濃いコリスチン原末となる。特に欧州における医薬品(動物用医薬品を含む)に用いられる品質規格である欧州薬局方5版(2004年6月15日発行、2005年1月1日施行)において、コリスチン原末の色の規格は「白色もしくは概ね白色」と規定されている。この規格に合格するコリスチン原末を製造するためには、従来のコリスチン原末の製造法では、精製工程にカーボンを使用するなどの脱色工程が必要であった。カーボンによる脱色工程を行う従来のコリスチン原末の製造法では、製造に要する時間が増し、しかも、目的物質であるコリスチン原末の回収率が低下するなどの問題があった。   When fermentation of colistin is carried out using Bacillus bacteria, especially Bacillus polymixer, which is made from inexpensive natural raw materials, the color of the culture becomes darker as fermentation progresses, and the production of colistin, the target product, is the highest. The coloration increases until the end of the fermentation when the value is reached. Therefore, the purification process is carried out for the purpose of removing the nutrient components of the culture medium and metabolites other than the fermented colistin from the culture solution containing colistin to increase the purity of colistin. However, the coloring substances in the culture medium increased in the fermentation process cannot be completely removed in the purification process and remain in the product colistin bulk powder, resulting in a darkly colored colistin bulk powder. In particular, in the European Pharmacopoeia 5th edition (issued on June 15, 2004 and enforced on January 1, 2005), which is the quality standard used for pharmaceuticals in Europe (including veterinary drugs), the color standard for colistin powder is It is defined as “white or almost white”. In order to produce a colistin bulk powder that passes this standard, a conventional method for producing a colistin powder requires a decolorization process such as using carbon in the purification process. The conventional method for producing colistin powder, which performs a decoloring step with carbon, has problems such as an increase in the time required for production and a decrease in the recovery rate of colistin powder, which is a target substance.

特開昭58−47493号公報JP 58-47493 A 特開昭58−129993号公報JP 58-129933 A

本発明は、従来のコリスチン原末の製造法において必要であった脱色工程を行うことなく、白色度の高いコリスチン原末の製造法を提供することを目的とする。   An object of the present invention is to provide a method for producing a colistin bulk powder having a high degree of whiteness without performing a decolorization step required in the conventional method for producing a colistin bulk powder.

上記課題を解決するため、本発明者らは鋭意検討した結果、従来の生産菌株を変異処理することにより、着色度の減少した菌株を取得し、本菌株を使用することにより、脱色工程を行うことなく、白色度の高いコリスチン原末が得られることを見出し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventors have intensively studied. As a result, the conventional production strain is subjected to a mutation treatment to obtain a strain having a reduced degree of coloring, and by using this strain, a decolorization step is performed. The present inventors have found that a colistin powder having a high whiteness can be obtained without completing the present invention.

すなわち、本発明は、以下のとおりのものである。
(1) 400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末を生産することができる、バチルス・ポリミキサ・バー・コリスチニウス、
(2) 独立行政法人産業技術総合研究所 特許生物寄託センターに、受託番号FERM AP−20553として寄託された、バチルス・ポリミキサ・バー・コリスチニウス M50株、
(3) 上記(1)または(2)記載のバチルス・ポリミキサ・バー・コリスチニウスを培養し、培養物をイオン交換樹脂に吸着させ、溶出した後、濃縮して、乾燥することを特徴とする、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末の製造法、
(4) 上記(3)記載の製造法によって得られる、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末。
That is, the present invention is as follows.
(1) Bacillus polymixer bar colistinius, which can produce colistin powder having an absorbance of a 5% concentration (W / V) aqueous solution at 400 nm of 0.15 or less,
(2) The Bacillus polymixer bar colistinius M50 strain deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the deposit number FERM AP-20553,
(3) The Bacillus polymixer bar colitisius according to (1) or (2) above is cultured, the culture is adsorbed on an ion exchange resin, eluted, concentrated, and dried. A method for producing a colistin powder, wherein the absorbance of a 5% strength (W / V) aqueous solution at 400 nm is 0.15 or less,
(4) A colistin bulk powder obtained by the production method described in (3) above, wherein the absorbance of a 5% strength (W / V) aqueous solution at 400 nm is 0.15 or less.

本発明により、コリスチン原末の製造法に有用な新規な生産菌株を提供できる。さらに本発明の菌株を生産菌株として用いることにより、従来のコリスチン原末の製造方法に必須であった脱色工程を行うことなく、白色度の高いコリスチン原末の製造法を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, a novel production strain useful for a method for producing colistin bulk powder can be provided. Furthermore, by using the strain of the present invention as a production strain, it is possible to provide a method for producing a colistin bulk powder having a high whiteness without performing a decolorization step that is essential for a conventional method for producing a colistin bulk powder.

実施例1で得られた202−71株由来の培養濾液およびM50株由来の培養濾液の300〜600nmにおける吸光度を示す。The absorbance at 300 to 600 nm of the culture filtrate derived from 202-71 strain and the culture filtrate derived from M50 strain obtained in Example 1 is shown. 実施例3で得られたM50株由来のコリスチン原末を脱イオン水に溶解した液を液体クロマトグラフィー(HPLC)にて分析したチャートを示す。The chart which analyzed the liquid which melted colistin bulk powder derived from M50 stock obtained in Example 3 in deionized water by liquid chromatography (HPLC) is shown.

微生物の寄託
バチルス・ポリミキサ・バー・コリスチニウス(Bacillus polymyxa var. colistinus) M50株は、独立行政法人産業技術総合研究所 特許生物寄託センター(〒305−8566 日本国茨城県つくば市東1丁目1番地1中央第6)に、受託番号FERM AP−20553として平成17年5月31日付けにて寄託された。
Deposit of microorganisms Bacillus polymyxa var. Colistinus M50 strain is an independent administrative agency, National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center (1st, 1st East, 1-chome, Tsukuba, Ibaraki, Japan No. 6) was deposited on May 31, 2005 under the deposit number FERM AP-20553.

以下、本発明を詳細に説明する。
本発明では、従来のコリスチン発酵生産に使用される生産菌株に対し、人工的な突然変異処理を行い、目的とする生産菌株を取得した。
人工的な突然変異処理方法としては、人工的な変異処理であれば特に限定されないが、例えば、N−メチル−N’−ニトロ−N−ニトロソグアニジン(NTG)、エチルメタンスルホネートなどの変異剤による化学的方法;紫外線照射、X線照射などの物理的方法;遺伝子組換え、トランスポゾンなどによる生物学的方法などの変異処理方法を用いることができる。
突然変異処理を行い得られた菌群は、フラスコを用いて液体培養し、培養液の着色度およびコリスチンの生産能を指標にしてスクリーニングした。ここで、着色度は、培養液の濾紙濾過液の400nmにおける吸光度を測定した値を指標とする。また、コリスチン生産能は、培養液の濾紙濾過液をHPLCにより分析した値を指標とする。
このようにして、当該着色度が従来の生産菌株に比べて大幅に減少し、且つコリスチン生産能が同等以上の生産菌株バチルス・ポリミキサ・バー・コリスチニウス(Bacilluspolymyxa var. colistinus)を取得した。
Hereinafter, the present invention will be described in detail.
In the present invention, the production strain used for conventional colistin fermentation production was subjected to artificial mutation treatment to obtain the desired production strain.
The artificial mutation treatment method is not particularly limited as long as it is an artificial mutation treatment. For example, N-methyl-N′-nitro-N-nitrosoguanidine (NTG), ethyl methanesulfonate, etc. Chemical methods; physical methods such as ultraviolet irradiation and X-ray irradiation; mutation treatment methods such as biological methods such as genetic recombination and transposon can be used.
The bacterial group obtained by performing the mutation treatment was subjected to liquid culture using a flask and screened using the degree of coloration of the culture and the ability to produce colistin as indicators. Here, the degree of coloring is based on the value obtained by measuring the absorbance at 400 nm of the filter paper filtrate of the culture solution. The colistin production ability is based on a value obtained by analyzing the filter paper filtrate of the culture solution by HPLC.
In this way, the degree of coloring is greatly reduced compared to conventional production strain, and colistin producing ability is obtained equal or higher production strain Bacillus polymyxa bar Korisuchiniusu (Bacilluspolymyxa var. Colistinus).

本発明においては、バチルス・ポリミキサ・バー・コリスチニウスのコリスチンの生産で得られるコリスチン原末の白色度が明らかに高い株を用いることができる。具体的には、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下、好ましくは0.087以下、更に好ましくは0.070以上0.087以下であるコリスチン原末が得られるバチルス・ポリミキサ・バー・コリスチニウスであれば、本発明に用いることができる。さらに、本発明に使用できる生産菌株としては、これらの菌株の継代培養株、変異株、遺伝子組み替え株などが挙げられる。   In the present invention, a strain having a clearly high whiteness in the colistin bulk obtained by producing colistin from Bacillus polymixer bar colistinius can be used. Specifically, a colistin bulk powder having an absorbance of a 5% concentration (W / V) aqueous solution at 400 nm of 0.15 or less, preferably 0.087 or less, more preferably 0.070 or more and 0.087 or less is obtained. Any Bacillus polymixer bar colistinius can be used in the present invention. Furthermore, examples of production strains that can be used in the present invention include subcultured strains, mutant strains, and genetically modified strains of these strains.

本発明の生産菌株の一例であるM50株を生産菌株として発酵生産した培養液からカーボンなどによる脱色工程を行うことなく製造したコリスチン原末の色調は、従来の生産菌株由来の培養液から脱色工程を行い製造したコリスチン原末の色調と比較して、明らかに白色度が高いものである。すなわち、本発明で得られたM50株を生産菌株として用いることで、従来のコリスチン原末の製造法に必須であった脱色工程を行うことなく、白色度の高いコリスチン原末を得ることが可能となる。   The color of colistin powder produced without performing a decolorization step using carbon or the like from a culture solution produced by fermentation using the M50 strain, which is an example of the production strain of the present invention, is a decolorization step from a culture solution derived from a conventional production strain. Compared with the color tone of the colistin powder produced by the above, the whiteness is clearly higher. That is, by using the M50 strain obtained in the present invention as a production strain, it is possible to obtain a colistin bulk powder having a high whiteness without performing a decolorization step that was essential in the conventional method for producing a colistin bulk powder. It becomes.

本発明においては、バチルス・ポリミキサ・バー・コリスチニウスを培養し、培養物をイオン交換樹脂に吸着させ、溶出した後、濃縮して、乾燥することで、脱色工程を行うことなく、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末を製造することができる。これにより、欧州における医薬品(動物用医薬品を含む)に用いられるコリスチン原末の品質規格である欧州薬局方の色規格「概ね白色」に合格するコリスチン原末を製造することが可能となる。また、通常、活性炭などのカーボンを添加して攪拌し濾過するなどの脱色工程が必要であったが、本発明の製造法では、脱色工程を省略できるため、コリスチン原末の製造に要する時間を約半日間短縮することが可能である。さらに、脱色に使用するカーボンなどによるコリスチン原末の損失を低減できるとともに、従来のコリスチン原末の製造法の脱色工程で使用していたカーボンなどの廃棄をも回避することができる。   In the present invention, Bacillus polymixer bar colistinius is cultured, the culture is adsorbed on an ion exchange resin, eluted, concentrated, and dried to achieve 5% at 400 nm without performing a decolorization step. A colistin bulk powder having a concentration (W / V) aqueous solution with an absorbance of 0.15 or less can be produced. This makes it possible to produce a colistin powder that passes the color standard “substantially white” of the European Pharmacopoeia, which is a quality standard for colistin powder used in medicines (including veterinary drugs) in Europe. In addition, a decolorization step such as adding carbon such as activated carbon and stirring and filtering was usually required. It can be shortened by about half a day. Furthermore, loss of colistin powder due to carbon used for decolorization can be reduced, and disposal of carbon or the like used in the decoloring step of the conventional method for producing colistin powder can be avoided.

尚、本発明におけるコリスチン原末は、ポリミキシン系ペプチド抗生物質として一般に知られているコリスチンを含有する。コリスチンは、下記構造のコリスチンA、同様のアミノ酸構成を有するコリスチンBが知られている。   In addition, the colistin powder in the present invention contains colistin generally known as a polymyxin peptide antibiotic. As for colistin, colistin A having the following structure and colistin B having the same amino acid structure are known.

Figure 2007013487
Figure 2007013487

本発明のコリスチン原末とは、コリスチンを医薬品として使用できる程度に含有する粗抽出物であり、上述したように脱色工程を経ることなく得られるものである。コリスチン原末の使用方法は特に制限されず、そのまま使用することもできるし、更に処理してコリスチン製剤として使用してもよい。   The colistin bulk powder of the present invention is a crude extract containing colistin to the extent that it can be used as a pharmaceutical product, and is obtained without going through a decolorization step as described above. The method of using the colistin bulk powder is not particularly limited, and can be used as it is, or further processed and used as a colistin preparation.

以下実施例および試験例により、本発明をさらに詳細に説明するが、本発明はこれらの実施例および試験例に限定されるものではない。また、各実施例および試験例における吸光度の測定は、日本分光社製の分光高度計V−560を用いて行った。また、特に定義の無い場合、%は重量対容量百分率(W/V)を表す。   EXAMPLES Hereinafter, although an Example and a test example demonstrate this invention further in detail, this invention is not limited to these Examples and a test example. Moreover, the measurement of the light absorbency in each Example and test example was performed using JASCO Corporation spectrophotometer V-560. Further, unless otherwise defined,% represents a weight to volume percentage (W / V).

<実施例1>
従来からコリスチン原末の製造に使用しているバチルス・ポリミキサ・バー・コリスチニウス202−71株に対して、濃度10〜1000μg/mgのNTGで、温度25〜30℃、1分〜24時間静置もしくは振盪して突然変異処理を行い、トリプトン2%、イーストエキス0.2%、グルコース1%からなる寒天培地プレート上にコロニーを生育させた。各々のコロニー(菌株)を普通ブイヨン2%、イーストエキス0.2%および塩化ナトリウム0.3%からなる液体シード培地へ植菌し、28℃で約24時間培養後、約0.1mLをコーンフラワー4.5%、コーンミール1.5%、小麦胚芽0.2%、脱脂大豆0.2%、硫酸アンモニウム1%、リン酸一カリウム0.05%、硫酸第一鉄0.005%、炭酸カルシウム0.05%および水飴1.5%からなる液体培地30mL入の250mL容三角フラスコへ植菌した。28℃で約120時間振とう培養後、培養液を濾紙を用いて濾過し、得られた濾液の色調およびコリスチンの生産性を比較した。これら菌群から202−71株のコリスチン生産能と同等以上で、且つ濾液の色調が明らかに202−71株のそれより薄い菌株として、M50株を選択した。202−71株とM50株の培養濾液について、分光光度計で300〜600nmの吸光度を測定し、結果を図1に示した。400nmの吸光度は202−71株由来の培養濾液で3.61に対して、M50株由来の培養濾液では1.42であり、明らかな差が認められた(表1)。
<Example 1>
With respect to the Bacillus polymixer bar colistinius 202-71 strain conventionally used for the production of colistin bulk, it is allowed to stand at a temperature of 25 to 30 ° C. for 1 minute to 24 hours at a concentration of 10 to 1000 μg / mg. Alternatively, the mutation treatment was performed by shaking, and colonies were grown on an agar plate comprising 2% tryptone, 0.2% yeast extract, and 1% glucose. Each colony (strain) is inoculated into a liquid seed medium consisting of 2% normal broth, 0.2% yeast extract and 0.3% sodium chloride, and cultured at 28 ° C. for about 24 hours. Flour 4.5%, Cornmeal 1.5%, Wheat germ 0.2%, Non-fat soybean 0.2%, Ammonium sulfate 1%, Monopotassium phosphate 0.05%, Ferrous sulfate 0.005%, Carbonic acid Inoculated into a 250 mL Erlenmeyer flask containing 30 mL of liquid medium consisting of 0.05% calcium and 1.5% elutriate. After shaking culture at 28 ° C. for about 120 hours, the culture solution was filtered using filter paper, and the color of the obtained filtrate and colistin productivity were compared. From these fungal groups, the M50 strain was selected as a strain that is equivalent to or better than the colistin producing ability of the 202-71 strain and the color of the filtrate is clearly lighter than that of the 202-71 strain. About the culture filtrate of 202-71 stock | strain and M50 stock | strain, the light absorbency of 300-600 nm was measured with the spectrophotometer, and the result was shown in FIG. The absorbance at 400 nm was 3.61 in the culture filtrate derived from the 202-71 strain, and 1.42 in the culture filtrate derived from the M50 strain, and a clear difference was observed (Table 1).

Figure 2007013487
Figure 2007013487

<実施例2>
実施例1で得られた培養液の着色が薄いM50株および従来からコリスチン発酵生産に使用している培養液の着色が濃い202−71株を、普通ブイヨン2%、イーストエキス0.2%および塩化ナトリウム0.3%からなる液体シード培地へ植菌し、28℃で約24時間培養した後、各々約15mLをコーンフラワー4.5%、コーンミール1.5%、小麦胚芽0.2%、脱脂大豆0.2%、硫酸アンモニウム1%、リン酸一カリウム0.05%、硫酸第一鉄0.005%、炭酸カルシウム0.05%および水飴1.5%からなる液体培地4L入の5L容ジャーファメンターに植菌した。各々、通気・攪拌しながらpH5.0〜7.0で30℃にて約120〜144時間培養した。得られた培養液を濾紙を用いて濾過し400nmの吸光度を測定したところ、202−71株由来の培養濾液では4.50に対して、M50株由来の培養濾液では1.39であり、実施例1のフラスコでの試験結果と同様に明らかな差が認められた(表2)。
<Example 2>
The M50 strain with a light color of the culture broth obtained in Example 1 and the 202-71 strain with a deep color of the culture broth conventionally used for colistin fermentation production were obtained by adding 2% normal bouillon, 0.2% yeast extract and After inoculating into a liquid seed medium consisting of 0.3% sodium chloride and culturing at 28 ° C. for about 24 hours, about 15 mL of each is corn flour 4.5%, corn meal 1.5%, wheat germ 0.2% 5L in 4L liquid medium consisting of 0.2% defatted soybean, 1% ammonium sulfate, 0.05% monopotassium phosphate, 0.005% ferrous sulfate, 0.05% calcium carbonate and 1.5% chicken pox Inoculated the jar fermenter. Each was cultured at 30 ° C. for about 120 to 144 hours at pH 5.0 to 7.0 with aeration and stirring. The obtained culture solution was filtered using a filter paper and the absorbance at 400 nm was measured. As a result, the culture filtrate from 202-71 strain was 4.50, and the culture filtrate from M50 strain was 1.39. A clear difference was observed similar to the test results in the flask of Example 1 (Table 2).

Figure 2007013487
Figure 2007013487

<実施例3>
実施例2で得られたM50株および202−71株の5L容ジャーファメンター培養液を、濾過助剤(ボディミックス)を敷いたヌッチェで濾過した後、カラムに充填したイオン交換樹脂(アンバーライトIRC−50(Na型)ロームアンドハース社製、300mL)へ吸着させた。イオン交換樹脂から約0.4mol/L硫酸でコリスチンを溶離させた後600mLの脱イオン水で洗浄し、得られた溶離液、洗浄液の混合液を約5%濃度(W/V)まで濃縮させ、コリスチン高含有液を得た。コリスチン高含有液の400nmにおける吸光度は、202−71株由来のコリスチン高含有液が0.359に対して、M50株由来のコリスチン高含有液が0.07であり、明らかにM50株由来のコリスチン高含有液の着色は薄かった(表3)。
<Example 3>
The 5 L jar fermenter culture solution of M50 strain and 202-71 strain obtained in Example 2 was filtered with Nutsche covered with filter aid (body mix), and then ion exchange resin (Amberlite) packed in the column IRC-50 (Na + type) manufactured by Rohm and Haas, 300 mL). After elution of colistin from the ion exchange resin with about 0.4 mol / L sulfuric acid, it was washed with 600 mL of deionized water, and the resulting eluent and washing liquid mixture was concentrated to about 5% concentration (W / V). Thus, a colistin-rich solution was obtained. The absorbance at 400 nm of the colistin-rich solution is 0.359 for the colistin-rich solution derived from the 202-71 strain, and 0.07 for the colistin-rich solution derived from the M50 strain. The coloring of the high content liquid was light (Table 3).

Figure 2007013487
Figure 2007013487

さらに、各コリスチン高含有液をスプレードライして、目的とするコリスチン原末を得た。202−71株由来のコリスチン原末は、茶色を帯びた色調であった。これに対し、M50株由来のコリスチン原末はやや黄色味がかった白色であり、明らかにM50株由来コリスチン原末の着色は、202−71株由来のコリスチン原末と比較して薄く、より白色であった。各々コリスチン原末を5%濃度(W/V)となるよう脱イオン水に溶解し、5%濃度(W/V)水溶液を得た。400nmにおける5%濃度(W/V)水溶液の吸光度を測定したところ、202−71株由来のコリスチン原末では0.479に対して、M50株由来のコリスチン原末では0.087であり、明らかな差が認められた(表4)。   Furthermore, each colistin high content liquid was spray-dried and the target colistin powder was obtained. The colistin powder derived from 202-71 strain had a brownish color. In contrast, the colistin bulk powder derived from the M50 strain is slightly yellowish white, and the coloring of the colistin bulk powder derived from the M50 strain is obviously lighter and whiter than the colistin bulk powder derived from the 202-71 strain. Met. Each colistin powder was dissolved in deionized water to a concentration of 5% (W / V) to obtain a 5% concentration (W / V) aqueous solution. When the absorbance of a 5% concentration (W / V) aqueous solution at 400 nm was measured, it was 0.479 for the colistin powder derived from 202-71 strain and 0.087 for the colistin powder derived from M50 strain. A significant difference was observed (Table 4).

Figure 2007013487
Figure 2007013487

<試験例1>
実施例3で得られたM50株由来コリスチン原末を脱イオン水に溶解した液を液体クロマトグラフィー(HPLC)にて分析し、その結果を図2に示した。HPLCの測定条件は下記のとおりである。
測定条件
検出器:吸光度検出器(測定波長:215nm)
カラム:YMC−Pack ODS−AM(AM−312)(ワイエムシー社製)
150mm×Φ4.6mm
カラム温度:30℃
移動相: 4.46gの無水硫酸ナトリウムを900mlの純水に溶解し、2.5mlのリン酸を加え、100mlにメスアップする(pH2.3〜2.5)。この溶液78にアセトニトリルを22の割合で混合する。
流量:1.0ml/min
<Test Example 1>
The solution obtained by dissolving the M50 strain-derived colistin powder obtained in Example 3 in deionized water was analyzed by liquid chromatography (HPLC), and the results are shown in FIG. HPLC measurement conditions are as follows.
Measurement conditions Detector: Absorbance detector (measurement wavelength: 215 nm)
Column: YMC-Pack ODS-AM (AM-312) (manufactured by YMC)
150mm × Φ4.6mm
Column temperature: 30 ° C
Mobile phase: Dissolve 4.46 g of anhydrous sodium sulfate in 900 ml of pure water, add 2.5 ml of phosphoric acid, and make up to 100 ml (pH 2.3 to 2.5). This solution 78 is mixed with acetonitrile at a ratio of 22.
Flow rate: 1.0ml / min

<試験例2>
実施例3で得られた202−71株由来のコリスチン高含有液を、実施例3で得られたM50株由来のコリスチン高含有液の色調にするために必要な脱色カーボン量について試験した。202−71株由来のコリスチン高含有液の固形分換算量に対し、2%、5%、10%(それぞれW/V)に相当するカーボン(精製白鷺、武田薬品工業社製)を添加して30分間撹拌した後、桐山ロートで濾過し、得られた濾液をスプレードライした。各スプレードライ粉末を脱イオン水に溶解し、5%濃度(W/V)水溶液を得た。400nmにおける5%濃度(W/V)水溶液の吸光度を測定した結果、最も脱色カーボン量が多い10%(W/V)カーボン添加水溶液でも吸光度は0.135であり、実施例3で得られた脱色カーボン処理を行っていないM50株由来のコリスチン高含有液の吸光度0.087に達しなかった(表5)。
<Test Example 2>
The colistin-rich solution derived from 202-71 strain obtained in Example 3 was tested for the amount of decolorized carbon necessary to make the color tone of the colistin-rich solution derived from M50 strain obtained in Example 3. Carbon equivalent to 2%, 5%, and 10% (each W / V) was added to the equivalent amount of colistin-containing liquid derived from 202-71 strain (refined birch, Takeda Pharmaceutical Co., Ltd.) After stirring for 30 minutes, it filtered with the Kiriyama funnel, and obtained filtrate was spray-dried. Each spray-dried powder was dissolved in deionized water to obtain a 5% strength (W / V) aqueous solution. As a result of measuring the absorbance of a 5% concentration (W / V) aqueous solution at 400 nm, the absorbance was 0.135 even in a 10% (W / V) carbon-added aqueous solution having the largest amount of decolorizing carbon, and was obtained in Example 3. The absorbance of the colistin-rich solution derived from the M50 strain not subjected to decolorization carbon treatment did not reach 0.087 (Table 5).

Figure 2007013487
Figure 2007013487

また、10%(W/V)カーボン添加における、脱色工程によるコリスチンの収率ロスは約27%であり(表5)、脱色工程を含むコリスチンの製造法におけるコリスチンの収率は明らかに低下していた。従来の生産菌株で白色度の高いコリスチン原末を得るためには、多量の脱イオン水でイオン交換樹脂を洗浄するか、イオン交換樹脂からの溶離液を多量のカーボンで処理する脱色工程を経なければならなかったが、培養液の着色が薄くカーボンによる脱色工程を必要としないM50株を用いたコリスチン原末の製造法は非常にメリットが大きい。   In addition, the loss of colistin yield by the decolorization process in the addition of 10% (W / V) carbon is about 27% (Table 5), and the yield of colistin in the process for producing colistin including the decolorization process is clearly reduced. It was. In order to obtain colistin bulk powder with high whiteness in a conventional production strain, the ion exchange resin is washed with a large amount of deionized water, or a decoloration process is performed in which the eluent from the ion exchange resin is treated with a large amount of carbon. However, the method for producing colistin powder using the M50 strain, which does not require a decolorizing step with carbon because the culture solution is colored, is very advantageous.

本発明により、コリスチン原末の製造法に有用な新規な生産菌株を提供できる。さらに本発明の菌株を用いることにより、従来のコリスチン原末の製造法に必須であった脱色工程を経ることなく、効率的なコリスチン原末の製造法を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, a novel production strain useful for a method for producing colistin bulk powder can be provided. Furthermore, by using the strain of the present invention, an efficient method for producing a colistin bulk can be provided without going through the decolorization step that was essential in the conventional method for producing a colistin bulk.

Claims (4)

400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末を生産することができる、バチルス・ポリミキサ・バー・コリスチニウス。   Bacillus polymixer bar colistinius which can produce colistin powder having an absorbance of 0.15 or less in a 5% concentration (W / V) aqueous solution at 400 nm. 独立行政法人産業技術総合研究所 特許生物寄託センターに、受託番号FERM AP−20553として寄託された、バチルス・ポリミキサ・バー・コリスチニウス M50株。   Bacillus polymixer bar colistinius M50 strain deposited at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology under the deposit number FERM AP-20553. 請求項1または2に記載のバチルス・ポリミキサ・バー・コリスチニウスを培養し、培養物をイオン交換樹脂に吸着させ、溶出した後、濃縮して、乾燥することを特徴とする、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末の製造法。   5% concentration at 400 nm characterized by culturing Bacillus polymixer bar colistinius according to claim 1 or 2, adsorbing the culture on an ion exchange resin, elution, concentrating and drying (W / V) A method for producing a colistin bulk powder in which the aqueous solution has an absorbance of 0.15 or less. 請求項3に記載の製造法によって得られる、400nmにおける5%濃度(W/V)水溶液の吸光度が0.15以下であるコリスチン原末。   A colistin bulk powder obtained by the production method according to claim 3, wherein the absorbance of a 5% concentration (W / V) aqueous solution at 400 nm is 0.15 or less.
JP2007528488A 2005-07-28 2006-07-26 Method for producing colistin powder Active JP4958781B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528488A JP4958781B2 (en) 2005-07-28 2006-07-26 Method for producing colistin powder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005219325 2005-07-28
JP2005219325 2005-07-28
JP2007528488A JP4958781B2 (en) 2005-07-28 2006-07-26 Method for producing colistin powder
PCT/JP2006/314729 WO2007013487A1 (en) 2005-07-28 2006-07-26 Method of producing bulk colistin powder

Publications (2)

Publication Number Publication Date
JPWO2007013487A1 true JPWO2007013487A1 (en) 2009-02-12
JP4958781B2 JP4958781B2 (en) 2012-06-20

Family

ID=37683377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007528488A Active JP4958781B2 (en) 2005-07-28 2006-07-26 Method for producing colistin powder

Country Status (2)

Country Link
JP (1) JP4958781B2 (en)
WO (1) WO2007013487A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109415411B (en) 2015-09-17 2022-06-28 首尔大学校产学协力团 Broken or folded helical peptides or peptide analogs exhibiting antimicrobial activity against gram-negative bacteria and uses thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100436309B1 (en) * 2002-01-29 2004-06-19 주식회사 제일바이오 Paenibacillus polymyxa cby having enhanced productivity of colistin and process for preparing same

Also Published As

Publication number Publication date
JP4958781B2 (en) 2012-06-20
WO2007013487A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
AT504347B1 (en) PROCESS FOR THE PREPARATION OF GLUCOSE DERIVATIVES
US9689017B2 (en) Method of semi-solid state fermentation for producing surfactin from a mutant strain of Bacillus subtilis subsp
DE69228438T2 (en) Microbial process for the production of trans-4-hydroxy-L-proline
JP4958781B2 (en) Method for producing colistin powder
JP7304957B2 (en) Bacillus natto and method for producing MK-7
CN1094978C (en) Process for biotransformation of colchicinoid compounds into corresponding 3-glycosyl derivatives
US10011814B2 (en) Salt formulations for the fermentation of marine microorganisms
WO2008020474A1 (en) Method of producing colistin bulk powder
CN1033591C (en) Production of pradimicin antibiotics
JP3570741B2 (en) Astaxanthin production method
CN116555369B (en) Method for producing prodigiosin by fermentation of waste corn steep liquor
CA2019463C (en) Antibiotics plusbacin
US6063935A (en) Azetidine derivative, bifidobacterium division-promoting composition containing the same, and a process for production thereof
KR940004000B1 (en) Production of mildiomycin
JPS637757B2 (en)
JP2006061115A (en) Method for producing sesaminol by fermentation process
JPH07278041A (en) Antitumor substance be-24811 and its production
CN117343855A (en) Geobacillus thermodenitrificans and method for producing alicyclic peptide by fermenting same
JPH107557A (en) Antitumor substance spirolaxine
JP2019180283A (en) Method for producing urolithin
JPH0429356B2 (en)
RU2120997C1 (en) Method of producing 2-amino-4-(hydroxymethyl)-3a,5,6,6a- -tetrahydro-4h-cyclopent-[d]-oxazole-4,5,6-triol and strains of actinomyces micromonospora and amycolatopsis producing its
CN111850066A (en) Precursor-guided preparation method of Bacillamide halogenated analogue
JP2000086627A (en) Antibacterial substance be-54476 and its production
WO2017078137A1 (en) Method for producing acyl glucuronide by microbial transformation, and microorganism having such transformation activity

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090605

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120306

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120319

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4958781

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250