JPWO2007013201A1 - Zinc fluorescent probe - Google Patents

Zinc fluorescent probe Download PDF

Info

Publication number
JPWO2007013201A1
JPWO2007013201A1 JP2007526824A JP2007526824A JPWO2007013201A1 JP WO2007013201 A1 JPWO2007013201 A1 JP WO2007013201A1 JP 2007526824 A JP2007526824 A JP 2007526824A JP 2007526824 A JP2007526824 A JP 2007526824A JP WO2007013201 A1 JPWO2007013201 A1 JP WO2007013201A1
Authority
JP
Japan
Prior art keywords
group
substituent
compound
formula
represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007526824A
Other languages
Japanese (ja)
Inventor
正泰 多喜
正泰 多喜
行男 山本
行男 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Original Assignee
Kyoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University filed Critical Kyoto University
Publication of JPWO2007013201A1 publication Critical patent/JPWO2007013201A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • C07D209/14Radicals substituted by nitrogen atoms, not forming part of a nitro radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/30Indoles; Hydrogenated indoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to carbon atoms of the hetero ring
    • C07D209/42Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

本発明は、水溶性に優れ、かつ、単一の励起波長を用いてレシオメトリックに細胞内亜鉛イオンの濃度の変化を高感度に観測可能な亜鉛蛍光プローブ、その製造方法、及び該亜鉛蛍光プローブを用いた亜鉛イオンの測定方法を提供する。亜鉛蛍光プローブとして、一般式(I):[化1](式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R1及びR2は同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Zは単結合又は式:[化2]で表される基を示し、Aは置換基を有してもよいベンゼン環、Yは−O−又は−S−で示される基を示す。)で表される化合物又はその塩を提供する。The present invention relates to a zinc fluorescent probe excellent in water solubility and capable of observing a change in intracellular zinc ion concentration with high sensitivity in a ratiometric manner using a single excitation wavelength, a method for producing the same, and the zinc fluorescent probe Provided is a method for measuring zinc ions using As a zinc fluorescent probe, general formula (I): [Chemical Formula 1] (In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, and n is 2 or 3, R1 and R2 are the same or different and may have a substituent, an alkyl group which may have a substituent, an aryl group which may have a substituent or a heteroaryl group which may have a substituent, Z is a single bond or a formula : A group represented by [Chemical Formula 2], A represents a benzene ring which may have a substituent, Y represents a group represented by —O— or —S—, or a compound thereof Provide salt.

Description

本発明は、生細胞や生組織中の亜鉛イオンを生理条件下で高感度に測定するための新規な亜鉛蛍光プローブに関する。   The present invention relates to a novel zinc fluorescent probe for measuring zinc ions in living cells and living tissues with high sensitivity under physiological conditions.

亜鉛は、ヒトの体内において、鉄に次いで存在量の多い必須微量金属元素である。しかし、細胞内でフリーの亜鉛イオン(Zn2+)として存在するのは通常nmol/lレベル以下であり、細胞内のほとんどのZn2+は主にタンパクと強固な結合を作っていると考えられる。その機能は重要であり、タンパクの構造の維持、酵素活性の制御などが挙げられる。Zinc is an essential trace metal element present in the human body, second only to iron. However, free zinc ions (Zn 2+ ) in cells are usually below the nmol / l level, and most of the intracellular Zn 2+ is thought to be mainly tightly bound to proteins. It is done. Its function is important and includes the maintenance of protein structure and the control of enzyme activity.

また、転写因子等のDNA結合タンパクはzinc fingerやLIM motif等のZn2+結合性のモチーフを有し、それを介してDNAに結合していると言われている。Zn2+の欠乏はDNAの転写などに影響を与え、発癌に関与している可能性も示唆されている。In addition, DNA binding proteins such as transcription factors have Zn 2+ binding motifs such as zinc finger and LIM motif, and are said to bind to DNA via them. Zn 2+ deficiency affects DNA transcription and is suggested to be involved in carcinogenesis.

近年では、主に細胞死との関係に着目し、label Zn2+の局在や動態を関連付ける研究もさかんに行われている。例えば、外因性によるZn2+による脳細胞の選択的細胞死や、細胞死と相関の深い酵素の活性制御、酸化ストレスによる酵素活性中心への影響など種々の研究が行われ亜鉛の生体内での働きに関する知見が集積しつつある。しかしながら、その動態や局在について未解明の部分も多い。In recent years, focusing on the relationship with cell death, there have been many studies that relate the localization and dynamics of label Zn 2+ . For example, various studies have been conducted, such as selective cell death by exogenous Zn 2+, regulation of enzyme activity closely related to cell death, influence of oxidative stress on enzyme activity center, etc. Knowledge about the workings of people is being accumulated. However, there are many unexplained parts about their dynamics and localization.

上記のような研究において汎用されているのが、組織内の亜鉛イオンを測定するために亜鉛イオンを特異的に捕捉して錯体を形成し、錯体形成に伴なって蛍光を発する化合物、すなわち「亜鉛蛍光プローブ」である。   In the research as described above, in order to measure the zinc ion in the tissue, a compound that specifically captures the zinc ion to form a complex and emits fluorescence along with the complex formation, that is, “ "Zinc fluorescent probe".

これまでにも亜鉛プローブは種々提案されており、例えば、特許文献1には、ポリアミン類を置換基とする化合物が提案されている。この化合物は、生体内の亜鉛を高感度に測定できるものの、導入される細胞の厚さの相違等により検出される蛍光強度が影響され、蛍光強度からZn2+イオン濃度を精度よく定量的解析を行うことが困難であるという問題があった。Various zinc probes have been proposed so far. For example, Patent Document 1 proposes a compound having a polyamine as a substituent. Although this compound can measure zinc in vivo with high sensitivity, the fluorescence intensity detected is affected by the difference in the thickness of the introduced cells, etc., and the Zn 2+ ion concentration is accurately and quantitatively analyzed from the fluorescence intensity. There was a problem that it was difficult to do.

このような問題点を解決するために、特許文献2では、レシオメトリックな蛍光プローブが提案された。これは、プローブが亜鉛イオンに結合する際の励起波長のシフトを利用する解析手法である。この手法だと、2つの励起波長の比(ratio)をとるため正確な定量的解析を行うことができる。しかし、2つ励起波長の光を使用するため、光源や検出系(蛍光顕微鏡、フローサイトメトリー等)に大掛かりで複雑な機器を使用せざるを得ず、汎用性に乏しいという問題があった。   In order to solve such problems, Patent Document 2 has proposed a ratiometric fluorescent probe. This is an analysis method that utilizes a shift in excitation wavelength when the probe binds to zinc ions. In this method, since the ratio of the two excitation wavelengths is taken, an accurate quantitative analysis can be performed. However, since light having two excitation wavelengths is used, a large-scale and complicated apparatus must be used for the light source and the detection system (fluorescence microscope, flow cytometry, etc.), and there is a problem that versatility is poor.

この様な問題に鑑み、本発明者等は単一の励起波長を用いて、亜鉛イオンの濃度による蛍光波長の変化を観測できる亜鉛プローブを開発した(非特許文献1)。しかし、この化合物は、水溶性及び亜鉛イオンに対する感度が十分でないという問題があった。さらに、励起波長が紫外領域であるため、細胞にとっては好ましくないという問題があった。
特開2000-239272号公報 国際公開第02/102795号パンフレット J. Am. Chem. Soc. Communications, 2004,126, p712-713
In view of such problems, the present inventors have developed a zinc probe that can observe a change in fluorescence wavelength due to the concentration of zinc ions using a single excitation wavelength (Non-patent Document 1). However, this compound has a problem that it is not sufficiently water-soluble and sensitive to zinc ions. Furthermore, since the excitation wavelength is in the ultraviolet region, there is a problem that it is not preferable for cells.
JP 2000-239272 A International Publication No. 02/102795 Pamphlet J. Am. Chem. Soc. Communications, 2004,126, p712-713

本発明は、水溶性に優れ、かつ、単一波長の励起光を用いてレシオメトリックに細胞内亜鉛イオンの濃度の変化を高感度に観測可能な亜鉛蛍光プローブ、その製造方法、及び該亜鉛蛍光プローブを用いた亜鉛イオンの測定方法を提供することを目的とする。   The present invention relates to a zinc fluorescent probe that is excellent in water solubility and capable of observing a change in intracellular zinc ion concentration with high sensitivity using a single wavelength of excitation light, a method for producing the same, and the zinc fluorescence An object of the present invention is to provide a method for measuring zinc ions using a probe.

本発明は、上記の課題に鑑みて鋭意研究を行った結果、後述する一般式(I)で表される化合物を亜鉛プローブとして用いた場合に、上記の課題を改善或いは解決できることを見出した。かかる知見に基づき、さらに研究を重ねた結果本発明を完成するに至った。   As a result of intensive studies in view of the above problems, the present invention has found that the above problems can be improved or solved when a compound represented by the general formula (I) described later is used as a zinc probe. As a result of further research based on this knowledge, the present invention has been completed.

即ち、本発明は、以下の化合物、亜鉛蛍光プローブ、その製造方法、該亜鉛蛍光プローブを用いた亜鉛イオンの測定方法等を提供する。   That is, the present invention provides the following compounds, a zinc fluorescent probe, a method for producing the same, a method for measuring zinc ions using the zinc fluorescent probe, and the like.

項1. 一般式(I):   Item 1. Formula (I):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Zは単結合又は式:(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted heteroaryl group, Z is a single bond or a formula:

Figure 2007013201
Figure 2007013201

で表される基を示し、Aは置換基を有してもよいベンゼン環、Yは−O−又は−S−で示される基を示す。)
で表される化合物又はその塩。
A represents a benzene ring which may have a substituent, and Y represents a group represented by —O— or —S—. )
Or a salt thereof.

項2. 一般式(I)において、Arがアルキル基、アルコキシ基、水酸基、アミノ基、モノ又はジアルキルアミノ基、モノ又はジ(ヒドロキシアルキル)アミノ基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルコキシカルボニルアルキル基、カルボキシアルコキシ基及びアルコキシカルボニルアルコキシ基からなる群より選ばれる少なくとも1個の基で置換されたアリール基である項1に記載の化合物又はその塩。   Item 2. In the general formula (I), Ar is an alkyl group, alkoxy group, hydroxyl group, amino group, mono- or dialkylamino group, mono- or di (hydroxyalkyl) amino group, carboxyl group, alkoxycarbonyl group, carboxyalkyl group, alkoxycarbonylalkyl. Item 2. The compound or a salt thereof according to Item 1, which is an aryl group substituted with at least one group selected from the group consisting of a group, a carboxyalkoxy group and an alkoxycarbonylalkoxy group.

項3. 一般式(I)において、Arがフェニル基、トルイル基、ナフチル基、カルボキシアルコキシ基置換フェニル基及び5−(ジメチルアミノ)−1−ナフチル基からなる群より選ばれる1個の基である項2に記載の化合物又はその塩。   Item 3. In the general formula (I), Ar is one group selected from the group consisting of a phenyl group, a toluyl group, a naphthyl group, a carboxyalkoxy group-substituted phenyl group and a 5- (dimethylamino) -1-naphthyl group. Or a salt thereof.

項4. 一般式(I)において、X及びYが−O−で示される基であり、nが2であり、Aがベンゼン環である項1〜3のいずれかに記載の化合物又はその塩。   Item 4. Item 4. The compound or a salt thereof according to any one of Items 1 to 3, wherein in General Formula (I), X and Y are groups represented by -O-, n is 2, and A is a benzene ring.

項5. 一般式(I)において、R及びRが同一又は異なって、含窒素ヘテロアリール基、カルボキシル基、水酸基、アミノ基、モノ又はジアルキルアミノ基及びアルコキシ基からなる群より選ばれる少なくとも1個の基で置換されたアルキル基である項1〜4のいずれかに記載の化合物又はその塩。Item 5. In the general formula (I), R 1 and R 2 are the same or different, and at least one selected from the group consisting of a nitrogen-containing heteroaryl group, a carboxyl group, a hydroxyl group, an amino group, a mono- or dialkylamino group and an alkoxy group Item 5. The compound or a salt thereof according to any one of Items 1 to 4, which is an alkyl group substituted with a group.

項6. 一般式(II):   Item 6. General formula (II):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩。
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. The benzene ring, R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent; Show.)
Or a salt thereof.

項7. 一般式(III):   Item 7. Formula (III):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩。
(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An alkyl group that may have, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
Or a salt thereof.

項8. 一般式(II):   Item 8. General formula (II):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩の製造方法であって、一般式(16):



(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. The benzene ring, R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent; Show.)
Wherein the compound represented by the general formula (16):



Figure 2007013201
Figure 2007013201

(式中、Rはアルキル基を示し、Ar、X、Y、n、A、R及びRは前記に同じ。)
で表されるエステル化合物を加水分解することを特徴とする製造方法。
(In the formula, R 3 represents an alkyl group, and Ar, X, Y, n, A, R 1 and R 2 are the same as above.)
The ester compound represented by this is hydrolyzed, The manufacturing method characterized by the above-mentioned.

項9. 一般式(16):   Item 9. Formula (16):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物。
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
The ester compound represented by these.

項10. 一般式(16):

Item 10. Formula (16):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物の製造方法であって、一般式(14):
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A method for producing an ester compound represented by general formula (14):

Figure 2007013201
Figure 2007013201

(式中、Rはアルキル基を示し、Ar、X、Y、n及びAは前記に同じ。)
で表されるアルデヒド化合物と、一般式(15):
HN(R)(R) (15)
(式中、R及びRは同一又は異なって置換基を有してもよいアルキル基を示す。)
で表されるアミン化合物を反応させることを特徴とする製造方法。
(In the formula, R 3 represents an alkyl group, and Ar, X, Y, n and A are the same as above.)
An aldehyde compound represented by the general formula (15):
HN (R 1 ) (R 2 ) (15)
(In the formula, R 1 and R 2 are the same or different and each represents an alkyl group which may have a substituent.)
The manufacturing method characterized by making the amine compound represented by these react.

項11. 一般式(14):
Item 11. General formula (14):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、Rはアルキル基を示す。)
で表されるアルデヒド化合物。
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 3 represents an alkyl group.)
An aldehyde compound represented by

項12. 一般式(6):   Item 12. General formula (6):

Figure 2007013201
Figure 2007013201

(式中、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、mは1又は2を示す)
で表される化合物。
Wherein X and Y are the same or different and are represented by —O— or —S—, n is 2 or 3, A is a benzene ring which may have a substituent, and m is 1 or 2. )
A compound represented by

項13. 一般式(16):





Item 13. Formula (16):





Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物の製造方法であって、一般式(23):
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A method for producing an ester compound represented by the general formula (23):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y、n、A、R、R及びRは前記に同じ。)
で表される化合物と、トリアルキルホスファイトを反応させることを特徴とする製造方法。
(In the formula, Ar, X, Y, n, A, R 1 , R 2 and R 3 are the same as above.)
And a trialkyl phosphite.

項14. 一般式(23):

Item 14. Formula (23):

Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表される化合物。
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A compound represented by

項15. 一般式(19):   Item 15. General formula (19):

Figure 2007013201
Figure 2007013201

(式中、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環を示す)
で表される化合物。
(Wherein X and Y are the same or different and are represented by —O— or —S—, n is 2 or 3, and A represents a benzene ring which may have a substituent)
A compound represented by

項16. 一般式(III):


Item 16. General formula (III):


Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩の製造方法であって、一般式(34):
(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An alkyl group that may have, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
Or a salt thereof, which is represented by the general formula (34):

Figure 2007013201
Figure 2007013201

(式中、Rはアルキル基を示し、Ar、X、n、R及びRは前記に同じ。)
で表されるエステル化合物を加水分解することを特徴とする製造方法。
(In the formula, R 3 represents an alkyl group, and Ar, X, n, R 1 and R 2 are the same as above.)
The ester compound represented by this is hydrolyzed, The manufacturing method characterized by the above-mentioned.

項17. 上記請求項1〜7のいずれかに記載の化合物又はその塩を含む亜鉛蛍光プローブ。   Item 17. The zinc fluorescent probe containing the compound or its salt in any one of the said Claims 1-7.

項18. 上記請求項1〜7のいずれかに記載の化合物又はその塩を含む亜鉛イオン測定用試薬。   Item 18. A reagent for measuring zinc ions, comprising the compound or salt thereof according to any one of claims 1 to 7.

項19. 上記請求項1〜7のいずれかに記載の化合物及び亜鉛イオンを含む亜鉛錯体。   Item 19. The zinc complex containing the compound and zinc ion in any one of the said Claims 1-7.

項20. 亜鉛イオンの測定方法であって、
(a)請求項1〜7のいずれかに記載の化合物又はその塩を亜鉛イオンと反応させて亜鉛錯体を生成する工程、及び
(b)上記(a)で生成した亜鉛錯体の蛍光強度を測定する工程
を含む測定方法。
Item 20. A method for measuring zinc ions,
(A) a step of reacting the compound according to any one of claims 1 to 7 or a salt thereof with a zinc ion to form a zinc complex; and (b) measuring the fluorescence intensity of the zinc complex formed in (a) above. A measuring method including a step of performing.

項21. 前記工程(b)において、単一の励起波長の光を照射し、請求項1〜7のいずれかに記載の化合物又はその塩と上記(a)で生成した亜鉛錯体のそれぞれの蛍光強度を測定する請求項20に記載の測定方法。   Item 21. In the step (b), the light of a single excitation wavelength is irradiated, and the fluorescence intensity of each of the compound according to any one of claims 1 to 7 or a salt thereof and the zinc complex formed in the above (a) is measured. The measurement method according to claim 20.

項22. 前記励起波長が340〜400nmである請求項20に記載の測定方法。   Item 22. The measurement method according to claim 20, wherein the excitation wavelength is 340 to 400 nm.

項23. 前記工程(b)において、請求項1〜7のいずれかに記載の化合物又はその塩の蛍光スペクトルのピーク波長と、上記(a)で生成した亜鉛錯体の蛍光スペクトルのピーク波長との差が20nm以上である請求項20、21又は22に記載の測定方法。   Item 23. In the step (b), the difference between the peak wavelength of the fluorescence spectrum of the compound or salt thereof according to any one of claims 1 to 7 and the peak wavelength of the fluorescence spectrum of the zinc complex formed in the above (a) is 20 nm. It is the above, The measuring method of Claim 20, 21 or 22.

項24. 細胞内の亜鉛イオンの測定方法であって、
(a)請求項1〜7のいずれかに記載の化合物又はその塩を細胞内に取り込む工程、及び
(b)上記(a)で細胞内に取り込んだ化合物又はその塩と細胞内の亜鉛イオンとから生成した亜鉛錯体のそれぞれの蛍光強度を測定する工程
を含む測定方法。

以下、本発明を詳述する。
I.亜鉛蛍光プローブ
亜鉛蛍光プローブとは亜鉛と錯体形成することにより蛍光応答を示す化合物であり、生体内のフリーの亜鉛イオンをイメージングするのに利用される。
Item 24. A method for measuring intracellular zinc ions,
(A) a step of incorporating the compound or salt thereof according to any one of claims 1 to 7 into a cell; and (b) the compound or salt thereof incorporated into the cell in (a) above and an intracellular zinc ion. Measuring method including the process of measuring each fluorescence intensity of the zinc complex produced | generated from.

The present invention is described in detail below.
I. Zinc Fluorescent Probe A zinc fluorescent probe is a compound that exhibits a fluorescence response when complexed with zinc, and is used for imaging free zinc ions in a living body.

本発明の亜鉛蛍光プローブは、一般式(I):



The zinc fluorescent probe of the present invention has the general formula (I):



Figure 2007013201
Figure 2007013201

(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Zは単結合又は式:(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted heteroaryl group, Z is a single bond or a formula:

Figure 2007013201
Figure 2007013201

で表される基を示し、Aは置換基を有してもよいベンゼン環、Yは−O−又は−S−で示される基を示す。)
で表される化合物又はその塩を含有する。
A represents a benzene ring which may have a substituent, and Y represents a group represented by —O— or —S—. )
Or a salt thereof.

Arで示される置換基を有してもよいアリール基のアリール基としては、例えば、フェニル基、(o−、m−又はp−)トルイル基、ナフチル基等の単環又は2環のC 6−10 のアリール基が挙げられる。このうち、フェニル基又はp?トルイル基が好適である。As an aryl group of the aryl group which may have a substituent represented by Ar, for example, a monocyclic or bicyclic C 6 such as a phenyl group, (o-, m- or p-) toluyl group, naphthyl group and the like. -10 aryl groups. Of these, a phenyl group or a p-toluyl group is preferred.

該アリール基上の置換基としては、例えば、アルキル基、アルコキシ基、水酸基、アミノ基、モノ又はジアルキルアミノ基、モノ又はジ(ヒドロキシアルキル)アミノ基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルコキシカルボニルアルキル基、カルボキシアルコキシ基、アルコキシカルボニルアルコキシ基等が例示され、これらのうちから選ばれる1〜3個(好ましくは1個)の基がアリール基上に置換されていてもよい。   Examples of the substituent on the aryl group include an alkyl group, an alkoxy group, a hydroxyl group, an amino group, a mono- or dialkylamino group, a mono- or di (hydroxyalkyl) amino group, a carboxyl group, an alkoxycarbonyl group, a carboxyalkyl group, Examples include an alkoxycarbonylalkyl group, a carboxyalkoxy group, an alkoxycarbonylalkoxy group, and the like, and 1 to 3 (preferably 1) groups selected from these may be substituted on the aryl group.

上記のアルキル基としては、例えば、エチル基、プロピル基、ブチル基等のC1−6のアルキル基が挙げられる。Examples of the alkyl group include ethyl group, a propyl group, an alkyl group of C 1-6 and butyl group.

アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基等のC1−6のアルコキシ基が挙げられる。Examples of the alkoxy group include a methoxy group, an ethoxy group, an alkoxy group of C 1-6, such as a propoxy group.

モノ又はジアルキルアミノ基としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基等のモノ又はジC1−6アルキルアミノ基が挙げられる。Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group, an ethylamino group, a propylamino group, a dimethylamino group, a diethylamino group, and a dipropylamino group.

モノ又はジ(ヒドロキシアルキル)アミノ基としては、例えば、2−ヒドロキシエチルアミノ基、ヒドロキシプロピルアミノ基、ジ(2−ヒドロキシエチル)アミノ基、ジ(ヒドロキシプロピル)アミノ基等のモノ又はジ(ヒドロキシC1−6アルキル)アミノ基が挙げられる。Examples of the mono or di (hydroxyalkyl) amino group include mono or di (hydroxy) such as 2-hydroxyethylamino group, hydroxypropylamino group, di (2-hydroxyethyl) amino group, and di (hydroxypropyl) amino group. C 1-6 alkyl) amino group.

アルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基等のC1−6アルコキシカルボニル基が挙げられる。Examples of the alkoxycarbonyl group include C 1-6 alkoxycarbonyl groups such as a methoxycarbonyl group and an ethoxycarbonyl group.

カルボキシアルキル基としては、例えば、カルボキシメチル基、カルボキシエチル基等のカルボキシC1−6アルキル基が挙げられる。Examples of the carboxyalkyl group include carboxy C 1-6 alkyl groups such as carboxymethyl group and carboxyethyl group.

アルコキシカルボニルアルキル基としては、例えば、エトキシカルボニルメチル基、メトキシカルボニルメチル基等のC1−6アルコキシカルボニルC1−6アルキル基が挙げられる。Examples of the alkoxycarbonylalkyl group include C 1-6 alkoxycarbonyl C 1-6 alkyl groups such as ethoxycarbonylmethyl group and methoxycarbonylmethyl group.

カルボキシアルコキシ基としては、例えば、カルボキシメトキシ基、カルボキシエトキシ基等のカルボキシC1−6アルキル基が挙げられる。Examples of the carboxyalkoxy group include carboxy C 1-6 alkyl groups such as a carboxymethoxy group and a carboxyethoxy group.

アルコキシカルボニルアルコキシ基としては、例えば、メトキシカルボニルメトキシ基、エトキシカルボニルメトキシ基等のC1−6アルコキシカルボニルC1−6アルコキシ基が挙げられる。The alkoxycarbonyl alkoxy group, for example, methoxycarbonyl methoxy group, and a C 1-6 alkoxycarbonyl C 1-6 alkoxy group such as ethoxycarbonyl methoxy group.

このうち、Arとして、フェニル基、トルイル基、ナフチル基、カルボキシメトキシ基置換フェニル基、5−(ジメチルアミノ)−1−ナフチル基(ダンシル基)等が好適である。   Among these, as Ar, a phenyl group, a toluyl group, a naphthyl group, a carboxymethoxy group-substituted phenyl group, a 5- (dimethylamino) -1-naphthyl group (dansyl group) and the like are preferable.

Xは−O−で示される基が好ましく、nは2が好ましい。   X is preferably a group represented by -O-, and n is preferably 2.

Zが式:
Z is the formula:

Figure 2007013201
Figure 2007013201

(式中、A及びYは前記に同じ。)
で表される基の場合、Aが置換基を有する場合、その置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子等が挙げられる。Aとして好ましくはベンゼン環である。また、Yが−O−で示される基が好ましい。
(In the formula, A and Y are the same as above.)
In the case where A has a substituent, examples of the substituent include an alkyl group, an alkoxy group, and a halogen atom. A is preferably a benzene ring. A group in which Y is represented by -O- is preferred.

又はRで示される置換基を有してもよいアルキル基のアルキル基としては、例えば、メチル基、エチル基、プロピル基等のC1−3のアルキル基が好適である。As the alkyl group of the alkyl group which may have a substituent represented by R 1 or R 2 , for example, a C 1-3 alkyl group such as a methyl group, an ethyl group, or a propyl group is preferable.

該アルキル基上の置換基としては、例えば、含窒素ヘテロアリール基、カルボキシル基、水酸基、アミノ基、モノ又はジアルキルアミノ基、アルコキシ基(例えば、C1−3アルコキシ基)等が例示される。含窒素ヘテロアリール基としては、例えば、ピリジル基(特に、2−ピリジル基)、ピラジニル基、ピリミジニル基、ピリダジニル基等の含窒素六員環ヘテロアリール基が挙げられる。モノ又はジアルキルアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基等のモノ又はジC1−6アルキルアミノ基が挙げられる。これらの1又は2個(好ましくは1個)がアルキル基上に置換されていてもよい。Examples of the substituent on the alkyl group include a nitrogen-containing heteroaryl group, a carboxyl group, a hydroxyl group, an amino group, a mono- or dialkylamino group, an alkoxy group (for example, a C 1-3 alkoxy group), and the like. As a nitrogen-containing heteroaryl group, nitrogen-containing six-membered heteroaryl groups, such as a pyridyl group (especially 2-pyridyl group), a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, are mentioned, for example. Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group and a dimethylamino group. One or two (preferably one) of these may be substituted on the alkyl group.

又はRで示される置換基を有してもよいアルキル基として好ましくは、2−ピリジルメチル基、2−ピリジルエチル基、ヒドロキシメチル基、2−ヒドロキシエチル基、カルボキシメチル基、2−カルボキシエチル基、ジメチルアミノ基などが挙げられる。The alkyl group which may have a substituent represented by R 1 or R 2 is preferably a 2-pyridylmethyl group, 2-pyridylethyl group, hydroxymethyl group, 2-hydroxyethyl group, carboxymethyl group, 2- A carboxyethyl group, a dimethylamino group, etc. are mentioned.

又はRで示される置換基を有してもよいアリール基のアリール基としては、フェニル基、ナフチル基等の単環又は2環のC 6−10 のアリール基が挙げられる。Examples of the aryl group of the aryl group which may have a substituent represented by R 1 or R 2 include monocyclic or bicyclic C 6-10 aryl groups such as a phenyl group and a naphthyl group.

該アリール基上の置換基としては、例えば、含窒素ヘテロアリール基、カルボキシル基、水酸基、アミノ基、モノ又はジアルキルアミノ基、アルコキシ基(例えば、C1−3アルコキシ基)等が例示される。含窒素ヘテロアリール基としては、例えば、ピリジル基(特に、2−ピリジル基)、ピラジニル基、ピリミジニル基、ピリダジニル基等の含窒素六員環ヘテロアリール基が挙げられる。モノ又はジアルキルアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基等のモノ又はジC1−6アルキルアミノ基が挙げられる。これらの1又は2個(好ましくは1個)がアリール基上に置換されていてもよい。Examples of the substituent on the aryl group include a nitrogen-containing heteroaryl group, a carboxyl group, a hydroxyl group, an amino group, a mono- or dialkylamino group, and an alkoxy group (for example, a C 1-3 alkoxy group). As a nitrogen-containing heteroaryl group, nitrogen-containing six-membered heteroaryl groups, such as a pyridyl group (especially 2-pyridyl group), a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, are mentioned, for example. Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group and a dimethylamino group. One or two (preferably one) of these may be substituted on the aryl group.

又はRで示される置換基を有してもよいヘテロアリール基のヘテロアリール基としては、例えば、N、O及びSからなる群より選ばれる少なくとも1種のヘテロ原子を含むC6−10のヘテロアリール基が挙げられる。具体的なヘテロアリール基としては、例えば、ピリジル基、ピラジニル基、ピリミジニル基、ピリダジニル基、イミダゾリル基、ピラゾリル基、オキサゾリル基、イソキサゾリル基、チエニル基、フリル基等が挙げられる。Examples of the heteroaryl group of the heteroaryl group which may have a substituent represented by R 1 or R 2 include C 6 -containing at least one heteroatom selected from the group consisting of N, O and S. 10 heteroaryl groups are mentioned. Specific examples of the heteroaryl group include pyridyl group, pyrazinyl group, pyrimidinyl group, pyridazinyl group, imidazolyl group, pyrazolyl group, oxazolyl group, isoxazolyl group, thienyl group, and furyl group.

該ヘテロアリール基上の置換基としては、例えば、含窒素ヘテロアリール基、カルボキシル基、水酸基、アミノ基、モノ又はジアルキルアミノ基、アルコキシ基(例えば、C1−3アルコキシ基)等が例示される。含窒素ヘテロアリール基としては、例えば、ピリジル基(特に、2−ピリジル基)、ピラジニル基、ピリミジニル基、ピリダジニル基等の含窒素六員環ヘテロアリール基が挙げられる。モノ又はジアルキルアミノ基としては、例えば、メチルアミノ基、ジメチルアミノ基等のモノ又はジC1−6アルキルアミノ基が挙げられる。これらの1又は2個(好ましくは1個)がヘテロアリール基上に置換されていてもよい。Examples of the substituent on the heteroaryl group include a nitrogen-containing heteroaryl group, a carboxyl group, a hydroxyl group, an amino group, a mono- or dialkylamino group, and an alkoxy group (for example, a C 1-3 alkoxy group). . As a nitrogen-containing heteroaryl group, nitrogen-containing six-membered heteroaryl groups, such as a pyridyl group (especially 2-pyridyl group), a pyrazinyl group, a pyrimidinyl group, a pyridazinyl group, are mentioned, for example. Examples of the mono- or dialkylamino group include mono- or di-C 1-6 alkylamino groups such as a methylamino group and a dimethylamino group. One or two (preferably one) of these may be substituted on the heteroaryl group.

一般式(I)で表される化合物の塩としては、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩が例示される。   Examples of the salt of the compound represented by the general formula (I) include alkali metal salts such as lithium salt, sodium salt and potassium salt.

一般式(I)で表される化合物又はその塩のうち、典型的には、一般式(II):   Of the compounds represented by the general formula (I) or salts thereof, typically, the general formula (II):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y、n、A、R及びRは前記に同じ。)
で表される化合物又はその塩、或いは、一般式(III):
(In the formula, Ar, X, Y, n, A, R 1 and R 2 are the same as above.)
Or a salt thereof, or a general formula (III):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y、n、R及びRは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, Ar, X, Y, n, R 1 and R 2 are the same as above.)
Or a salt thereof.

一般式(II)で表される化合物又はその塩のうち、亜鉛蛍光プローブとして好適な具体例として、一般式(IIa):   Of the compounds represented by the general formula (II) or salts thereof, as specific examples suitable as a zinc fluorescent probe, the general formula (IIa):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y、n、R及びRは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, Ar, X, Y, n, R 1 and R 2 are the same as above.)
Or a salt thereof.

さらに好適な具体例として、一般式(IIb):   As a more preferred specific example, the general formula (IIb):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y及びnは前記に同じ。)
で表される化合物又はその塩、或いは、一般式(IIc):
(In the formula, Ar, X, Y and n are the same as above.)
Or a salt thereof, or a general formula (IIc):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y及びnは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, Ar, X, Y and n are the same as above.)
Or a salt thereof.

一般式(III)で表される化合物又はその塩のうち、亜鉛蛍光プローブとして好適な具体例として、一般式(IIIa):   Of the compounds represented by the general formula (III) or a salt thereof, specific examples suitable as a zinc fluorescent probe include the general formula (IIIa):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、n、R及びRは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, Ar, X, n, R 1 and R 2 are the same as above.)
Or a salt thereof.

さらに好適な具体例として、一般式(IIIb):   As a more preferred specific example, the general formula (IIIb):

Figure 2007013201
Figure 2007013201

(式中、Ar、X及びnは前記に同じ。)
で表される化合物又はその塩、或いは、一般式(IIIc):
(In the formula, Ar, X and n are the same as above.)
Or a salt thereof, or a general formula (IIIc):

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y及びnは前記に同じ。)
で表される化合物又はその塩が挙げられる。
(In the formula, Ar, X, Y and n are the same as above.)
Or a salt thereof.

一般式(I)で表される化合物は、亜鉛イオン測定のための蛍光プローブとして好適に用いられる。該化合物は、次のような特徴を有している。
(1)レシオメトリックタイプの蛍光プローブであるため、細胞数、励起光、基質濃度等に起因する測定値の変動が小さく、亜鉛イオンの濃度をより正確に定量解析できる。なお、レシオメトリックとは、異なる2波長における強度の比の変化を観測する手法を意味する。ここでは、フリーの亜鉛蛍光プローブとその亜鉛錯体についてそれぞれの蛍光波長のピーク強度比の変化を観測する。
(2)単一の励起光波長を使用し、蛍光波長(可視光領域)の変化が観察されるため、励起系、検出系とも装置が簡素化できる。さらに、励起光波長が単一であるので共焦点レーザー顕微鏡の利用も容易である。
(3)励起光波長が紫外領域より長波長(340〜370nm付近)であるため、細胞への影響を極力低減化できる。
(4)亜鉛イオンに対する感度および選択性が良好である。つまり、nM〜μMオーダーの亜鉛イオンを捕捉可能である。
(5)水溶性に優れており、細胞や組織を含む適切な水性媒体中でも十分な溶解性を有している。

II.亜鉛蛍光プローブの製造
本発明の亜鉛蛍光プローブに含まれる一般式(I)で表される化合物又はその塩(一般式(II)及び(III)で表される化合物又はその塩)の製法について説明する。
The compound represented by the general formula (I) is suitably used as a fluorescent probe for zinc ion measurement. The compound has the following characteristics.
(1) Since it is a ratiometric type fluorescent probe, fluctuations in measured values due to the number of cells, excitation light, substrate concentration, etc. are small, and the concentration of zinc ions can be quantitatively analyzed more accurately. The ratiometric means a method of observing a change in intensity ratio at two different wavelengths. Here, the change in the peak intensity ratio of each fluorescence wavelength is observed for the free zinc fluorescent probe and its zinc complex.
(2) Since a change in fluorescence wavelength (visible light region) is observed using a single excitation light wavelength, both the excitation system and the detection system can be simplified. Furthermore, since the excitation light wavelength is single, it is easy to use a confocal laser microscope.
(3) Since the excitation light wavelength is longer than the ultraviolet region (around 340 to 370 nm), the influence on cells can be reduced as much as possible.
(4) Good sensitivity and selectivity for zinc ions. That is, zinc ions of nM to μM order can be captured.
(5) It is excellent in water solubility and has sufficient solubility even in an appropriate aqueous medium containing cells and tissues.

II. Production of Zinc Fluorescent Probe A method for producing a compound represented by the general formula (I) or a salt thereof (compounds represented by the general formulas (II) and (III) or a salt thereof) contained in the zinc fluorescent probe of the present invention is described. To do.

製法A
一般式(II)で表される化合物は、例えば、次にようにして製造することができる。
Manufacturing method A
The compound represented by the general formula (II) can be produced, for example, as follows.

Figure 2007013201
Figure 2007013201

(式中、Rはアルキル基、mは1又は2を示し、Ar、X、Y、n、A、R及びRは前記に同じ。)
上記Rで示されるアルキル基としては、例えば、メチル基、エチル基、プロピル基等のC1−3アルキル基が挙げられる。特に、メチル基、エチル基が好適である。
(In the formula, R 3 represents an alkyl group, m represents 1 or 2, and Ar, X, Y, n, A, R 1 and R 2 are the same as above.)
Examples of the alkyl group represented by R 3 include C 1-3 alkyl groups such as a methyl group, an ethyl group, and a propyl group. In particular, a methyl group and an ethyl group are preferable.

一般式(1)で表される化合物を、J. Am. Chem. Soc. Communications, 2002, 124(5), p776-778の記載に準じて、塩基(例えば、炭酸カリウム等)の存在下一般式(2)で表されるジブロモ化合物を反応させて、一般式(3)で表される化合物を得る。   The compound represented by the general formula (1) is prepared in the presence of a base (for example, potassium carbonate) according to the description of J. Am. Chem. Soc. Communications, 2002, 124 (5), p776-778. A dibromo compound represented by the formula (2) is reacted to obtain a compound represented by the general formula (3).

一般式(3)で表される化合物を、酸触媒(例えば、パラトルエンスルホン酸(pTsOH)、ピリジニウムパラトルエンスルホネート(PPTS)等)の存在下、一般式(3)で表されるジオールを反応させてアセタール(4)とし、これに塩基(例えば、水素化ナトリウム、水酸化ナトリウム、炭酸カリウム等)の存在下一般式(5)で表されるアルデヒド化合物を反応させて、一般式(6)で表される化合物を得る。   The compound represented by the general formula (3) is reacted with the diol represented by the general formula (3) in the presence of an acid catalyst (for example, p-toluenesulfonic acid (pTsOH), pyridinium p-toluenesulfonate (PPTS), etc.). To obtain an acetal (4), which is reacted with an aldehyde compound represented by the general formula (5) in the presence of a base (for example, sodium hydride, sodium hydroxide, potassium carbonate, etc.) to give a general formula (6) To obtain a compound represented by:

一般式(6)で表される化合物を、NaBH等の還元剤によりホルミル基を還元して水酸基とし、これを無水酢酸(AcO)と反応させてアセチル基で保護して、一般式(7)で表される化合物を得る。The compound represented by the general formula (6) is reduced to formyl group by reducing the formyl group with a reducing agent such as NaBH 4 , and this is reacted with acetic anhydride (Ac 2 O) and protected with an acetyl group. The compound represented by (7) is obtained.

一般式(7)で表される化合物を、水素雰囲気下で水素化触媒(PtO、Pd−炭素等)の存在下、ニトロ基をアミノ基に還元して、一般式(8)で表される化合物を得る。The compound represented by the general formula (7) is represented by the general formula (8) by reducing a nitro group to an amino group in the presence of a hydrogenation catalyst (PtO 2 , Pd-carbon, etc.) in a hydrogen atmosphere. To obtain a compound.

一般式(8)で表される化合物を、塩基(例えば、ピリジン等)の存在下、一般式(9)で表されるスルホン酸クロライドを反応させて、スルホン酸アミドとし、これをパラトルエンスルホン酸等の酸で処理することにより、アセタールの保護基を除去して一般式(10)で表されるホルミル化合物を得る。   The compound represented by the general formula (8) is reacted with the sulfonic acid chloride represented by the general formula (9) in the presence of a base (for example, pyridine or the like) to form a sulfonic acid amide. By treatment with an acid such as an acid, the acetal protecting group is removed to obtain a formyl compound represented by the general formula (10).

一般式(10)で表されるホルミル化合物を、一般式(11)で表されるWittig試薬と反応させて一般式(12)で表されるオレフィン化合物を得る。これを、P(OEt)を用いて還元的に閉環させて一般式(13)で表されるインドール化合物を得る。The formyl compound represented by the general formula (10) is reacted with the Wittig reagent represented by the general formula (11) to obtain the olefin compound represented by the general formula (12). This is reductively closed using P (OEt) 3 to obtain an indole compound represented by the general formula (13).

一般式(13)で表されるインドール化合物のアセチル基をEtONaで除去し、MnO等の酸化剤で酸化して、一般式(14)で表されるアルデヒド化合物を得る。これに、還元剤(例えば、トリアセトキシ水素化ほう素ナトリウム等)の存在下、一般式(15)で表される2級アミンを反応(還元的アミノ化反応)させて、一般式(16)で表される化合物を得る。The acetyl group of the indole compound represented by the general formula (13) is removed with EtONa and oxidized with an oxidizing agent such as MnO 2 to obtain the aldehyde compound represented by the general formula (14). This is reacted with a secondary amine represented by the general formula (15) (reductive amination reaction) in the presence of a reducing agent (for example, sodium triacetoxyborohydride) to give a general formula (16) To obtain a compound represented by:

一般式(16)で表される化合物のカルボン酸エステルを、LiOH等のアルカリ金属水酸化物を用いて加水分解することにより、一般式(II)で表される本発明の化合物を得る。なお、Ar、R及び/又はRにカルボン酸エステルを含む場合には、該カルボン酸エステルは、通常、本加水分解工程においてカルボン酸に加水分解される。The compound of the present invention represented by the general formula (II) is obtained by hydrolyzing the carboxylic acid ester of the compound represented by the general formula (16) using an alkali metal hydroxide such as LiOH. In addition, when Ar, R 1 and / or R 2 contain a carboxylic acid ester, the carboxylic acid ester is usually hydrolyzed to a carboxylic acid in this hydrolysis step.

製法B
或いは、一般式(II)で表される化合物は、例えば、次にようにして製造することもできる。
Manufacturing method B
Or the compound represented by general formula (II) can also be manufactured as follows, for example.

Figure 2007013201
Figure 2007013201

(式中、Ar、X、Y、n、A、R、R及びRは前記に同じ。)
一般式(17)で表される化合物を、Journal of Medicinal Chemical Society, 2003, 46, pp. 691-701の記載に従い合成する。一般式(17)で表される化合物を、塩基(例えば、炭酸カリウム等)の存在下一般式(18)で表される化合物と反応させて、一般式(19)で表されるホルミル化合物を得る。
(In the formula, Ar, X, Y, n, A, R 1 , R 2 and R 3 are the same as above.)
The compound represented by the general formula (17) is synthesized as described in Journal of Medicinal Chemical Society, 2003, 46, pp. 691-701. A compound represented by the general formula (17) is reacted with a compound represented by the general formula (18) in the presence of a base (for example, potassium carbonate) to give a formyl compound represented by the general formula (19). obtain.

一般式(19)で表されるホルミル化合物に、還元剤(例えば、トリアセトキシ水素化ほう素ナトリウム等)の存在下、一般式(15)で表される2級アミンを反応(還元的アミノ化反応)させて、一般式(20)で表される化合物を得る。   The formyl compound represented by the general formula (19) is reacted with the secondary amine represented by the general formula (15) in the presence of a reducing agent (for example, sodium triacetoxyborohydride) (reductive amination). Reaction) to obtain a compound represented by the general formula (20).

一般式(20)で表される化合物を、水素雰囲気下で水素化触媒(PtO、Pd−炭素等)の存在下、ニトロ基をアミノ基に還元して、これに塩基(例えば、ピリジン等)の存在下、一般式(9)で表されるスルホン酸クロライドを反応させて、一般式(21)で表されるスルホン酸アミドとする。The compound represented by the general formula (20) is reduced to an amino group in the presence of a hydrogenation catalyst (PtO 2 , Pd-carbon, etc.) in a hydrogen atmosphere, and then a base (for example, pyridine, etc.) is obtained. ) Is reacted with a sulfonic acid chloride represented by the general formula (9) to give a sulfonic acid amide represented by the general formula (21).

一般式(21)で表されるスルホン酸アミドを、MnO等の酸化剤で酸化して、一般式(22)で表される化合物を得る。これに、一般式(11)で表されるWittig試薬を反応させて一般式(23)で表されるオレフィン化合物を得る。これを、P(OEt)等のトリアルキルホスファイトを用いて還元的に閉環させて一般式(16)で表されるインドール化合物を得る。The sulfonic acid amide represented by the general formula (21) is oxidized with an oxidizing agent such as MnO 2 to obtain a compound represented by the general formula (22). This is reacted with a Wittig reagent represented by general formula (11) to obtain an olefin compound represented by general formula (23). This is reductively closed using a trialkyl phosphite such as P (OEt) 3 to obtain an indole compound represented by the general formula (16).

一般式(16)で表されるインドール化合物のエステルを、製法Aと同様にして加水分解して、一般式(II)で表される本発明の化合物を得る。   The ester of the indole compound represented by the general formula (16) is hydrolyzed in the same manner as in Production Method A to obtain the compound of the present invention represented by the general formula (II).

製法C
一般式(III)で表される化合物は、例えば、次にようにして製造することができる。
Manufacturing method C
The compound represented by the general formula (III) can be produced, for example, as follows.

Figure 2007013201
Figure 2007013201

(式中、W及びWは脱離基を示し、Ar、X、n、R、R及びRは前記に同じ。Wherein W 1 and W 2 represent a leaving group, and Ar, X, n, R 1 , R 2 and R 3 are the same as above.

一般式(17)で表される化合物を、塩基(例えば、炭酸カリウム等)の存在下、一般式(24)で表される化合物と反応させて、一般式(25)で示される化合物を得る。   The compound represented by the general formula (17) is reacted with the compound represented by the general formula (24) in the presence of a base (for example, potassium carbonate) to obtain a compound represented by the general formula (25). .

一般式(25)で示される化合物を、水素雰囲気下で水素化触媒(PtO、Pd−炭素等)の存在下、ニトロ基をアミノ基に還元して、一般式(26)で表される化合物を得る。The compound represented by the general formula (25) is represented by the general formula (26) by reducing a nitro group to an amino group in the presence of a hydrogenation catalyst (PtO 2 , Pd-carbon, etc.) in a hydrogen atmosphere. A compound is obtained.

一般式(26)で表される化合物を、塩基(例えば、ピリジン等)の存在下、一般式(9)で表されるスルホン酸クロライドを反応させて、一般式(27)で表されるスルホン酸アミドを得る。   A compound represented by the general formula (26) is reacted with a sulfonic acid chloride represented by the general formula (9) in the presence of a base (for example, pyridine and the like) to obtain a sulfone represented by the general formula (27). The acid amide is obtained.

一般式(27)で表されるスルホン酸アミドをMnO等の酸化剤で酸化して、一般式(28)で表されるアルデヒド化合物を得る。この化合物を、一般式(11)で表されるWittig試薬と反応させて一般式(29)で表されるオレフィン化合物とし、これを、P(OEt)を用いて還元的に閉環させて一般式(30)で表されるインドール化合物を得る。The sulfonic acid amide represented by the general formula (27) is oxidized with an oxidizing agent such as MnO 2 to obtain an aldehyde compound represented by the general formula (28). This compound is reacted with a Wittig reagent represented by the general formula (11) to obtain an olefin compound represented by the general formula (29), and this is reductively cyclized using P (OEt) 3 in general. An indole compound represented by the formula (30) is obtained.

一般式(30)で表されるインドール化合物を、酸(例えば、塩酸、トリフルオロ酢酸等)で処理してBoc基を除去して、一般式(31)で表される化合物を得る。   The indole compound represented by the general formula (30) is treated with an acid (for example, hydrochloric acid, trifluoroacetic acid, etc.) to remove the Boc group to obtain the compound represented by the general formula (31).

一般式(31)で表される化合物に、塩基(例えば、炭酸カリウム等)等の活性化剤の存在下、一般式(32)及び(33)で表される化合物を反応させて、一般式(34)で表される化合物を得る。なお、一般式(32)で表される化合物のWと、一般式(33)で表される化合物のWは同一でも異なっていても良い。上記W及びWで示される脱離基としては、例えば、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子、TfO−、MsO−、TsO−、が例示される。The compound represented by the general formula (31) is reacted with the compound represented by the general formula (32) and (33) in the presence of an activator such as a base (for example, potassium carbonate). The compound represented by (34) is obtained. Note that W 1 of the compound represented by the general formula (32) and W 2 of the compound represented by the general formula (33) may be the same or different. Examples of the leaving group represented by W 1 and W 2 include halogen atoms such as a chlorine atom, a bromine atom, and an iodine atom, TfO—, MsO—, and TsO—.

さらに、一般式(32)及び(33)で表される化合物に代えて、所定のアルデヒド化合物を用いて、還元剤(例えば、トリアセトキシ水素化ほう素ナトリウム等)の存在下、一般式(31)で表される化合物と還元的アミノ化反応に付することにより、一般式(34)で表される化合物を製造することもできる。   Furthermore, instead of the compounds represented by the general formulas (32) and (33), a predetermined aldehyde compound is used, and in the presence of a reducing agent (for example, sodium triacetoxyborohydride), the general formula (31 The compound represented by the general formula (34) can also be produced by subjecting the compound represented by) to a reductive amination reaction.

一般式(34)で表されるインドール化合物のエステルを、製法Aと同様にして加水分解して、一般式(III)で表される本発明の化合物を得る。   The ester of the indole compound represented by the general formula (34) is hydrolyzed in the same manner as in Production Method A to obtain the compound of the present invention represented by the general formula (III).

なお、一般式(II)及び(III)で表される化合物は、必要に応じ塩に変換することもできる。許容される塩としては、例えば、リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属塩が挙げられる。また、場合によっては、水、アルコール等の溶媒和物として得ることもできる。

III.亜鉛蛍光プローブを用いた亜鉛イオンの測定方法
上記一般式(I)で表される本発明の化合物又はその塩(一般式(II)及び(III)で表される化合物又はその塩)は、亜鉛蛍光プローブ、亜鉛イオン測定用試薬として有用である。
In addition, the compound represented by general formula (II) and (III) can also be converted into a salt as needed. Examples of acceptable salts include alkali metal salts such as lithium salts, sodium salts, and potassium salts. Moreover, depending on the case, it can also obtain as solvates, such as water and alcohol.

III. Method for Measuring Zinc Ion Using Zinc Fluorescent Probe The compound of the present invention represented by the above general formula (I) or a salt thereof (compound represented by the general formulas (II) and (III) or a salt thereof) is zinc It is useful as a fluorescent probe and a reagent for measuring zinc ions.

化合物(I)又はその塩は、亜鉛イオンを捕捉して亜鉛錯体を形成しても、吸収スペクトルのピーク波長のシフトが少ない。そのため、照射する励起光の波長が単一でよいことになり、励起装置及び検出装置の簡素化を図ることができる。吸収光波長のピークは、化合物(I)又はその塩の化学構造により変化するが、通常340〜400nm程度、好ましくは340〜370nm程度であり、励起光の波長もこの範囲から適宜選択することができる。   Even if the compound (I) or a salt thereof captures zinc ions to form a zinc complex, the shift of the peak wavelength of the absorption spectrum is small. For this reason, the wavelength of the excitation light to be irradiated may be single, and the excitation device and the detection device can be simplified. The peak of the absorption light wavelength varies depending on the chemical structure of the compound (I) or a salt thereof, but is usually about 340 to 400 nm, preferably about 340 to 370 nm, and the wavelength of the excitation light can be appropriately selected from this range. it can.

また、化合物(I)又はその塩は、亜鉛イオンを捕捉して亜鉛錯体を形成すると、その蛍光スペクトルのピークが顕著な波長シフトを生じる。この蛍光スペクトルピークの波長シフトは、通常は約20nm以上、さらに25〜50nm程度、特に25〜45nm程度となる。   In addition, when the compound (I) or a salt thereof captures zinc ions to form a zinc complex, the peak of the fluorescence spectrum causes a remarkable wavelength shift. The wavelength shift of the fluorescence spectrum peak is usually about 20 nm or more, further about 25 to 50 nm, particularly about 25 to 45 nm.

つまり、本発明の化合物を亜鉛蛍光プローブとして用い、適当な単一波長の励起光を照射し、その時の化合物(I)とその亜鉛錯体との蛍光強度比を測定することにより、試料中の亜鉛イオンをレシオ法によって測定することが可能になる。   That is, by using the compound of the present invention as a zinc fluorescent probe, irradiating excitation light of an appropriate single wavelength, and measuring the fluorescence intensity ratio between the compound (I) and the zinc complex at that time, zinc in the sample Ions can be measured by the ratio method.

なお、レシオ法については、Mason W.T.の著書(Mason W.T.in Fluorescent and Luminescent Probes for Biological Activity,Second Edition,Edited by Mason W.T.,Academic Press)などに詳細に記載されており、これに準じて測定できる。   Regarding the ratio method, Mason W. et al. T.A. (Mason WT in Fluorescent and Luminescent Probes for Biological Activity, Second Edition, Edited by Mason WT, Academic Press) and the like.

また、本発明の化合物(I)又はその塩は、亜鉛イオンを特異的に捕捉することができ、極めて錯体形成が速やかであるという特徴を有している。例えば、化合物(I)又はその塩は、試料中に、亜鉛イオン以外に他の金属イオン(例えば、ナトリウムイオン、カルシウムイオン、カリウムイオン又はマグネシウムイオンなど)が共存していても、その影響をほとんど受けずに亜鉛イオンに対して特異的に錯体を形成する。   In addition, the compound (I) or a salt thereof of the present invention has a feature that it can specifically capture zinc ions and forms a complex very rapidly. For example, compound (I) or a salt thereof hardly affects even if other metal ions (for example, sodium ion, calcium ion, potassium ion, magnesium ion, etc.) coexist in the sample other than zinc ion. A complex is formed specifically with respect to zinc ions without being received.

以上の特徴から、本発明の化合物(I)又はその塩は、生細胞や生組織中の亜鉛イオンを生理条件下で測定するための亜鉛蛍光プローブとして極めて有用である。なお、本明細書において用いられる「測定」という用語については、定量及び定性を含めて最も広義に解釈される。   From the above characteristics, the compound (I) or a salt thereof of the present invention is extremely useful as a zinc fluorescent probe for measuring zinc ions in living cells and living tissues under physiological conditions. The term “measurement” used in this specification is interpreted in the broadest sense including quantitative and qualitative.

本発明の亜鉛蛍光プローブを用いた試料中の亜鉛イオンの測定方法について、その具体例を以下に示す。本発明の亜鉛イオンの測定方法は、(a)上記一般式(I)で表される化合物又はその塩を亜鉛イオンと反応させて亜鉛錯体を生成する工程、及び、(b)上記(a)で生成した亜鉛錯体の蛍光強度を測定する工程、を含むことを特徴とする。   The specific example is shown below about the measuring method of the zinc ion in the sample using the zinc fluorescent probe of this invention. The zinc ion measurement method of the present invention comprises (a) a step of reacting a compound represented by the above general formula (I) or a salt thereof with a zinc ion to form a zinc complex, and (b) the above (a). And a step of measuring the fluorescence intensity of the zinc complex formed in (1).

具体的には、生理食塩水や緩衝液などの水性媒体、又はエタノール、アセトン、エチレングリコール、ジメチルスルホキシド、ジメチルホルムアミドなどの水親和性有機溶媒と水との混合媒体などに、化合物(I)又はその塩を溶解する。この溶液を、細胞や組織を含む適切な緩衝液中に添加して、単一波長の励起光を照射して、化合物(I)とその亜鉛錯体のそれぞれの蛍光強度比を測定すればよい。なお、細胞膜の透過性を考慮して脂溶性を高めるため、化合物(I)の親水性基、例えば、カルボキシル基を所定のエステル基に変換しても良い。該エステルは、細胞内に入った後エステラーゼで加水分解され得るものであれば特に限定はない。   Specifically, in an aqueous medium such as physiological saline or a buffer, or a mixed medium of a water-compatible organic solvent such as ethanol, acetone, ethylene glycol, dimethyl sulfoxide, dimethylformamide and water, the compound (I) or Dissolve the salt. This solution may be added to an appropriate buffer containing cells and tissues, irradiated with excitation light having a single wavelength, and the respective fluorescence intensity ratios of compound (I) and its zinc complex may be measured. In order to enhance the fat solubility in consideration of the permeability of the cell membrane, a hydrophilic group such as a carboxyl group of compound (I) may be converted into a predetermined ester group. The ester is not particularly limited as long as it can be hydrolyzed with esterase after entering the cell.

本発明の化合物(I)を亜鉛蛍光プローブとして用いて亜鉛濃度を測定する場合、化合物(I)の濃度は、例えば、0.05〜100μM程度、好適には0.1〜10μM程度であればよい。また、亜鉛イオンの濃度は、例えば、0.05nM〜200μM程度、好適には0.1nM〜100μM程度まで測定可能である。   When the zinc concentration is measured using the compound (I) of the present invention as a zinc fluorescent probe, the concentration of the compound (I) may be, for example, about 0.05 to 100 μM, preferably about 0.1 to 10 μM. The concentration of zinc ions can be measured, for example, from about 0.05 nM to 200 μM, preferably from about 0.1 nM to 100 μM.

具体例として、上記化合物(IIc)は、吸収波長は342nm、蛍光波長は427nmであり、0.1〜10μM程度の濃度で亜鉛蛍光プローブとして用いることができる。検出可能な生細胞又は生組織中の亜鉛イオンの濃度は、0.1nM〜100μM程度であればよい。化合物(IIc)は、亜鉛イオンを捕捉し錯体を形成して、蛍光スペクトルのピークが30〜50nm程度長波長シフトする。従って、この化合物(IIc)を亜鉛プローブとして用いる場合には、例えば、励起波長342nmの励起光を用い、該励起波長における化合物(IIc)及びその亜鉛錯体の蛍光強度を求めて比を算出すればよい。この蛍光強度比から、細胞や組織中に存在する亜鉛イオンの濃度を求めることができる。   As a specific example, the compound (IIc) has an absorption wavelength of 342 nm and a fluorescence wavelength of 427 nm, and can be used as a zinc fluorescent probe at a concentration of about 0.1 to 10 μM. The concentration of zinc ions in the detectable living cells or living tissues may be about 0.1 nM to 100 μM. Compound (IIc) captures zinc ions to form a complex, and the peak of the fluorescence spectrum is shifted by a long wavelength by about 30 to 50 nm. Therefore, when this compound (IIc) is used as a zinc probe, for example, if excitation light with an excitation wavelength of 342 nm is used and the fluorescence intensity of compound (IIc) and its zinc complex at the excitation wavelength is obtained, the ratio is calculated. Good. From this fluorescence intensity ratio, the concentration of zinc ions present in cells and tissues can be determined.

本発明の亜鉛蛍光プローブを用いた亜鉛イオンの測定は、従来カルシウムイオンのレシオ測定に用いられている蛍光顕微鏡を用いて実施することができる。本発明の方法は二波長測光であるため、単一光の励起光しか使用できない装置においても使用できる点で有利である。   The measurement of zinc ions using the zinc fluorescent probe of the present invention can be carried out using a fluorescence microscope conventionally used for measuring the ratio of calcium ions. Since the method of the present invention is two-wavelength photometry, it is advantageous in that it can be used even in an apparatus that can use only single excitation light.

なお、本発明の亜鉛蛍光プローブを適切な添加物と組み合わせて組成物の形態で用いてもよい。例えば、緩衝剤、溶解補助剤、pH調節剤などの添加物と組み合わせることができる。   The zinc fluorescent probe of the present invention may be used in the form of a composition in combination with an appropriate additive. For example, it can be combined with additives such as a buffer, a solubilizing agent and a pH adjuster.

本発明の化合物は、亜鉛測定のためのレシオメトリックタイプの蛍光プローブとして極めて有用である。   The compound of the present invention is extremely useful as a ratiometric type fluorescent probe for measuring zinc.

特に、本発明の化合物は、亜鉛イオンとの錯体を形成しても励起スペクトルのピークにほとんど波長シフトが生じず、亜鉛イオンとの錯体を形成すると蛍光スペクトルのピークが長波長シフトする。そのため、単一の波長を有する励起光を照射して、レシオメトリックに細胞内の亜鉛イオン濃度を高感度で検出することができる。また、単一の波長の励起光源でよいため、励起系及び検出系の装置も簡略化できるというメリットがある。

また本発明の化合物は、励起光波長が紫外領域よりも長波長(340〜370nm程度)であるために、細胞への影響は小さい。しかも、亜鉛イオンに対する感度及び選択性が良好であるという特徴を有している。
In particular, even when the compound of the present invention forms a complex with zinc ions, the wavelength shift hardly occurs in the peak of the excitation spectrum, and when the complex with zinc ions is formed, the peak of the fluorescence spectrum shifts by a long wavelength. Therefore, it is possible to irradiate excitation light having a single wavelength and detect the zinc ion concentration in the cell with high sensitivity in a ratiometric manner. Further, since an excitation light source having a single wavelength may be used, there is an advantage that the excitation system and the detection system can be simplified.

In addition, since the excitation light wavelength of the compound of the present invention is longer than that in the ultraviolet region (about 340 to 370 nm), the influence on cells is small. And it has the characteristic that the sensitivity and selectivity with respect to zinc ion are favorable.

化合物(IIc)と亜鉛イオンとの錯形成模式図を示す。The complex formation schematic diagram of a compound (IIc) and zinc ion is shown. 化合物(IIc)および亜鉛添加したときの吸収スペクトルを示す。The absorption spectrum when compound (IIc) and zinc are added is shown. 化合物(IIc)および亜鉛添加したときの蛍光スペクトルを示す。The fluorescence spectrum when compound (IIc) and zinc are added is shown. 化合物(IIc)の金属イオン選択性を示すグラフである。It is a graph which shows the metal ion selectivity of a compound (IIc).

本発明を、実施例を用いて更に詳述するが、これに限定されるものではない。   The present invention will be described in more detail with reference to examples, but is not limited thereto.

実施例1(製法A)
(1)3-(2-(2-ホルミルフェノキシ)-1-エトキシ)-4-ニトロベンズアルデヒド ジオキソラン(6)
Journal of the American Chemical Society, 2002, 124, pp. 776-778に記載の方法に従って、3-(2-ブロモエトキシ)-4-ニトロベンズアルデヒド ジオキソランを合成した。該化合物4.8 g(15.1 mmol)とサリチルアルデヒド1.9 g (15.1 mmol)を50 mlのジメチルホルムアミドに溶かした溶液に、炭酸カリウム2.76 g (20.0 mmol)を加え100 ℃で3時間撹拌した。反応液を氷水300 mlに撹拌しながら加え、析出した固体を濾取し、標記化合物(6) 4.3 gを得た(収率 80%)。
1H-NMR (CDCl3, 270 MHz): δ 4.03-4.15 (4H, m), 4.50-4.59 (4H, m), 5.84 (1H, s), 7.04-7.10 (2H, m), 7.19 (1H, dd, J = 8.4, 1.4 Hz), 7.32 (1H, d, J = 1.4 Hz), 7.53 (1H, m), 7.82-7.85 (2H, m).

(2)3-(2-(2-アセトキシメチルフェノキシ)-1-エトキシ)-4-ニトロベンズアルデヒド ジオキソラン(7)
化合物(6) 3.6 g (10.0 mmol)を100 mlのメタノールに懸濁させた溶液に、テトラヒドロホウ酸ナトリウムNaBH40.38 g (10.0 mmol)を0 ℃で少しずつ加え、室温で一晩撹拌した。メタノールを減圧下留去後、残留物を水で洗浄し、エタノール/水にて再結晶してアルコール体3.6 gを得た(収率 定量的)。
1H-NMR (CDCl3, 270 MHz): δ 4.03-4.14 (4H, m), 4.41-4.46 (2H, m), 4.51-4.55 (2H, m), 4.64 (2H, s), 5.84 (1H, s), 6.93 (1H, d, J = 8.1 Hz), 6.98 (1H, t, J = 7.0 Hz), 7.17 (1H, dd, J = 8.1, 1.4 Hz), 7.25-7.31 (3H, m), 7.84 (1H, d, J = 8.1 Hz).
上記化合物2.9 g (8.0 mmol)を30 mlのピリジンに溶かした溶液に、無水酢酸1.02 g (10.0 mmol)を0 ℃で加え、室温で一晩撹拌した。反応液にエタノール10 mlを加え、ピジリン/エタノールを減圧下留去した。残留物を酢酸エチル50 mlに溶かし、飽和食塩水で3回洗浄後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下で留去し、標記化合物(7) 2.90 gを得た(収率 90%)。
1H-NMR (CDCl3, 270 MHz): δ 2.06 (3H, s), 4.05-4.11 (4H, m), 4.39-4.43 (2H, m), 4.48-4.55 (2H, m), 5.15 (2H, s), 5.85 (1H, s), 6.94-7.01 (2H, m), 7.17 (1H, dd, J = 8.4, 1.4 Hz), 7.28-7.34 (3H, m), 7.83 (1H, d, J = 8.1 Hz).

(3)3-(2-(2-アセトキシメチルフェノキシ)-1-エトキシ)-4-アミノベンズアルデヒド ジオキソラン(8)
化合物(7) 2.0 g (5.0 mmol)を40 mlのテトラヒドロフランに溶かした溶液に、二酸化白金114 mg (0.5 mmol)を加え、2気圧の水素ガス下室温で一晩撹拌した。二酸化白金をセライトで濾去後、濾液を減圧下で濃縮し、標記化合物(8) 1.9 gを得た。(収率 定量的)。
1H-NMR (CDCl3, 270 MHz): δ 2.05 (3H, s), 3.99-4.02 (2H, m), 4.11-4.14 (2H, m), 4.38 (4H, s), 5.18 (2H, s), 5.70 (1H, s), 6.69 (1H, d, J = 8.0 Hz), 6.93 (1H, dd, J = 8.0, 1.5 Hz), 6.95 (1H, d, J = 8.0 Hz), 6.97-7.00 (2H, m), 7.31 (1H, td, J = 7.5, 1.5 Hz), 7.34 (1H, dd, J = 7.5, 1.5 Hz).

(4)3-(2-(2-アセトキシメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)ベンズアルデヒド (10)
化合物(8) 1.9 g (5.0 mmol)を20 mlのピリジンに溶かした溶液に、p-トルエンスルホニルクロリド1.14 g (6.0 mmol)を0 ℃で加え、室温で一晩撹拌した。反応液を氷水300 mlに撹拌しながら加え、室温で30分間撹拌を続けた。析出した固体を濾取し、スルホンアミド体 2.4 gを得た(収率 定量的)。
1H-NMR (CDCl3, 270 MHz): δ 2.07 (3H, s), 2.31 (3H, s), 3.97-4.14 (4H, m), 4.22 (4H, s), 5.17 (2H, s), 5.69 (1H, s), 6.90 (1H, d, J = 7.8 Hz), 6.95 (1H, d, J = 1.6 Hz), 7.00-7.05 (2H, m), 7.12 (2H, d, J = 8.1 Hz), 7.23 (1H, s), 7.32-7.38 (2H, m), 7.54 (1H, d, J = 7.8 Hz), 7.61 (2H, d, J = 8.1 Hz).
上記化合物2.4 g (5.0 mmol)を70 mlのアセトンに溶かした溶液に、トルエンスルホン酸一水和物87 mg (0.5 mmol)を加え、室温で一晩撹拌した。反応液に飽和食塩水10 mlを加え、アセトンを減圧下で留去後、ジクロロメタンで抽出した。ジクロロメタン層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。ジクロロメタンを減圧下留去し、シリカゲルカラムにより精製して化合物(10) 2.3 gを得た(収率 97 %)。
1H-NMR (CDCl3, 270 MHz): δ 2.06 (3H, s), 2.34 (3H, s), 4.31-4.40 (4H, m), 5.15 (2H, s), 6.92 (1H, d, J = 8.4 Hz), 7.04 (1H, t, J = 7.6 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.31-7.42 (4H, m), 7.64-7.71 (4H, m).

(5)3-ニトロ-4-[2-[3-(2-(2-アセトキシメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-トランス-ビニル]安息香酸 エチルエステル (12)
化合物(10) 0.43 g (1.0 mmol) を6 mlのジメチルホルムアミドに溶かした溶液に、(4-エトキシカルボニル-2-ニトロベンジル)トリフェニルフォスフォニウムブロミド(11) 0.83 g (1.5 mmol)、炭酸カリウム0.69 g (5.0 mmol)を加え、90 ℃で一晩撹拌した。反応液を水100 mlに加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下留去し、シリカゲルカラムにより精製して化合物(12) 0.49 gを得た(収率 73 %)。
1H-NMR (CDCl3, 500 MHz): δ 1.42 (3H, t, J = 7.0 Hz), 2.05 (3H, s), 2.32 (3H, s), 4.27 (4H, s), 4.43 (2H, q, J = 7.0 Hz), 5.17 (2H, s), 6.92 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 1.5 Hz), 7.04 (1H, d, J = 8.0 Hz), 7.08-7.11 (2H, m), 7.15 (2H, d, J = 8.5 Hz), 7.34-7.38 (3H, m), 7.46 (1H, d, J = 14.0 Hz), 7.56 (1H, d, J = 8.5 Hz), 7.64 (2H, d, J = 8.5 Hz), 7.81 (1H, d, J = 8.0 Hz), 8.21 (1H, dd, J = 8.0, 1.5 Hz), 8.57 (1H, d, J = 1.5 Hz).

(6)2-[3-(2-(2-アセトキシメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (13)
化合物(12) 0.32 g (0.48 mmol) を3 mlの亜リン酸トリエチルに溶かし、125 ℃で4時間撹拌した。亜リン酸トリエチルを減圧下留去し、シリカゲルカラムにより精製して化合物(13) 0.23 gを得た(収率 74 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.42 (3H, t, J = 7.3 Hz), 2.03 (3H, s), 2.30 (3H, s), 4.22-4.28 (4H, m), 4.40 (2H, q, J = 7.3 Hz), 5.17 (2H, s), 6.76 (1H, d, J = 1.4 Hz), 6.90 (1H, d, J = 8.6 Hz), 7.03 (1H, t, J = 7.3 Hz), 7.14 (2H, d, J = 8.4 Hz), 7.22 (1H, dd, J = 1.8 Hz), 7.30 (1H, dd, J = 8.4, 1.8 Hz), 7.32-7.38 (2H, m), 7.59 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.65 (2H, d, J = 8.4 Hz), 7.80 (1H, dd, J = 8.4, 1.1 Hz), 8.15 (1H, s), 9.19 (1H, brs).

(7)2-[3-(2-(2-ホルミルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル(14)
化合物(13) 0.18 g (0.29 mmol) を20 mlのエタノールに溶かした溶液に、ナトリウムエトキシド0.39 g (5.7 mmol)を加え、室温で一晩撹拌した。反応液に酢酸0.34 g (5.7 mmol)を加え、エタノールを減圧下留去した。残留物に飽和食塩水25 mlを加え、酢酸エチルで3回抽出後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下留去し、シリカゲルカラムにより精製してアルコール体0.12 gを得た(収率 69 %)。
1H-NMR (CDCl3, 500 MHz): δ 1.41 (3H, t, J = 7.0 Hz), 2.26 (3H, s), 4.21 (2H, t, J = 3.5 Hz), 4.30 (2H, t, J = 3.5 Hz), 4.39 (2H, q, J = 7.0 Hz), 4.67 (2H, s), 6.74 (1H, d, J = 1.0 Hz), 6.89 (1H, d, J = 8.0 Hz), 7.01 (1H, t, J = 7.5 Hz), 7.09 (2H, d, J = 8.5 Hz), 7.25 (1H, s), 7.29-7.34 (3H, m), 7.47 (1H, s), 7.58 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 8.3 Hz), 7.61 (2H, d, J = 8.5 Hz), 7.74 (1H, dd, J = 8.3, 1.0 Hz), 8.13 (1H, s), 9.63 (1H, s).
上記化合物0.12 g (0.2 mmol) を15 mlのジクロロメタンに溶かした溶液に、二酸化マンガン0.17 g (2.0 mmol)を加え、室温で一晩撹拌した。不溶物をセライトで濾去後、濾液を減圧下留去し、化合物(14)を得た。
1H-NMR (CDCl3, 500 MHz): δ 1.34 (3H, t, J = 7.0 Hz), 2.28 (3H, s), 4.31 (2H, q, J = 7.0 Hz), 4.37-4.43 (4H, m), 6.99 (1H, s), 7.13 (1H, t, J = 7.5 Hz), 7.21 (1H, d, J = 8.0 Hz), 7.31 (2H, d, J = 7.5 Hz), 7.39-7.44 (2H, m), 7.53 (1H, s), 7.58-7.63 (4H, m), 7.72-7.73 (2H, m), 8.03 (1H, s), 9.55 (1H, brs), 10.31 (1H, s), 11.83 (1H, s).

(8)2-[3-(2-(2-ビス(2-ピリジルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル(16b)
化合物(14) 53 mg (0.09 mmol) を10 mlの1,2-ジクロロエタンに懸濁させた溶液に、ジ-(2-ピコリル)アミン36 mg (0.18 mmol) を加えた後、ナトリウムトリアセトキシボロヒドリド38 mg (0.18 mmol)を加え、室温で一晩撹拌した。反応液に水20 mlを加え、クロロホルムで3回抽出後、硫酸マグネシウムで乾燥した。クロロホルムを減圧下留去し、シリカゲルカラムにより精製して化合物(16b) 52 mgを得た(収率 75 %)。
1H-NMR (CDCl3, 500 MHz): δ 1.37 (3H, t, J = 7.0 Hz), 2.26 (3H, s), 3.60 (2H, s), 3.75 (4H, s), 3.97-3.99 (2H, m), 4.11-4.14 (2H, m), 4.36 (2H, q, J = 7.0 Hz), 4.37-4.43 (4H, m), 6.71 (1H, d, J = 7.5 Hz), 6.76 (1H, dd, J = 2.0, 1.0 Hz), 6.95 (1H, td, J = 7.5, 1.0 Hz), 7.04-7.07 (4H, m), 7.19 (1H, td, J = 7.5, 1.5 Hz), 7.25 (1H, d, J = 2.0 Hz), 7.29 (1H, dd, J = 8.5, 2.0 Hz), 7.41 (1H, dd, J = 7.5, 1.5 Hz), 7.47 (1H, d, J = 7.5 Hz), 7.52 (1H, td, J = 7.5, 1.5 Hz), 7.55 (1H, d, J = 8.5 Hz), 7.59 (1H, d, J = 8.5 Hz), 7.61 (1H, d, J = 8.0 Hz), 7.78 (1H, dd, J = 5.5, 1.5 Hz), 8.04 (1H, d, J = 1.5 Hz), 8.46 (2H, ddd, J = 5.0, 2.0, 1.0 Hz), 10.39 (1H, s).

(9)2-[3-(2-(2-ビス(2-ピリジルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 (IIb)
化合物(16b) 12 mg (15 mmol) を10 mlのメタノールに溶かした溶液に、水酸化リチウム一水和物42 mg (1.0 mmol)を加え、室温で一晩撹拌した。メタノールを減圧留去し、希塩酸により中和した後、不溶物を濾取し化合物(IIb) 7.3 mgを得た(収率 81%)。
Example 1 (Production method A)
(1) 3- (2- (2-Formylphenoxy) -1-ethoxy) -4-nitrobenzaldehyde dioxolane (6)
3- (2-Bromoethoxy) -4-nitrobenzaldehyde dioxolane was synthesized according to the method described in Journal of the American Chemical Society, 2002, 124, pp. 776-778. To a solution of 4.8 g (15.1 mmol) of the compound and 1.9 g (15.1 mmol) of salicylaldehyde in 50 ml of dimethylformamide, 2.76 g (20.0 mmol) of potassium carbonate was added and stirred at 100 ° C. for 3 hours. The reaction solution was added to 300 ml of ice water with stirring, and the precipitated solid was collected by filtration to obtain 4.3 g of the title compound (6) (yield 80%).
1 H-NMR (CDCl 3 , 270 MHz): δ 4.03-4.15 (4H, m), 4.50-4.59 (4H, m), 5.84 (1H, s), 7.04-7.10 (2H, m), 7.19 (1H , dd, J = 8.4, 1.4 Hz), 7.32 (1H, d, J = 1.4 Hz), 7.53 (1H, m), 7.82-7.85 (2H, m).

(2) 3- (2- (2-Acetoxymethylphenoxy) -1-ethoxy) -4-nitrobenzaldehyde dioxolane (7)
To a solution of compound (6) 3.6 g (10.0 mmol) suspended in 100 ml of methanol, sodium tetrahydroborate NaBH 4 0.38 g (10.0 mmol) was added little by little at 0 ° C. and stirred overnight at room temperature. After distilling off methanol under reduced pressure, the residue was washed with water and recrystallized with ethanol / water to obtain 3.6 g of an alcohol form (yield quantitative).
1 H-NMR (CDCl 3 , 270 MHz): δ 4.03-4.14 (4H, m), 4.41-4.46 (2H, m), 4.51-4.55 (2H, m), 4.64 (2H, s), 5.84 (1H , s), 6.93 (1H, d, J = 8.1 Hz), 6.98 (1H, t, J = 7.0 Hz), 7.17 (1H, dd, J = 8.1, 1.4 Hz), 7.25-7.31 (3H, m) , 7.84 (1H, d, J = 8.1 Hz).
To a solution obtained by dissolving 2.9 g (8.0 mmol) of the above compound in 30 ml of pyridine, 1.02 g (10.0 mmol) of acetic anhydride was added at 0 ° C. and stirred overnight at room temperature. 10 ml of ethanol was added to the reaction solution, and pyridine / ethanol was distilled off under reduced pressure. The residue was dissolved in 50 ml of ethyl acetate, washed 3 times with saturated brine, and dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure to obtain 2.90 g of the title compound (7) (yield 90%).
1 H-NMR (CDCl 3 , 270 MHz): δ 2.06 (3H, s), 4.05-4.11 (4H, m), 4.39-4.43 (2H, m), 4.48-4.55 (2H, m), 5.15 (2H , s), 5.85 (1H, s), 6.94-7.01 (2H, m), 7.17 (1H, dd, J = 8.4, 1.4 Hz), 7.28-7.34 (3H, m), 7.83 (1H, d, J = 8.1 Hz).

(3) 3- (2- (2-Acetoxymethylphenoxy) -1-ethoxy) -4-aminobenzaldehyde dioxolane (8)
To a solution of compound (7) 2.0 g (5.0 mmol) dissolved in 40 ml of tetrahydrofuran, 114 mg (0.5 mmol) of platinum dioxide was added and stirred overnight at room temperature under 2 atmospheres of hydrogen gas. The platinum dioxide was filtered off through celite, and the filtrate was concentrated under reduced pressure to obtain 1.9 g of the title compound (8). (Yield quantitative).
1 H-NMR (CDCl 3 , 270 MHz): δ 2.05 (3H, s), 3.99-4.02 (2H, m), 4.11-4.14 (2H, m), 4.38 (4H, s), 5.18 (2H, s ), 5.70 (1H, s), 6.69 (1H, d, J = 8.0 Hz), 6.93 (1H, dd, J = 8.0, 1.5 Hz), 6.95 (1H, d, J = 8.0 Hz), 6.97-7.00 (2H, m), 7.31 (1H, td, J = 7.5, 1.5 Hz), 7.34 (1H, dd, J = 7.5, 1.5 Hz).

(4) 3- (2- (2-Acetoxymethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) benzaldehyde (10)
To a solution of 1.9 g (5.0 mmol) of compound (8) in 20 ml of pyridine, 1.14 g (6.0 mmol) of p-toluenesulfonyl chloride was added at 0 ° C. and stirred overnight at room temperature. The reaction solution was added to 300 ml of ice water with stirring, and stirring was continued at room temperature for 30 minutes. The precipitated solid was collected by filtration to obtain 2.4 g of a sulfonamide (yield quantitative).
1 H-NMR (CDCl 3 , 270 MHz): δ 2.07 (3H, s), 2.31 (3H, s), 3.97-4.14 (4H, m), 4.22 (4H, s), 5.17 (2H, s), 5.69 (1H, s), 6.90 (1H, d, J = 7.8 Hz), 6.95 (1H, d, J = 1.6 Hz), 7.00-7.05 (2H, m), 7.12 (2H, d, J = 8.1 Hz ), 7.23 (1H, s), 7.32-7.38 (2H, m), 7.54 (1H, d, J = 7.8 Hz), 7.61 (2H, d, J = 8.1 Hz).
To a solution of 2.4 g (5.0 mmol) of the above compound dissolved in 70 ml of acetone, 87 mg (0.5 mmol) of toluenesulfonic acid monohydrate was added and stirred overnight at room temperature. To the reaction solution was added 10 ml of saturated brine, and acetone was distilled off under reduced pressure, followed by extraction with dichloromethane. The dichloromethane layer was washed with saturated brine and dried over magnesium sulfate. Dichloromethane was distilled off under reduced pressure, and the residue was purified by a silica gel column to obtain 2.3 g of Compound (10) (yield 97%).
1 H-NMR (CDCl 3 , 270 MHz): δ 2.06 (3H, s), 2.34 (3H, s), 4.31-4.40 (4H, m), 5.15 (2H, s), 6.92 (1H, d, J = 8.4 Hz), 7.04 (1H, t, J = 7.6 Hz), 7.17 (2H, d, J = 8.1 Hz), 7.31-7.42 (4H, m), 7.64-7.71 (4H, m).

(5) 3-Nitro-4- [2- [3- (2- (2-acetoxymethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -trans-vinyl] benzoic acid Ethyl ester (12)
Compound (10) 0.43 g (1.0 mmol) in 6 ml dimethylformamide was dissolved in (4-ethoxycarbonyl-2-nitrobenzyl) triphenylphosphonium bromide (11) 0.83 g (1.5 mmol), 0.69 g (5.0 mmol) of potassium was added, and the mixture was stirred at 90 ° C. overnight. The reaction solution was added to 100 ml of water and extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine and dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure, and the residue was purified by a silica gel column to obtain 0.49 g of Compound (12) (yield 73%).
1 H-NMR (CDCl 3 , 500 MHz): δ 1.42 (3H, t, J = 7.0 Hz), 2.05 (3H, s), 2.32 (3H, s), 4.27 (4H, s), 4.43 (2H, q, J = 7.0 Hz), 5.17 (2H, s), 6.92 (1H, d, J = 7.5 Hz), 7.02 (1H, d, J = 1.5 Hz), 7.04 (1H, d, J = 8.0 Hz) , 7.08-7.11 (2H, m), 7.15 (2H, d, J = 8.5 Hz), 7.34-7.38 (3H, m), 7.46 (1H, d, J = 14.0 Hz), 7.56 (1H, d, J = 8.5 Hz), 7.64 (2H, d, J = 8.5 Hz), 7.81 (1H, d, J = 8.0 Hz), 8.21 (1H, dd, J = 8.0, 1.5 Hz), 8.57 (1H, d, J = 1.5 Hz).

(6) 2- [3- (2- (2-Acetoxymethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid ethyl ester (13)
Compound (12) (0.32 g, 0.48 mmol) was dissolved in 3 ml of triethyl phosphite and stirred at 125 ° C. for 4 hours. Triethyl phosphite was distilled off under reduced pressure and purified by a silica gel column to obtain 0.23 g of Compound (13) (yield 74%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.42 (3H, t, J = 7.3 Hz), 2.03 (3H, s), 2.30 (3H, s), 4.22-4.28 (4H, m), 4.40 ( 2H, q, J = 7.3 Hz), 5.17 (2H, s), 6.76 (1H, d, J = 1.4 Hz), 6.90 (1H, d, J = 8.6 Hz), 7.03 (1H, t, J = 7.3 Hz), 7.14 (2H, d, J = 8.4 Hz), 7.22 (1H, dd, J = 1.8 Hz), 7.30 (1H, dd, J = 8.4, 1.8 Hz), 7.32-7.38 (2H, m), 7.59 (1H, d, J = 8.4 Hz), 7.61 (1H, d, J = 8.4 Hz), 7.65 (2H, d, J = 8.4 Hz), 7.80 (1H, dd, J = 8.4, 1.1 Hz), 8.15 (1H, s), 9.19 (1H, brs).

(7) 2- [3- (2- (2-Formylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid ethyl ester (14)
Sodium ethoxide 0.39 g (5.7 mmol) was added to a solution of compound (13) 0.18 g (0.29 mmol) in 20 ml of ethanol, and the mixture was stirred overnight at room temperature. Acetic acid 0.34 g (5.7 mmol) was added to the reaction solution, and ethanol was distilled off under reduced pressure. To the residue was added 25 ml of saturated brine, extracted 3 times with ethyl acetate, and dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure and purified by a silica gel column to obtain 0.12 g of alcohol (yield 69%).
1 H-NMR (CDCl 3 , 500 MHz): δ 1.41 (3H, t, J = 7.0 Hz), 2.26 (3H, s), 4.21 (2H, t, J = 3.5 Hz), 4.30 (2H, t, J = 3.5 Hz), 4.39 (2H, q, J = 7.0 Hz), 4.67 (2H, s), 6.74 (1H, d, J = 1.0 Hz), 6.89 (1H, d, J = 8.0 Hz), 7.01 (1H, t, J = 7.5 Hz), 7.09 (2H, d, J = 8.5 Hz), 7.25 (1H, s), 7.29-7.34 (3H, m), 7.47 (1H, s), 7.58 (1H, d, J = 8.3 Hz), 7.59 (1H, d, J = 8.3 Hz), 7.61 (2H, d, J = 8.5 Hz), 7.74 (1H, dd, J = 8.3, 1.0 Hz), 8.13 (1H, s), 9.63 (1H, s).
To a solution of 0.12 g (0.2 mmol) of the above compound in 15 ml of dichloromethane, 0.17 g (2.0 mmol) of manganese dioxide was added and stirred overnight at room temperature. The insoluble material was filtered off through celite, and the filtrate was evaporated under reduced pressure to give compound (14).
1 H-NMR (CDCl 3 , 500 MHz): δ 1.34 (3H, t, J = 7.0 Hz), 2.28 (3H, s), 4.31 (2H, q, J = 7.0 Hz), 4.37-4.43 (4H, m), 6.99 (1H, s), 7.13 (1H, t, J = 7.5 Hz), 7.21 (1H, d, J = 8.0 Hz), 7.31 (2H, d, J = 7.5 Hz), 7.39-7.44 ( 2H, m), 7.53 (1H, s), 7.58-7.63 (4H, m), 7.72-7.73 (2H, m), 8.03 (1H, s), 9.55 (1H, brs), 10.31 (1H, s) , 11.83 (1H, s).

(8) 2- [3- (2- (2-Bis (2-pyridylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6- Carboxylic acid ethyl ester (16b)
After adding 36 mg (0.18 mmol) of di- (2-picolyl) amine to a solution of compound (14) 53 mg (0.09 mmol) in 10 ml of 1,2-dichloroethane, sodium triacetoxyboro Hydride 38 mg (0.18 mmol) was added, and the mixture was stirred at room temperature overnight. 20 ml of water was added to the reaction solution, extracted three times with chloroform and then dried over magnesium sulfate. Chloroform was distilled off under reduced pressure and purified by a silica gel column to obtain 52 mg of Compound (16b) (yield 75%).
1 H-NMR (CDCl 3 , 500 MHz): δ 1.37 (3H, t, J = 7.0 Hz), 2.26 (3H, s), 3.60 (2H, s), 3.75 (4H, s), 3.97-3.99 ( 2H, m), 4.11-4.14 (2H, m), 4.36 (2H, q, J = 7.0 Hz), 4.37-4.43 (4H, m), 6.71 (1H, d, J = 7.5 Hz), 6.76 (1H , dd, J = 2.0, 1.0 Hz), 6.95 (1H, td, J = 7.5, 1.0 Hz), 7.04-7.07 (4H, m), 7.19 (1H, td, J = 7.5, 1.5 Hz), 7.25 ( 1H, d, J = 2.0 Hz), 7.29 (1H, dd, J = 8.5, 2.0 Hz), 7.41 (1H, dd, J = 7.5, 1.5 Hz), 7.47 (1H, d, J = 7.5 Hz), 7.52 (1H, td, J = 7.5, 1.5 Hz), 7.55 (1H, d, J = 8.5 Hz), 7.59 (1H, d, J = 8.5 Hz), 7.61 (1H, d, J = 8.0 Hz), 7.78 (1H, dd, J = 5.5, 1.5 Hz), 8.04 (1H, d, J = 1.5 Hz), 8.46 (2H, ddd, J = 5.0, 2.0, 1.0 Hz), 10.39 (1H, s).

(9) 2- [3- (2- (2-Bis (2-pyridylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6- Carboxylic acid (IIb)
To a solution of 12 mg (15 mmol) of compound (16b) in 10 ml of methanol was added 42 mg (1.0 mmol) of lithium hydroxide monohydrate, and the mixture was stirred overnight at room temperature. Methanol was distilled off under reduced pressure and neutralized with dilute hydrochloric acid, and insoluble matter was collected by filtration to obtain 7.3 mg of compound (IIb) (yield 81%).

実施例2(製法A)
(1)2-[3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (16c)
上記実施例1(8)において、ジ-(2-ピコリル)アミンの代わりにジエチルイミノジアセテートを用いること以外、上記実施例(8)と同様にして、化合物(16c)を得た(収率68%)。
1H-NMR (CDCl3, 500 MHz): δ 1.17 (3H, t, J = 7.0 Hz), 1.40 (3H, t, J = 7.0 Hz), 2.30 (3H, s), 3.53 (4H, s), 3.93 (2H, s), 4.07 (4H, q, J = 7.0 Hz), 4.14-4.16 (2H, m), 4.25-4.27 (2H, m), 4.39 (2H, q, J = 7.0 Hz), 6.77 (1H, s), 6.84 (1H, d, J = 8.0 Hz), 6.98 (1H, t, J = 7.5 Hz), 7.13 (2H, d, J = 8.5 Hz), 7.24-7.28 (2H, m), 7.31 (1H, dd, J = 8.0, 1.5 Hz), 7.38 (1H, dd, J = 7.5, 1.5 Hz), 7.48 (1H, brs), 7.58 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 8.0 Hz), 7.66 (2H, d, J = 8.5 Hz), 7.89 (1H, dd, J = 8.0, 1.5 Hz), 8.14 (1H, s), 9.59 (1H, s).

(2)2-[3-(2-(2-ビス(カルボキシメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 (IIc)
化合物(16c) 40 mg (52 mmol) を10 mlのメタノールに溶かした溶液に、水酸化リチウム一水和物42 mg (1.0 mmol)を加え、室温で一晩撹拌した。メタノールを減圧留去し、1 mlの3N塩酸を加え、不溶物を濾取した。これを1 mlの蒸留水に懸濁させ、希塩酸をpH8になるまで加えた。G−25セファデックスを用いたカラムクロマトグラフィーにより精製して化合物(IIc) 4.1 mgを得た(収率 10 %)。
Example 2 (Production method A)
(1) 2- [3- (2- (2-Bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carvone Acid ethyl ester (16c)
Compound (16c) was obtained in the same manner as in Example (8) except that diethyliminodiacetate was used in place of di- (2-picolyl) amine in Example 1 (8). 68%).
1 H-NMR (CDCl 3 , 500 MHz): δ 1.17 (3H, t, J = 7.0 Hz), 1.40 (3H, t, J = 7.0 Hz), 2.30 (3H, s), 3.53 (4H, s) , 3.93 (2H, s), 4.07 (4H, q, J = 7.0 Hz), 4.14-4.16 (2H, m), 4.25-4.27 (2H, m), 4.39 (2H, q, J = 7.0 Hz), 6.77 (1H, s), 6.84 (1H, d, J = 8.0 Hz), 6.98 (1H, t, J = 7.5 Hz), 7.13 (2H, d, J = 8.5 Hz), 7.24-7.28 (2H, m ), 7.31 (1H, dd, J = 8.0, 1.5 Hz), 7.38 (1H, dd, J = 7.5, 1.5 Hz), 7.48 (1H, brs), 7.58 (1H, d, J = 8.0 Hz), 7.59 (1H, d, J = 8.0 Hz), 7.66 (2H, d, J = 8.5 Hz), 7.89 (1H, dd, J = 8.0, 1.5 Hz), 8.14 (1H, s), 9.59 (1H, s) .

(2) 2- [3- (2- (2-Bis (carboxymethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid (IIc)
Lithium hydroxide monohydrate 42 mg (1.0 mmol) was added to a solution of compound (16c) 40 mg (52 mmol) in 10 ml of methanol, and the mixture was stirred overnight at room temperature. Methanol was distilled off under reduced pressure, 1 ml of 3N hydrochloric acid was added, and the insoluble material was collected by filtration. This was suspended in 1 ml of distilled water, and diluted hydrochloric acid was added until pH8 was reached. Purification by column chromatography using G-25 Sephadex gave 4.1 mg of compound (IIc) (yield 10%).

実施例3(製法A)
(1)2-[3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(4-(エトキシカルボニルメトキシ)ベンゼンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (16d)
上記実施例1(4)において、p-トルエンスルホニルクロリドの代わりにエチル(4-クロロスルフォニルフェノキシ)アセテートを反応させること以外、実施例1(1)〜(8)と同様にして反応させることにより、化合物(16d)を得た。
1H-NMR (CDCl3, 500 MHz): δ 1.27 (3H, t, J = 7.0 Hz), 1.42 (3H, t, J = 7.0 Hz), 3.61 (2H, s), 3.75 (4H, s), 4.19-4.24 (6H, m), 4.40 (2H, q, J = 7.0 Hz), 4.56 (2H, s), 6.77 (1H, s), 6.80 (1H, d, J = 8.5 Hz), 6.91 (1H, d, J = 7.5 Hz), 7.02-7.07 (3H, m), 7.20-7.22 (2H, m), 7.32-7.38 (3H, m), 7.47 (2H, d, J = 7.5 Hz), 7.51 (2H, td, J = 7.5, 2.0 Hz), 7.58-7.61 (2H, m), 7.67 (2H, d, J = 8.5 Hz), 7.80 (1H, d, J = 8.0 Hz), 8.16 (1H, s), 8.46 (2H, dd, J = 5.0, 2.0 Hz), 9.79 (1H, s).

(2)2-[3-(2-(2-ビス(カルボキシメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(4-(カルボキシメトキシ)ベンゼンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 (IId)
化合物(16d) 12 mg (15 μmol) を10 mlのメタノールに溶かした溶液に、水酸化リチウム一水和物42 mg (1.0 mmol)を加え、室温で一晩撹拌した。メタノールを減圧留去し、希塩酸により中和した後、不溶物を濾取し化合物(IId) 7.3 mgを得た(収率 81%)。
Example 3 (Production method A)
(1) 2- [3- (2- (2-Bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (4- (ethoxycarbonylmethoxy) benzenesulfonylamino) -phenyl] -1H- Indole-6-carboxylic acid ethyl ester (16d)
In Example 1 (4) above, by reacting in the same manner as in Examples 1 (1) to (8) except that ethyl (4-chlorosulfonylphenoxy) acetate was reacted instead of p-toluenesulfonyl chloride. Compound (16d) was obtained.
1 H-NMR (CDCl 3 , 500 MHz): δ 1.27 (3H, t, J = 7.0 Hz), 1.42 (3H, t, J = 7.0 Hz), 3.61 (2H, s), 3.75 (4H, s) , 4.19-4.24 (6H, m), 4.40 (2H, q, J = 7.0 Hz), 4.56 (2H, s), 6.77 (1H, s), 6.80 (1H, d, J = 8.5 Hz), 6.91 ( 1H, d, J = 7.5 Hz), 7.02-7.07 (3H, m), 7.20-7.22 (2H, m), 7.32-7.38 (3H, m), 7.47 (2H, d, J = 7.5 Hz), 7.51 (2H, td, J = 7.5, 2.0 Hz), 7.58-7.61 (2H, m), 7.67 (2H, d, J = 8.5 Hz), 7.80 (1H, d, J = 8.0 Hz), 8.16 (1H, s), 8.46 (2H, dd, J = 5.0, 2.0 Hz), 9.79 (1H, s).

(2) 2- [3- (2- (2-Bis (carboxymethyl) aminomethylphenoxy) -1-ethoxy) -4- (4- (carboxymethoxy) benzenesulfonylamino) -phenyl] -1H-indole- 6-carboxylic acid (IId)
To a solution of 12 mg (15 μmol) of the compound (16d) in 10 ml of methanol, 42 mg (1.0 mmol) of lithium hydroxide monohydrate was added and stirred overnight at room temperature. Methanol was distilled off under reduced pressure and neutralized with dilute hydrochloric acid, and insoluble matter was collected by filtration to obtain 7.3 mg of compound (IId) (yield 81%).

実施例4(製法B)
(1)3-(2-(2-ホルミルフェノキシ)-1-エトキシ)-4-ニトロベンジルアルコール (19)
Journal of Medicinal Chemical Society, 2003, 46, pp. 691-701に記載の方法に従って、2-nitoro-5-hidroxymethyl-phenol(17) を合成した。該化合物(17) 3.4 g (20.0 mmol)と2-(2-ブロモエトキシ)ベンズアルデヒド4.6 g (20.0 mmol)を100 mlのジメチルホルムアミドに溶かした溶液に、炭酸カリウム6.9 g (50.0 mmol)を加え100 ℃で5時間撹拌した。反応液を氷水300 mlに撹拌しながら加え、析出した固体を濾取し、標記化合物(19) 4.7 gを得た(収率 74%)。
1H-NMR (CDCl3, 270 MHz): δ 4.03-4.15 (4H, m), 4.50-4.59 (4H, m), 5.84 (1H, s), 7.04-7.10 (2H, m), 7.19 (1H, dd, J = 8.4, 1.4 Hz), 7.32 (1H, d, J = 1.4 Hz), 7.53 (1H, m), 7.82-7.85 (2H, m).

(2)3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-ニトロベンジルアルコール (20)
化合物(19) 2.78 g (8.76 mmol) を50 mlの1,2-ジクロロエタンに溶かした溶液に、ジエチルイミノジアセテート6.24 g (33.0 mmol) を加えた後、ナトリウムトリアセトキシボロヒドリド2.12 g (10.0 mol)と酢酸0.60 g (10 mmol)を加え、室温で一晩撹拌した。反応液に水100 mlを加え、クロロホルムで3回抽出後、硫酸マグネシウムで乾燥した。クロロホルムを減圧下留去し、シリカゲルカラムにより精製して化合物(20) 3.07 gを得た(収率 71 %)。
1H-NMR (CDCl3, 270 MHz): δ 4.03-4.14 (4H, m), 4.41-4.46 (2H, m), 4.51-4.55 (2H, m), 4.64 (2H, s), 5.84 (1H, s), 6.93 (1H, d, J = 8.1 Hz), 6.98 (1H, t, J = 7.0 Hz), 7.17 (1H, dd, J = 8.1, 1.4 Hz), 7.25-7.31 (3H, m), 7.84 (1H, d, J = 8.1 Hz).

(3)3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)ベンジルアルコール (21)
化合物(20) 0.71 g (1.45 mmol)を20 mlのテトラヒドロフランに溶かした溶液に、5 %パラジウム/炭素70 mgを加え、2気圧の水素ガス下室温で一晩撹拌した。触媒をセライトで濾去後、濾液を減圧下で濃縮し、還元体のアミノ化合物0.67 gを得た。(収率 定量的)
1H-NMR (CDCl3, 270 MHz): δ 1.22 (6H, t, J = 7.2 Hz), 3.55 (4H, s), 3.95 (2H, s), 4.10 (4H, q, J = 7.2 Hz), 4.32-4.39 (4H, m), 4.56 (2H, s), 6.67 (1H, d, J = 7.8 Hz), 6.79 (1H, dd, J = 7.8, 1.9 Hz), 6.89-6.92 (3H, m), 6.96 (1H, td, J = 7.3, 1.9 Hz), 7.23 (1H, td, J = 7.3, 1.6 Hz), 7.43 (1H, dd, J = 7.3, 1.6 Hz).
上記化合物0.67 g (1.45 mmol)を10 mlのクロロホルムに溶かした溶液に、150 mlのピリジンを加え、この溶液にトルエンスルホニルクロリド0.28 g (1.50 mmol)の2 mlクロロホルム溶液を0 ℃で加え、室温で一晩撹拌した。反応液に水100 mlを加え、クロロホルムで3回抽出後、硫酸マグネシウムで乾燥した。クロロホルムを減圧下留去し、シリカゲルカラムにより精製して化合物(21) 3.07 gを得た(収率 71 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.21 (6H, t, J = 7.0 Hz), 2.31 (3H, s), 3.56 (4H, s), 3.89 (2H, s), 4.05-4.23 (8H, m), 4.61 (2H, s), 6.85 (2H, m), 6.92 (1H, d, J = 1.9 Hz), 7.00 (1H, td, J = 7.6, 1.1 Hz), 7.10 (2H, d, J = 7.6 Hz), 7.23-7.30 (2H, m), 7.43 (1H, dd, J = 7.6, 1.9 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.60 (2H, d, J = 7.6 Hz).

(4)3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)ベンズアルデヒド (21)
化合物(21) 0.60 g (0.98 mmol) を15 mlのジクロロメタンに溶かした溶液に、二酸化マンガン0.34 g (4.0 mmol)を加え、室温で一晩撹拌した。不溶物をセライトで濾去後、濾液を減圧下留去し、化合物(21) 0.54 gを得た(収率 89 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.21 (6H, t, J = 7.0 Hz), 2.26 (3H, s), 3.49 (4H, s), 3.87 (2H, s), 4.00 (4H, q, J = 7.0 Hz), 4.19-4.30 (4H, m), 6.79 (1H, d, J = 7.8 Hz), 6.91 (1H, t, J = 7.8 Hz), 7.09 (2H, d, J = 8.2 Hz), 7.19 (1H, t, J = 7.8 Hz), 7.28-7.35 (3H, m), 7.59 (1H, d, J = 7.8 Hz), 7.64 (2H, d, J = 8.2 Hz).

(5)3-ニトロ-4-[2-[3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-トランス-ビニル]安息香酸 エチルエステル (23)
化合物(21) 0.54 g (0.87 mmol) を5 mlのジメチルホルムアミドに溶かした溶液に、(4-エトキシカルボニル-2-ニトロベンジル)トリフェニルフォスフォニウムブロミド0.72 g (1.3 mmol)、炭酸カリウム0.60 g (4.4 mmol)を加え、90 ℃で一晩撹拌した。反応液を水50 mlに加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下留去し、シリカゲルカラムにより精製して化合物(23) 0.17 gを得た(収率 24 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.20 (6H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 2.34 (3H, s), 3.57 (4H, s), 3.96 (2H, s), 4.08 (4H, q, J = 7.3 Hz), 4.20-4.29 (4H, m), 4.43 (2H, q, J = 7.3 Hz), 6.88 (1H, d, J = xx Hz), 6.94-7.16 (5H, m), 7.28-7.34 (2H, m), 7.43-7.49 (2H, m), 7.55-7.67 (4H, m), 7.80 (1H, d, J = 8.6 Hz), 8.21 (1H, dd, J = 8.1, 1.6 Hz), 8.56 (1H, d, J = 1.6 Hz).

(6)2-[3-(2-(2-ビス(エトキシカルボニルメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (16c)
化合物(23) 0.17 g (0.21 mmol) を2 mlの亜リン酸トリエチルに溶かし、125 ℃で4時間撹拌した。亜リン酸トリエチルを減圧下留去し、シリカゲルカラムにより精製して化合物(16c) 40 mgを得た(収率 25 %)。

(7)2-[3-(2-(2-ビス(カルボキシメチル)アミノメチルフェノキシ)-1-エトキシ)-4-(p-トルエンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 (IIe)
化合物(16c)を実施例1(9)と同様に処理して、化合物(IIe)を得た。
Example 4 (Production method B)
(1) 3- (2- (2-Formylphenoxy) -1-ethoxy) -4-nitrobenzyl alcohol (19)
2-nitoro-5-hidroxymethyl-phenol (17) was synthesized according to the method described in Journal of Medicinal Chemical Society, 2003, 46, pp. 691-701. To a solution obtained by dissolving 3.4 g (20.0 mmol) of the compound (17) and 4.6 g (20.0 mmol) of 2- (2-bromoethoxy) benzaldehyde in 100 ml of dimethylformamide, 6.9 g (50.0 mmol) of potassium carbonate was added. Stir at 5 ° C. for 5 hours. The reaction solution was added to 300 ml of ice water with stirring, and the precipitated solid was collected by filtration to obtain 4.7 g of the title compound (19) (yield 74%).
1 H-NMR (CDCl 3 , 270 MHz): δ 4.03-4.15 (4H, m), 4.50-4.59 (4H, m), 5.84 (1H, s), 7.04-7.10 (2H, m), 7.19 (1H , dd, J = 8.4, 1.4 Hz), 7.32 (1H, d, J = 1.4 Hz), 7.53 (1H, m), 7.82-7.85 (2H, m).

(2) 3- (2- (2-Bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4-nitrobenzyl alcohol (20)
To a solution of compound (19) 2.78 g (8.76 mmol) in 50 ml of 1,2-dichloroethane was added diethyliminodiacetate 6.24 g (33.0 mmol), and then sodium triacetoxyborohydride 2.12 g (10.0 mol) ) And 0.60 g (10 mmol) of acetic acid were added, and the mixture was stirred overnight at room temperature. 100 ml of water was added to the reaction solution, extracted three times with chloroform and then dried over magnesium sulfate. Chloroform was distilled off under reduced pressure and purified by a silica gel column to obtain 3.07 g of compound (20) (yield 71%).
1 H-NMR (CDCl 3 , 270 MHz): δ 4.03-4.14 (4H, m), 4.41-4.46 (2H, m), 4.51-4.55 (2H, m), 4.64 (2H, s), 5.84 (1H , s), 6.93 (1H, d, J = 8.1 Hz), 6.98 (1H, t, J = 7.0 Hz), 7.17 (1H, dd, J = 8.1, 1.4 Hz), 7.25-7.31 (3H, m) , 7.84 (1H, d, J = 8.1 Hz).

(3) 3- (2- (2-Bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) benzyl alcohol (21)
To a solution of compound (20) 0.71 g (1.45 mmol) in 20 ml of tetrahydrofuran was added 5% palladium / carbon 70 mg, and the mixture was stirred overnight at room temperature under 2 atmospheres of hydrogen gas. The catalyst was filtered off through celite, and the filtrate was concentrated under reduced pressure to obtain 0.67 g of a reduced amino compound. (Yield quantitative)
1 H-NMR (CDCl 3 , 270 MHz): δ 1.22 (6H, t, J = 7.2 Hz), 3.55 (4H, s), 3.95 (2H, s), 4.10 (4H, q, J = 7.2 Hz) , 4.32-4.39 (4H, m), 4.56 (2H, s), 6.67 (1H, d, J = 7.8 Hz), 6.79 (1H, dd, J = 7.8, 1.9 Hz), 6.89-6.92 (3H, m ), 6.96 (1H, td, J = 7.3, 1.9 Hz), 7.23 (1H, td, J = 7.3, 1.6 Hz), 7.43 (1H, dd, J = 7.3, 1.6 Hz).
To a solution of 0.67 g (1.45 mmol) of the above compound dissolved in 10 ml of chloroform, 150 ml of pyridine was added, and to this solution was added a solution of toluenesulfonyl chloride 0.28 g (1.50 mmol) in 2 ml of chloroform at 0 ° C. And stirred overnight. 100 ml of water was added to the reaction solution, extracted three times with chloroform and then dried over magnesium sulfate. Chloroform was distilled off under reduced pressure and purified by a silica gel column to obtain 3.07 g of compound (21) (yield 71%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.21 (6H, t, J = 7.0 Hz), 2.31 (3H, s), 3.56 (4H, s), 3.89 (2H, s), 4.05-4.23 ( 8H, m), 4.61 (2H, s), 6.85 (2H, m), 6.92 (1H, d, J = 1.9 Hz), 7.00 (1H, td, J = 7.6, 1.1 Hz), 7.10 (2H, d , J = 7.6 Hz), 7.23-7.30 (2H, m), 7.43 (1H, dd, J = 7.6, 1.9 Hz), 7.49 (1H, d, J = 8.4 Hz), 7.60 (2H, d, J = (7.6 Hz).

(4) 3- (2- (2-bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) benzaldehyde (21)
To a solution of compound (21) 0.60 g (0.98 mmol) in 15 ml of dichloromethane was added manganese dioxide 0.34 g (4.0 mmol), and the mixture was stirred overnight at room temperature. The insoluble material was filtered off through celite, and the filtrate was evaporated under reduced pressure to give 0.54 g of compound (21) (yield 89%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.21 (6H, t, J = 7.0 Hz), 2.26 (3H, s), 3.49 (4H, s), 3.87 (2H, s), 4.00 (4H, q, J = 7.0 Hz), 4.19-4.30 (4H, m), 6.79 (1H, d, J = 7.8 Hz), 6.91 (1H, t, J = 7.8 Hz), 7.09 (2H, d, J = 8.2 Hz), 7.19 (1H, t, J = 7.8 Hz), 7.28-7.35 (3H, m), 7.59 (1H, d, J = 7.8 Hz), 7.64 (2H, d, J = 8.2 Hz).

(5) 3-Nitro-4- [2- [3- (2- (2-bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl]- Trans-Vinyl] benzoic acid ethyl ester (23)
Compound (21) 0.54 g (0.87 mmol) in 5 ml dimethylformamide was dissolved in (4-ethoxycarbonyl-2-nitrobenzyl) triphenylphosphonium bromide 0.72 g (1.3 mmol), potassium carbonate 0.60 g (4.4 mmol) was added and stirred at 90 ° C. overnight. The reaction mixture was added to 50 ml of water and extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine and dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure and purified by a silica gel column to obtain 0.17 g of compound (23) (yield 24%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.20 (6H, t, J = 7.3 Hz), 1.42 (3H, t, J = 7.3 Hz), 2.34 (3H, s), 3.57 (4H, s) , 3.96 (2H, s), 4.08 (4H, q, J = 7.3 Hz), 4.20-4.29 (4H, m), 4.43 (2H, q, J = 7.3 Hz), 6.88 (1H, d, J = xx Hz), 6.94-7.16 (5H, m), 7.28-7.34 (2H, m), 7.43-7.49 (2H, m), 7.55-7.67 (4H, m), 7.80 (1H, d, J = 8.6 Hz) , 8.21 (1H, dd, J = 8.1, 1.6 Hz), 8.56 (1H, d, J = 1.6 Hz).

(6) 2- [3- (2- (2-Bis (ethoxycarbonylmethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carvone Acid ethyl ester (16c)
Compound (23) 0.17 g (0.21 mmol) was dissolved in 2 ml of triethyl phosphite and stirred at 125 ° C. for 4 hours. Triethyl phosphite was distilled off under reduced pressure and purified by a silica gel column to obtain 40 mg of Compound (16c) (yield 25%).

(7) 2- [3- (2- (2-Bis (carboxymethyl) aminomethylphenoxy) -1-ethoxy) -4- (p-toluenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid (IIe)
Compound (16c) was treated in the same manner as in Example 1 (9) to give compound (IIe).

実施例5(製法C)
(1)(2-(5-ヒドロキシメチル-2-ニトロフェノキシ)エチル)カルバミック酸-tert-ブチルエステル (25)
化合物(17) 2.57 g (15.2 mmol)と(2-ブロモエチル)カルバミック酸-tert-ブチルエステル 3.40 g (15.2 mmol)を50 mlのジメチルホルムアミドに溶かした溶液に、炭酸カリウム3.15 g (22.8 mmol)を加え100 ℃で22時間撹拌した。反応液に水150 mlを加え、酢酸エチルで3回抽出後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下留去し、シリカゲルカラムにより精製して化合物(25) 0.85 gを得た(収率 18 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.44 (9H, s), 3.55-3.61 (2H, m), 4.18 (2H, t, J = 5.1 Hz), 4.77 (2H, d, J = 5.7 Hz), 5.18 (1H, bs), 6.99 (1H, d, J = 8.4 Hz), 7.13 (1H, s), 7.88 (1H, d, J = 8.4 Hz).

(2)(2-(5-ヒドロキシメチル-2-(4-(エトキシカルボニルメトキシ)フェニルスルホニルアミノ)エチル)カルバミック酸-tert-ブチルエステル (27)
化合物(25) 0.85 g (2.73 mmol)を30 mlのエタノールに溶かした溶液に、5 %パラジウム/炭素70 mgを加え、2気圧の水素ガス下室温で一晩撹拌した。触媒をセライトで濾去後、濾液を減圧下で濃縮し、還元体のアミノ化合物(26) 0.77 gを得た。(収率 85 %)
1H-NMR (CDCl3, 270 MHz): δ 1.45 (9H, s), 3.54-3.61 (2H, m), 4.07 (2H, t, J = 5.1 Hz), 4.55 (2H, s), 4.98 (1H, bs), 6.69 (1H, d, J = 7.8 Hz), 6.77-6.81 (2H, m).
上記化合物(26) 0.65 g (2.31 mmol)を20 mlのジクロロメタンに溶かした溶液に、2 mlのピリジンを加え、この溶液にエチル(4-クロロスルフォニルフェノキシ)アセテート0.64 g (2.31 mmol)の2 mlクロロホルム溶液を0 ℃で加え、室温で一晩撹拌した。反応液に水50 mlを加え、酢酸エチルで3回抽出後、硫酸マグネシウムで乾燥した。酢酸エチルを減圧下留去し、シリカゲルカラムにより精製して化合物(27) 1.13 gを得た(収率 94 %)。
1H-NMR (CDCl3, 270 MHz): δ 1.28 (3H, t, J = 7.0 Hz), 1.43 (9H, s), 3.25-3.29 (2H, m), 3.65-3.69 (2H, m), 4.24 (2H, q, J = 7.0 Hz), 4.57 (2H, s), 4.63 (2H, s), 5.44 (1H, bs), 6.70 (1H, s), 6.80-6.85 (3H, m), 7.44 (1H, d, J = 8.4 Hz), 7.60 (1H, bs), 7.65 (2H, d, J = 8.6 Hz).

(3)(2-(5-ホルミル-2-(4-(エトキシカルボニルメトキシ)フェニルスルホニルアミノ)エチル)カルバミック酸-tert-ブチルエステル (28)
化合物(27) 1.13 g (2.16 mmol) を30 mlのジクロロメタンに溶かした溶液に、二酸化マンガン1.88 g (21.6 mmol)を加え、室温で一晩撹拌した。不溶物をセライトで濾去後、濾液を減圧下留去し、化合物(28) を得た。

(4)3-ニトロ-4-[2-[3-(2-(tert-ブトキシカルボニルアミノ)-1-エトキシ)-4-(4-(エトキシカルボニルメトキシ)ベンゼンスルホニルアミノ)-フェニル]-トランス-ビニル]安息香酸 エチルエステル (29)
化合物(28)を、実施例1(5)と同様にWittig反応することにより、化合物(29)を得る。

(5)2-[3-(2-(tert-ブトキシカルボニルアミノ)-1-エトキシ)-4-(4-(エトキシカルボニルメトキシ)ベンゼンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (30)
化合物(29)を、実施例1(6)と同様に反応することにより、化合物(30)を得る。

(6)2-[3-(2-アミノ-1-エトキシ)-4-(4-(エトキシカルボニルメトキシ)ベンゼンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (31)
トリフルオロ酢酸/ジクロロメタン1:1混合溶媒に、化合物(30)を0度で加え、30分撹拌する。溶媒を減圧下で留去し、化合物(31)を得る。

(7)2-[3-(2-ビス(2-ピリジルメチル)アミノ-1-エトキシ)-4-(4-(エトキシカルボニルメトキシ)ベンゼンスルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 エチルエステル (34)
化合物(31)の1,2-ジクロロエタン溶液に、2-ピリジンカルボキシアルデヒドを加えた後、ナトリウムトリアセトキシボロヒドリドを加え、室温で一晩撹拌する。反応液に水20 mlを加え、クロロホルムで3回抽出後、硫酸マグネシウムで乾燥する。クロロホルムを減圧下留去し、シリカゲルカラムにより精製して化合物(34)を得る。

(8)2-[3-(2-ビス(2-ピリジルメチル)アミノ-1-エトキシ)-4-(4-(カルボキシメトキシベンゼン)スルホニルアミノ)-フェニル]-1H-インドール-6-カルボン酸 (IIIb)
化合物(34)を実施例1(9)と同様に処理して、化合物(IIIb)を得る。

試験例1(化合物(IIc)の蛍光特性)
上記実施例1で得られた化合物(IIc)の蛍光特性を調べた。化合物(IIc)を100mM HEPES緩衝液(pH7.2、5μM EDTA含有)に10μMとなるように溶解して吸収及び蛍光スペクトルを測定した。
<測定条件>
日本分光株式会社 分光蛍光光度計 FP-750DS
スリット:Ex、Em 2.5nm
スキャン速度:240nm/min
測定温度:25℃
亜鉛イオン(20μM ZnCl)の添加前及び亜鉛イオン添加後の化合物(IIc)の蛍光特性を、下記表1に示す。
Example 5 (Production method C)
(1) (2- (5-hydroxymethyl-2-nitrophenoxy) ethyl) carbamic acid-tert-butyl ester (25)
Compound (17) 2.57 g (15.2 mmol) and (2-bromoethyl) carbamic acid-tert-butyl ester 3.40 g (15.2 mmol) in 50 ml dimethylformamide were dissolved in 3.15 g (22.8 mmol) potassium carbonate. The mixture was further stirred at 100 ° C. for 22 hours. 150 ml of water was added to the reaction solution, extracted three times with ethyl acetate, and then dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure and purified by a silica gel column to obtain 0.85 g of compound (25) (yield 18%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.44 (9H, s), 3.55-3.61 (2H, m), 4.18 (2H, t, J = 5.1 Hz), 4.77 (2H, d, J = 5.7 Hz), 5.18 (1H, bs), 6.99 (1H, d, J = 8.4 Hz), 7.13 (1H, s), 7.88 (1H, d, J = 8.4 Hz).

(2) (2- (5-hydroxymethyl-2- (4- (ethoxycarbonylmethoxy) phenylsulfonylamino) ethyl) carbamic acid-tert-butyl ester (27)
To a solution of 0.85 g (2.73 mmol) of Compound (25) in 30 ml of ethanol, 70% of 5% palladium / carbon was added, and the mixture was stirred overnight at room temperature under 2 atmospheres of hydrogen gas. The catalyst was filtered off through celite, and the filtrate was concentrated under reduced pressure to obtain 0.77 g of a reduced amino compound (26). (Yield 85%)
1 H-NMR (CDCl 3 , 270 MHz): δ 1.45 (9H, s), 3.54-3.61 (2H, m), 4.07 (2H, t, J = 5.1 Hz), 4.55 (2H, s), 4.98 ( 1H, bs), 6.69 (1H, d, J = 7.8 Hz), 6.77-6.81 (2H, m).
2 ml of pyridine was added to a solution of the above compound (26) 0.65 g (2.31 mmol) in 20 ml of dichloromethane, and 2 ml of ethyl (4-chlorosulfonylphenoxy) acetate 0.64 g (2.31 mmol) was added to this solution. Chloroform solution was added at 0 ° C. and stirred overnight at room temperature. 50 ml of water was added to the reaction solution, extracted three times with ethyl acetate, and then dried over magnesium sulfate. Ethyl acetate was distilled off under reduced pressure and purified by silica gel column to obtain 1.13 g of compound (27) (yield 94%).
1 H-NMR (CDCl 3 , 270 MHz): δ 1.28 (3H, t, J = 7.0 Hz), 1.43 (9H, s), 3.25-3.29 (2H, m), 3.65-3.69 (2H, m), 4.24 (2H, q, J = 7.0 Hz), 4.57 (2H, s), 4.63 (2H, s), 5.44 (1H, bs), 6.70 (1H, s), 6.80-6.85 (3H, m), 7.44 (1H, d, J = 8.4 Hz), 7.60 (1H, bs), 7.65 (2H, d, J = 8.6 Hz).

(3) (2- (5-Formyl-2- (4- (ethoxycarbonylmethoxy) phenylsulfonylamino) ethyl) carbamic acid-tert-butyl ester (28)
To a solution of compound (27) 1.13 g (2.16 mmol) in 30 ml dichloromethane was added manganese dioxide 1.88 g (21.6 mmol), and the mixture was stirred overnight at room temperature. The insoluble material was filtered off through celite, and the filtrate was evaporated under reduced pressure to give compound (28).

(4) 3-Nitro-4- [2- [3- (2- (tert-butoxycarbonylamino) -1-ethoxy) -4- (4- (ethoxycarbonylmethoxy) benzenesulfonylamino) -phenyl] -trans -Vinyl] benzoic acid ethyl ester (29)
Compound (29) is obtained by subjecting compound (28) to a Wittig reaction in the same manner as in Example 1 (5).

(5) 2- [3- (2- (tert-butoxycarbonylamino) -1-ethoxy) -4- (4- (ethoxycarbonylmethoxy) benzenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid Ethyl ester (30)
Compound (30) is obtained by reacting compound (29) in the same manner as in Example 1 (6).

(6) 2- [3- (2-Amino-1-ethoxy) -4- (4- (ethoxycarbonylmethoxy) benzenesulfonylamino) -phenyl] -1H-indole-6-carboxylic acid ethyl ester (31)
Compound (30) is added to a mixed solvent of trifluoroacetic acid / dichloromethane 1: 1 at 0 degree and stirred for 30 minutes. The solvent is distilled off under reduced pressure to obtain compound (31).

(7) 2- [3- (2-Bis (2-pyridylmethyl) amino-1-ethoxy) -4- (4- (ethoxycarbonylmethoxy) benzenesulfonylamino) -phenyl] -1H-indole-6-carvone Acid ethyl ester (34)
2-Pyridinecarboxaldehyde is added to a 1,2-dichloroethane solution of compound (31), sodium triacetoxyborohydride is added, and the mixture is stirred overnight at room temperature. Add 20 ml of water to the reaction mixture, extract 3 times with chloroform, and dry over magnesium sulfate. Chloroform was distilled off under reduced pressure and purified by silica gel column to obtain compound (34).

(8) 2- [3- (2-Bis (2-pyridylmethyl) amino-1-ethoxy) -4- (4- (carboxymethoxybenzene) sulfonylamino) -phenyl] -1H-indole-6-carboxylic acid (IIIb)
Compound (34) is treated in the same manner as in Example 1 (9) to give compound (IIIb).

Test Example 1 (Fluorescence characteristics of compound (IIc))
The fluorescence characteristic of the compound (IIc) obtained in Example 1 was examined. Compound (IIc) was dissolved in 100 mM HEPES buffer (pH 7.2, containing 5 μM EDTA) so as to have a concentration of 10 μM, and absorption and fluorescence spectra were measured.
<Measurement conditions>
JASCO Corporation spectrofluorometer FP-750DS
Slit: Ex, Em 2.5nm
Scan speed: 240 nm / min
Measurement temperature: 25 ° C
The fluorescence characteristics of the compound (IIc) before the addition of zinc ion (20 μM ZnCl 2 ) and after the addition of zinc ion are shown in Table 1 below.

Figure 2007013201
Figure 2007013201

化合物(IIc)は、亜鉛イオンと配位することによっての吸収波長ピークは8nmの波長側にシフトし、蛍光波長のピークは37nm長波長側にシフトした。これは、亜鉛イオンとの相互作用により、化合物(IIc)のスルホンアミド基のpKaの値が小さくなったため、中性条件においても脱プロトン化して、共役系が広がったためであると考えられる。   In compound (IIc), the absorption wavelength peak due to coordination with zinc ions was shifted to the wavelength side of 8 nm, and the fluorescence wavelength peak was shifted to the longer wavelength side of 37 nm. This is considered to be because the pKa value of the sulfonamide group of the compound (IIc) was reduced by the interaction with the zinc ion, so that the conjugated system was expanded by deprotonation even under neutral conditions.

亜鉛イオンの添加後における化合物(IIc)と亜鉛イオンの平衡状態の模式図を、図1に示す。また、それぞれの吸収スペクトルの変化を図2に、蛍光スペクトルの変化を図3に示す。なお、図3の励起波長は、図2の2つの吸収スペクトルの交点である342nmを用いた。   A schematic diagram of the equilibrium state of compound (IIc) and zinc ions after addition of zinc ions is shown in FIG. Moreover, the change of each absorption spectrum is shown in FIG. 2, and the change of a fluorescence spectrum is shown in FIG. The excitation wavelength in FIG. 3 is 342 nm, which is the intersection of the two absorption spectra in FIG.

これによれば、化合物(IIc)とその亜鉛錯体では、吸収波長のシフトが小さく、蛍光波長のピークが大きくなることが分かった。従って、化合物(IIc)を亜鉛蛍光プローブとして用いた場合、単一波長の励起光を用いることができ、かつ、化合物(IIc)とその亜鉛錯体の蛍光波長ピークが大きく異なり蛍光強度比を正確に検出することができるため、試料(細胞)中の亜鉛濃度を正確に測定することができる。

試験例2(化合物(IIc)の亜鉛イオン選択性)
10μMの化合物(IIc)を含む100mM HEPES緩衝液(pH7.2、5μM EDTA含有)に、マンガン二価イオン、鉄三価イオン又は亜鉛イオンをそれぞれ濃度が50μMになるまで添加し、励起波長を350nmに固定して、化合物(IIc)の蛍光波長410nmにおける蛍光強度(I410)及び化合物(IIc)の金属錯体の蛍光波長485nmにおける蛍光強度(I485)を測定し、その蛍光強度比(I485/I410)を算出した。
According to this, it was found that in compound (IIc) and its zinc complex, the shift of the absorption wavelength is small and the peak of the fluorescence wavelength is large. Therefore, when compound (IIc) is used as a zinc fluorescent probe, single-wavelength excitation light can be used, and the fluorescence wavelength peaks of compound (IIc) and its zinc complex are greatly different and the fluorescence intensity ratio is accurately determined. Since it can detect, the zinc concentration in a sample (cell) can be measured correctly.

Test Example 2 (Zinc ion selectivity of compound (IIc))
Manganese divalent ions, iron trivalent ions, or zinc ions are added to 100 mM HEPES buffer (containing pH 7.2, 5 μM EDTA) containing 10 μM compound (IIc) until the concentration reaches 50 μM, respectively, and the excitation wavelength is set to 350 nm. The fluorescence intensity (I 410 ) at a fluorescence wavelength of 410 nm of the compound (IIc) and the fluorescence intensity (I 485 ) at a fluorescence wavelength of 485 nm of the metal complex of the compound (IIc) were measured, and the fluorescence intensity ratio (I 485 / I 410 ) was calculated.

同様に、10μMの化合物(IIc)を含む100mM HEPES緩衝液(pH7.2、5μM EDTA含有)に、ナトリウムイオン、カリウムイオン、カルシウムイオン又はマグネシウムイオンをそれぞれ濃度が5mMになるまで添加し、励起波長350nmに固定して、化合物(IIc)の蛍光波長410nmにおける蛍光強度(I410)及び化合物(IIc)の金属錯体の蛍光波長485nmにおける蛍光強度(I485)を測定し、その蛍光強度比(I485/I410)を算出した。Similarly, sodium ion, potassium ion, calcium ion, or magnesium ion is added to 100 mM HEPES buffer solution (pH 7.2, containing 5 μM EDTA) containing 10 μM compound (IIc) until the concentration reaches 5 mM, respectively. The fluorescence intensity (I 410 ) at a fluorescence wavelength of 410 nm of the compound (IIc) and the fluorescence intensity (I 485 ) at a fluorescence wavelength of 485 nm of the metal complex of the compound (IIc) were measured, and the fluorescence intensity ratio (I 485 / I410 ).

その結果を、図4(Zn2+なし)に示す。The results are shown in FIG. 4 (without Zn 2+ ).

化合物(IIc)は、亜鉛イオンを添加した場合に高いレシオ変化(蛍光強度比)を示すが、生体内に多く存在する他のイオンを加えた場合にはレシオの変化がみられないか、又は蛍光の消光が観察された。このことから、化合物(IIc)が亜鉛イオンに対して高い選択性を示すことが分かった。   Compound (IIc) shows a high ratio change (fluorescence intensity ratio) when zinc ion is added, but no change in the ratio is observed when other ions present in the living body are added, or Fluorescence quenching was observed. From this, it was found that the compound (IIc) shows high selectivity for zinc ions.

次に、上記で調製した各溶液に、50μMとなるように亜鉛イオンを添加し、同様の測定条件でスペクトルを測定した。その結果を、図4(Zn2+あり)に示す。これによれば、各溶液に亜鉛イオンを添加することにより、上記の亜鉛イオンのみを添加した場合と同等の亜鉛錯体の蛍光強度比が得られた。このことから、化合物(IIc)を用いると、他の金属イオンの影響を受けることなく亜鉛イオンのレシオ測定ができることがわかった。Next, zinc ions were added to each solution prepared above so as to be 50 μM, and the spectrum was measured under the same measurement conditions. The results are shown in FIG. 4 (with Zn 2+ ). According to this, by adding zinc ions to each solution, the same fluorescence intensity ratio of the zinc complex as when only the above zinc ions were added was obtained. From this, it was found that when compound (IIc) was used, the ratio of zinc ions could be measured without being influenced by other metal ions.

Claims (24)

一般式(I):
Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Zは単結合又は式:
Figure 2007013201
で表される基を示し、Aは置換基を有してもよいベンゼン環、Yは−O−又は−S−で示される基を示す。)
で表される化合物又はその塩。
Formula (I):
Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted heteroaryl group, Z is a single bond or a formula:
Figure 2007013201
A represents a benzene ring which may have a substituent, and Y represents a group represented by -O- or -S-. )
Or a salt thereof.
一般式(I)において、Arがアルキル基、アルコキシ基、水酸基、アミノ基、モノ又はジアルキルアミノ基、モノ又はジ(ヒドロキシアルキル)アミノ基、カルボキシル基、アルコキシカルボニル基、カルボキシアルキル基、アルコキシカルボニルアルキル基、カルボキシアルコキシ基及びアルコキシカルボニルアルコキシ基からなる群より選ばれる少なくとも1個の基で置換されたアリール基である請求項1に記載の化合物又はその塩。   In the general formula (I), Ar is an alkyl group, alkoxy group, hydroxyl group, amino group, mono- or dialkylamino group, mono- or di (hydroxyalkyl) amino group, carboxyl group, alkoxycarbonyl group, carboxyalkyl group, alkoxycarbonylalkyl. The compound or a salt thereof according to claim 1, which is an aryl group substituted with at least one group selected from the group consisting of a group, a carboxyalkoxy group and an alkoxycarbonylalkoxy group. 一般式(I)において、Arがフェニル基、トルイル基、ナフチル基、カルボキシアルコキシ基置換フェニル基及び5−(ジメチルアミノ)−1−ナフチル基からなる群より選ばれる1個の基である請求項2に記載の化合物又はその塩。   In the general formula (I), Ar is one group selected from the group consisting of a phenyl group, a toluyl group, a naphthyl group, a carboxyalkoxy group-substituted phenyl group and a 5- (dimethylamino) -1-naphthyl group. 2. The compound according to 2, or a salt thereof. 一般式(I)において、X及びYが−O−で示される基であり、nが2であり、Aがベンゼン環である請求項1〜3のいずれかに記載の化合物又はその塩。   In general formula (I), X and Y are groups shown by -O-, n is 2, and A is a benzene ring, The compound or salt in any one of Claims 1-3. 一般式(I)において、R及びRが同一又は異なって、含窒素ヘテロアリール基、カルボキシル基、水酸基、アミノ基、モノ又はジアルキルアミノ基及びアルコキシ基からなる群より選ばれる少なくとも1個の基で置換されたアルキル基である請求項1〜4のいずれかに記載の化合物又はその塩。In the general formula (I), R 1 and R 2 are the same or different, and at least one selected from the group consisting of a nitrogen-containing heteroaryl group, a carboxyl group, a hydroxyl group, an amino group, a mono- or dialkylamino group and an alkoxy group The compound or a salt thereof according to any one of claims 1 to 4, which is an alkyl group substituted with a group. 一般式(II):
Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩。
General formula (II):
Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. The benzene ring, R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent; Show.)
Or a salt thereof.
一般式(III):




Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩。
General formula (III):




Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An alkyl group that may have, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
Or a salt thereof.
一般式(II):
Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩の製造方法であって、一般式(16):


Figure 2007013201
(式中、Rはアルキル基を示し、Ar、X、Y、n、A、R及びRは前記に同じ。)
で表されるエステル化合物を加水分解することを特徴とする製造方法。
General formula (II):
Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. The benzene ring, R 1 and R 2 may be the same or different and each may have an alkyl group which may have a substituent, an aryl group which may have a substituent, or a heteroaryl group which may have a substituent; Show.)
Wherein the compound represented by the general formula (16):


Figure 2007013201
(In the formula, R 3 represents an alkyl group, and Ar, X, Y, n, A, R 1 and R 2 are the same as above.)
The ester compound represented by this is hydrolyzed, The manufacturing method characterized by the above-mentioned.
一般式(16):
Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物。
Formula (16):
Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
The ester compound represented by these.
一般式(16):



Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物の製造方法であって、一般式(14):
Figure 2007013201
(式中、Rはアルキル基を示し、Ar、X、Y、n及びAは前記に同じ。)
で表されるアルデヒド化合物と、一般式(15):
HN(R)(R) (15)
(式中、R及びRは同一又は異なって置換基を有してもよいアルキル基を示す。)
で表されるアミン化合物を反応させることを特徴とする製造方法。
Formula (16):



Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A method for producing an ester compound represented by general formula (14):
Figure 2007013201
(In the formula, R 3 represents an alkyl group, and Ar, X, Y, n and A are the same as above.)
An aldehyde compound represented by the general formula (15):
HN (R 1 ) (R 2 ) (15)
(In the formula, R 1 and R 2 are the same or different and each represents an alkyl group which may have a substituent.)
The manufacturing method characterized by making the amine compound represented by these react.
一般式(14):

Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、Rはアルキル基を示す。)
で表されるアルデヒド化合物。
General formula (14):

Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 3 represents an alkyl group.)
An aldehyde compound represented by
一般式(6):
Figure 2007013201
(式中、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、mは1又は2を示す)
で表される化合物。
General formula (6):
Figure 2007013201
Wherein X and Y are the same or different and are represented by —O— or —S—, n is 2 or 3, A is a benzene ring which may have a substituent, and m is 1 or 2. )
A compound represented by
一般式(16):






Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表されるエステル化合物の製造方法であって、一般式(23):
Figure 2007013201
(式中、Ar、X、Y、n、A、R、R及びRは前記に同じ。)
で表される化合物と、トリアルキルホスファイトを反応させることを特徴とする製造方法。
Formula (16):






Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A method for producing an ester compound represented by the general formula (23):
Figure 2007013201
(In the formula, Ar, X, Y, n, A, R 1 , R 2 and R 3 are the same as above.)
And a trialkyl phosphite.
一般式(23):

Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基、Rはアルキル基を示す。)
で表される化合物。
Formula (23):

Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X and Y are the same or different and are represented by -O- or -S-, n is 2 or 3, and A has a substituent. An optionally substituted benzene ring, R 1 and R 2 may be the same or different and may have a substituent, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent, R 3 represents an alkyl group.)
A compound represented by
一般式(19):
Figure 2007013201
(式中、X及びYは同一又は異なって−O−又は−S−で示される基、nは2又は3、Aは置換基を有してもよいベンゼン環を示す)
で表される化合物。
General formula (19):
Figure 2007013201
(Wherein X and Y are the same or different and are represented by —O— or —S—, n is 2 or 3, and A represents a benzene ring which may have a substituent)
A compound represented by
一般式(III):






Figure 2007013201
(式中、Arは置換基を有してもよいアリール基、Xは−O−又は−S−で示される基、nは2又は3、R及びRは同一又は異なって置換基を有してもよいアルキル基、置換基を有してもよいアリール基又は置換基を有してもよいヘテロアリール基を示す。)
で表される化合物又はその塩の製造方法であって、一般式(34):
Figure 2007013201
(式中、Rはアルキル基を示し、Ar、X、n、R及びRは前記に同じ。)
で表されるエステル化合物を加水分解することを特徴とする製造方法。
General formula (III):






Figure 2007013201
(In the formula, Ar is an aryl group which may have a substituent, X is a group represented by —O— or —S—, n is 2 or 3, and R 1 and R 2 are the same or different and each represents a substituent. An alkyl group that may have, an aryl group that may have a substituent, or a heteroaryl group that may have a substituent.
Or a salt thereof, which is represented by the general formula (34):
Figure 2007013201
(In the formula, R 3 represents an alkyl group, and Ar, X, n, R 1 and R 2 are the same as above.)
The ester compound represented by this is hydrolyzed, The manufacturing method characterized by the above-mentioned.
上記請求項1〜7のいずれかに記載の化合物又はその塩を含む亜鉛蛍光プローブ。   The zinc fluorescent probe containing the compound or its salt in any one of the said Claims 1-7. 上記請求項1〜7のいずれかに記載の化合物又はその塩を含む亜鉛イオン測定用試薬。   A reagent for measuring zinc ions, comprising the compound or salt thereof according to any one of claims 1 to 7. 上記請求項1〜7のいずれかに記載の化合物及び亜鉛イオンを含む亜鉛錯体。   The zinc complex containing the compound and zinc ion in any one of the said Claims 1-7. 亜鉛イオンの測定方法であって、
(a)請求項1〜7のいずれかに記載の化合物又はその塩を亜鉛イオンと反応させて亜鉛錯体を生成する工程、及び
(b)上記(a)で生成した亜鉛錯体の蛍光強度を測定する工程
を含む測定方法。
A method for measuring zinc ions,
(A) a step of reacting the compound according to any one of claims 1 to 7 or a salt thereof with a zinc ion to form a zinc complex; and (b) measuring the fluorescence intensity of the zinc complex formed in (a) above. A measuring method including a step of performing.
前記工程(b)において、単一の励起波長の光を照射し、請求項1〜7のいずれかに記載の化合物又はその塩と上記(a)で生成した亜鉛錯体のそれぞれの蛍光強度を測定する請求項20に記載の測定方法。   In the step (b), the light of a single excitation wavelength is irradiated, and the fluorescence intensity of each of the compound according to any one of claims 1 to 7 or a salt thereof and the zinc complex formed in the above (a) is measured. The measurement method according to claim 20. 前記励起波長が340〜400nmである請求項20に記載の測定方法。   The measurement method according to claim 20, wherein the excitation wavelength is 340 to 400 nm. 前記工程(b)において、請求項1〜7のいずれかに記載の化合物又はその塩の蛍光スペクトルのピーク波長と、上記(a)で生成した亜鉛錯体の蛍光スペクトルのピーク波長との差が20nm以上である請求項20、21又は22に記載の測定方法。   In the step (b), the difference between the peak wavelength of the fluorescence spectrum of the compound or salt thereof according to any one of claims 1 to 7 and the peak wavelength of the fluorescence spectrum of the zinc complex formed in the above (a) is 20 nm. It is the above, The measuring method of Claim 20, 21 or 22. 細胞内の亜鉛イオンの測定方法であって、
(a)請求項1〜7のいずれかに記載の化合物又はその塩を細胞内に取り込む工程、及び
(b)上記(a)で細胞内に取り込んだ化合物又はその塩と細胞内の亜鉛イオンとから生成した亜鉛錯体のそれぞれの蛍光強度を測定する工程
を含む測定方法。
A method for measuring intracellular zinc ions,
(A) a step of incorporating the compound or salt thereof according to any one of claims 1 to 7 into a cell; and (b) the compound or salt thereof incorporated into the cell in (a) above and an intracellular zinc ion. Measuring method including the process of measuring each fluorescence intensity of the zinc complex produced | generated from.
JP2007526824A 2005-07-29 2006-03-10 Zinc fluorescent probe Pending JPWO2007013201A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005220670 2005-07-29
JP2005220670 2005-07-29
PCT/JP2006/304749 WO2007013201A1 (en) 2005-07-29 2006-03-10 Zinc fluorescent probe

Publications (1)

Publication Number Publication Date
JPWO2007013201A1 true JPWO2007013201A1 (en) 2009-02-05

Family

ID=37683108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526824A Pending JPWO2007013201A1 (en) 2005-07-29 2006-03-10 Zinc fluorescent probe

Country Status (2)

Country Link
JP (1) JPWO2007013201A1 (en)
WO (1) WO2007013201A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110206647A1 (en) * 2010-02-25 2011-08-25 Abt Holding Company Modulation of Angiogenesis
JP6179918B2 (en) * 2013-02-08 2017-08-16 三菱ケミカル株式会社 Water quality monitoring method
US11604141B2 (en) 2017-06-12 2023-03-14 Georgia Tech Research Corporation Zinc-selective fluorescent probes for emission-ratiometric imaging
CN112858233A (en) * 2019-11-28 2021-05-28 天津科技大学 Novel method for detecting zinc ions in water body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716456A (en) * 1980-07-03 1982-01-27 Canon Inc Sensitizing dye for photoconductive zinc oxide

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5716456A (en) * 1980-07-03 1982-01-27 Canon Inc Sensitizing dye for photoconductive zinc oxide

Also Published As

Publication number Publication date
WO2007013201A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP5228190B2 (en) Peroxynitrite fluorescent probe
JP4759200B2 (en) Reactive oxygen measurement reagent
US9714260B2 (en) Asymmetrical Si rhodamine and rhodol synthesis
US8143069B2 (en) Fluorescent probe and method of measuring hypochlorite ion
JP2009510462A (en) Reagents for highly specific detection of peroxynitrite
US20110159603A1 (en) Fluorescent probe specific to hydrogen peroxide
JP2006219453A (en) Metal-discrimination-type two-color fluorescent molecule containing quinoline ring as parent nucleus
JP4402191B2 (en) Zinc fluorescent probe
WO2008059910A1 (en) pH-SENSITIVE FLUORESCENT PROBE
JPWO2007013201A1 (en) Zinc fluorescent probe
EP1314730A1 (en) Reagent for determining singlet oxygen
US8410164B2 (en) Reagent for measurement of active oxygen
JP7339675B2 (en) Fluorescent probe for detecting carboxypeptidase activity
CN113637048A (en) Two-photon fluorescent probe of gamma-glutamyl transpeptidase, and preparation method and application thereof
JP2018145126A (en) Fluorescent probe for detection of carboxypeptidase activity
JP4309253B2 (en) Zinc fluorescent probe
CN109608495A (en) A kind of compound and its preparation method and application detecting HNO
JP5360609B2 (en) Reagent for low oxygen environment measurement
JP2004101389A (en) Probe for measuring aluminum ion and/or ferric ion
WO2002012867A1 (en) Fluorescent probe for magnesium ion determination
JP2007314444A (en) Zinc fluorescence probe
CN115873011B (en) Cancer cell targeted fluorescent probe responding to nitroreductase in mitochondria and preparation method and application thereof
EP2907877A1 (en) Reagent for imaging intracellular acetylation
JP2004315501A (en) Zinc fluorescent probe
JPWO2020111279A1 (en) Fluorescent probe for detecting carboxypeptidase activity

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004