JPWO2007007587A1 - Co-oxide polycrystal with controlled orientation - Google Patents

Co-oxide polycrystal with controlled orientation Download PDF

Info

Publication number
JPWO2007007587A1
JPWO2007007587A1 JP2007524581A JP2007524581A JPWO2007007587A1 JP WO2007007587 A1 JPWO2007007587 A1 JP WO2007007587A1 JP 2007524581 A JP2007524581 A JP 2007524581A JP 2007524581 A JP2007524581 A JP 2007524581A JP WO2007007587 A1 JPWO2007007587 A1 JP WO2007007587A1
Authority
JP
Japan
Prior art keywords
crystal
coo
temperature
oxide
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007524581A
Other languages
Japanese (ja)
Inventor
洋志 福富
洋志 福富
栄資 井口
栄資 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Publication of JPWO2007007587A1 publication Critical patent/JPWO2007007587A1/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Abstract

本発明は、不整合結晶構造を持つCo酸化物の多結晶から成り、該多結晶の(001)面上ですべり変形が生じ、一定方向に結晶回転したCo酸化物多結晶体である。また、不整合結晶構造を持つCo酸化物の多結晶を800〜930℃にて1.0×10−5〜1.0×10−3s−1の歪み速度で圧縮加工を行うことによりすべり変形を生じさせ、一定方向に結晶回転したCo酸化物多結晶体を得ることができる。これにより、セラミックスの結晶配向を制御し、結晶配向制御された、電気抵抗に異方性を持ったセラミックスを提供でき、熱電変換セラミックスとして利用することができる。The present invention is a Co oxide polycrystal composed of a Co oxide polycrystal having an inconsistent crystal structure, causing slip deformation on the (001) plane of the polycrystal, and rotating in a certain direction. Further, a slip deformation is caused by compressing a Co oxide polycrystal having a mismatch crystal structure at a strain rate of 1.0 × 10 −5 to 1.0 × 10 −3 s −1 at 800 to 930 ° C. Thus, a Co oxide polycrystal having crystal rotation in a certain direction can be obtained. Thereby, the crystal orientation of the ceramics is controlled, and the ceramics with controlled crystal orientation and having anisotropy in electrical resistance can be provided, and can be used as thermoelectric conversion ceramics.

Description

この発明は、結晶配向制御により製造されたセラミックスに関し、より詳細には、(001)面内のすべり変形が生じ塑性変形した不整合結晶構造を持つCo酸化物に関する。   The present invention relates to a ceramic manufactured by controlling crystal orientation, and more particularly to a Co oxide having a mismatched crystal structure in which slip deformation in the (001) plane is generated and plastically deformed.

セラミックスは一般にパイエルスポテンシャルが高く、多結晶体の塑性変形に必要な独立すべり系の数が十分に確保できないために、塑性変形を目的として大きな力を加えても塑性変形を生ずることなく破壊するのが通常である。それゆえセラミックスには金属材料と異なり塑性加工による配向制御技術は存在しなかった。
一方、熱電変換セラミックスの性能指数を配向制御により増大させるために、成形体を一軸加圧しながら原料の一部を部分溶融させ、そして徐冷する方法が提示されている(特許文献1)。また、針状や板状等の異方形状粉末を成形体中に相対的に高い配向度で存在させ、この異方形状粉末をテンプレートまたは反応性テンプレートとして用いて酸化物の成長および/または合成ならびにその焼結を行い、配向を整えることも行われている。スラリー状態での圧延の有用性も提示されている(非特許文献2)。
なお、本発明者らは一般式Bi2-xPbxSr3-yYyCo2O9-δで表されるセラミックスが熱電特性を有することを報告している(非特許文献1)。
Ceramics generally have a high Peierls potential, and the number of independent slip systems necessary for plastic deformation of a polycrystalline body cannot be secured sufficiently. Therefore, even if a large force is applied for the purpose of plastic deformation, it does not cause plastic deformation. Is normal. Therefore, unlike metal materials, ceramics have no orientation control technology by plastic working.
On the other hand, in order to increase the figure of merit of thermoelectric conversion ceramics by orientation control, a method has been proposed in which a part of a raw material is partially melted while being uniaxially pressed and then gradually cooled (Patent Document 1). Also, anisotropically shaped powders such as needles and plates are present in the compact with a relatively high degree of orientation, and this anisotropically shaped powder is used as a template or reactive template to grow and / or synthesize oxides. In addition, the sintering is performed to adjust the orientation. The usefulness of rolling in a slurry state is also presented (Non-Patent Document 2).
The present inventors have formula Bi 2-x Pb x Sr 3 -y Y y Co 2 O 9-δ ceramics represented is reported to have a thermoelectric properties (Non-Patent Document 1).

特開2001-19544 (特許第3089301号)JP2001-19544 (Patent No. 30830301) 特開2003-282965JP2003-282965 J. Phys. D: Appl. Phys. 34 (2001) 1017-1024J. Phys. D: Appl. Phys. 34 (2001) 1017-1024

従来のセラミックスの結晶配向制御技術は、再結晶によって所望の結晶が得られる物質系や組成のみに適用が限定されていたり、異方形状粉末の作製やスラリー化など複雑な工程を必要とする等の難点があった。
金属材料では、圧延などの塑性加工技術により大きな塑性変形を加えて結晶配向を整える多様な集合組織制御技術が確立されているが、セラミックスにおいても、結晶性の材料を特定の結晶面に沿ったすべり、即ち結晶すべり変形により、大きく塑性変形させることができれば、結晶の配向を整えることができると考えられる。
本発明は、セラミックスの結晶配向を制御する方法及び結晶配向制御により製造されたセラミックスを提供することを目的とする。このように結晶配向制御されたセラミックスは異方性を持ち、熱電変換セラミックスの場合には、電気抵抗が低い方向を利用することにより、性能指数の向上した熱電変換セラミックスとして利用することができる。
Conventional ceramic crystal orientation control technology is limited to material systems and compositions that can produce desired crystals by recrystallization, and requires complicated processes such as production and slurrying of anisotropically shaped powders. There were difficulties.
For metal materials, various texture control techniques have been established that adjust the crystal orientation by applying large plastic deformation by plastic working techniques such as rolling. However, even in ceramics, crystalline materials are aligned along specific crystal planes. It is considered that the orientation of the crystal can be adjusted if it can be largely plastically deformed by slip, that is, crystal slip deformation.
An object of the present invention is to provide a method for controlling the crystal orientation of a ceramic and a ceramic manufactured by controlling the crystal orientation. The ceramic whose crystal orientation is controlled in this way has anisotropy, and in the case of a thermoelectric conversion ceramic, it can be used as a thermoelectric conversion ceramic with an improved figure of merit by utilizing the direction of low electrical resistance.

本発明が対象とする不整合結晶構造(misfit structure)を持つCo酸化物(層状の結晶構造を有するセラミックス)では、(001)面内に最隣接原子間距離の短い方向があり、融点に近い温度まで昇温すればパイエルスポテンシャルを乗り越えて完全転位を活動させることができる。この場合、(001)面内には独立なすべり系が2つしか存在しないので、多結晶体を大きく変形させることは困難である。
本発明においては、拡散による結晶粒間の変形の緩和が生じうる温度と歪み速度を選定することにより大歪み加工を達成することができることを見出し、本発明を完成させるに至った。
The Co oxide (ceramics having a layered crystal structure) having a misfit structure targeted by the present invention has a direction in which the distance between adjacent atoms is short in the (001) plane and is close to the melting point. If the temperature is raised to temperature, it can overcome the Peierls potential and activate complete dislocations. In this case, since there are only two independent slip systems in the (001) plane, it is difficult to greatly deform the polycrystalline body.
In the present invention, it has been found that large strain processing can be achieved by selecting a temperature and strain rate at which deformation between crystal grains due to diffusion can occur, and the present invention has been completed.

即ち、本発明は、不整合結晶構造を持つCo酸化物の多結晶体であって、該多結晶の(001)面内でのすべり変形によって一定方向に結晶が配向したCo酸化物多結晶体である。この多結晶を800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて1.0×10−5〜1.0×10−3−1の歪み速度で圧縮加工を行うことによりこのすべり変形を生じさせることができる。
この圧縮加工は、単軸圧縮加工、平面ひずみ圧縮加工、圧延、押出加工等の塑性加工法を用いてもよい。
また本発明は、不整合結晶構造を持つCo酸化物から成る多結晶を800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて1.0×10−5〜1.0×10−3−1の歪み速度で圧縮加工を行うことから成る(001)面内のすべり変形が生じた不整合結晶構造を持つCo酸化物の製法である。
この不整合結晶構造を持つCo酸化物に、更に、800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて12〜50時間の焼鈍を加えてもよい。
That is, the present invention relates to a Co oxide polycrystal having an inconsistent crystal structure, wherein the crystal is oriented in a certain direction by slip deformation in the (001) plane of the polycrystal. It is. The polycrystal is compressed at a strain rate of 1.0 × 10 −5 to 1.0 × 10 −3 s −1 in a temperature range from 800 ° C. or higher to a temperature of 30 ° C. below the melting point of the crystal. This can cause this slip deformation.
This compression process may use a plastic processing method such as uniaxial compression process, plane strain compression process, rolling, or extrusion process.
In the present invention, a polycrystal composed of a Co oxide having an inconsistent crystal structure is 1.0 × 10 −5 to 1.0 in a temperature range from 800 ° C. to 30 ° C. below the melting point of the crystal. This is a method for producing a Co oxide having a mismatch crystal structure in which slip deformation in the (001) plane occurs, which is performed by compressing at a strain rate of × 10 −3 s −1 .
The Co oxide having this inconsistent crystal structure may be further subjected to annealing for 12 to 50 hours in a temperature range from 800 ° C. or higher to a temperature of 30 ° C. below the melting point of the crystal.

本発明は、配向方向がランダムな結晶粒から成る多結晶のセラミックスを塑性変形することにより、配向を一定方向にそろえたセラミックスを提供することを可能にした。
本発明の不整合結晶構造を持つCo酸化物は、高温加工によって塑性変形が進行し、緻密化と集合組織形成が実現され、その結果、熱電特性が向上した。
また、本発明の材料は、700℃近傍まで使用できる高温用熱電変換材料として、化石燃料熱電変換発電機はもとより、工場やゴミ焼却場等における燃焼で生じ従来廃棄されてきた熱を直接電気エネルギーに変換するエネルギー供給装置に利用できる。
The present invention has made it possible to provide a ceramic in which the orientation is aligned in a certain direction by plastically deforming a polycrystalline ceramic composed of crystal grains having random orientation directions.
The Co oxide having an incommensurate crystal structure of the present invention undergoes plastic deformation by high-temperature processing, realizing densification and texture formation, and as a result, improved thermoelectric properties.
The material of the present invention is a high-temperature thermoelectric conversion material that can be used up to around 700 ° C. In addition to fossil fuel thermoelectric conversion generators, the heat generated by combustion in factories and garbage incinerators, etc., has been directly discarded. It can be used for energy supply devices that convert to

本発明の高配向性多結晶体セラミックスは、不整合結晶構造を持つCo酸化物である。
「不整合結晶構造」とは、CoO電子伝導層を含む複数の層の積層で構成されるCo酸化物はc軸方向に層が積み重なり、それと垂直方向にaおよびb軸があり、b軸方向のCoO層の格子定数とこの層と上と下で接する他の層の格子定数の比が無理数である構造を意味する。ただし、総ての層のa軸方向の格子定数は等しい。
このセラミックスは、層状結晶構造を有し、シュルツの反射法で測定した正極点図における極密度の最大値が、平均極密度の10倍以上である。この層状結晶構造とは、例えば図1に示すようにCoO層からなる第1副格子と、CoOとは異なる層からなる第2副格子が所定の周期で堆積した構造をいう。
不整合結晶構造は、X線回折法で確認できるが、中性子線解析によりより精確に確認することができる。
また、組成はEDX測定法により確認することができ、より精確には湿式分析で確認できるが、酸素量の決定はいずれの方法を用いても一般には困難である。
The highly oriented polycrystalline ceramic of the present invention is a Co oxide having a mismatch crystal structure.
The “mismatched crystal structure” is a Co oxide composed of a plurality of layers including a CoO 2 electron conducting layer, in which layers are stacked in the c-axis direction, and there are a and b axes in the perpendicular direction, and b axis It means a structure in which the ratio of the lattice constant of the CoO 2 layer in the direction and the lattice constant of the other layer in contact with this layer above and below is irrational. However, the lattice constants in the a-axis direction of all layers are equal.
This ceramic has a layered crystal structure, and the maximum value of the pole density in the positive dot diagram measured by the Schulz reflection method is 10 times or more the average pole density. And this layered crystal structure, referred to for example a first sub-grid of Co 2 O layer as shown in FIG. 1, a structure in which the second sublattice consisting of different layers are deposited in a predetermined cycle and Co 2 O.
The inconsistent crystal structure can be confirmed by an X-ray diffraction method, but can be confirmed more accurately by neutron beam analysis.
Further, the composition can be confirmed by an EDX measurement method, and more accurately can be confirmed by a wet analysis, but it is generally difficult to determine the amount of oxygen by any method.

この不整合結晶構造を持つCo酸化物として、Bi2−xPbSr3−yCo9−δ(式中、x=0.4〜0.8、y=0.4〜0.8、δ=0.2〜0.6)、[CaCoO3-x]1-yCoO2-z(式中、x=0.2〜0、y=0.4〜0、z=0.2〜0)、[(Ca1-xSr xCoO3-y]1-zCoO2-w(式中、x=0.2〜0、y=0.2〜0、z=0.4〜0、w=0.2〜0)、[(Ca(Co、Cu)2−x4−y)0.63-zCoO2-w(式中、x=-0.1〜0.1、y=0.3〜0、z=-0.1〜0.1、w=0.2〜0)又は[Bi1.74-xSr2-y4-z]0.25-wCoO2-v(式中、x=-0.05〜0.05、y=-0.05〜0.05、z=0.2〜0、w=0.05〜0、V=0.2〜0)等が挙げられるが、本発明の実施上、[(Ca1-xSr xCoO3-y]1-zCoO2-w(式中、x=0.2〜0、y=0.2〜0、z=0.4〜0、w=0.2〜0)及び [CaCoO3-x]1-yCoO2-z(式中、x=0.2〜0、y=0.4〜0、z=0.2〜0)が重要である。As the Co oxide having this inconsistent crystal structure, Bi 2−x Pb x Sr 3−y Y y Co 2 O 9−δ (where, x = 0.4 to 0.8, y = 0.4 to 0.8, δ = 0.2 to 0.6), [Ca 2 CoO 3−x ] 1−y CoO 2−z (where, x = 0.2 to 0, y = 0.4 to 0, z = 0.2 to 0), [(Ca 1−x Sr x ) 2 CoO 3−y ] 1−z CoO 2−w (where, x = 0.2 to 0, y = 0.2 to 0, z = 0.4 to 0, w = 0.2 ˜0), [(Ca 2 (Co, Cu) 2−x O 4−y ) 0.63−z CoO 2−w (where x = −0.1 to 0.1, y = 0.3 to 0, z = − 0.1~0.1, w = 0.2~0) or [Bi 1.74-x Sr 2- y O 4-z] 0.25-w CoO 2-v ( wherein, x = -0.05~0.05, y = - 0.05-0.05, z = 0.2-0, w = 0.05-0, V = 0.2-0), etc., but [(Ca 1−x Sr x ) 2 CoO 3−y ] 1 -z CoO 2 -w (wherein x = 0.2-0, y = 0.2-0, z = 0.4-0, w = 0.2-0) and [C a 2 CoO 3−x ] 1−y CoO 2−z (wherein x = 0.2 to 0, y = 0.4 to 0, z = 0.2 to 0) is important.

「多結晶」は、サイズは約1〜10μm程度の上記の多数の単結晶が様々な方向をもって集合したものである。この多結晶はこの組成の粉末を集合させて燒結することにより得ることができる。 “Polycrystalline” is a collection of the above-mentioned single crystals of about 1 to 10 μm in various directions. This polycrystal can be obtained by assembling and sintering powders of this composition.

「圧縮加工」は、対象となる物体に圧縮力を加えて形状を変える塑性加工法である。
本願発明の"不整合結晶構造を持つCo酸化物の多結晶体"に圧縮加工を施すと、このCo酸化物多結晶体を構成し様々な方向を向いた結晶粒の(001)面上ですべり変形が生じる。すべり変形によって、多結晶体の圧縮方向の長さが減少する塑性変形が生ずる。このすべり変形の結果、各結晶の(001)面が圧縮面に平行になる位置まで回転する。すなわち、多結晶体を構成する結晶粒の(001)面の法線方向が、圧縮加工を加えた方向と一致するように結晶が回転する。
“Compression processing” is a plastic processing method in which a shape is changed by applying a compression force to a target object.
When compression processing is performed on the “polyoxide of Co oxide having an inconsistent crystal structure” of the present invention, the Co oxide polycrystal is formed on the (001) plane of crystal grains facing various directions. Slip deformation occurs. Slip deformation causes plastic deformation in which the length of the polycrystalline body in the compression direction is reduced. As a result of this slip deformation, each crystal rotates to a position where the (001) plane is parallel to the compression plane. That is, the crystal rotates so that the normal direction of the (001) plane of the crystal grains constituting the polycrystal coincides with the direction to which compression processing is applied.

「単軸圧縮加工」は、一軸の圧縮力を作用させる塑性加工法である。
「平面ひずみ圧縮加工」は、一軸の圧縮力を作用させる際、対象となる物体における圧縮力と直交する方向への変形のうち、一方向への変形を阻止し、残る一方向のみへの変形を許す圧縮加工法である。
この圧縮加工の温度は800℃以上から該結晶の融点の30℃下の温度までの温度範囲である。結晶の融点の30℃下の温度とは、この結晶の融点に近く、結晶が固体状態である温度を示す。なお、結晶の融点は、熱分析により測定する。
この圧縮加工の歪み速度は、圧縮速度を被圧縮物の高さで除したものをいい、1.0×10−5〜1.0×10−3−1、好ましくは2.0×10−5〜8.0×10−5−1である。歪み速度が1.0×10−5−1以下では、十分な歪みを与えるのに多大な時間がかかるだけでなく、主たる変形機構が結晶すべり変形から拡散クリープに変化し、結晶配向が十分整わない多結晶体となり、歪み速度が1.0×10−4−1以上では、すべり系の不足を緩和するための拡散の寄与が不足する。
“Uniaxial compression processing” is a plastic processing method in which a uniaxial compression force is applied.
“Plane strain compression processing” means that when uniaxial compressive force is applied, deformation in one direction out of deformations in the direction perpendicular to the compressive force in the target object is prevented, and deformation in only one direction remains. This is a compression processing method that allows
The temperature of this compression processing is a temperature range from 800 ° C. or more to a temperature 30 ° C. below the melting point of the crystal. The temperature 30 ° C. below the melting point of the crystal is close to the melting point of the crystal and indicates a temperature at which the crystal is in a solid state. The melting point of the crystal is measured by thermal analysis.
The strain rate of the compression processing is obtained by dividing the compression rate by the height of the object to be compressed, and is 1.0 × 10 −5 to 1.0 × 10 −3 s −1 , preferably 2.0 × 10. −5 to 8.0 × 10 −5 s −1 . When the strain rate is 1.0 × 10 −5 s −1 or less, not only does it take a long time to give sufficient strain, but the main deformation mechanism changes from crystal slip deformation to diffusion creep, and crystal orientation is sufficient. When the polycrystalline body is not ordered and the strain rate is 1.0 × 10 −4 s −1 or more, the contribution of diffusion for alleviating the shortage of the slip system is insufficient.

焼鈍は、結晶すべり変形の際に増殖した転位等の格子欠陥の除去のために行い、800℃以上から該結晶の融点の30℃下の温度までの温度範囲で加熱する。加工後に焼鈍を施すことにより、転位等の回復が生じ、電気抵抗をさらに低減させることができる。   Annealing is performed to remove lattice defects such as dislocations grown during crystal slip deformation, and heating is performed in a temperature range from 800 ° C. or higher to a temperature of 30 ° C. below the melting point of the crystal. By annealing after the processing, recovery such as dislocation occurs, and the electrical resistance can be further reduced.

以下、実施例にて本発明を例証するが本発明を限定することを意図するものではない。
以下の実施例でX線回折は、半自動ディフラクトメーター(マックサイエンス社製)を用いて、α=0度(板材面法線方向)〜75度の範囲で測定を行い、得られた回折強度より正極点図を得た。測定方法は、Schulz反射法であり、CuKα線、管電圧40kV、管電流30mAで行った。
また、組織写真は走査型電子顕微鏡(SEM)を用いて行った。未加工の焼結体の試料はダイアモンドカッターで薄く切り取ってからその表面を、加工済みの試料は試験片の圧縮面に対して垂直な面を観察した。
電気抵抗は、試料に電極を取り付けた後、銀ペーストで銅線を試料に接続し、四端子法で測定した。測定の手順は、作製した試料をデュアー瓶(OXFORD製)にセットし、油回転ポンプで真空を引き、その状態で液体窒素を媒体として約80Kから340Kまでの上昇時に、電流を10mA印加した時(加工材は100mA)の電圧値を1Kの温度間隔でGP−IB制御のもと測定した。温度は銅―コンスタンタン熱電対を用いて測定した。
The following examples illustrate the invention but are not intended to limit the invention.
In the following examples, X-ray diffraction was measured using a semi-automatic diffractometer (manufactured by Mac Science) in the range of α = 0 degrees (in the normal direction of the plate surface) to 75 degrees, and the obtained diffraction intensity A positive dot diagram was obtained. The measurement method was a Schulz reflection method, which was performed using CuKα rays, a tube voltage of 40 kV, and a tube current of 30 mA.
Moreover, the structure | tissue photograph was performed using the scanning electron microscope (SEM). The unsintered sintered body sample was thinly cut with a diamond cutter and the surface thereof was observed, and the processed sample was observed on a surface perpendicular to the compression surface of the test piece.
The electrical resistance was measured by a four-terminal method after attaching an electrode to the sample and then connecting a copper wire to the sample with a silver paste. The measurement procedure is as follows: When the prepared sample is set in a Dewar bottle (manufactured by OXFORD), a vacuum is drawn with an oil rotary pump, and in this state, liquid nitrogen is used as a medium, and when the current is increased from about 80K to 340K, a current of 10 mA is applied. The voltage value (working material is 100 mA) was measured at a temperature interval of 1K under GP-IB control. The temperature was measured using a copper-constantan thermocouple.

製造例1
Bi2O3(純度99.9%、和光純薬工業(株))、PbO2(純度97%、ナカライデスク(株))、Sr2O3(純度99.9%、添川理化学(株))、Y2O3(純度99.9%、和光純薬工業(株)) およびCo3O4(純度99.9%、添川理化学(株))、をモル比を45:30:51:15:40として総重量15g程度になるように秤量し、メノウ乳鉢を使用して、メタノールを用いて湿式混合を行った。混合時間は1時間30分であった。
次に、この混合物を、メノウ製のボールミルとミリング機(SPEX社製CertiPrep)を用いて60分間乾式混合を行った。
次に、試料をアルミナボートに入れて、マッフル炉で790℃で12時間の仮焼を行った。
仮焼の終了した試料は粒成長しているために、メノウ乳鉢を用いて乾燥粉砕することによって粉末を微細化させた。
得られた粉末を、直径約11mm、高さ約4mmの円柱に成形し、アルミナボート内に入れて、空気中でマッフル炉で840℃で24時間焼成した。
得られた結晶は、組成がBi1.5Pb0.5Sr1.7Y0.5Co2O9-δの不整合結晶構造を持つCo酸化物であり、約1〜10μm程度の結晶粒が集合した多結晶であった。そのX線回折パターンを図2に、結晶の断面写真(SEM)を図3に示す。この結晶の融点は930℃であった。
Production Example 1
Bi 2 O 3 (Purity 99.9%, Wako Pure Chemical Industries, Ltd.), PbO 2 (Purity 97%, Nakarai Desk Co., Ltd.), Sr 2 O 3 (Purity 99.9%, Soekawa Riken Co., Ltd.), Y 2 O 3 (purity 99.9%, Wako Pure Chemical Industries, Ltd.) and Co 3 O 4 (purity 99.9%, Soekawa Riken Co., Ltd.) with a molar ratio of 45: 30: 51: 15: 40 and a total weight of about 15g The mixture was weighed and wet-mixed with methanol using an agate mortar. The mixing time was 1 hour 30 minutes.
Next, this mixture was dry-mixed for 60 minutes using an agate ball mill and a milling machine (SPEX Corp. CertiPrep).
Next, the sample was placed in an alumina boat and calcined at 790 ° C. for 12 hours in a muffle furnace.
Since the sample after calcination had grown, the powder was refined by drying and crushing using an agate mortar.
The obtained powder was molded into a cylinder having a diameter of about 11 mm and a height of about 4 mm, placed in an alumina boat, and baked in air in a muffle furnace at 840 ° C. for 24 hours.
The obtained crystal is a Co oxide having a mismatched crystal structure with a composition of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ , and is a polycrystal in which crystal grains of about 1 to 10 μm are aggregated. It was. The X-ray diffraction pattern is shown in FIG. 2, and a cross-sectional photograph (SEM) of the crystal is shown in FIG. The melting point of this crystal was 930 ° C.

製造例1で作製した試料を、2tオートグラフ(島津製作所製)を使用して、円柱の軸方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が840℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(5.0×10-3mm/min、歪み速度2.0×10-5s-1に相当する。)で圧縮することにより、高温単軸圧縮加工を行った。結果を表1に示す。
得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図4及び図5に示す。回折パターンにおいて30度付近に飛びぬけて大きなピークが確認できたのでこのピークの正極点図をとり、Imaxを測定した。この正極点図から、(001)面が圧縮面に平行に配向し、(001)面の法線回りに様々な角度回転していることが分かる。
得られた試験片の円柱の軸に平行方向の断面写真(SEM)を図6に示す。この写真から圧縮方向(図の縦方向)に垂直な方向と平行な方向とで結晶粒の寸法が異なっており、圧縮方向に塑性変形が生じたことがわかる。
Using the 2t autograph (manufactured by Shimadzu Corporation), the sample produced in Production Example 1 was sandwiched between magnesia plates at right angles to the axial direction of the cylinder and heated in an infrared image furnace. While the temperature rose to 840 ° C., the temperature of the sample was measured using a thermocouple. Even after reaching the target temperature, the thermal expansion of the jig continued, so the temperature was maintained for about 70 minutes until it settled.
After maintaining the temperature, compress with a 2t autograph at a constant crosshead speed (corresponding to 5.0 × 10 −3 mm / min, strain rate of 2.0 × 10 −5 s −1 ) along the axial direction of the sample cylinder. Thus, high temperature uniaxial compression processing was performed. The results are shown in Table 1.
4 and 5 show the diffraction pattern of the plane perpendicular to the axis of the cylinder of the obtained test piece and its positive electrode dot diagram. In the diffraction pattern, a large peak was confirmed by jumping to around 30 degrees, and a positive point map of this peak was taken to measure Imax. From this positive pole figure, it can be seen that the (001) plane is oriented parallel to the compression plane and rotated by various angles around the normal of the (001) plane.
A cross-sectional photograph (SEM) in a direction parallel to the axis of the cylinder of the obtained test piece is shown in FIG. From this photograph, it can be seen that the dimensions of the crystal grains differ between the direction perpendicular to the compression direction (longitudinal direction in the figure) and the direction parallel to the direction, and plastic deformation occurred in the compression direction.

最終歪が0.47、0.9、1.27、1.87となるよう実施例1と同様の操作を行った。その密度を図7に示し、正極点図を図8に示し、抵抗率を図9に示す。
図7の密度変化から、歪みが0.9付近まで密度が単調に増大し、焼結体が緻密化していることがわかる。この段階までが従来技術で採用されているホットプレスの工程である。本技術では、加工条件を上記のように設定することにより、さらに圧縮を継続し、最大で真歪み1.87までの塑性加工を達成した。この時製品にはクラックなどは認められず、健全材であることが確認できた。
シュルツの反射法により定めた(001)極点図(図8)における極密度の最大値は、加工前には1.0であるが歪み量の増大とともに11.7まで増大し、高い配向が実現された。
電気抵抗は、図9に示す様に、真歪み1.87までの加工によって、歪み量(ε)の増大と共に単調に低下している。また、平面歪み圧縮で製造された素材は真歪み1.87までの加工材よりも低い比抵抗を示している。さらに、本方法で作成された素材の電気抵抗は、高温域でも低い値を維持している。
The same operation as in Example 1 was performed so that the final strains were 0.47, 0.9, 1.27, and 1.87. The density is shown in FIG. 7, the positive dot diagram is shown in FIG. 8, and the resistivity is shown in FIG.
From the density change in FIG. 7, it can be seen that the density increases monotonously until the strain is close to 0.9, and the sintered body is densified. Up to this stage is the hot pressing process employed in the prior art. In this technology, by setting the processing conditions as described above, the compression was further continued and plastic processing up to a maximum true strain of 1.87 was achieved. At this time, no cracks were observed in the product, and it was confirmed that the product was a healthy material.
The maximum value of the pole density in the (001) pole figure (FIG. 8) determined by the Schulz reflection method was 1.0 before processing, but increased to 11.7 as the amount of strain increased, and high orientation was realized.
As shown in FIG. 9, the electrical resistance monotonously decreases with increasing strain (ε) due to processing up to true strain 1.87. In addition, the material manufactured by plane strain compression shows a lower specific resistance than the processed material up to the true strain of 1.87. Furthermore, the electrical resistance of the material produced by this method maintains a low value even in a high temperature range.

実施例2で圧縮加工した試料(歪み1.87のもの)をマッフル炉により空気中840℃で24時間焼鈍処理を行った。その抵抗率を図9に示す。焼鈍により電気抵抗がさらに低減し、最高で二十分の一まで低下した。すなわち、本発明の配向制御技術によって高配向化を実現することにより、熱電特性の性能指数が20倍と飛躍的に向上した。 The sample compressed in Example 2 (with a strain of 1.87) was annealed in air at 840 ° C. for 24 hours in a muffle furnace. The resistivity is shown in FIG. The electrical resistance was further reduced by annealing, and was reduced to a maximum of 1/20. That is, by realizing high orientation by the orientation control technique of the present invention, the figure of merit of thermoelectric characteristics was dramatically improved by 20 times.

単軸圧縮で用いたマグネシアプレートを幅5mmの短冊状に切り取り、それを製造例1で作製した試料の円柱の軸方向から垂直にあてがって加圧することにより、高温平面ひずみ圧縮加工を行った。
実施例1と同様に、840℃にて2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(5.0×10-3mm/min、歪み速度2.0×10-5s-1に相当する。)で圧縮することにより、高温平面ひずみ圧縮加工を行った。結果を表2に示す。
A magnesia plate used for uniaxial compression was cut into a strip shape having a width of 5 mm, and was pressed perpendicularly from the axial direction of the cylinder of the sample produced in Production Example 1 to perform high-temperature plane strain compression.
As in Example 1, the crosshead speed is constant (5.0 × 10 −3 mm / min, the strain rate is 2.0 × 10 −5 s −1) along the axial direction of the cylinder of the sample at 840 ° C. and 2t autograph. )) To perform high-temperature plane strain compression processing. The results are shown in Table 2.

また、得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図10及び図11に示す。実施例1(高温単軸圧縮加工)の正極点図(図5)においては、(001)面が揃っているが、その方向は揃っていなかったが、本実施例(高温平面ひずみ圧縮加工)においては、正極点図から、(001)面が面法線に対して同心円状には分布しておらず、この面が圧縮面に平行に配向しているだけでなく、特定の方向に揃っていることを示しており、平面ひずみ圧縮によって面と方向を揃えることができたと考えられる。つまり単結晶に近い組織の方向性を持った材料ができたと考えられ、優れた熱電特性を持つと考えられる。   Moreover, the diffraction pattern of a surface perpendicular | vertical to the axis | shaft of the cylinder of the obtained test piece and its positive electrode dot diagram are shown in FIG.10 and FIG.11. In the positive pole figure (FIG. 5) of Example 1 (high-temperature uniaxial compression process), the (001) plane was aligned, but the direction was not aligned, but this example (high-temperature plane strain compression process). In the positive pole figure, the (001) plane is not concentrically distributed with respect to the surface normal, and this plane is not only oriented parallel to the compression plane but also aligned in a specific direction. It is considered that the plane and direction could be aligned by plane strain compression. In other words, it is considered that a material having a structure orientation close to that of a single crystal was produced, and it is considered that the material has excellent thermoelectric properties.

製造例2
CaCO3(和光純薬工業(株)製、純度99.9%)、Co3O4(レアメタリック株式会社製、純度99.9%)、SrCO3(和光純薬工業(株)製、純度99.9%)の原料粉末を[(Ca0.9Sr0.1)2 CoO3]0.62CoO2になるよう秤量し、湿式混合後920℃で12時間仮焼きした。仮焼き後粉砕して粉末化した後一辺が6mmの立方体形状にプレス成形し、920℃で24時間焼結した。さらに酸素雰囲気中700℃で12時間最終焼鈍を行った。この結晶の融点は1350〜1400℃であった。
Production Example 2
CaCO 3 (Wako Pure Chemical Industries, purity 99.9%), Co 3 O 4 (Rare Metallic, purity 99.9%), SrCO 3 (Wako Pure Chemical Industries, purity, purity) 99.9%) of raw material powder was weighed so as to be [(Ca 0.9 Sr 0.1 ) 2 CoO 3 ] 0.62 CoO 2, and calcined at 920 ° C. for 12 hours after wet mixing. After calcining and pulverization, the powder was press-molded into a 6 mm cube shape and sintered at 920 ° C. for 24 hours. Further, final annealing was performed at 700 ° C. for 12 hours in an oxygen atmosphere. The melting point of this crystal was 1350-1400 ° C.

製造例2で作製した試料を、2tオートグラフ(島津製作所製)を使用して、角柱の軸方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が880℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の角柱の軸方向に沿ってクロスヘッドスピード一定(2.0×10-2mm/min、歪み速度5.5×10-5s-1に相当する。)で真歪み−1.14まで圧縮することにより、高温単軸圧縮加工を行った。この試料について計測した(001)正極点図を図12に示す。投影面は圧縮面、平均極密度を1としている。図の中心、すなわち圧縮面法線位置に最大極密度が12を越える高い極密度の集積が確認される。また、同心円状に極密度の集積が広がっている。この結果は実施例2と同様である。
Using the 2t autograph (manufactured by Shimadzu Corporation), the sample produced in Production Example 2 was sandwiched between magnesia plates at right angles to the axial direction of the prism and heated in an infrared image furnace. While the temperature rose to 880 ° C., the temperature of the sample was measured using a thermocouple. Even after reaching the target temperature, the thermal expansion of the jig continued, so the temperature was maintained for about 70 minutes until it settled.
After holding the temperature, true strain with a crosshead speed constant (corresponding to 2.0 × 10 −2 mm / min, strain rate 5.5 × 10 −5 s −1 ) along the axial direction of the prism of the sample in 2t autograph − By compressing to 1.14, high-temperature uniaxial compression was performed. FIG. 12 shows a (001) positive electrode dot diagram measured for this sample. The projection surface is a compression surface, and the average pole density is 1. Accumulation of high pole density exceeding the maximum pole density of 12 is confirmed at the center of the figure, that is, the normal position of the compression surface. Also, the accumulation of extreme density is spreading concentrically. This result is the same as in Example 2.

製造例3
[Ca2CoO3]0.62CoO2粉末(セイミケミカル株式会社製)を用いて直径11mm高さ5mmの円柱状母材をプレス成形で作成した後、920℃で24時間焼結した。
Production Example 3
[Ca 2 CoO 3 ] 0.62 CoO 2 powder (manufactured by Seimi Chemical Co., Ltd.) was used to form a cylindrical base material having a diameter of 11 mm and a height of 5 mm by press molding, followed by sintering at 920 ° C. for 24 hours.

製造例3で作製した試料を、2tオートグラフ(島津製作所製)を使用して、円柱の軸方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が920℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので、収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(2.0×10-2mm/min、歪み速度6.7×10-5s-1に相当する。)で真歪み−1.01まで圧縮することにより、高温単軸圧縮加工を行った。この試料について計測した(001)正極点図を図13に示す。投影面は圧縮面、平均極密度を1としている。図の中心、すなわち圧縮面法線位置に最大極密度が17を越える高い極密度の集積が確認される。また、同心円状に極密度の集積が広がっている。この結果は実施例2及び5と同様で、電導面が圧縮面に平行に頻度高く配向していることを示している。
実施例6の電気抵抗を、試料に電極を取り付けた後、銀ペーストで銅線を試料に接続し、四端子法で測定した。その結果を図14と図15に示す。
図14は[Ca2CoO3]0.62CoO2の比抵抗の測定結果を、比較のため、図9に示したBi1.5Pb0.5Sr1.7Y0.5Co2O9-δの結果の中で比抵抗値が低い、-1.87加工材と平面歪み圧縮材の結果ともに示したものである。[Ca2CoO3]0.62CoO2については加熱時と冷却時の結果を示してある。配向が制御された[Ca2CoO3]0.62CoO2はBi1.5Pb0.5Sr1.7Y0.5Co2O9-δの数分の一となる、低い電気比抵抗値を1000Kまで示している。図15は[Ca2CoO3]0.62CoO2の結果を拡大して示したものである。電気比抵抗は最小で2mΩcm以下に達している。
Using the 2t autograph (manufactured by Shimadzu Corporation), the sample produced in Production Example 3 was sandwiched between magnesia plates at right angles to the axial direction of the cylinder and heated in an infrared image furnace. While the temperature rose to 920 ° C., the temperature of the sample was measured using a thermocouple. Even after reaching the target temperature, the jig continued to expand, so the temperature was held for about 70 minutes until it reached the target temperature.
After holding the temperature, the true strain at a constant crosshead speed (corresponding to 2.0 × 10 −2 mm / min, strain rate 6.7 × 10 −5 s −1 ) along the axial direction of the cylinder of the sample in the 2t autograph − By compressing to 1.01, high temperature uniaxial compression was performed. FIG. 13 shows the (001) positive electrode dot diagram measured for this sample. The projection surface is a compression surface, and the average pole density is 1. Accumulation of high pole density exceeding the maximum pole density of 17 is confirmed at the center of the figure, that is, at the normal position of the compression surface. Also, the accumulation of extreme density is spreading concentrically. This result is the same as in Examples 2 and 5, and shows that the conductive surface is frequently oriented parallel to the compression surface.
The electrical resistance of Example 6 was measured by a four-terminal method after attaching an electrode to the sample and then connecting a copper wire to the sample with a silver paste. The results are shown in FIGS.
FIG. 14 shows the measurement result of the specific resistance of [Ca 2 CoO 3 ] 0.62 CoO 2 and, for comparison, the specific resistance among the results of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ shown in FIG. Both the results for the low value, 1.87 processed material and flat strain compression material are shown. [Ca 2 CoO 3 ] 0.62 CoO 2 shows the results of heating and cooling. [Ca 2 CoO 3 ] 0.62 CoO 2 with controlled orientation shows a low electrical resistivity value up to 1000K, which is a fraction of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ . FIG. 15 is an enlarged view of the result of [Ca 2 CoO 3 ] 0.62 CoO 2 . The electrical resistivity reaches a minimum of 2 mΩcm.

いずれもミスフィット構造を持つ層状酸化物である実施例2(Bi-Sr-Co-O)及び実施例5と実施例6(Ca-Co-O)の結晶構造を図16に示す。
図17はX線回折により [Ca2CoO3]0.62CoO2の結晶構造を確かめた結果である。[(Ca0.9Sr0.1)2 CoO3]0.62CoO2は[Ca2CoO3]0.62CoO2のCaをSrで一部置換した材料であるので、結晶構造は[Ca2CoO3]0.62CoO2と同じである。実施例2ではCoO2層間に4層の絶縁体層、実施例5及び6ではCoO2層間に3層の絶縁体層が存在している違いはあるが、いずれについても本手法による結晶配向制御が可能である。
FIG. 16 shows the crystal structures of Example 2 (Bi—Sr—Co—O) and Examples 5 and 6 (Ca—Co—O), both of which are layered oxides having a misfit structure.
FIG. 17 shows the result of confirming the crystal structure of [Ca 2 CoO 3 ] 0.62 CoO 2 by X-ray diffraction. [(Ca 0.9 Sr 0.1) 2 CoO 3] 0.62 CoO 2 because the [Ca 2 CoO 3] 0.62 CoO 2 of Ca is partially substituted material with Sr, the crystal structure [Ca 2 CoO 3] 0.62 CoO 2 Is the same. In Example 2, there are 4 insulator layers between CoO 2 layers, and in Examples 5 and 6, there are 3 insulator layers between CoO 2 layers. Is possible.

Bi1.5Pb0.5Sr1.7Y0.5Co2O9-δの結晶構造を示す図である。図中、上下方向(結晶のc軸方向)を法線とする原子面が(001)面である。It is a diagram showing the crystal structure of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ. In the figure, the atomic plane whose normal is the vertical direction (the c-axis direction of the crystal) is the (001) plane. 製造例1で作成した多結晶の回折パターンを示す図である。6 is a diagram showing a diffraction pattern of a polycrystal prepared in Production Example 1. FIG. 製造例1で作成した多結晶の断面写真(SEM)である。2 is a cross-sectional photograph (SEM) of a polycrystal produced in Production Example 1. 実施例1で高温単軸圧縮加工を行った結晶の回折パターンを示す図である。It is a figure which shows the diffraction pattern of the crystal | crystallization which performed the high temperature uniaxial compression process in Example 1. FIG. 実施例1で高温単軸圧縮加工を行った結晶の正極点図を示す図である。同心円状の曲線は外側から順に平均極密度が1,2,3,4,5,6倍の極密度が存在する位置を示す。It is a figure which shows the positive electrode dot diagram of the crystal | crystallization which performed the high temperature uniaxial compression process in Example 1. FIG. Concentric curves indicate the positions where the average pole density is 1, 2, 3, 4, 5, 6 times as many as the order from the outside. 実施例1で高温単軸圧縮加工を行った結晶の断面写真(SEM)である。図の縦方向が圧縮加工方向である。2 is a cross-sectional photograph (SEM) of a crystal subjected to high-temperature uniaxial compression processing in Example 1. FIG. The vertical direction in the figure is the compression processing direction. 実施例2で高温単軸圧縮加工を行った結晶の密度変化を示す図である。縦軸は密度(g/cm2)を示し、横軸は歪み量を示す。It is a figure which shows the density change of the crystal | crystallization which performed the high temperature uniaxial compression process in Example 2. FIG. The vertical axis represents density (g / cm 2 ), and the horizontal axis represents the amount of strain. 実施例2で高温単軸圧縮加工を行った結晶の正極点図を示す図である。It is a figure which shows the positive electrode dot figure of the crystal which performed the high temperature uniaxial compression process in Example 2. FIG. 実施例2で高温単軸圧縮加工を行った結晶の抵抗率を示す図である。It is a figure which shows the resistivity of the crystal | crystallization which performed the high temperature uniaxial compression process in Example 2. FIG. 実施例4で高温平面ひずみ圧縮加工を行った結晶の回折パターンを示す図である。It is a figure which shows the diffraction pattern of the crystal | crystallization which performed the high temperature plane strain compression process in Example 4. FIG. 実施例4で高温平面ひずみ圧縮加工を行った結晶の正極点図を示す図である。同心円状の曲線は外側から順に平均極密度が1,2,3,4,5,6,7倍の極密度が存在する位置を示す。It is a figure which shows the positive electrode dot figure of the crystal which performed the high temperature plane strain compression process in Example 4. FIG. The concentric curve indicates the position where the average pole density is 1,2,3,4,5,6,7 times in order from the outside. 実施例5で高温単軸圧縮加工を行った結晶の正極点図を示す図である。It is a figure which shows the positive electrode dot figure of the crystal which performed the high temperature uniaxial compression process in Example 5. FIG. 実施例6で高温単軸圧縮加工を行った結晶の正極点図を示す図である。It is a figure which shows the positive electrode dot figure of the crystal which performed the high temperature uniaxial compression process in Example 6. FIG. 実施例6で作成した結晶の電気抵抗測定結果を示す図である。It is a figure which shows the electrical resistance measurement result of the crystal created in Example 6. FIG. 実施例6で作成した結晶の電気抵抗測定結果を示す図である。It is a figure which shows the electrical resistance measurement result of the crystal created in Example 6. FIG. 実施例2で作成したBi1.5Pb0.5Sr1.7Y0.5Co2O9-δ(右図)と実施例5で作成した[(Ca0.9Sr0.1)2 CoO3]0.62CoO2と実施例6で作成した[Ca2CoO3]0.62CoO2(左図)の結晶構造を示す図である。Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ (right figure) prepared in Example 2 and [(Ca 0.9 Sr 0.1 ) 2 CoO 3 ] 0.62 CoO 2 prepared in Example 5 and Example 6 is a diagram showing the crystal structure of the created [Ca 2 CoO 3] 0.62 CoO 2 ( left). 製造例3で作成した多結晶のX線回折パターンを示す図である。It is a figure which shows the X-ray-diffraction pattern of the polycrystal produced by the manufacture example 3. FIG.

【0004】
[0009]
この不整合結晶構造を持つCo酸化物は、[CaCoO3−x1−yCoO2−z(式中、x=0.2〜0、y=0.4〜0、z=0.2〜0)、[(Ca1−xSrCoO3−y1−zCoO2−w(式中、x=0.2〜0、y=0.2〜0、z=0.4〜0、w=0.2〜0)又は[(Ca(Co、Cu)2−x4−y0.63−zCoO2−w(式中、x=−0.1〜0.1、y=0.3〜0、z=−0.1〜0.1、w=0.2〜0)であるが、本発明の実施上、[(Ca1−xSrCoO3−y1−zCoO2−w(式中、x=0.2〜0、y=0.2〜0、z=0.4〜0、w=0.2〜0)及び[CaCoO3−x1−yCoO2−z(式中、x=0.2〜0、y=0.4〜0、z=0.2〜0)が重要である。
[0010]
「多結晶」は、サイズは約1〜10μm程度の上記の多数の単結晶が様々な方向をもって集合したものである。この多結晶はこの組成の粉末を集合させて燒結することにより得ることができる。
[0011]
「圧縮加工」は、対象となる物体に圧縮力を加えて形状を変える塑性加工法である。
本願発明の″不整合結晶構造を持つCo酸化物の多結晶体″に圧縮加工を施すと、このCo酸化物多結晶体を構成し様々な方向を向いた結晶粒の(001)面上ですべり変形が生じる。すべり変形によって、多結晶体の圧縮方向の長さが減少する塑性変形が生ずる。このすべり変形の結果、各結晶の(001)面が圧縮面に平行になる位置まで回転する。すなわち、多結晶体を構成する結晶粒の(001)面の法線方向が、圧縮加工を加えた方向と一致するように結晶が回転する。
[0012]
「単軸圧縮加工」は、一軸の圧縮力を作用させる塑性加工法である。
「平面ひずみ圧縮加工」は、一軸の圧縮力を作用させる際、対象となる物体における圧縮力と直交する方向への変形のうち、一方向への変形を阻止し、残る一方向のみへの変形を許す圧縮加工法である。
この圧縮加工の温度は800℃以上から該結晶の融点の30℃下の温度までの温度範囲である。結晶の融点の30℃下の温度とは、この結晶の融点に近く、結晶が固体状態である温度を示す。なお、結晶の融点は、熱分析により測定する。
この圧縮加工の歪み速度は、圧縮速度を被圧縮物の高さで除したものをいい、1.0×10−5〜1.0×10−3−1、好ましくは2.0×10−5〜8.0×10−5−1である。歪み
[0004]
[0009]
The Co oxide having this inconsistent crystal structure is [Ca 2 CoO 3-x ] 1-y CoO 2-z (wherein x = 0.2 to 0, y = 0.4 to 0, z = 0). .2~0), [(Ca 1- x Sr x) 2 CoO 3-y] 1-z CoO 2-w ( where, x = 0.2~0, y = 0.2~0 , z = 0.4~0, w = 0.2~0) or [(Ca 2 (Co, Cu ) 2-x O 4-y] 0.63-z CoO 2-w ( where, x = -0. 1 to 0.1, y = 0.3 to 0, z = −0.1 to 0.1, w = 0.2 to 0). However, in the practice of the present invention, [(Ca 1−x Sr x ) 2 CoO 3-y ] 1-z CoO 2-w (wherein x = 0.2-0, y = 0.2-0, z = 0.4-0, w = 0.2-0) ) and [Ca 2 CoO 3-x] 1-y CoO 2-z ( wherein, x = 0.2 0, y = 0.4~0, z = 0.2~0) is important.
[0010]
“Polycrystalline” is a collection of the above-mentioned single crystals of about 1 to 10 μm in various directions. This polycrystal can be obtained by assembling and sintering powders of this composition.
[0011]
“Compression processing” is a plastic processing method in which a shape is changed by applying a compression force to a target object.
When the “polyoxide of Co oxide having a mismatch crystal structure” of the present invention is subjected to compression processing, the Co oxide polycrystal is formed on the (001) plane of crystal grains facing various directions. Slip deformation occurs. Slip deformation causes plastic deformation in which the length of the polycrystalline body in the compression direction is reduced. As a result of this slip deformation, each crystal rotates to a position where the (001) plane is parallel to the compression plane. That is, the crystal rotates so that the normal direction of the (001) plane of the crystal grains constituting the polycrystal coincides with the direction to which compression processing is applied.
[0012]
“Uniaxial compression processing” is a plastic processing method in which a uniaxial compression force is applied.
“Plane strain compression processing” means that when uniaxial compressive force is applied, deformation in one direction out of deformations in the direction perpendicular to the compressive force in the target object is prevented, and deformation in only one direction remains. This is a compression processing method that allows
The temperature of this compression processing is a temperature range from 800 ° C. or more to a temperature 30 ° C. below the melting point of the crystal. The temperature 30 ° C. below the melting point of the crystal is close to the melting point of the crystal and indicates a temperature at which the crystal is in a solid state. The melting point of the crystal is measured by thermal analysis.
The strain rate of the compression processing is obtained by dividing the compression rate by the height of the object to be compressed, and is 1.0 × 10 −5 to 1.0 × 10 −3 s −1 , preferably 2.0 × 10. −5 to 8.0 × 10 −5 s −1 . distortion

【0006】
は1時間30分であった。
次に、この混合物を、メノウ製のボールミルとミリング機(SPEX社製CertiPrep)を用いて60分間乾式混合を行った。
次に、試料をアルミナボートに入れて、マッフル炉で790℃で12時間の仮焼を行った。
仮焼の終了した試料は粒成長しているために、メノウ乳鉢を用いて乾燥粉砕することによって粉末を微細化させた。
得られた粉末を、直径約11mm、高さ約4mmの円柱に成形し、アルミナボート内に入れて、空気中でマッフル炉で840℃で24時間焼成した。
得られた結晶は、組成がBi1.6Pb0.5Sr1.70.5Co9−δの不整合結晶構造を持つCo酸化物であり、約1〜10μm程度の結晶粒が集合した多結晶であった。そのX線回折パターンを図2に、結晶の断面写真(SEM)を図3に示す。この結晶の融点は930℃であった。
[0016]
参考例1
製造例1で作製した試料を、2tオートグラフ(島津製作所製)を使用して、円柱の軸方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が840℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(5.0×10−3mm/min、歪み速度2.0×10−5−1に相当する。)で圧縮することにより、高温単軸圧縮加工を行った。結果を表1に示す。
[表1]
得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図4及び図
[0006]
Was 1 hour 30 minutes.
Next, this mixture was dry-mixed for 60 minutes using an agate ball mill and a milling machine (SPEX Corporation CertiPrep).
Next, the sample was put in an alumina boat and calcined at 790 ° C. for 12 hours in a muffle furnace.
Since the sample after calcination had grown, the powder was refined by drying and crushing using an agate mortar.
The obtained powder was formed into a cylinder having a diameter of about 11 mm and a height of about 4 mm, placed in an alumina boat, and baked in an air muffle furnace at 840 ° C. for 24 hours.
The obtained crystal is a Co oxide having a mismatch crystal structure with a composition of Bi 1.6 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ , and has a crystal of about 1 to 10 μm. It was a polycrystal with aggregated grains. The X-ray diffraction pattern is shown in FIG. 2, and a cross-sectional photograph (SEM) of the crystal is shown in FIG. The melting point of this crystal was 930 ° C.
[0016]
Reference example 1
Using the 2t autograph (manufactured by Shimadzu Corporation), the sample produced in Production Example 1 was sandwiched between magnesia plates at right angles to the axial direction of the cylinder and heated in an infrared image furnace. While the temperature rose to 840 ° C., the temperature of the sample was measured using a thermocouple. Even when the target temperature was reached, the jig continued to thermally expand, so the temperature was maintained for about 70 minutes until it settled.
After maintaining the temperature, the crosshead speed is constant along the axial direction of the sample cylinder in the 2t autograph (corresponding to 5.0 × 10 −3 mm / min, strain rate of 2.0 × 10 −5 s −1 ). High-temperature uniaxial compression processing was performed by compressing with. The results are shown in Table 1.
[Table 1]
The diffraction pattern of the plane perpendicular to the cylinder axis of the obtained test piece and its positive electrode dot diagram are shown in FIGS.

【0007】
5に示す。回折パターンにおいて30度付近に飛びぬけて大きなピークが確認できたのでこのピークの正極点図をとり、Imaxを測定した。この正極点図から、(001)面が圧縮面に平行に配向し、(001)面の法線回りに様々な角度回転していることが分かる。
得られた試験片の円柱の軸に平行方向の断面写真(SEM)を図6に示す。この写真から圧縮方向(図の縦方向)に垂直な方向と平行な方向とで結晶粒の寸法が異なっており、圧縮方向に塑性変形が生じたことがわかる。
[0017]
参考例2
最終歪が0.47、0.9、1.27、1.87となるよう参考例1と同様の操作を行った。その密度を図7に示し、正極点図を図8に示し、抵抗率を図9に示す。
図7の密度変化から、歪みが0.9付近まで密度が単調に増大し、焼結体が緻密化していることがわかる。この段階までが従来技術で採用されているホットプレスの工程である。本技術では、加工条件を上記のように設定することにより、さらに圧縮を継続し、最大で真歪み1.87までの塑性加工を達成した。この時製品にはクラックなどは認められず、健全材であることが確認できた。
シュルツの反射法により定めた(001)極点図(図8)における極密度の最大値は、加工前には1.0であるが歪み量の増大とともに11.7まで増大し、高い配向が実現された。
電気抵抗は、図9に示す様に、真歪み1.87までの加工によって、歪み量(ε)の増大と共に単調に低下している。また、平面歪み圧縮で製造された素材は真歪み1.87までの加工材よりも低い比抵抗を示している。さらに、本方法で作成された素材の電気抵抗は、高温域でも低い値を維持している。
[0018]
参考例3
参考例2で圧縮加工した試料(歪み1.87のもの)をマッフル炉により空気中840℃で24時間焼鈍処理を行った。その抵抗率を図9に示す。焼鈍により電気抵抗がさらに低減し、最高で二十分の一まで低下した。すなわち、本発明の配向制御技術によって高配向化を実現することにより、熱電特性の性能指数が20倍と飛躍的に向上した。
[0019]
参考例4
単軸圧縮で用いたマグネシアプレートを幅5mmの短冊状に切り取り、それを製造例
[0007]
As shown in FIG. Since a large peak was confirmed by jumping to around 30 degrees in the diffraction pattern, a positive pole figure of this peak was taken and Imax was measured. From this positive pole figure, it can be seen that the (001) plane is oriented parallel to the compression plane and rotated by various angles around the normal line of the (001) plane.
A cross-sectional photograph (SEM) in a direction parallel to the axis of the cylinder of the obtained test piece is shown in FIG. From this photograph, it can be seen that the dimensions of the crystal grains differ between the direction perpendicular to the compression direction (longitudinal direction in the figure) and the direction parallel to the direction, and plastic deformation occurred in the compression direction.
[0017]
Reference example 2
The same operation as in Reference Example 1 was performed so that the final strains were 0.47, 0.9, 1.27, and 1.87. The density is shown in FIG. 7, the positive dot diagram is shown in FIG. 8, and the resistivity is shown in FIG.
From the density change in FIG. 7, it can be seen that the density increases monotonously until the strain is around 0.9, and the sintered body is densified. Up to this stage is the hot pressing process employed in the prior art. In the present technology, by setting the processing conditions as described above, the compression is further continued, and plastic processing up to a maximum true strain of 1.87 is achieved. At this time, no cracks were observed in the product, and it was confirmed that the product was a healthy material.
The maximum value of the pole density in the (001) pole figure (Fig. 8) determined by the Schulz reflection method is 1.0 before processing, but increases to 11.7 as the amount of strain increases, realizing high orientation. It was done.
As shown in FIG. 9, the electrical resistance monotonously decreases as the strain amount (ε) increases due to processing up to the true strain of 1.87. Moreover, the raw material manufactured by plane strain compression shows a specific resistance lower than the processed material up to true strain 1.87. Furthermore, the electrical resistance of the material produced by this method maintains a low value even in a high temperature range.
[0018]
Reference example 3
The sample compressed in Reference Example 2 (with a strain of 1.87) was annealed in air at 840 ° C. for 24 hours in a muffle furnace. The resistivity is shown in FIG. The electrical resistance was further reduced by annealing, and was reduced to a maximum of 1/20. That is, by realizing high orientation by the orientation control technique of the present invention, the figure of merit of thermoelectric characteristics was dramatically improved by 20 times.
[0019]
Reference example 4
A magnesia plate used for uniaxial compression was cut into a strip of 5mm width, which was then manufactured.

【0008】
1で作製した試料の円柱の軸方向から垂直にあてがって加圧することにより、高温平面ひずみ圧縮加工を行った。
参考例1と同様に、840℃にて2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(5.0×10−3mm/min、歪み速度2.0×10−5−1に相当する。)で圧縮することにより、高温平面ひずみ圧縮加工を行った。結果を表2に示す。
[表2]
[0020]
また、得られた試験片の円柱の軸に垂直面の回折パターンとその正極点図を図10及び図11に示す。参考例1(高温単軸圧縮加工)の正極点図(図5)においては、(001)面が揃っているが、その方向は揃っていなかったが、本実施例(高温平面ひずみ圧縮加工)においては、正極点図から、(001)面が面法線に対して同心円状には分布しておらず、この面が圧縮面に平行に配向しているだけでなく、特定の方向に揃っていることを示しており、平面ひずみ圧縮によって面と方向を揃えることができたと考えられる。つまり単結晶に近い組織の方向性を持った材料ができたと考えられ、優れた熱電特性を持つと考えられる。
[0021]
製造例2
CaCO(和光純薬工業(株)製、純度99.9%)、Co(レアメタリック株式会社製、純度99.9%)、SrCO(和光純薬工業(株)製、純度99.9%)の原料粉末を[(Ca0.9Sr0.1CoO0.62CoOになるよう秤量し、湿式混合後920℃で12時間仮焼きした。仮焼き後粉砕して粉末化した後一辺が6mmの立方体形状にプレス成形し、920℃で24時間焼結した。さらに酸素雰囲気中700℃で12時間最終焼鈍を行った。この結晶の融点は1350〜1400℃であった。
[0022]
実施例1
製造例2で作製した試料を、2tオートグラフ(島津製作所製)を使用して、角柱の軸
[0008]
A high-temperature plane strain compression process was performed by applying a pressure perpendicularly from the axial direction of the cylinder of the sample produced in 1.
Similar to Reference Example 1, the crosshead speed is constant (5.0 × 10 −3 mm / min, strain rate is 2.0 × 10 −5 s) along the axial direction of the sample cylinder in a 2t autograph at 840 ° C. It corresponds to −1 ) to perform high-temperature plane strain compression processing. The results are shown in Table 2.
[Table 2]
[0020]
Moreover, the diffraction pattern of a surface perpendicular | vertical to the axis | shaft of the cylinder of the obtained test piece and its positive electrode dot diagram are shown in FIG.10 and FIG.11. In the positive electrode diagram (FIG. 5) of Reference Example 1 (high temperature uniaxial compression processing), the (001) plane is aligned, but the direction is not aligned, but this example (high temperature plane strain compression processing). In the positive electrode diagram, the (001) plane is not distributed concentrically with respect to the surface normal, and this plane is not only oriented parallel to the compression plane but also aligned in a specific direction. It is considered that the plane and direction could be aligned by plane strain compression. In other words, it is considered that a material having a structure orientation close to that of a single crystal was produced, and it is considered that the material has excellent thermoelectric properties.
[0021]
Production Example 2
CaCO 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%), Co 3 O 4 (manufactured by Rare Metallic Co., Ltd., purity 99.9%), SrCO 3 (manufactured by Wako Pure Chemical Industries, Ltd., purity) 99.9%) raw material powder was weighed so as to be [(Ca 0.9 Sr 0.1 ) 2 CoO 3 ] 0.62 CoO 2, and calcined at 920 ° C. for 12 hours after wet mixing. After calcining and pulverization, the powder was press-molded into a cubic shape with a side of 6 mm and sintered at 920 ° C. for 24 hours. Further, final annealing was performed at 700 ° C. for 12 hours in an oxygen atmosphere. The melting point of this crystal was 1350-1400 ° C.
[0022]
Example 1
Using the 2t autograph (manufactured by Shimadzu Corp.)

【0009】
方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が880℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の角柱の軸方向に沿ってクロスヘッドスピード一定(2.0×10−2mm/min、歪み速度5.5×10−5−1に相当する。)で真歪み−1.14まで圧縮することにより、高温単軸圧縮加工を行った。この試料について計測した(001)正極点図を図12に示す。投影面は圧縮面、平均極密度を1としている。図の中心、すなわち圧縮面法線位置に最大極密度が12を越える高い極密度の集積が確認される。また、同心円状に極密度の集積が広がっている。この結果は参考例2と同様である。
[0023]
製造例3
[CaCoO0.62CoO粉末(セイミケミカル株式会社製)を用いて直径11mm高さ5mmの円柱状母材をプレス成形で作成した後、920℃で24時間焼結した。
[0024]
実施例2
製造例3で作製した試料を、2tオートグラフ(島津製作所製)を使用して、円柱の軸方向に直角にマグネシアプレートで挟んで、赤外線イメージ炉で加熱した。温度が920℃まで上昇する間、熱電対を用いて試料の温度を測定した。目標温度に達しても治具の熱膨張が続くので、収まるまで約70分間、温度を保持した。
温度保持後、2tオートグラフで試料の円柱の軸方向に沿ってクロスヘッドスピード一定(2.0×10−2mm/min、歪み速度6.7×10−5−1に相当する。)で真歪み−1.01まで圧縮することにより、高温単軸圧縮加工を行った。この試料について計測した(001)正極点図を図13に示す。投影面は圧縮面、平均極密度を1としている。図の中心、すなわち圧縮面法線位置に最大極密度が17を越える高い極密度の集積が確認される。また、同心円状に極密度の集積が広がっている。この結果は参考例2及び実施例1と同様で、電導面が圧縮面に平行に頻度高く配向していることを示している。
実施例2の電気抵抗を、試料に電極を取り付けた後、銀ペーストで銅線を試料に接続し、四端子法で測定した。その結果を図14と図15に示す。
図14は[CaCoO0.62CoOの比抵抗の測定結果を、比較のため、図9に示したBi1.5
[0009]
It was sandwiched between magnesia plates at right angles to the direction and heated in an infrared image furnace. While the temperature rose to 880 ° C., the temperature of the sample was measured using a thermocouple. Even when the target temperature was reached, the jig continued to thermally expand, so the temperature was maintained for about 70 minutes until it settled.
After maintaining the temperature, the crosshead speed is constant along the axial direction of the prism of the sample in the 2t autograph (corresponding to 2.0 × 10 −2 mm / min, strain rate 5.5 × 10 −5 s −1 ). The high temperature uniaxial compression process was performed by compressing to true strain -1.14. FIG. 12 shows a (001) positive electrode dot diagram measured for this sample. The projection plane is a compression plane and the average pole density is 1. Accumulation of high pole density exceeding the maximum pole density of 12 is confirmed at the center of the figure, that is, the normal position of the compression surface. Also, the accumulation of extreme density is spreading concentrically. This result is the same as in Reference Example 2.
[0023]
Production Example 3
After the [Ca 2 CoO 3] 0.62 CoO 2 powder (Seimi Chemical Co., Ltd.) a cylindrical preform having a diameter of 11mm 5mm height was used to create a press molding, for 24 hours and sintered at 920 ° C..
[0024]
Example 2
Using the 2t autograph (manufactured by Shimadzu Corporation), the sample produced in Production Example 3 was sandwiched between magnesia plates at right angles to the axial direction of the cylinder and heated in an infrared image furnace. While the temperature rose to 920 ° C., the temperature of the sample was measured using a thermocouple. Since the jig continued to expand even when the target temperature was reached, the temperature was maintained for about 70 minutes until it reached the target temperature.
After maintaining the temperature, the crosshead speed is constant along the axial direction of the sample cylinder in the 2t autograph (corresponding to 2.0 × 10 −2 mm / min, strain rate of 6.7 × 10 −5 s −1 ). Then, high temperature uniaxial compression processing was performed by compressing to true strain -1.01. FIG. 13 shows the (001) positive electrode dot diagram measured for this sample. The projection plane is a compression plane and the average pole density is 1. Accumulation of high pole density exceeding the maximum pole density of 17 is confirmed at the center of the figure, that is, at the position of the compression surface normal. Also, the accumulation of extreme density is spreading concentrically. This result is the same as in Reference Example 2 and Example 1, and shows that the conductive surface is frequently oriented parallel to the compression surface.
The electrical resistance of Example 2 was measured by a four-terminal method after attaching an electrode to the sample and connecting a copper wire to the sample with a silver paste. The results are shown in FIGS.
FIG. 14 shows the results of measurement of the specific resistance of [Ca 2 CoO 3 ] 0.62 CoO 2 for comparison with the Bi 1.5 P shown in FIG.

【0010】
0.6Sr1.70.5Co9−δの結果の中で比抵抗値が低い、−1.87加工材と平面歪み圧縮材の結果ともに示したものである。[CaCoO0.62CoOについては加熱時と冷却時の結果を示してある。配向が制御された[CaCoO0.62CoOはBi1.5Pb0.5Sr1.70.5Co9−δの数分の一となる、低い電気比抵抗値を1000Kまで示している。図15は[CaCoO0.62CoOの結果を拡大して示したものである。電気比抵抗は最小で2mΩcm以下に達している。
[0025]
いずれもミスフィット構造を持つ層状酸化物である参考例2(Bi−Sr−Co−O)及び実施例1と実施例2(Ca−Co−O)の結晶構造を図16に示す。
図17はX線回折により[CaCoO0.62CoOの結晶構造を確かめた結果である。[(Ca0.9Sr0.1CoO0.62CoOは[CaCoO0.62CoOのCaをSrで一部置換した材料であるので、結晶構造は[CaCoO0.62CoOと同じである。参考例2ではCoO層間に4層の絶縁体層、実施例1及び実施例2ではCoO層間に3層の絶縁体層が存在している違いはあるが、いずれについても本手法による結晶配向制御が可能である。
図面の簡単な説明
[0026]
[図1]Bi1.5Pb0.5Sr1.70.5Co9−δの結晶構造を示す図である。図中、上下方向(結晶のc軸方向)を法線とする原子面が(001)面である。
[図2]製造例1で作成した多結晶の回折パターンを示す図である。
[図3]製造例1で作成した多結晶の断面写真(SEM)である。
[図4]参考例1で高温単軸圧縮加工を行った結晶の回折パターンを示す図である。
[図5]参考例1で高温単軸圧縮加工を行った結晶の正極点図を示す図である。同心円状の曲線は外側から順に平均極密度が1,2,3,4,5,6倍の極密度が存在する位置を示す。
[図6]参考例1で高温単軸圧縮加工を行った結晶の断面写真(SEM)である。図の縦方向が圧縮加工方向である。
[図7]参考例2で高温単軸圧縮加工を行った結晶の密度変化を示す図である。縦軸は密度(g/cm)を示し、横軸は歪み量を示す。
[図8]参考例2で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図9]参考例2で高温単軸圧縮加工を行った結晶の抵抗率を示す図である。
[0010]
Among the results of b 0.6 Sr 1.7 Y 0.5 Co 2 O 9-δ , the specific resistance value is low, and both the results of the -1.87 processed material and the plane strain compression material are shown. [Ca 2 CoO 3 ] 0.62 CoO 2 shows the results of heating and cooling. Oriented controlled [Ca 2 CoO 3 ] 0.62 CoO 2 is a fraction of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ , low electrical ratio Resistance values are shown up to 1000K. FIG. 15 is an enlarged view of the result of [Ca 2 CoO 3 ] 0.62 CoO 2 . The electrical resistivity reaches a minimum of 2 mΩcm or less.
[0025]
FIG. 16 shows the crystal structures of Reference Example 2 (Bi—Sr—Co—O) and Examples 1 and 2 (Ca—Co—O), both of which are layered oxides having a misfit structure.
FIG. 17 shows the result of confirming the crystal structure of [Ca 2 CoO 3 ] 0.62 CoO 2 by X-ray diffraction. [(Ca 0.9 Sr 0.1 ) 2 CoO 3 ] 0.62 Since CoO 2 is a material in which Ca in [Ca 2 CoO 3 ] 0.62 CoO 2 is partially substituted with Sr, the crystal structure is [ Ca 2 CoO 3 ] 0.62 Same as CoO 2 . In Reference Example 2, there are four insulator layers between the CoO 2 layers, and in Examples 1 and 2, there are differences in the three insulator layers between the CoO 2 layers. Orientation control is possible.
BRIEF DESCRIPTION OF THE DRAWINGS [0026]
FIG. 1 is a view showing a crystal structure of Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ . In the figure, the atomic plane whose normal is the vertical direction (the c-axis direction of the crystal) is the (001) plane.
FIG. 2 is a diagram showing a diffraction pattern of a polycrystal prepared in Production Example 1.
FIG. 3 is a cross-sectional photograph (SEM) of a polycrystal prepared in Production Example 1.
FIG. 4 is a diagram showing a diffraction pattern of a crystal subjected to high-temperature uniaxial compression processing in Reference Example 1.
FIG. 5 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Reference Example 1. Concentric circular curves indicate positions where the average pole density is 1, 2, 3, 4, 5, 6 times as many as the pole density in order from the outside.
FIG. 6 is a cross-sectional photograph (SEM) of a crystal subjected to high-temperature uniaxial compression processing in Reference Example 1. The vertical direction in the figure is the compression processing direction.
[FIG. 7] A diagram showing changes in density of crystals subjected to high-temperature uniaxial compression processing in Reference Example 2. The vertical axis represents density (g / cm 2 ), and the horizontal axis represents the amount of strain.
FIG. 8 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Reference Example 2.
FIG. 9 is a view showing the resistivity of a crystal subjected to high-temperature uniaxial compression processing in Reference Example 2.

【0011】
[図10]参考例4で高温平面ひずみ圧縮加工を行った結晶の回折パターンを示す図である。
[図11]参考例4で高温平面ひずみ圧縮加工を行った結晶の正極点図を示す図である。同心円状の曲線は外側から順に平均極密度が1,2,3,4,5,6,7倍の極密度が存在する位置を示す。
[図12]実施例1で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図13]実施例2で高温単軸圧縮加工を行った結晶の正極点図を示す図である。
[図14]実施例2で作成した結晶の電気抵抗測定結果を示す図である。
[図15]実施例2で作成した結晶の電気抵抗測定結果を示す図である。
[図16]参考例2で作成したBi1.5Pb0.5Sr1.70.5Co9−δ(右図)と実施例1で作成した[(Ca0.9Sr0.1CoO0.62CoOと実施例2で作成した[CaCoO0.62CoO(左図)の結晶構造を示す図である。
[図17]製造例3で作成した多結晶のX線回折パターンを示す図である。
[0011]
FIG. 10 is a diagram showing a diffraction pattern of a crystal subjected to high-temperature plane strain compression processing in Reference Example 4.
FIG. 11 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature plane strain compression processing in Reference Example 4. Concentric curves indicate positions where the average pole density is 1, 2, 3, 4, 5, 6, 7 times as many as the order from the outside.
FIG. 12 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 1.
FIG. 13 is a diagram showing a positive electrode dot diagram of a crystal subjected to high-temperature uniaxial compression processing in Example 2.
FIG. 14 is a diagram showing the results of measuring electrical resistance of the crystal prepared in Example 2.
FIG. 15 is a graph showing the results of measuring electrical resistance of the crystal prepared in Example 2.
[FIG. 16] Bi 1.5 Pb 0.5 Sr 1.7 Y 0.5 Co 2 O 9-δ (right figure) prepared in Reference Example 2 and (Ca 0.9 Sr produced in Example 1) 0.1 ) 2 CoO 3 ] 0.62 CoO 2 and [Ca 2 CoO 3 ] 0.62 CoO 2 (left figure) prepared in Example 2 are crystal diagrams.
FIG. 17 is a view showing an X-ray diffraction pattern of a polycrystal prepared in Production Example 3.

Claims (9)

不整合結晶構造を持つCo酸化物の多結晶体であって、該多結晶の(001)面内でのすべり変形によって一定方向に結晶が配向したCo酸化物多結晶体。 A Co oxide polycrystal having an inconsistent crystal structure, wherein the crystal is oriented in a certain direction by slip deformation in the (001) plane of the polycrystal. 前記すべり変形が、前記多結晶を800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて1.0×10−5〜1.0×10−3−1の歪み速度で圧縮加工を行うことにより生じた請求項1に記載の不整合結晶構造を持つCo酸化物。The slip deformation has a strain rate of 1.0 × 10 −5 to 1.0 × 10 −3 s −1 in a temperature range from 800 ° C. or higher to a temperature of 30 ° C. below the melting point of the crystal. The Co oxide having a mismatched crystal structure according to claim 1, which is generated by performing compression processing in step 1. 前記圧縮加工が単軸圧縮加工である請求項1又は2に記載の不整合結晶構造を持つCo酸化物。 The Co oxide having a mismatch crystal structure according to claim 1 or 2, wherein the compression processing is uniaxial compression processing. 前記圧縮加工が平面ひずみ圧縮加工である請求項1又は2に記載の不整合結晶構造を持つCo酸化物。 The Co oxide having a mismatch crystal structure according to claim 1, wherein the compression processing is plane strain compression processing. 更に、800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて12〜50時間の焼鈍を加えられた請求項1〜4のいずれか一項に記載の不整合結晶構造を持つCo酸化物。 Furthermore, the mismatch crystal structure as described in any one of Claims 1-4 which added annealing for 12 to 50 hours in the temperature range from 800 degreeC or more to the temperature below 30 degreeC of melting | fusing point of this crystal | crystallization. Co oxide. 前記不整合結晶構造を持つCo酸化物が、Bi2−xPbSr3−yCo9−δ(式中、x=0.4〜0.8、y=0.4〜0.8、δ=0.2〜0.6)、[CaCoO3-x]1-yCoO2-z(式中、x=0.2〜0、y=0.4〜0、z=0.2〜0)、[(Ca1-xSr xCoO3-y]1-zCoO2-w(式中、x=0.2〜0、y=0.2〜0、z=0.4〜0、w=0.2〜0)、[(Ca(Co、Cu)2−x4−y]0.63-zCoO2-w(式中、x=-0.1〜0.1、y=0.3〜0、z=-0.1〜0.1、w=0.2〜0)又は[Bi1.74-xSr2-y4-z]0.25-wCoO2-v(式中、x=-0.05〜0.05、y=-0.05〜0.05、z=0.2〜0、w=0.05〜0、V=0.2〜0)である請求項1〜5のいずれか一項に記載の不整合結晶構造を持つCo酸化物。The Co oxide having the mismatch crystal structure is Bi 2-x Pb x Sr 3-y Y y Co 2 O 9-δ (where x = 0.4 to 0.8, y = 0.4 to 0.8, δ = 0.2 to 0.6), [Ca 2 CoO 3−x ] 1−y CoO 2−z (where, x = 0.2 to 0, y = 0.4 to 0, z = 0.2 to 0), [(Ca 1−x Sr x ) 2 CoO 3−y ] 1−z CoO 2−w (where, x = 0.2 to 0, y = 0.2 to 0, z = 0.4 to 0, w = 0.2 ˜0), [(Ca 2 (Co, Cu) 2−x O 4−y ] 0.63−z CoO 2−w , where x = −0.1 to 0.1, y = 0.3 to 0, z = − 0.1~0.1, w = 0.2~0) or [Bi 1.74-x Sr 2- y O 4-z] 0.25-w CoO 2-v ( wherein, x = -0.05~0.05, y = - Co-oxide having a mismatch crystal structure according to any one of claims 1 to 5, wherein 0.05 to 0.05, z = 0.2 to 0, w = 0.05 to 0, V = 0.2 to 0). 請求項1〜6のいずれか一項に記載の不整合結晶構造を持つCo酸化物から成る熱電変換材料。 The thermoelectric conversion material which consists of Co oxide which has a mismatch crystal structure as described in any one of Claims 1-6. 不整合結晶構造を持つCo酸化物から成る多結晶を800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて1.0×10−5〜1.0×10−3−1の歪み速度で圧縮加工を行うことから成る(001)面内のすべり変形が生じた不整合結晶構造を持つCo酸化物の製法。A polycrystal composed of a Co oxide having a mismatch crystal structure is 1.0 × 10 −5 to 1.0 × 10 −3 s in a temperature range from 800 ° C. or higher to a temperature 30 ° C. below the melting point of the crystal. A process for producing a Co oxide having a mismatch crystal structure in which slip deformation in the (001) plane occurs, which is performed by compressing at a strain rate of -1 . 更に、800℃以上から該結晶の融点の30℃下の温度までの温度範囲にて12〜50時間の焼鈍を加えることから成る請求項8に記載の製法。 The method according to claim 8, further comprising annealing for 12 to 50 hours in a temperature range from 800 ° C or higher to a temperature of 30 ° C below the melting point of the crystal.
JP2007524581A 2005-07-07 2006-07-04 Co-oxide polycrystal with controlled orientation Pending JPWO2007007587A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005198764 2005-07-07
JP2005198764 2005-07-07
PCT/JP2006/313288 WO2007007587A1 (en) 2005-07-07 2006-07-04 ORIENTATION CONTROLLED Co OXIDE POLYCRYSTAL

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012254066A Division JP5656961B2 (en) 2005-07-07 2012-11-20 Method for producing orientation-controlled Co oxide polycrystal

Publications (1)

Publication Number Publication Date
JPWO2007007587A1 true JPWO2007007587A1 (en) 2009-01-29

Family

ID=37636983

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007524581A Pending JPWO2007007587A1 (en) 2005-07-07 2006-07-04 Co-oxide polycrystal with controlled orientation
JP2012254066A Expired - Fee Related JP5656961B2 (en) 2005-07-07 2012-11-20 Method for producing orientation-controlled Co oxide polycrystal

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012254066A Expired - Fee Related JP5656961B2 (en) 2005-07-07 2012-11-20 Method for producing orientation-controlled Co oxide polycrystal

Country Status (2)

Country Link
JP (2) JPWO2007007587A1 (en)
WO (1) WO2007007587A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9371240B2 (en) 2011-07-01 2016-06-21 Alzchem Ag Ammonia gas generator for producing ammonia in order to reduce nitrogen oxides in exhaust gases

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3218329B2 (en) * 1999-12-06 2001-10-15 経済産業省産業技術総合研究所長 Hot working method of mullite based ceramic substrate using kaolin clay
JP4013245B2 (en) * 2001-04-26 2007-11-28 株式会社豊田中央研究所 CRYSTAL-ORIENTED CERAMIC AND PROCESS FOR PRODUCING THE SAME, PLATE POWDER FOR PRODUCTION OF CRYSTAL-ORIENTED CERAMIC, AND THERMOELECTRIC CONV
JP4168628B2 (en) * 2001-12-13 2008-10-22 株式会社豊田中央研究所 Thermoelectric conversion material and method of using the same
JP4139884B2 (en) * 2002-03-25 2008-08-27 独立行政法人産業技術総合研究所 Method for producing metal oxide sintered body
DE602004027152D1 (en) * 2003-10-08 2010-06-24 Nat Inst Of Advanced Ind Scien ITS CONVERTING MATERIALS

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN6012031534; S. Hori et al.: 'Thermoelectric performance of magnetically c-axis aligned Ca-based cobaltites' Jpn. J. Appl. Phys. Vol. 42, 200311, pp. 7018-7022, The Japan Society of Applied Physics *
JPN6012031536; E. Guilmeau et al.: 'Synthesis and thermoelectric properties of Bi2.5Ca2.5Co2Ox layered cobaltites' J. Mater. Res. Vol. 20, 200504, pp. 1002-1008, Material Research Society *
JPN6012031538; 福富洋志: '酸化物熱電変換材料Bi1.5Pb0.5Sr1.7Y0.5Co2O9-deltaの集合組織制御による特性改善' 材料集合組織研究会資料 Vol. 4, 2004, pp. 17-18, 材料集合組織研究会 *
JPN6012050586; Y. Miyazaki et al.: 'Preparation and low-temperature properties of the composite crystal [Ca2(Co0.65Cu0.35)2O4]0.624CoO2' Jpn. J. Appl. Phys. Vol. 41, 20020715, pp. L849-851, The Japan Society of Applied Physics *
JPN7012003938; I. Matsubara et al.: 'Cation substituted (Ca2CoO3)xCoO2 films and their thermoelectric properties' Appl. Phys. Lett. Vol. 80, No. 2, 20020624, pp. 4729-4731, American Institute of Physics *
JPN7012003939; 寺田隆宏洋 他: 'パルスレーザー蒸着法による[Ca2CoO3]x[CoO2]薄膜の作成及びその特性' J. Ceram. Soc. Jpn. Vol. 110, No. 6, 20020601, pp. 560-563, 公益社団法人日本セラミックス協会 *

Also Published As

Publication number Publication date
WO2007007587A1 (en) 2007-01-18
JP5656961B2 (en) 2015-01-21
JP2013063906A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
Kim et al. Thermoelectric properties of La3+ and Ce3+ co-doped CaMnO3 prepared by tape casting
JP2008124417A (en) Thermoelectric conversion material, and its manufacturing method
JP4808099B2 (en) Method for producing thermoelectric material comprising calcium-cobalt layered oxide single crystal
Prevel et al. Thermoelectric properties of sintered and textured Nd-substituted Ca3Co4O9 ceramics
INAGUMA et al. Lithium ion conductivity in a perovskite lanthanum lithium titanate single crystal
JP5656961B2 (en) Method for producing orientation-controlled Co oxide polycrystal
JP6619180B2 (en) Layered bismuth chalcogenide-based thermoelectric conversion material and method for producing the same
JP4592209B2 (en) Method for producing crystal-oriented bulk ZnO-based sintered material and thermoelectric conversion device produced thereby
JP2009004542A (en) Thermoelectric material and manufacturing method thereof
JP4876721B2 (en) Thermoelectric conversion material and method for producing the same
JP2004087537A (en) P type thermoelectric converting material and its manufacturing method
JP2008124404A (en) Thermoelectric material and manufacturing method of thermoelectric material
JP3089301B1 (en) Thermoelectric conversion material and method for producing composite oxide sintered body
JP2004363576A (en) Thermoelectric material
JP2004134454A (en) Thermoelectric conversion material and its manufacturing method
CN114133215A (en) A-site high-entropy perovskite ReMnO3Thermoelectric ceramic and preparation method thereof
CN109659426B (en) Thermal-function ceramic material with superlattice structure and preparation method and application thereof
JP4844043B2 (en) Thermoelectric conversion material and method for producing the same
Tunkasiri Properties of PZT ceramics prepared from aqueous solutions
CN110723970B (en) High-temperature electronic ceramic material with high temperature stability and preparation method thereof
JP2010228927A (en) Cobalt-manganese compound oxide
Diez et al. High thermoelectric performances in Co-oxides processed by a laser floating zone technique
CN116768626B (en) PbNb (PbNb) material 2 O 6 Base piezoelectric ceramic material and preparation method thereof
JP2006315932A (en) Method of manufacturing conductive polycrystalline substance
CN113683409B (en) Tetragonal phase A and B position co-substituted lead-free piezoelectric textured ceramic with excellent temperature stability and preparation method and application thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090617

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121001

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130311