JPWO2007004588A1 - Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell - Google Patents

Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell Download PDF

Info

Publication number
JPWO2007004588A1
JPWO2007004588A1 JP2007524041A JP2007524041A JPWO2007004588A1 JP WO2007004588 A1 JPWO2007004588 A1 JP WO2007004588A1 JP 2007524041 A JP2007524041 A JP 2007524041A JP 2007524041 A JP2007524041 A JP 2007524041A JP WO2007004588 A1 JPWO2007004588 A1 JP WO2007004588A1
Authority
JP
Japan
Prior art keywords
reinforcing material
proton conductive
conductive membrane
proton
inorganic particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007524041A
Other languages
Japanese (ja)
Other versions
JP5164569B2 (en
Inventor
麻田 篤志
篤志 麻田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2007524041A priority Critical patent/JP5164569B2/en
Publication of JPWO2007004588A1 publication Critical patent/JPWO2007004588A1/en
Application granted granted Critical
Publication of JP5164569B2 publication Critical patent/JP5164569B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/122Ionic conductors
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/77Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof
    • D06M11/79Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with silicon or compounds thereof with silicon dioxide, silicic acids or their salts
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/08Processes in which the treating agent is applied in powder or granular form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electrochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Fuel Cell (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)
  • Conductive Materials (AREA)

Abstract

本発明のプロトン伝導性膜用補強材(1)は、ガラス繊維を含む不織布(11)と、不織布(11)に担持された無機粒子(12)と、を含む。補強材が占める体積に対する、補強材が占める体積からガラス繊維の体積を除いた体積の百分率を、見なし空隙率とする場合、無機粒子の少なくとも一部が、前記見なし空隙率が90体積%となるように補強材を変形させた時の補強材の厚み以上の粒径を有する。このような粒径を有する無機粒子の含有率は、例えば2〜10質量%である。The proton conductive membrane reinforcing material (1) of the present invention includes a nonwoven fabric (11) containing glass fibers and inorganic particles (12) supported on the nonwoven fabric (11). When the percentage of the volume excluding the volume of the glass fiber from the volume occupied by the reinforcing material with respect to the volume occupied by the reinforcing material is regarded as the assumed porosity, at least a part of the inorganic particles has the deemed porosity of 90% by volume. Thus, it has a particle size larger than the thickness of the reinforcing material when the reinforcing material is deformed. The content rate of the inorganic particle which has such a particle size is 2-10 mass%, for example.

Description

本発明は、燃料電池の電解質膜として用いられるプロトン伝導性膜を補強する補強材に関し、さらに、この補強材によって補強されたプロトン伝導性膜、並びにそれを用いた燃料電池に関する。   The present invention relates to a reinforcing material for reinforcing a proton conductive membrane used as an electrolyte membrane of a fuel cell, and further relates to a proton conductive membrane reinforced by this reinforcing material, and a fuel cell using the same.

近年、燃料電池は、発電効率が高くかつ環境負荷が小さいため、環境にやさしい新エネルギー源として注目されている。燃料電池は、一般に電解質の種類によりいくつかのタイプに分類される。なかでも、固体高分子型燃料電池(PEFC)は、高出力かつ小型軽量化が容易であり、さらに量産効果による低コスト化も期待できることから、小規模オンサイト型,自動車用,携帯用などの燃料電池として、次世代の主力とされている。   In recent years, fuel cells are attracting attention as environmentally friendly new energy sources because of their high power generation efficiency and low environmental impact. Fuel cells are generally classified into several types according to the type of electrolyte. Above all, the polymer electrolyte fuel cell (PEFC) is easy to make high output, small size and light weight, and can be expected to reduce the cost by mass production effect. As a fuel cell, it is considered as the next generation mainstay.

現在、PEFC用のプロトン伝導性膜として主に使用されているものは、パーフルオロアルキレンを主骨格とし、一部にパーフルオロビニルエーテル側鎖の末端にスルホン酸基やカルボン酸基などのイオン交換基を有するフッ素系膜であり、例えば、Nafion(登録商標)膜(Du Pont社製)、Dow膜(Dow Chemical社製)、Aciplex(登録商標)膜(旭化成工業社製)、Flemion(登録商標)膜(旭硝子社製)などが知られている。   At present, what is mainly used as a proton conductive membrane for PEFC is perfluoroalkylene as a main skeleton, and a part of the perfluorovinyl ether side chain is an ion exchange group such as a sulfonic acid group or a carboxylic acid group. For example, Nafion (registered trademark) membrane (Du Pont), Dow membrane (Dow Chemical), Aciplex (registered trademark) membrane (Asahi Kasei Kogyo), Flemion (registered trademark) A membrane (manufactured by Asahi Glass Co., Ltd.) is known.

これらのフッ素系膜は、水を含有することで、ポリマー中のスルホン酸基がイオン化して親水性となり、イオン化した分子が集合してクラスタを形成し、これがプロトンの通り道となる。しかし、このプロトン伝導性膜は含水に伴って膨潤し、寸法の増大や機械強度の低下、長時間運転時のクリープ発生を招く。さらに、スタック組み立て時の取扱い性や、運転開始後の耐久性が低下してしまう。   When these fluorine-based membranes contain water, the sulfonic acid groups in the polymer are ionized to become hydrophilic, and the ionized molecules gather to form clusters, which serve as proton passages. However, this proton conductive membrane swells with moisture, causing an increase in dimensions, a decrease in mechanical strength, and creep during long-time operation. Furthermore, the handleability at the time of stack assembly and the durability after the start of operation are lowered.

これを解決するために、プロトン伝導性膜を各種補強材によって補強することが試みられている。例えば、特開平10−312815号公報では、無作為に配向した個々の繊維の多孔質支持体を形成し、支持体にイオン伝導性ポリマー材料を含浸させることにより、寸法安定性および取扱い性が向上することが開示されている。ここで、適当な繊維として、ガラス、ポリマー、セラミック、石英、シリカ、炭素および金属の繊維が例示され、好ましくはガラス、セラミックおよび石英の繊維であることが示されている。   In order to solve this, attempts have been made to reinforce the proton conductive membrane with various reinforcing materials. For example, in Japanese Patent Application Laid-Open No. 10-31815, dimensional stability and handling are improved by forming a porous support of randomly oriented individual fibers and impregnating the support with an ion conductive polymer material. Is disclosed. Here, examples of suitable fibers include fibers of glass, polymer, ceramic, quartz, silica, carbon, and metal, and it is shown that fibers of glass, ceramic, and quartz are preferable.

本出願人も、特開2004−047450号公報にて、表面を多孔質化させた表面層の上にシリカ層を被覆したガラス繊維の布であって、0.2〜20μmの平均繊維径を有するガラス繊維で形成された布からなる補強材にて、プロトン伝導性膜を補強することを開示している。   The present applicant also discloses a glass fiber cloth in which a silica layer is coated on a surface layer whose surface has been made porous in JP 2004-047450 A, and has an average fiber diameter of 0.2 to 20 μm. It discloses that a proton conductive membrane is reinforced with a reinforcing material made of a cloth formed of glass fibers.

補強材における改良としては、例えば、特開2003−253010号公報では、「金属−酸素結合を有する3次元架橋構造体(A)およびプロトン伝導性付与剤(B)を主成分とする組成物を、短繊維材料(C)と長繊維材料(D)で強化してなるプロトン伝導性膜」が開示されている。   As an improvement in the reinforcing material, for example, in Japanese Patent Application Laid-Open No. 2003-253010, “a composition mainly composed of a three-dimensional crosslinked structure (A) having a metal-oxygen bond and a proton conductivity-imparting agent (B)” is disclosed. , A proton conductive membrane reinforced with a short fiber material (C) and a long fiber material (D) is disclosed.

また、本出願人も、特開2004−319421号公報にて、平均繊維径の異なるガラス繊維を2種類以上組み合わせたガラス繊維不織布をプロトン伝導性膜の補強材として用いることにより、プロトン伝導性膜硬化時の収縮による変形を抑制しうることを開示している。   In addition, the applicant also disclosed in Japanese Patent Application Laid-Open No. 2004-319421 by using a glass fiber nonwoven fabric in which two or more kinds of glass fibers having different average fiber diameters are combined as a reinforcing material for the proton conductive film. It discloses that deformation due to shrinkage during curing can be suppressed.

一方、本出願人は、また、鉛蓄電地用セパレータとして、例えば、特開2003−308818号公報において、「主として微細ガラス繊維から構成され、無機粉体を含ませてなる密閉型鉛蓄電池用セパレータであって、前記無機粉体を1次粒子径が15nm以下の無機粉体としたことを特徴とする密閉型鉛蓄電池用セパレータ」を提案している。   On the other hand, the applicant of the present invention also discloses a separator for a lead-acid storage battery, for example, in Japanese Patent Application Laid-Open No. 2003-308818, “a separator for a sealed lead-acid battery mainly composed of fine glass fibers and containing inorganic powder. Then, a sealed lead-acid battery separator characterized in that the inorganic powder is an inorganic powder having a primary particle diameter of 15 nm or less has been proposed.

上述した特開平10−312815号公報や特開2004−047450号公報のように、ガラス繊維不織布にてプロトン伝導性膜を補強する場合を考える。この場合、プロトン伝導性材料をガラス繊維不織布に単に含浸したのみでは、不織布のフィルター効果によって当該材料の浸透が阻害され、膜中に微小間隙が発生することがある。このようにして発生した微小間隙は、プロトン伝導性を持たないため、膜としてのプロトン伝導性を低下させることがある。   Consider a case where the proton conductive membrane is reinforced with a glass fiber nonwoven fabric as described in JP-A-10-31815 and JP-A-2004-047450. In this case, if the glass fiber nonwoven fabric is simply impregnated with the proton conductive material, the filter effect of the nonwoven fabric may impede the permeation of the material, and a minute gap may be generated in the membrane. The minute gaps generated in this way do not have proton conductivity, and may reduce proton conductivity as a membrane.

このような微小間隙を消滅させると共に、プロトン伝導性向上のために膜の厚みを低減させ、さらに膜の厚みの均一性や平坦性を向上させるために、プロトン伝導性膜の形成工程において、ロールまたはプレス板を用いたホットプレスが行われることが多い。このホットプレスにおいて、微小間隙を消滅させるためには、可能な限り高い圧力で、しかもプロトン伝導性膜が溶融しない範囲内の高い温度で、実施することが好ましい。   In order to eliminate such minute gaps, reduce the thickness of the membrane to improve proton conductivity, and further improve the uniformity and flatness of the thickness of the membrane, in the process of forming the proton conductive membrane, Alternatively, hot pressing using a press plate is often performed. In this hot pressing, in order to eliminate the minute gaps, it is preferable to carry out at a pressure as high as possible and at a high temperature within a range where the proton conductive membrane does not melt.

しかし、ガラス繊維などの無機素材を補強材として用いている場合、高い圧力でホットプレスすると、ガラス繊維同士が交差した部分に圧力が集中して、その部分のガラス繊維が折れてしまう。その結果、補強材としての厚みを維持できなくなって、プロトン伝導性材料を充填するための空隙が減少する。このような場合も、プロトン伝導性膜の伝導性は低下する。   However, when an inorganic material such as glass fiber is used as a reinforcing material, when hot pressing is performed at a high pressure, the pressure concentrates on a portion where the glass fibers intersect with each other, and the glass fiber at that portion is broken. As a result, the thickness as the reinforcing material cannot be maintained, and the gap for filling the proton conductive material is reduced. Even in such a case, the conductivity of the proton conductive membrane is lowered.

上述の特開2003−253010号公報では、プロトン伝導性材料を、3次元架橋構造体と繊維材料とで補強すると、耐熱耐久性、耐熱耐湿寸法安定性、耐膨潤性に優れるとしている。しかし、補強の目的は熱や湿度に対する寸法安定性などであり、また、短繊維材料と長繊維材料とを合わせて用いる理由は記載されていない。   In the above-mentioned Japanese Patent Application Laid-Open No. 2003-253010, when a proton conductive material is reinforced with a three-dimensional cross-linked structure and a fiber material, it is excellent in heat resistance, heat and moisture dimensional stability, and swelling resistance. However, the purpose of reinforcement is dimensional stability against heat and humidity, and the reason for using the short fiber material and the long fiber material together is not described.

本出願人が特開2004−319421号公報にて開示した技術では、平均繊維径の異なるガラス繊維を組み合わせることによって、プロトン伝導性膜硬化時の収縮による変形を抑制している。しかし、プロトン伝導性膜の製造時における耐圧縮性については、何も言及していない。   In the technique disclosed in Japanese Patent Application Laid-Open No. 2004-319421 by the present applicant, deformation due to shrinkage during proton conductive membrane curing is suppressed by combining glass fibers having different average fiber diameters. However, nothing is said about the compression resistance during the production of the proton conductive membrane.

一方、本出願人が特開2003−308818号公報にて開示した技術は、密閉型鉛蓄電池用セパレータであって、鉛蓄電池における耐短絡性能を向上させるために、一次粒子径が15nm以下の無機粉体を含ませたものである。   On the other hand, the technique disclosed by the present applicant in Japanese Patent Application Laid-Open No. 2003-308818 is a sealed lead-acid battery separator, and has an inorganic primary particle size of 15 nm or less in order to improve short-circuit resistance in the lead-acid battery. It contains powder.

以上のように、プロトン伝導性膜用の補強材であって、プロトン伝導性膜の製造におけるホットプレス工程で要求される高圧力かつ高温の条件下で、充分な空隙を維持できるものは、未だ存在しなかった。   As described above, there is still a reinforcing material for a proton conductive membrane that can maintain a sufficient gap under high pressure and high temperature conditions required in a hot press process in the production of a proton conductive membrane. Did not exist.

そこで、本発明は、高圧力かつ高温のホットプレス工程における圧縮を受けてもなお、充分な空隙を維持でき、プロトン伝導性膜の補強材として用いられた場合に高いプロトン電導性を維持できるプロトン伝導性膜用補強材を提供することにある。さらには、それを用いたプロトン伝導性膜および燃料電池を提供することにある。   Therefore, the present invention is capable of maintaining a sufficient gap even when subjected to compression in a hot press process at a high pressure and high temperature, and a proton that can maintain high proton conductivity when used as a reinforcing material for a proton conductive membrane. It is in providing the reinforcing material for conductive films. A further object is to provide a proton conductive membrane and a fuel cell using the same.

本発明のプロトン伝導性膜用補強材は、ガラス繊維を含む不織布と、前記不織布に担持された無機粒子と、を含むプロトン伝導性膜用の補強材であって、前記補強材が占める体積に対する、前記補強材が占める体積から前記ガラス繊維の体積を除いた体積の百分率を、見なし空隙率とする場合、前記無機粒子の少なくとも一部が、前記見なし空隙率が90体積%となるように前記補強材を変形させた時の厚み(以下、厚みTということがある。)以上の粒径を有する。この本発明のプロトン伝導性膜用補強材における前記無機粒子の含有率は、例えば2〜10質量%とできる。また、前記無機粒子の粒径は、厚みTの2倍(2T)以下であることが好ましい。前記無機粒子の少なくとも一部(厚みT以上の粒径を有する無機粒子)の粒径範囲は、例えば、15μm〜200μmの範囲である。   The reinforcing material for proton conductive membranes of the present invention is a reinforcing material for proton conductive membranes comprising a nonwoven fabric containing glass fibers and inorganic particles supported on the nonwoven fabric, with respect to the volume occupied by the reinforcing material. When the percentage of the volume excluding the volume of the glass fiber from the volume occupied by the reinforcing material is regarded as the assumed porosity, at least a part of the inorganic particles is set so that the assumed porosity is 90% by volume. It has a particle size equal to or greater than the thickness when the reinforcing material is deformed (hereinafter sometimes referred to as thickness T). The content rate of the said inorganic particle in the reinforcing material for proton conductive membranes of this invention can be 2-10 mass%, for example. Moreover, it is preferable that the particle size of the said inorganic particle is 2 times the thickness T (2T) or less. The particle size range of at least a part of the inorganic particles (inorganic particles having a particle size equal to or greater than the thickness T) is, for example, in the range of 15 μm to 200 μm.

なお、本発明において、見なし空隙率とは、前記補強材が占める体積に対する、前記補強材が占める体積から前記ガラス繊維の体積を除いた体積の百分率のことである。すなわち、見なし空隙率は、以下の式で求められる値である。
見なし空隙率(%)=(VR−VG)×100/VR
R:補強材の体積
G:ガラス繊維の体積
In the present invention, the assumed porosity is a percentage of a volume obtained by removing the volume of the glass fiber from the volume occupied by the reinforcing material with respect to the volume occupied by the reinforcing material. That is, the assumed porosity is a value obtained by the following formula.
Considered porosity (%) = (V R −V G ) × 100 / V R
V R : Volume of reinforcing material V G : Volume of glass fiber

また、本発明において、補強材が占める体積(補強材の体積)VRは、以下の式を用いて求めることができる。
R=t×A
A:補強材の面積
t:補強材に20kPaで加圧して、ダイヤルゲージで測定した補強材の厚み
In the present invention, the volume occupied by the reinforcing material (volume of the reinforcing material) V R can be obtained using the following equation.
V R = t × A
A: Area of the reinforcing material t: Thickness of the reinforcing material measured with a dial gauge after pressurizing the reinforcing material at 20 kPa

また、ガラス繊維の体積は、ガラス繊維の密度と質量とによって求めることができる。   Moreover, the volume of glass fiber can be calculated | required with the density and mass of glass fiber.

なお、見なし空隙率が90体積%となるように補強材を変形させた時の当該補強材の厚みとは、補強材を厚み方向に圧縮し、見なし空隙率が90体積%となったときの補強材の厚みを測定することによって求められる値である。また、補強材の厚み方向への圧縮は、補強材の面積を変化させずに(面積を固定した状態で)行われる。   The thickness of the reinforcing material when the reinforcing material is deformed so that the assumed porosity is 90% by volume is a value obtained when the reinforcing material is compressed in the thickness direction and the assumed porosity becomes 90% by volume. This value is obtained by measuring the thickness of the reinforcing material. Further, the compression of the reinforcing material in the thickness direction is performed without changing the area of the reinforcing material (in a state where the area is fixed).

また、無機粒子の粒径とは、無機粒子が概ね球形と見なせる場合は顕微鏡法による円相当径で表したもの、球形と見なせない場合はふるい分け法によって測定した試験用ふるいの目開きで表したもののことである。顕微鏡法はJIS Z 8901に、ふるい分け法はJIS Z 8815に記載された方法である。   In addition, the particle size of the inorganic particles is expressed by the equivalent circle diameter by a microscopic method when the inorganic particles can be considered to be almost spherical, and by the opening size of the test sieve measured by the sieving method when the inorganic particles cannot be considered spherical. It is what you did. The microscope method is described in JIS Z 8901, and the sieving method is described in JIS Z 8815.

本発明のプロトン伝導性膜用補強材は、上記のように決定される所定の粒径の無機粒子を含むことによって、プロトン伝導性膜を作製する際のホットプレス工程において、プロトン伝導性を低下させる原因となる微小間隙を消滅させることができると共に、プロトン伝導性材料を充填するための空隙を残存させることができる。さらに、本発明のプロトン伝導性膜用補強材は、高い強度を有するため、プロトン伝導性膜の機械的強度をさらに向上させることもできる。   The proton conductive membrane reinforcing material of the present invention includes inorganic particles having a predetermined particle diameter determined as described above, thereby reducing proton conductivity in a hot press process when producing a proton conductive membrane. In addition to eliminating the minute gaps that cause the gap, the gap for filling the proton conductive material can be left. Furthermore, since the reinforcing material for proton conductive membrane of the present invention has high strength, the mechanical strength of the proton conductive membrane can be further improved.

本発明のプロトン伝導性膜は、上記した本発明のプロトン伝導性膜用補強材と、前記プロトン伝導性膜用補強材に固着させたプロトン伝導性材料と、を含む。   The proton conductive membrane of the present invention includes the above-described reinforcing material for proton conductive membrane of the present invention and a proton conductive material fixed to the reinforcing material for proton conductive membrane.

また、別の観点から、本発明のプロトン伝導性膜は、ガラス繊維を含む不織布と、前記不織布に担持された無機粒子と、を含むプロトン伝導性膜用補強材と、前記プロトン伝導性膜用補強材に固着させたプロトン伝導性材料と、を含む。   From another point of view, the proton conductive membrane of the present invention is a proton conductive membrane reinforcing material including a nonwoven fabric containing glass fibers and inorganic particles supported on the nonwoven fabric, and the proton conductive membrane. And a proton conductive material fixed to the reinforcing material.

本発明のプロトン伝導性膜によれば、補強材を用いないプロトン伝導性膜と同等のプロトン伝導性を有しつつ、かつ、高い強度を実現できる。   According to the proton conductive membrane of the present invention, it is possible to realize high strength while having proton conductivity equivalent to that of a proton conductive membrane not using a reinforcing material.

本発明のプロトン伝導性膜の製造方法は、上記した本発明のプロトン伝導性膜用補強材にプロトン伝導性材料を含浸させる工程と、前記プロトン伝導性材料を含浸させた前記プロトン伝導性膜用補強材に対して、厚み方向に加圧する工程と、を含む。   The method for producing a proton conductive membrane of the present invention comprises a step of impregnating the above-described reinforcing material for a proton conductive membrane of the present invention with a proton conductive material, and the proton conductive membrane impregnated with the proton conductive material. And pressurizing the reinforcing material in the thickness direction.

本発明のプロトン伝導性膜の製造方法では、所定の粒径を有する無機粒子が所定の含有率で含まれているプロトン伝導性補強材を用いている。この補強材は、加圧工程において圧縮されても、プロトン伝導性材料の充填に必要な空隙を維持することができる。したがって、本発明の方法によれば、補強材を用いないプロトン伝導性膜と同等のプロトン伝導性を実現しつつ、かつ、高い強度を有するプロトン伝導性膜を製造できる。   In the method for producing a proton conductive membrane of the present invention, a proton conductive reinforcing material containing inorganic particles having a predetermined particle diameter at a predetermined content is used. Even when the reinforcing material is compressed in the pressurizing step, the reinforcing material can maintain a gap necessary for filling the proton conductive material. Therefore, according to the method of the present invention, it is possible to manufacture a proton conductive membrane having high strength while realizing proton conductivity equivalent to that of a proton conductive membrane not using a reinforcing material.

本発明の燃料電池は、上記した本発明のプロトン伝導性膜を用いている。本発明の燃料電池によれば、発電効率の高い燃料電池を提供できる。   The fuel cell of the present invention uses the proton conductive membrane of the present invention described above. According to the fuel cell of the present invention, a fuel cell with high power generation efficiency can be provided.

図1Aおよび図1Bは、本発明のプロトン伝導性補強材が厚み方向に圧縮された場合の様子を模式的に示す断面図である。1A and 1B are cross-sectional views schematically showing a state where the proton conductive reinforcing material of the present invention is compressed in the thickness direction. 図2Aおよび図2Bは、従来のプロトン伝導性補強材が厚み方向に圧縮された場合の様子を模式的に示す断面図である。2A and 2B are cross-sectional views schematically showing a state in which a conventional proton conductive reinforcing material is compressed in the thickness direction. 実施例1のプロトン伝導性補強材について、走査型電子顕微鏡を用いて観察した状態を示す図である。It is a figure which shows the state observed about the proton-conductive reinforcement material of Example 1 using the scanning electron microscope. 本発明のプロトン伝導性膜の一例を示す断面図である。It is sectional drawing which shows an example of the proton conductive film | membrane of this invention. 本発明の燃料電池の一例を示す分解斜視図である。It is a disassembled perspective view which shows an example of the fuel cell of this invention.

以下、本発明の実施の形態について、詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

まず、本発明のプロトン伝導性膜補強材の一実施の形態について説明する。   First, an embodiment of the proton conductive membrane reinforcing material of the present invention will be described.

本実施の形態のプロトン伝導性膜用補強材(以下、補強材という)は、ガラス繊維からなる不織布と、この不織布に担持された所定の粒径を有する無機粒子とを含んでいる。本実施の形態の補強材には、所定の粒径を有する無機粒子が2〜10質量%含まれている。不織布には、例えばCガラス組成のガラス繊維を主材料として用いた不織布を使用できる。ここで、主材料とは、50質量%以上、好ましくは70質量%以上含まれる材料のことである。   The proton conductive membrane reinforcing material of the present embodiment (hereinafter referred to as a reinforcing material) includes a nonwoven fabric made of glass fiber and inorganic particles having a predetermined particle size carried on the nonwoven fabric. The reinforcing material of the present embodiment contains 2 to 10% by mass of inorganic particles having a predetermined particle size. For the nonwoven fabric, for example, a nonwoven fabric using glass fibers having a C glass composition as a main material can be used. Here, the main material is a material contained in an amount of 50% by mass or more, preferably 70% by mass or more.

無機粒子における所定の粒径は、以下のようにして決定できる。   The predetermined particle size in the inorganic particles can be determined as follows.

補強材が占める体積から、不織布を形成しているガラス繊維の体積を除いた体積を求め、当該体積の補強材全体の体積に対する百分率を見なし空隙率と定義する。補強材に含まれる無機粒子の粒径は、この見なし空隙率が90体積%となるように補強材を変形させた時の補強材の厚み(Tμm)を用いて決定される。すなわち、補強材には、Tμm以上の粒径を有する無機粒子が含まれる。   The volume excluding the volume of the glass fiber forming the nonwoven fabric is determined from the volume occupied by the reinforcing material, and the percentage of the volume with respect to the entire volume of the reinforcing material is not defined and defined as the porosity. The particle size of the inorganic particles contained in the reinforcing material is determined by using the thickness (T μm) of the reinforcing material when the reinforcing material is deformed so that the assumed porosity is 90% by volume. That is, the reinforcing material includes inorganic particles having a particle size of T μm or more.

この見なし空隙率を用いた理由は、補強材に含まれる無機粒子の影響を排除するためである。なお、見なし空隙率は、後述する実体空隙率とは異なる。また、本実施の形態の補強材は、Tμm以上の粒径を有する無機粒子を所定の含有率で含んでいればよいため(ここでは2〜10質量%)、粒径がTμm未満である無機粒子がさらに含まれていてもよい。   The reason for using this deemed porosity is to eliminate the influence of inorganic particles contained in the reinforcing material. The assumed porosity is different from the actual porosity described later. Moreover, since the reinforcing material of this embodiment should just contain the inorganic particle which has a particle size of Tmicrometer or more with the predetermined content rate (here 2-10 mass%), the inorganic particle diameter is less than Tmicrometer. Particles may further be included.

一般的に用いられるプロトン伝導性膜や補強材の厚みなどを考慮すると、補強材に好適に用いられる無機粒子の粒径範囲は、例えば15μm〜200μmの範囲(さらに一例として、20μm〜75μmの範囲)とできる。   In consideration of the thickness of generally used proton conductive membranes and reinforcing materials, the particle size range of inorganic particles suitably used for the reinforcing material is, for example, in the range of 15 μm to 200 μm (as an example, in the range of 20 μm to 75 μm). ) And can.

無機粒子の形状は、圧縮を受けた場合に充分な空隙を維持できる形状であればよく、特に限定されない。なお、無機粒子が略球状であれば、圧縮を受けた際に応力の集中が極端でないため、好ましい。また、略球状で所定の粒径を有する無機粒子が用いられた補強材は、この補強材を用いてプロトン伝導膜を製造した際に目的とする厚みを容易に得ることができるので、好ましい。   The shape of the inorganic particles is not particularly limited as long as it is a shape that can maintain a sufficient gap when subjected to compression. In addition, it is preferable if the inorganic particles are substantially spherical, since stress concentration is not extreme when subjected to compression. Moreover, a reinforcing material using inorganic particles having a substantially spherical shape and a predetermined particle diameter is preferable because a desired thickness can be easily obtained when a proton conducting membrane is produced using the reinforcing material.

無機粒子の材質は、特には限定されず、例えば、シリカ、チタニア、アルミナ、ガラス、セラミックスなどが使用可能であるが、ここで用いられる無機粒子は高い耐酸性を有するものが好ましいこと、また、入手が容易かつ安価であることから、シリカを主成分とする粒子が好適に用いられる。したがって、このような粒子としては、例えば、シリカからなる粒子や、Cガラス組成を有するガラスからなる粒子が挙げられる。   The material of the inorganic particles is not particularly limited, and for example, silica, titania, alumina, glass, ceramics and the like can be used, but the inorganic particles used here preferably have high acid resistance, Since it is easily available and inexpensive, particles mainly composed of silica are preferably used. Accordingly, examples of such particles include particles made of silica and particles made of glass having a C glass composition.

また、無機粒子は緻密でかつ硬質なものがより好ましい。多孔性や軟質の粒子でも、充分な空隙を確保するという本発明の目的を達成することは可能ではある。しかし、ホットプレス工程の際に、無機粒子に印加される圧力がその耐え得る限界を超えた場合には、無機粒子は破壊あるいは変形され、その役割を充分に果たし得なくなってしまうからである。   The inorganic particles are more preferably dense and hard. Even with porous or soft particles, it is possible to achieve the object of the present invention to ensure sufficient voids. However, if the pressure applied to the inorganic particles exceeds the allowable limit during the hot pressing process, the inorganic particles are destroyed or deformed and cannot fully fulfill their roles.

また、Tμm以上の粒径を有する無機粒子が所定量含まれていない場合は、空隙を確保する能力が低下してしまうことがある。一方、粒径が大きすぎる無機粒子が多く含まれている場合、例えば粒径が2Tμmを超える無機粒子の含有率が高い場合は、ホットプレスで補強材を所定の厚みまで圧縮してプロトン伝導性膜を作製することが困難となる場合がある。その結果、プロトン伝導性膜の内部に上述した微小間隙が残存し、プロトン伝導性が低下することがある。したがって、補強材に含まれる無機粒子の粒径は、2Tμm以下であることが好ましい。なお、粒径が2Tμmを超える無機粒子が含まれている場合、その無機粒子の含有率は5質量%以下が好ましく、3質量%以下がより好ましい。   In addition, when a predetermined amount of inorganic particles having a particle diameter of T μm or more is not included, the ability to secure voids may be reduced. On the other hand, when many inorganic particles having a particle size that is too large are contained, for example, when the content of inorganic particles having a particle size exceeding 2 Tμm is high, the reinforcing material is compressed to a predetermined thickness by hot pressing, and proton conductivity It may be difficult to produce a film. As a result, the above-mentioned minute gap remains inside the proton conductive membrane, and proton conductivity may be lowered. Therefore, the particle size of the inorganic particles contained in the reinforcing material is preferably 2 Tm or less. In addition, when the inorganic particle over 2 Tmicrometer is contained, the content rate of the inorganic particle is 5 mass% or less, and 3 mass% or less is more preferable.

また、無機粒子の粒径が大きすぎると、補強材に局所的な凸部が生じる。このような凸部を有する補強材を用いてプロトン伝導性膜を作製し、さらに燃料電池を構成すると、プロトン伝導性膜に隣接する集電体を局所的に圧迫して、ダメージを与えてしまうことがある。したがって、無機粒子における粒径の上限としては、2Tμmが好ましく、1.5Tμmがさらに好ましい。   Moreover, when the particle size of the inorganic particles is too large, local protrusions are generated in the reinforcing material. When a proton conductive membrane is produced using a reinforcing material having such a convex portion and a fuel cell is further formed, the current collector adjacent to the proton conductive membrane is locally pressed and damaged. Sometimes. Accordingly, the upper limit of the particle size of the inorganic particles is preferably 2 Tμm, and more preferably 1.5 Tμm.

無機粒子の含有率が2質量%未満となった場合は、補強材として空隙を確保する能力が低下すると共に、局所的に凸となる部分が生じる。無機粒子の含有率が10質量%を超えた場合は、相対的に不織布の骨格を形成するガラス繊維の割合が減少し、不織布としての機械的強度が低下する。このため、補強材にプロトン伝導性材料を含浸させる工程において、補強材が破損しやすくなり、好ましくない。したがって、上述したように、本実施の形態の補強材において、粒径がTμm以上の無機粒子の含有率は2〜10質量%が好ましく、例えば3〜8質量%とすることがより好ましい。   When the content of the inorganic particles is less than 2% by mass, the ability to secure voids as a reinforcing material is reduced, and a locally convex portion is generated. When the content rate of an inorganic particle exceeds 10 mass%, the ratio of the glass fiber which forms the frame | skeleton of a nonwoven fabric reduces relatively, and the mechanical strength as a nonwoven fabric falls. For this reason, in the step of impregnating the reinforcing material with the proton conductive material, the reinforcing material is easily damaged, which is not preferable. Therefore, as described above, in the reinforcing material of the present embodiment, the content of inorganic particles having a particle size of T μm or more is preferably 2 to 10% by mass, and more preferably 3 to 8% by mass.

無機粒子として使用可能であるシリカ粒子は、一般に分級されて市販されている。本実施の形態の補強材では、所定の粒度分布を有するものであれば、市販品を無機粒子としてそのまま使用することもできる。しかし、ホットプレス工程における圧力に効率よく対抗するためには、さらに分級して所定の粒径付近にシャープな粒度分布を有する粒子とするとよい。特に、粒径の小さな粒子を除去することが好ましい。   Silica particles that can be used as inorganic particles are generally classified and marketed. In the reinforcing material of the present embodiment, a commercially available product can be used as it is as inorganic particles as long as it has a predetermined particle size distribution. However, in order to efficiently counteract the pressure in the hot pressing step, it is preferable to further classify the particles to have a sharp particle size distribution near a predetermined particle size. In particular, it is preferable to remove small particles.

図1Aおよび図1Bは、本実施の形態の補強材の原理を説明するための図であり、本実施の形態の補強材が圧縮される様子を模式的示した断面図である。図2Aおよび図2Bは、従来の補強材が圧縮される様子を模式的に示した断面図である。図1Aには、所定の粒径(Tμm以上)を有する無機粒子12が不織布11に担持された補強材1が示されている。図2Aには、無機粒子を含まず、不織布11のみで構成された従来の補強材100が示されている。図1Bおよび図2Bには、それぞれの補強材1,100が、上下に配置されたプレス板2によって、厚み方向(図中、矢印で示す方向)に加圧されている様子が示されている。   1A and 1B are diagrams for explaining the principle of the reinforcing material of the present embodiment, and are sectional views schematically showing how the reinforcing material of the present embodiment is compressed. 2A and 2B are cross-sectional views schematically showing how a conventional reinforcing material is compressed. FIG. 1A shows a reinforcing material 1 in which inorganic particles 12 having a predetermined particle size (T μm or more) are supported on a nonwoven fabric 11. FIG. 2A shows a conventional reinforcing material 100 that does not include inorganic particles and is composed only of the nonwoven fabric 11. FIG. 1B and FIG. 2B show a state in which the respective reinforcing members 1 and 100 are pressed in the thickness direction (the direction indicated by the arrow in the drawing) by the press plates 2 arranged above and below. .

図1Bに示すように、補強材1は、厚み方向に加圧されても、無機粒子12が含まれている(不織布11に担持されている)ことによって、無機粒子の粒径(Tμm)以下には圧縮されない。一方、図2Bに示すように、従来の補強材100は、無機粒子を含んでいないため、図1Bに示す補強材1に比べてさらに圧縮される。すなわち、従来の補強材100では、圧縮されることによって不織布11の空隙が潰されてしまうのに対し、本実施の形態の補強材1では、圧縮されてもプロトン伝導性材料の充填に必要な空隙を維持できることが確認できる。   As shown in FIG. 1B, the reinforcing material 1 includes the inorganic particles 12 (supported by the nonwoven fabric 11) even when pressed in the thickness direction, so that the particle size (T μm) or less of the inorganic particles. Is not compressed. On the other hand, as shown in FIG. 2B, the conventional reinforcing material 100 does not contain inorganic particles, and thus is further compressed as compared with the reinforcing material 1 shown in FIG. 1B. That is, in the conventional reinforcing material 100, the space of the nonwoven fabric 11 is crushed by being compressed, whereas the reinforcing material 1 of the present embodiment is necessary for filling the proton conductive material even if compressed. It can be confirmed that the voids can be maintained.

一方、不織布を構成するガラス繊維の組成としては、Cガラス組成が好ましい。このCガラス組成は、公知である繊維用ガラス組成の中で、最も耐酸性が高いからである。このため、Cガラス組成のガラス繊維によって形成された不織布は、鉛蓄電池などの酸性雰囲気下で広く用いられる。   On the other hand, as a composition of the glass fiber which comprises a nonwoven fabric, C glass composition is preferable. This is because the C glass composition has the highest acid resistance among the known glass compositions for fibers. For this reason, the nonwoven fabric formed with the glass fiber of C glass composition is widely used in acidic atmospheres, such as a lead acid battery.

さらに、本実施の形態における補強材は、その補強効果を向上させるために、ガラス繊維の表面に適切なコーティング処理が施されるとよい。具体的には、シランカップリング剤やバインダーをガラス繊維の表面にコーティングする処理が有効である。   Furthermore, the reinforcing material in the present embodiment is preferably subjected to an appropriate coating treatment on the surface of the glass fiber in order to improve the reinforcing effect. Specifically, a treatment for coating a glass fiber surface with a silane coupling agent or a binder is effective.

なお、ガラス繊維にシリカなどの被膜を形成するなどのコーティング処理を施してもよい。この表面処理の方法は、ガラス繊維の耐熱性および耐酸性を損なわないものであれば、特に限定されるものではない。   In addition, you may perform coating processes, such as forming a film, such as a silica, in glass fiber. The surface treatment method is not particularly limited as long as it does not impair the heat resistance and acid resistance of the glass fiber.

固体高分子型燃料電池のプロトン伝導性膜としての機能を確保するためには、プロトン伝導性膜の厚みは、100μm以下であることが好ましく、より好ましくは50μm以下である。このような厚みとするためには、補強材の不織布を構成するガラス繊維の平均直径は、0.1〜20μmであることが好ましい。また、補強材の厚みとしても、同様に100μm以下であることが好ましい。   In order to ensure the function as a proton conductive membrane of the polymer electrolyte fuel cell, the thickness of the proton conductive membrane is preferably 100 μm or less, more preferably 50 μm or less. In order to obtain such a thickness, the average diameter of the glass fibers constituting the reinforcing material nonwoven fabric is preferably 0.1 to 20 μm. Similarly, the thickness of the reinforcing material is preferably 100 μm or less.

ガラス繊維の平均直径が、0.1μm未満では、製造コストが極端に高くなり、現実的でない。一方、平均直径が20μmを超えると、補強材として単位体積あたりの繊維本数が減少し、充分な引張強度を得ることができなくなる。   If the average diameter of the glass fiber is less than 0.1 μm, the production cost becomes extremely high, which is not practical. On the other hand, if the average diameter exceeds 20 μm, the number of fibers per unit volume as a reinforcing material decreases, and sufficient tensile strength cannot be obtained.

さらに、補強材を構成するガラス繊維の平均繊維長としては、0.5〜20mmであることが好ましい。平均繊維長が0.5mm未満では、補強材の機械的強度が著しく低下し、そのためプロトン伝導性膜の補強効果が減少すると共に、その取扱い性が悪くなる。一方、ガラス繊維の平均繊維長が20mmを超えると、不織布形成時のガラス繊維の分散性が低下する。その結果、補強材として必要な厚みの均一性や、目付量の均一性が得られにくくなる。   Furthermore, as an average fiber length of the glass fiber which comprises a reinforcing material, it is preferable that it is 0.5-20 mm. When the average fiber length is less than 0.5 mm, the mechanical strength of the reinforcing material is remarkably lowered, so that the reinforcing effect of the proton conductive membrane is reduced and the handleability is deteriorated. On the other hand, when the average fiber length of glass fiber exceeds 20 mm, the dispersibility of the glass fiber at the time of nonwoven fabric formation will fall. As a result, it becomes difficult to obtain the uniformity of the thickness necessary for the reinforcing material and the uniformity of the basis weight.

なお、目付量とは、単位面積当たりの質量のことである。   The basis weight is the mass per unit area.

補強材として必要な厚みの均一性は、不織布の各部分における厚みの斑の程度のことをいい、厚みの均一性があるとは、不織布の各部分における厚みが、平均の厚みに対して、+5%〜−15%、より好ましくは+0%〜−10%の範囲内にあることをいう。   Thickness uniformity required as a reinforcing material refers to the degree of unevenness of thickness in each part of the nonwoven fabric, and that there is thickness uniformity, the thickness in each part of the nonwoven fabric is relative to the average thickness. + 5% to -15%, more preferably in the range of + 0% to -10%.

目付量の均一性は、不織布の各部分における単位面積当たりの質量の斑の程度のことをいい、目付量の均一性があるとは、不織布の各部分における目付量が、平均の目付量に対して、+5%〜−15%、より好ましくは+0%〜−10%の範囲内にあることをいう。   Uniformity of basis weight means the degree of unevenness of mass per unit area in each part of the nonwoven fabric. Uniformity of basis weight means that the basis weight in each part of the nonwoven fabric is the average basis weight. On the other hand, it is in the range of + 5% to -15%, more preferably + 0% to -10%.

また、上述のようにプロトン伝導性膜の厚みを100μm以下とする場合には、補強材の目付量は、2〜50g/m2であることが好ましく、3〜25g/m2であることがより好ましい。Further, when the thickness of the proton conductive membrane is 100 μm or less as described above, the basis weight of the reinforcing material is preferably 2 to 50 g / m 2 , and preferably 3 to 25 g / m 2. More preferred.

目付量が2g/m2以下では、補強材として単位体積あたりの繊維本数が減少し、充分な引張強度を得ることができないことがある。一方、目付量が50g/m2を超えると、上述した厚みのプロトン伝導性膜とするには、補強材としての厚みが厚くなりすぎることがある。これを実用的な厚みにするために、プレスなどによって密度を高くして厚みを薄くすれば、ガラス繊維がその交差する点で折れて短くなり、補強材の引張強度が著しく低下するなどの問題が生じることがある。When the basis weight is 2 g / m 2 or less, the number of fibers per unit volume as a reinforcing material decreases, and sufficient tensile strength may not be obtained. On the other hand, if the basis weight exceeds 50 g / m 2 , the thickness as the reinforcing material may be too thick to obtain the proton conductive membrane having the above thickness. In order to make this a practical thickness, if the thickness is reduced by increasing the density with a press or the like, the glass fiber breaks and shortens at the crossing point, and the tensile strength of the reinforcing material significantly decreases. May occur.

また、補強材の実体空隙率は、60〜98体積%であることが好ましい。実体空隙率とは、補強材に含まれる無機粒子の体積やバインダーの体積をも考慮した空隙率である。   Moreover, it is preferable that the substantial porosity of a reinforcing material is 60-98 volume%. The substantial porosity is a porosity in consideration of the volume of inorganic particles and the volume of binder contained in the reinforcing material.

実体空隙率が98体積%を超えると、強度が著しく低くなり、補強材としての役割を果たすことが困難となる場合がある。また、剛性の低下も著しくなり、プロトン伝導性材料の収縮による変形を抑える役割を果たすことも困難となる場合がある。一方、実体空隙率が60体積%未満の場合、プロトン伝導率が低下することがある。より好ましい実体空隙率は80〜98体積%であり、さらに好ましい実体空隙率は90〜95体積%である。   If the actual porosity exceeds 98% by volume, the strength may be significantly reduced and it may be difficult to play a role as a reinforcing material. In addition, the rigidity is significantly lowered, and it may be difficult to play a role of suppressing deformation due to shrinkage of the proton conductive material. On the other hand, when the substantial porosity is less than 60% by volume, the proton conductivity may decrease. A more preferable substantial porosity is 80-98 volume%, and a still more preferable substantial porosity is 90-95 volume%.

ちなみに、平均直径約0.7μm、平均長さ約3mmのガラス短繊維を、機械的な圧縮工程なしに湿式抄造し、厚み50μmとした場合、実体空隙率94体積%程度のガラス繊維不織布を作製することができる。   By the way, when short glass fibers with an average diameter of about 0.7 μm and an average length of about 3 mm are wet-made without a mechanical compression step to a thickness of 50 μm, a glass fiber nonwoven fabric with a substantial porosity of about 94 volume% is produced. can do.

なお、実体空隙率Vの値は、次式により求めることができる。
V(%)=(1−W/t×k)×100
k=(1−cA−cB)/ρG+cA/ρA+cB/ρB
t:補強材に20kPaで加圧して、ダイヤルゲージで測定した補強材の厚み
W:補強材の単位面積当たりの質量
ρG:ガラス繊維の密度(約2.5×103kg/m3(=2.5g/cm3))
ρA:無機粒子の密度
ρB:バインダーの真密度(空隙を含まず、物質自身が占める体積だけを密度算定用の体積とする密度)
A:無機粒子の質量比率
B:バインダーの固形分の質量比率
In addition, the value of the substantial porosity V can be calculated | required by following Formula.
V (%) = (1−W / t × k) × 100
k = (1−c A −c B ) / ρ G + c A / ρ A + c B / ρ B
t: pressure of the reinforcing material at 20 kPa, thickness of the reinforcing material measured with a dial gauge W: mass per unit area of the reinforcing material ρ G : density of glass fiber (about 2.5 × 10 3 kg / m 3 ( = 2.5 g / cm 3 ))
ρ A : Density of inorganic particles ρ B : True density of binder (density that does not include voids and uses only the volume occupied by the substance itself as the volume for density calculation)
c A : mass ratio of inorganic particles c B : mass ratio of solid content of binder

上述した補強材によれば、プロトン伝導性膜を充分に補強することができる。しかしながら、ガラス繊維とプロトン伝導性材料との界面において、その熱膨脹率の差やプロトン伝導性膜形成時の応力によって、微小な剥離が形成されることがある。微小な剥離が起きた部分の近傍においては、ガラス繊維によるプロトン伝導性材料の変形を抑制する効果が低下する。このため、実際の補強効果は、補強材が有する本来の効果よりも一般に低くなる。   According to the reinforcing material described above, the proton conductive membrane can be sufficiently reinforced. However, minute separation may be formed at the interface between the glass fiber and the proton conductive material due to the difference in thermal expansion coefficient or the stress during the formation of the proton conductive film. In the vicinity of the portion where minute peeling occurs, the effect of suppressing the deformation of the proton conductive material by the glass fiber is reduced. For this reason, the actual reinforcing effect is generally lower than the original effect of the reinforcing material.

これを解決し、補強効果をさらに向上させる手段として、シランカップリング剤による補強材表面のコーティング処理が有効である。補強材表面に対して、適切な条件でシランカップリング剤のコーティングを施すことにより、補強材とプロトン伝導性材料との接着性が向上し、上述した微小な剥離の形成が抑えられ、補強材による補強効果が極めて高くなる。   As a means for solving this problem and further improving the reinforcing effect, a coating treatment of the reinforcing material surface with a silane coupling agent is effective. By coating the surface of the reinforcing material with a silane coupling agent under appropriate conditions, the adhesion between the reinforcing material and the proton conductive material is improved, and the formation of the above-described minute separation is suppressed, and the reinforcing material The reinforcement effect by becomes very high.

なお、シランカップリング剤の付着量としては、補強材表面積に対して、0.5〜200mg/m2であることが好ましい。付着量が0.5mg/m2未満であれば、シランカップリング剤が補強材表面を充分覆うことができず、補強材とプロトン伝導性材料との接着力向上効果が低くなる場合がある。また、付着量が200mg/m2を超えれば、補強材とプロトン伝導性材料の間に、シランのみからなる低強度の層が形成される。そのため、低強度の層内での破壊が起きやすくなり、見かけ上補強材とプロトン伝導性材料との接着力向上の効果が低くなることがある。In addition, as an adhesion amount of a silane coupling agent, it is preferable that it is 0.5-200 mg / m < 2 > with respect to a reinforcing material surface area. If the adhesion amount is less than 0.5 mg / m 2 , the silane coupling agent cannot sufficiently cover the surface of the reinforcing material, and the effect of improving the adhesion between the reinforcing material and the proton conductive material may be reduced. Moreover, if the adhesion amount exceeds 200 mg / m 2 , a low-strength layer made of only silane is formed between the reinforcing material and the proton conductive material. For this reason, breakdown in the low-strength layer is likely to occur, and the effect of improving the adhesive force between the reinforcing material and the proton conductive material may be apparently reduced.

本実施の形態に用いられるシランカップリング剤は、補強材とプロトン伝導性材料との接着力向上効果を示すものであれば、限定されない。取扱いが容易であるという観点から、シランカップリング剤は、アミノシランまたはアクリルシランが好ましい。   The silane coupling agent used in the present embodiment is not limited as long as it exhibits an effect of improving the adhesion between the reinforcing material and the proton conductive material. From the viewpoint of easy handling, the silane coupling agent is preferably aminosilane or acrylic silane.

また、ガラス繊維不織布は繊維同士が接着されておらず、繊維の絡み合いによって機械的強度が維持されている。つまり、プロトン伝導性材料の変形にともなって、それに接着するガラス繊維も移動してしまう。   Further, the glass fiber nonwoven fabric is not bonded to each other, and the mechanical strength is maintained by the entanglement of the fibers. That is, with the deformation of the proton conductive material, the glass fiber adhered to it also moves.

そこで、バインダーを使用してガラス繊維同士を拘束するようにすれば、このガラス繊維間の移動が低減される。具体的には、液状バインダーを用いる場合はガラス繊維同士の交点を接着すればよく、繊維状バインダーを用いる場合はガラス繊維とバインダー繊維とを接着または絡めるとよい。その結果、本実施の形態の補強材における補強効果は向上する。   Therefore, if the glass fibers are restrained using a binder, the movement between the glass fibers is reduced. Specifically, when a liquid binder is used, the intersections of the glass fibers may be bonded, and when a fibrous binder is used, the glass fibers and the binder fibers may be bonded or entangled. As a result, the reinforcing effect in the reinforcing material of the present embodiment is improved.

バインダーとしては、耐熱性および耐酸性がよいものであれば、その材質は特に限定されない。例えば、叩解セルロース繊維、アクリル繊維、アクリル樹脂エマルジョン、フッ素樹脂ディスパージョンおよびコロイダルシリカなどを挙げることができる。   The material of the binder is not particularly limited as long as it has good heat resistance and acid resistance. For example, beaten cellulose fiber, acrylic fiber, acrylic resin emulsion, fluororesin dispersion, colloidal silica and the like can be mentioned.

液状バインダーの場合、固形分添加量として、ガラス繊維質量に対して、0.5〜10質量%であることが好ましい。添加量が0.5質量%未満では、バインダーによるガラス繊維同士の接着効果が低くなる場合がある。添加量が10質量%を超えれば、ガラス繊維間に膜を形成し、プロトン伝導を阻害する場合がある。この液状バインダーとしては、耐酸性、耐熱性に特に優れるコロイダルシリカを用いることが、より好ましい。   In the case of a liquid binder, the solid content addition amount is preferably 0.5 to 10% by mass with respect to the glass fiber mass. When the addition amount is less than 0.5% by mass, the bonding effect between the glass fibers by the binder may be lowered. If the addition amount exceeds 10% by mass, a film may be formed between the glass fibers to inhibit proton conduction. As this liquid binder, it is more preferable to use colloidal silica which is particularly excellent in acid resistance and heat resistance.

繊維状バインダーの場合、固形分添加量として、ガラス繊維質量に対して、1〜40質量%であることが好ましい。添加量が1質量%未満では、バインダーによるガラス繊維の接着効果が低くなることがある。添加量が40質量%を超えれば、ガラス繊維の固定が著しくなり、ガラス繊維の開繊を低減させ、ポリマー溶液含浸時の繊維間への充分な浸透を阻害することがある。   In the case of a fibrous binder, it is preferable that it is 1-40 mass% with respect to glass fiber mass as solid content addition amount. When the addition amount is less than 1% by mass, the bonding effect of the glass fiber by the binder may be lowered. If the addition amount exceeds 40% by mass, the glass fiber is remarkably fixed, and the glass fiber opening is reduced, and sufficient penetration between the fibers during impregnation with the polymer solution may be hindered.

また、ガラス繊維径が20μmを超えると、50μm以下の厚みの不織布に局所的な凸部が生じ、均一な不織布の形成を阻害することがあるので、ガラス繊維径は20μm以下であることが好ましい。ただし、不織布形成またはプロトン伝導性膜形成の過程で変形あるいは溶解して、不織布作製完了後に凸部を生じない場合はこの限りではない。   In addition, when the glass fiber diameter exceeds 20 μm, local protrusions are generated in the nonwoven fabric having a thickness of 50 μm or less, and the formation of a uniform nonwoven fabric may be inhibited. Therefore, the glass fiber diameter is preferably 20 μm or less. . However, this does not apply to cases where deformation or dissolution occurs during the formation of the nonwoven fabric or the proton conductive membrane and no convex portions are produced after the preparation of the nonwoven fabric.

上述のシランカップリング剤処理と、上述のバインダー添加とは、それぞれ独立したメカニズムで補強の効果を発揮するため、それらは併用することができ、その効果は相乗される。   Since the above-mentioned silane coupling agent treatment and the above-mentioned binder addition exert a reinforcing effect by an independent mechanism, they can be used in combination, and the effects are synergistic.

本発明のプロトン伝導性膜の実施形態について、簡単に説明する。   An embodiment of the proton conductive membrane of the present invention will be briefly described.

本実施の形態のプロトン伝導性膜は、上述した本発明の補強材を用いたものであり、この補強材にプロトン伝導性材料を固着させることによって形成されている。プロトン伝導性材料は、プロトン伝導型のものであれば、どのような組成のものでもよく、例えばNafion(登録商標)(Du Pont社製)のようなパーフルオロスルホン酸系のポリマーを用いることができる。このプロトン伝導性膜は、まず、補強材にプロトン伝導性材料を含浸させ、次に、プロトン伝導性材料を含浸させた補強材を厚み方向に加圧しすることによって、作製できる。図4には、本実施の形態のプロトン伝導性膜の構成の一例が示されている。このプロトン伝導性膜21では、プロトン伝導性膜用の補強材1の空隙部分にプロトン伝導性材料22が充填されており、このプロトン伝導性材料22が補強材1に固着している。なお、図4においては、プロトン伝導性材料22のハッチングを省略する。   The proton conductive membrane of the present embodiment uses the above-described reinforcing material of the present invention, and is formed by fixing a proton conductive material to the reinforcing material. The proton conductive material may have any composition as long as it is of a proton conductive type. For example, a perfluorosulfonic acid polymer such as Nafion (registered trademark) (manufactured by Du Pont) may be used. it can. The proton conductive membrane can be manufactured by first impregnating a reinforcing material with a proton conductive material and then pressurizing the reinforcing material impregnated with the proton conductive material in the thickness direction. FIG. 4 shows an example of the configuration of the proton conductive membrane of the present embodiment. In the proton conductive membrane 21, the proton conductive material 22 is filled in the void portion of the proton conductive membrane reinforcing material 1, and the proton conductive material 22 is fixed to the reinforcing material 1. In FIG. 4, hatching of the proton conductive material 22 is omitted.

本実施の形態のプロトン伝導性膜は、公知の手段を用いて、燃料電池の電解質膜として使用することができる。また、本実施の形態の燃料電池は、プロトン伝導型高分子固体電解質燃料電池であれば、どのような構成でもよい。図5に、本実施の形態の燃料電池の一例(セル)を示す分解斜視図が示されている。本実施の形態の燃料電池の一例としては、例えば、本実施の形態のプロトン伝導性膜21をアノード32とカソード33とで挟み、これを積層方向に熱プレスして接合体34とし、さらにこの接合体34の両側に、それぞれガスケット35を介してセパレータ36が積層されることによって、セル31が形成されている。アノード32およびカソード33は、白金系の触媒を担持したカーボンブラックをプロトン伝導性ポリマーに分散させたものを、カーボンペーパー(炭素繊維からなる紙)にスクリーン印刷等の方法で付着させることによって、形成されたものである。さらにこのセルを何枚も重ねて積層させて(複数のセルを直列に接続して)、スタックとする。なお、スタックにおけるセルの積層枚数は、燃料電池の出力電圧と単セル電圧(0.7〜1V程度)とから決定される。   The proton conductive membrane of the present embodiment can be used as an electrolyte membrane of a fuel cell using known means. Further, the fuel cell according to the present embodiment may have any configuration as long as it is a proton conductive polymer solid electrolyte fuel cell. FIG. 5 is an exploded perspective view showing an example (cell) of the fuel cell according to the present embodiment. As an example of the fuel cell of this embodiment, for example, the proton conductive membrane 21 of this embodiment is sandwiched between an anode 32 and a cathode 33, and this is hot-pressed in the stacking direction to form a joined body 34. Cells 31 are formed by laminating separators 36 on both sides of the joined body 34 via gaskets 35 respectively. The anode 32 and the cathode 33 are formed by adhering carbon black carrying a platinum-based catalyst dispersed in a proton conductive polymer to carbon paper (paper made of carbon fiber) by a method such as screen printing. It has been done. Further, a number of these cells are stacked and stacked (a plurality of cells are connected in series) to form a stack. The number of stacked cells in the stack is determined from the output voltage of the fuel cell and the single cell voltage (about 0.7 to 1 V).

以下、実施例および比較例により、本発明をさらに具体的に説明する。なお、本発明の要旨を越えない限り、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. The present invention is not limited to the following examples as long as the gist of the present invention is not exceeded.

(ガラス繊維)
実施例および比較例に使用するガラス繊維は、表1に示したCガラス組成を有し、平均直径0.7μmで平均長さ約3mmのものを使用した。
(Glass fiber)
The glass fibers used in Examples and Comparative Examples had the C glass composition shown in Table 1, those having an average diameter of 0.7 μm and an average length of about 3 mm.

なお、実施例1〜6、比較例2〜7では、表1に示した組成を有するガラス繊維にて、ガラス繊維不織布を構成した。このガラス組成はCガラス組成の一例である。これに限られることなく、表1に併せて示した一般的なCガラス組成を用いてもよいことはいうまでもない。   In Examples 1 to 6 and Comparative Examples 2 to 7, glass fiber nonwoven fabrics were composed of glass fibers having the compositions shown in Table 1. This glass composition is an example of a C glass composition. Needless to say, the general C glass composition shown in Table 1 may be used without being limited thereto.

(実施例1)
ガラス繊維を80質量%、溶融タイプの球状シリカ粒子を15質量%、バインダーとしての叩解セルロース繊維を5質量%、同時に、繊維を解きほぐすためのパルパーに投入し、硫酸でpH2.5に調製した水溶液中で充分に解離、分散させ、抄紙用のスラリーを作製した。
Example 1
80% by mass of glass fiber, 15% by mass of fused-type spherical silica particles, 5% by mass of beating cellulose fiber as a binder, and simultaneously added to a pulper for unraveling the fiber and adjusted to pH 2.5 with sulfuric acid The paper was fully dissociated and dispersed therein to prepare a papermaking slurry.

表2に、以下に述べる実施例や比較例と共に、ガラス繊維やシリカ粒子、叩解セルロース繊維の含有率を示した。叩解セルロース繊維の含有率は、いずれの実施例や比較例においても、5質量%とした。なお、シリカ粒子については、その粒径がTμm(見なし空隙率が90%となる厚み)以上である粒子の含有率も、括弧内に併せて示した。さらに、平均粒径も併せて示した。   Table 2 shows the contents of glass fibers, silica particles, and beaten cellulose fibers together with Examples and Comparative Examples described below. The content rate of the beaten cellulose fiber was 5% by mass in any of the examples and comparative examples. In addition, about the silica particle, the content rate of the particle | grains whose particle size is more than Tmicrometer (thickness in which the porosity is considered to be 90%) is also shown in parentheses. Further, the average particle diameter is also shown.

これらのガラス繊維分散液を用い、湿式抄紙装置によって、ガラス繊維不織布を作製した。得られたガラス繊維不織布は、上述した2種類の繊維を上述の配合比で含有し、厚みが50μmであり、目付量は7g/m2であった。このガラス繊維不織布は、プロトン伝導性膜用の補強材として使用できる。このガラス繊維不織布(補強材)の実体空隙率は、約94体積%であった。また、見なし空隙率90%となる厚みは、29μmであった。見なし空隙率90体積%の時の補強材の厚みTは、以下の式より算出した。
T=10×W/ρG
W:補強材の単位面積当たりの質量
ρG:ガラス繊維の密度(約2.5×103kg/m3(=2.5g/cm3))
Using these glass fiber dispersions, glass fiber nonwoven fabrics were prepared by a wet papermaking machine. The obtained glass fiber nonwoven fabric contained the above-described two types of fibers in the above-mentioned blending ratio, the thickness was 50 μm, and the basis weight was 7 g / m 2 . This glass fiber nonwoven fabric can be used as a reinforcing material for proton conductive membranes. The substantial porosity of this glass fiber nonwoven fabric (reinforcing material) was about 94% by volume. The thickness at which the assumed porosity was 90% was 29 μm. The thickness T of the reinforcing material when the assumed porosity is 90% by volume was calculated from the following equation.
T = 10 × W / ρ G
W: mass per unit area of reinforcing material ρ G : density of glass fiber (about 2.5 × 10 3 kg / m 3 (= 2.5 g / cm 3 ))

実施例1では、その粒径が29μm以上の球状シリカ粒子を、補強材全体の5質量%含ませている。   In Example 1, 5 mass% of spherical silica particles having a particle size of 29 μm or more are included in the entire reinforcing material.

得られた補強材を、走査型電子顕微鏡(SEM、日本電子株式会社製、型番:JSM−T330A)にて観察した。撮影条件は、加速電圧15kV、撮影倍率2000倍とした。観察結果を図3に示した。   The obtained reinforcing material was observed with a scanning electron microscope (SEM, manufactured by JEOL Ltd., model number: JSM-T330A). The shooting conditions were an acceleration voltage of 15 kV and a shooting magnification of 2000 times. The observation results are shown in FIG.

観察結果から、ガラス繊維不織布中のガラス繊維の間に、シリカ粒子が存在している様子がわかる。   From the observation results, it can be seen that silica particles are present between the glass fibers in the glass fiber nonwoven fabric.

次に、この補強材を用いてプロトン伝導性膜を作製した。この補強材に、フッ素系ポリマー電解質分散液Nafion(登録商標)DE2020(Du Pont社製)をイソプロピルアルコールで希釈した液を含浸させ、12時間以上自然乾燥させた。その後、120℃で1時間熱処理した後、ホットプレス装置にて120℃、10MPaで厚み方向にプレスし、プロトン伝導性膜を得た。なお、電解質分散液の濃度および含浸量は、プレス後のプロトン伝導性膜の厚みが30μmになるように調整した。   Next, a proton conductive membrane was produced using this reinforcing material. This reinforcing material was impregnated with a solution obtained by diluting a fluorine-based polymer electrolyte dispersion Nafion (registered trademark) DE2020 (manufactured by Du Pont) with isopropyl alcohol, and air-dried for 12 hours or more. Then, after heat-processing at 120 degreeC for 1 hour, it pressed in the thickness direction at 120 degreeC and 10 Mpa with the hot press apparatus, and the proton-conductive film | membrane was obtained. The concentration of the electrolyte dispersion and the amount of impregnation were adjusted so that the proton conductive membrane after pressing had a thickness of 30 μm.

なお、このプロトン伝導性膜中にガラス繊維が占める割合は、約10質量%と算出された。算出には、ガラス繊維およびプロトン伝導性材料の密度、補強材の実体空隙率、プレス前の厚み、プロトン伝導性膜のプレス後の厚みのデータを用いた。   The proportion of glass fibers in the proton conductive membrane was calculated to be about 10% by mass. For the calculation, data on the density of the glass fiber and the proton conductive material, the substantial porosity of the reinforcing material, the thickness before pressing, and the thickness after pressing of the proton conductive membrane were used.

(実施例2)
実施例2の補強材は、実施例1の補強材に対して、シリカ粒子の粒度分布と含有率を変更したものである(表2参照)。それ以外は、実施例1と同じ手順にて補強材およびプロトン伝導性膜を得た。なお、シリカ粒子は溶融タイプである。
(Example 2)
The reinforcing material of Example 2 is obtained by changing the particle size distribution and content of silica particles with respect to the reinforcing material of Example 1 (see Table 2). Otherwise, a reinforcing material and a proton conductive membrane were obtained in the same procedure as in Example 1. Silica particles are a melt type.

実施例2では、その粒径が29μm以上の球状シリカ粒子を、補強材全体の8質量%含ませた。   In Example 2, 8 mass% of the entire reinforcing material was included in the spherical silica particles having a particle size of 29 μm or more.

(実施例3)
実施例3の補強材は、実施例1の補強材に対して、シリカ粒子を沈降法で作製して多孔質としたものである。それ以外は、実施例1と同じ手順にて補強材およびプロトン伝導性膜を得た。
(Example 3)
The reinforcing material of Example 3 is made by making silica particles porous with respect to the reinforcing material of Example 1 by a sedimentation method. Otherwise, a reinforcing material and a proton conductive membrane were obtained in the same procedure as in Example 1.

実施例3では、その粒径が29μm以上の多孔質シリカ粒子を、補強材全体の5質量%含ませた。   In Example 3, 5 mass% of porous silica particles having a particle size of 29 μm or more were included in the entire reinforcing material.

(実施例4)
実施例4では、シランカップリング剤としてアミノシランを用いて補強材を作製し、この補強材を用いて、ガラス繊維とプロトン伝導材料との接着性を向上させたプロトン伝導性膜を作製した。
(Example 4)
In Example 4, a reinforcing material was produced using aminosilane as a silane coupling agent, and a proton conducting membrane with improved adhesion between glass fiber and proton conducting material was produced using this reinforcing material.

実施例1にて作製した補強材に、アミノシランをイオン交換水に溶解した水溶液を含浸させた後、オーブンにて120℃、1時間熱処理して、実施例4の補強材を作製した。このとき、アミノシラン水溶液の濃度および含浸量を調整して、ガラス繊維表面積当たりの固形分付着量が10mg/m2となるようにした。The reinforcing material prepared in Example 1 was impregnated with an aqueous solution in which aminosilane was dissolved in ion-exchanged water, and then heat-treated in an oven at 120 ° C. for 1 hour to prepare the reinforcing material of Example 4. At this time, the concentration and impregnation amount of the aminosilane aqueous solution were adjusted so that the solid content adhesion amount per glass fiber surface area was 10 mg / m 2 .

この補強材を用いて、実施例1と同じ手順にてプロトン伝導性膜を得た。   Using this reinforcing material, a proton conductive membrane was obtained in the same procedure as in Example 1.

実施例4では、実施例1と同様に、その粒径が29μm以上の球状シリカ粒子を、補強材の5質量%含ませている。   In Example 4, similar to Example 1, spherical silica particles having a particle size of 29 μm or more are included in 5% by mass of the reinforcing material.

(実施例5)
実施例5の補強材は、バインダーとしてさらにコロイダルシリカを用いて、ガラス繊維同士の拘束を強めたものである。
(Example 5)
The reinforcing material of Example 5 is one in which colloidal silica is further used as a binder to further strengthen the restraint between glass fibers.

実施例1にて作製した補強材に、コロイダルシリカの純水による希釈液を含浸させた後、オーブンにて100℃、30分間乾燥して、実施例5の補強材を作製した。このとき、コロイダルシリカ希釈液の濃度および含浸量を調整して、ガラス繊維質量当たりの固形分付着量が5質量%となるようにした。この補強材を用いて、実施例1と同じ手順にてプロトン伝導性膜を得た。   The reinforcing material produced in Example 1 was impregnated with a diluted solution of pure water of colloidal silica, and then dried in an oven at 100 ° C. for 30 minutes to produce the reinforcing material of Example 5. At this time, the concentration and impregnation amount of the colloidal silica diluted solution were adjusted so that the solid content adhesion amount per mass of the glass fiber was 5% by mass. Using this reinforcing material, a proton conductive membrane was obtained in the same procedure as in Example 1.

実施例5では、実施例1と同様に、その粒径が29μm以上の球状シリカ粒子を、補強材全体の5質量%含ませた。   In Example 5, similarly to Example 1, 5% by mass of the spherical silica particles having a particle size of 29 μm or more was included in the entire reinforcing material.

(実施例6)
実施例6では、実施例5で作製した補強材に対して、実施例4に記載したシランカップリング剤処理を行うことによって、補強材を得た。すなわち、実施例6では、ガラス繊維同士の拘束を強めた補強材を作製し、この補強材を用いて、ガラス繊維とプロトン伝導材料との接着性を向上させたプロトン伝導性膜を作製した。プロトン伝導性膜は、実施例1と同じ手順によって作製した。
(Example 6)
In Example 6, a reinforcing material was obtained by performing the silane coupling agent treatment described in Example 4 on the reinforcing material produced in Example 5. That is, in Example 6, a reinforcing material in which the restraint between the glass fibers was strengthened was produced, and a proton conducting membrane with improved adhesion between the glass fiber and the proton conducting material was produced using this reinforcing material. The proton conductive membrane was produced by the same procedure as in Example 1.

実施例6では、実施例1と同様に、その粒径が29μm以上の球状シリカ粒子を、補強材全体の5質量%含ませている。   In Example 6, as in Example 1, 5% by mass of spherical silica particles having a particle size of 29 μm or more is included in the entire reinforcing material.

(比較例1)
比較例1は、ガラス繊維不織布を用いずに、プロトン伝導性膜を作製した例である。実施例1で用いた電解質分散液を、底面の平坦性の良好なガラス製シャーレに入れ、12時間以上自然乾燥させた。その後、120℃で1時間熱処理した後、ホットプレス装置にて120℃、10MPaで厚み方向にプレスし、プロトン伝導性膜を得た。電解質分散液の濃度は実施例1と同様とし、液量は熱処理後の厚みが30μmになるように調整した。
(Comparative Example 1)
Comparative Example 1 is an example in which a proton conductive membrane was produced without using a glass fiber nonwoven fabric. The electrolyte dispersion used in Example 1 was placed in a glass petri dish with good flatness at the bottom and allowed to air dry for 12 hours or more. Then, after heat-processing at 120 degreeC for 1 hour, it pressed in the thickness direction at 120 degreeC and 10 Mpa with the hot press apparatus, and the proton-conductive film | membrane was obtained. The concentration of the electrolyte dispersion was the same as in Example 1, and the amount of the liquid was adjusted so that the thickness after the heat treatment was 30 μm.

(比較例2)
比較例2は、補強材に無機粒子であるシリカ粒子を含ませない例である。ガラス短繊維と叩解セルロース繊維の配合比を表2に示した通りとし、抄紙用のスラリーを作製した。このガラス繊維分散液を用い、実施例1と同じ手順にて補強材およびプロトン伝導性膜を得た。
(Comparative Example 2)
Comparative Example 2 is an example in which silica particles that are inorganic particles are not included in the reinforcing material. The mixing ratio of short glass fibers and beaten cellulose fibers was as shown in Table 2, and a papermaking slurry was prepared. Using this glass fiber dispersion, a reinforcing material and a proton conductive membrane were obtained in the same procedure as in Example 1.

(比較例3)
比較例3は、実施例1の補強材に対して、シリカ粒子の粒度分布と含有率を変更したものであり、Tμm以上である粒子の含有率が非常に小さいものである(表2参照)。それ以外は、実施例1と同じ手順にて、補強材およびプロトン伝導性膜を得た。なお、シリカ粒子は溶融タイプである。
(Comparative Example 3)
In Comparative Example 3, the particle size distribution and content of silica particles are changed with respect to the reinforcing material of Example 1, and the content of particles having a particle size of T μm or more is very small (see Table 2). . Other than that was the same procedure as in Example 1 to obtain a reinforcing material and a proton conductive membrane. Silica particles are a melt type.

(比較例4)
比較例4は、実施例1の補強材に対して、シリカ粒子の粒度分布と含有率を変更したものであり、Tμm以上である粒子の含有率が極端に多いものである(表2参照)。それ以外は、実施例1と同じ手順にて、補強材およびプロトン伝導性膜を得ることを試みた。しかし、不織布の引張強度が極端に低く、含浸工程において破断してしまった。なお、シリカ粒子は溶融タイプである。
(Comparative Example 4)
In Comparative Example 4, the particle size distribution and content of silica particles are changed with respect to the reinforcing material of Example 1, and the content of particles that are T μm or more is extremely large (see Table 2). . Other than that, in the same procedure as in Example 1, an attempt was made to obtain a reinforcing material and a proton conductive membrane. However, the tensile strength of the nonwoven fabric was extremely low, and it broke during the impregnation process. Silica particles are a melt type.

(比較例5)
比較例5は、実施例1の補強材に対して、シリカ粒子の粒度分布を変更したものであり、Tμm以上である粒子の含有率が非常に少ないものである(表2参照)。それ以外は、実施例1と同じ手順にて、補強材およびプロトン伝導性膜を得た。なお、シリカ粒子は溶融タイプである。
(Comparative Example 5)
In Comparative Example 5, the particle size distribution of the silica particles is changed with respect to the reinforcing material of Example 1, and the content ratio of particles having a particle size of T μm or more is very small (see Table 2). Other than that was the same procedure as in Example 1 to obtain a reinforcing material and a proton conductive membrane. Silica particles are a melt type.

(比較例6)
比較例6は、実施例1の補強材に対して、シリカ粒子の粒度分布を変更したものであり、Tμm以上である粒子の含有率が多いものであるある(表2参照)。それ以外は、実施例1と同じ手順にて、補強材およびプロトン伝導性膜を得た。なお、シリカ粒子は溶融タイプである。
(Comparative Example 6)
In Comparative Example 6, the particle size distribution of the silica particles is changed with respect to the reinforcing material of Example 1, and the content of particles having a particle size of T μm or more is large (see Table 2). Other than that was the same procedure as in Example 1 to obtain a reinforcing material and a proton conductive membrane. Silica particles are a melt type.

実施例1〜6および比較例1〜6で作製したプロトン伝導性膜について、下記の試験を行った。試験の結果を表3に示す。   The following tests were conducted on the proton conductive membranes prepared in Examples 1 to 6 and Comparative Examples 1 to 6. Table 3 shows the test results.

〔複合前の(プロトン伝導性膜の作製に用いられる前の)補強材の厚み〕
シックネスゲージにて圧力約20kPa下で測定した。
[Thickness of reinforcing material before compounding (before being used to produce proton conducting membrane)]
The thickness was measured with a thickness gauge under a pressure of about 20 kPa.

〔プロトン伝導性膜の厚み〕
マイクロメータにて測定した。
[Proton conductive membrane thickness]
Measured with a micrometer.

〔プロトン伝導性膜内の補強材の厚み〕
膜の断面をSEMで観察して測定した。
[Thickness of reinforcing material in proton conducting membrane]
The cross section of the film was observed by SEM and measured.

〔補強材およびプロトン伝導性膜の引張強度測定〕
補強材とプロトン伝導性膜とも、幅20mm×長さ80mmに切断して試験片を作製し、チャック間隔30mmで10mm/分の速度で引張試験を行い、破断時の荷重(N)を測定した。これをサンプル厚みおよび幅の実測値で除して、引張強度(MPa)を算出した。ここで、サンプル厚みは、シックネスゲージにて圧力約20kPa下で測定した。
[Measurement of tensile strength of reinforcing material and proton conductive membrane]
Both the reinforcing material and the proton conductive membrane were cut into a width of 20 mm and a length of 80 mm to prepare a test piece, a tensile test was performed at a chuck interval of 30 mm at a speed of 10 mm / min, and a load (N) at break was measured. . The tensile strength (MPa) was calculated by dividing this by the measured values of the sample thickness and width. Here, the sample thickness was measured with a thickness gauge under a pressure of about 20 kPa.

上記の実施例および比較例の結果から明らかなように、本発明による補強材を用いた実施例1〜6のプロトン伝導性膜は、補強材を用いない比較例1のプロトン伝導性膜に比べて、同等のプロトン伝導性を有しながら引張強度が大きくなっており、補強効果が確認された。   As is clear from the results of the above Examples and Comparative Examples, the proton conductive membranes of Examples 1 to 6 using the reinforcing material according to the present invention are compared with the proton conductive membrane of Comparative Example 1 using no reinforcing material. Thus, the tensile strength was increased while having the same proton conductivity, and the reinforcing effect was confirmed.

また、比較例2は無機粒子を含まず、比較例3と比較例5は無機粒子による不織布の空隙確保の能力が不足のため、実施例1〜6に比べて、ホットプレス後の膜内で補強材の厚みが減少し、実体空隙率が低下した。このため、プロトン伝導性材料の充填量が少なく、プロトン伝導が阻害されたと考えられる。   Further, Comparative Example 2 does not include inorganic particles, and Comparative Example 3 and Comparative Example 5 are insufficient in the ability to secure the voids of the nonwoven fabric by the inorganic particles, so in the film after hot pressing, compared to Examples 1-6. The thickness of the reinforcing material decreased, and the substantial porosity decreased. For this reason, the filling amount of the proton conductive material is small, and it is considered that proton conduction is inhibited.

比較例4は、不織布単体の引張強度が著しく低下しており、プロトン伝導性材料を含浸させる工程における取扱い性が悪く、実用的にプロトン伝導膜を得ることは困難であった。   In Comparative Example 4, the tensile strength of the nonwoven fabric alone was remarkably lowered, the handling property in the step of impregnating the proton conductive material was poor, and it was difficult to obtain a proton conductive membrane practically.

比較例6は無機粒子による不織布の空隙確保の能力が過剰なため、ホットプレスによって微小間隙を潰しきることができず、プロトン伝導が著しく阻害されたと考えられる。   In Comparative Example 6, since the ability to secure the voids of the nonwoven fabric with inorganic particles is excessive, it is considered that the minute gaps could not be crushed by hot pressing, and proton conduction was significantly inhibited.

本発明のプロトン伝導性膜用補強材は、プロトン伝導性を低下させることなく、プロトン伝導性膜の強度を向上させることができる。したがって、高い強度やプロトン電導性が要求されるプロトン伝導性膜の補強材として、好適に用いられる。また、本発明のプロトン電導性膜は、高い耐久性および高いプロトン電導性が要求されるプロトン電導性膜として有用である。本発明の燃料電池は、高い耐久性および高い発電効率が要求される燃料電池として有用である。   The reinforcing material for proton conductive membrane of the present invention can improve the strength of the proton conductive membrane without reducing the proton conductivity. Therefore, it is suitably used as a reinforcing material for proton conductive membranes that require high strength and proton conductivity. The proton conductive membrane of the present invention is useful as a proton conductive membrane that requires high durability and high proton conductivity. The fuel cell of the present invention is useful as a fuel cell that requires high durability and high power generation efficiency.

Claims (16)

ガラス繊維を含む不織布と、前記不織布に担持された無機粒子と、を含むプロトン伝導性膜用の補強材であって、
前記補強材が占める体積に対する、前記補強材が占める体積から前記ガラス繊維の体積を除いた体積の百分率を、見なし空隙率とする場合、
前記無機粒子の少なくとも一部が、前記見なし空隙率が90体積%となるように前記補強材を変形させた時の前記補強材の厚み以上の粒径を有し、
前記粒径を有する無機粒子の含有率が2〜10質量%である、プロトン伝導性膜用補強材。
A reinforcing material for a proton conductive membrane comprising a nonwoven fabric containing glass fibers and inorganic particles carried on the nonwoven fabric,
When the percentage of the volume excluding the volume of the glass fiber from the volume occupied by the reinforcement relative to the volume occupied by the reinforcement is regarded as a void ratio,
At least a part of the inorganic particles has a particle diameter equal to or greater than the thickness of the reinforcing material when the reinforcing material is deformed so that the assumed porosity is 90% by volume,
A reinforcing material for proton conductive membrane, wherein the content of inorganic particles having the particle diameter is 2 to 10% by mass.
前記無機粒子が、前記見なし空隙率が90体積%となるように前記補強材を変形させた時の前記補強材の厚みの2倍以下の粒径を有する、請求項1に記載のプロトン伝導性膜用補強材。   2. The proton conductivity according to claim 1, wherein the inorganic particles have a particle size equal to or less than twice the thickness of the reinforcing material when the reinforcing material is deformed so that the assumed porosity is 90% by volume. Membrane reinforcement. 前記無機粒子の少なくとも一部が、15μm〜200μmの範囲の粒径を有する、請求項1に記載のプロトン伝導性膜用補強材。   2. The proton conductive membrane reinforcing material according to claim 1, wherein at least a part of the inorganic particles has a particle size in a range of 15 μm to 200 μm. 前記無機粒子が、シリカを主成分とする粒子である、請求項1に記載のプロトン伝導性膜用補強材。   The proton conductive membrane reinforcing material according to claim 1, wherein the inorganic particles are particles containing silica as a main component. 前記無機粒子が、シリカからなる、または、Cガラス組成を有するガラスからなる、請求項4に記載のプロトン伝導性膜用補強材。   The reinforcing material for proton conductive membrane according to claim 4, wherein the inorganic particles are made of silica or glass having a C glass composition. 前記ガラス繊維の平均繊維径が0.1μm〜20μmであり、前記ガラス繊維の平均繊維長が0.5mm〜20mmである、請求項1に記載のプロトン伝導性膜用補強材。   2. The proton conductive membrane reinforcing material according to claim 1, wherein an average fiber diameter of the glass fibers is 0.1 μm to 20 μm, and an average fiber length of the glass fibers is 0.5 mm to 20 mm. 前記ガラス繊維がCガラス組成を有する、請求項1に記載のプロトン伝導性膜用補強材。   The proton conductive membrane reinforcing material according to claim 1, wherein the glass fiber has a C glass composition. 目付量が2〜50g/m2である、請求項1に記載のプロトン伝導性膜用補強材。The proton conductive membrane reinforcing material according to claim 1, wherein the basis weight is 2 to 50 g / m 2 . 厚みが15μm〜100μmである、請求項1に記載のプロトン伝導性膜用補強材。   The reinforcing material for proton-conductive membrane according to claim 1, wherein the thickness is 15 μm to 100 μm. 前記補強材が占める体積に対する空隙の体積の百分率を実体空隙率とした場合、
前記実体空隙率が60〜98体積%である請求項1に記載のプロトン伝導性膜用補強材。
When the percentage of the void volume with respect to the volume occupied by the reinforcing material is the substantial void ratio,
The reinforcing material for proton conductive membrane according to claim 1, wherein the substantial porosity is 60 to 98% by volume.
前記補強材の表面にシランカップリング剤が付着している請求項1に記載のプロトン伝導性膜用補強材。   The proton conductive membrane reinforcing material according to claim 1, wherein a silane coupling agent is attached to a surface of the reinforcing material. 前記不織布において、前記ガラス繊維同士がバインダーで拘束されている請求項1に記載のプロトン伝導性膜用補強材。   The reinforcing material for proton conductive membrane according to claim 1, wherein the glass fibers are constrained by a binder in the nonwoven fabric. 請求項1に記載のプロトン伝導性膜用補強材と、前記プロトン伝導性膜用補強材に固着させたプロトン伝導性材料と、を含むプロトン伝導性膜。   A proton conductive membrane comprising: the proton conductive membrane reinforcing material according to claim 1; and a proton conductive material fixed to the proton conductive membrane reinforcing material. ガラス繊維を含む不織布と、前記不織布に担持された無機粒子と、を含む補強材と、
前記補強材に固着させたプロトン伝導性材料と、を含むプロトン伝導性膜。
A reinforcing material comprising a nonwoven fabric comprising glass fibers, and inorganic particles carried on the nonwoven fabric,
And a proton conductive material fixed to the reinforcing material.
プロトン伝導性膜を製造する方法であって、
請求項1に記載のプロトン伝導性膜用補強材に、プロトン伝導性材料を含浸させる工程と、
前記プロトン伝導性材料が含浸した前記プロトン伝導性膜用補強材に対して、厚み方向に加圧する工程と、
を含むプロトン伝導性膜の製造方法。
A method for producing a proton conducting membrane comprising:
Impregnating the proton conductive membrane reinforcing material according to claim 1 with a proton conductive material;
Pressurizing the proton conductive membrane reinforcing material impregnated with the proton conductive material in the thickness direction; and
A method for producing a proton conductive membrane comprising:
請求項13または14に記載のプロトン伝導性膜を用いた燃料電池。
A fuel cell using the proton conductive membrane according to claim 13 or 14.
JP2007524041A 2005-07-01 2006-06-30 Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell Active JP5164569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007524041A JP5164569B2 (en) 2005-07-01 2006-06-30 Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005193261 2005-07-01
JP2005193261 2005-07-01
JP2007524041A JP5164569B2 (en) 2005-07-01 2006-06-30 Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell
PCT/JP2006/313147 WO2007004588A1 (en) 2005-07-01 2006-06-30 Reinforcing material for proton-conductive film, proton-conductive film manufactured using the same, and fuel cell

Publications (2)

Publication Number Publication Date
JPWO2007004588A1 true JPWO2007004588A1 (en) 2009-01-29
JP5164569B2 JP5164569B2 (en) 2013-03-21

Family

ID=37604453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007524041A Active JP5164569B2 (en) 2005-07-01 2006-06-30 Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell

Country Status (2)

Country Link
JP (1) JP5164569B2 (en)
WO (1) WO2007004588A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5398687B2 (en) * 2010-11-26 2014-01-29 日本板硝子株式会社 Solid electrolyte membrane reinforcement
JP5720467B2 (en) * 2011-07-25 2015-05-20 トヨタ自動車株式会社 Electrolyte membrane for fuel cell
JP6547223B2 (en) * 2015-01-29 2019-07-24 国立大学法人山梨大学 Polymer electrolyte membrane, membrane / electrode assembly and fuel cell
WO2019180524A1 (en) * 2018-03-21 2019-09-26 3M Innovative Properties Company Membrane

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498321B2 (en) * 1992-09-25 2004-02-16 田中貴金属工業株式会社 Polymer solid oxide fuel cell
GB9914499D0 (en) * 1999-06-22 1999-08-25 Johnson Matthey Plc Non-woven fibre webs
JP2001076745A (en) * 1999-09-06 2001-03-23 Toyota Central Res & Dev Lab Inc Cell of polymer electrolyte fuel cell
JP2004047450A (en) * 2002-05-20 2004-02-12 Nippon Sheet Glass Co Ltd Reinforcing material for proton conductive film, proton conductive film using same and fuel cell using same
JP4365139B2 (en) * 2003-02-27 2009-11-18 日本板硝子株式会社 Proton conductive membrane reinforcing material, proton conductive membrane and fuel cell using the same
JP2005162772A (en) * 2003-11-28 2005-06-23 Jsr Corp Proton conductor composition and proton conductive membrane

Also Published As

Publication number Publication date
JP5164569B2 (en) 2013-03-21
WO2007004588A1 (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5226108B2 (en) Proton conductive membrane reinforcing material and proton conductive membrane and fuel cell using the same
US9692070B2 (en) Carbon substrate for gas diffusion layer, gas diffusion layer using the same, and electrode for fuel cell, membrane-electrode assembly and fuel cell comprising the gas diffusion layer
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4083784B2 (en) Membrane electrode assembly, method for producing the same, and polymer electrolyte fuel cell
WO2012026498A1 (en) Conductive sheet and production method for same
WO2007052650A1 (en) Method for producing membrane electrode assembly for solid polymer fuel cell
KR20190131690A (en) Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same
JP2013016476A (en) Gas diffusion electrode base material and production method therefor
JP5488780B2 (en) Composite electrolyte membrane for fuel cells
JP5164569B2 (en) Proton conductive membrane reinforcing material, proton conductive membrane using the same, and fuel cell
EP1513212A2 (en) Solid polymer electrolyte membrane and fuel cell
JP7431054B2 (en) Gas diffusion layer for fuel cells
JPWO2017099181A1 (en) Carbon sheet, gas diffusion electrode substrate, and fuel cell
WO2016208486A1 (en) Solid electrolyte reinforcement member and solid electrolyte film including reinforcement member
JP2002358981A (en) Current collector for fuel cell and its manufacturing method
JP2009087614A (en) Diffusion layer of fuel cell, manufacturing method for diffusion layer of fuel cell, and fuel cell
JP2004288495A (en) Electrolyte film for polymer electrolyte fuel cell and manufacturing method of the same
JP2004319421A (en) Proton conductive membrane reinforcing material, proton conductive membrane, and fuel cell using it
JP5443413B2 (en) Gas diffusion layer of polymer electrolyte fuel cell, membrane-electrode assembly of polymer electrolyte fuel cell including gas diffusion layer, and slurry used for production of gas diffusion layer
JP2005011724A (en) Proton conductive film reinforcing material, proton conductive film using the same, and fuel cell using the proton conductive film
KR100761525B1 (en) Integrated type gas diffusion layer, electrode comprising the same, membrane electrode assembly comprising the same, and fuel cell comprising the same
JP2015022838A (en) Porous conductive sheet and method for manufacturing the same
KR102568609B1 (en) Substrate for Gas Diffusion Layer and method thereof
JP7354928B2 (en) Gas diffusion layer for fuel cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5164569

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113