JPWO2007004424A1 - Method for producing ceramic porous body - Google Patents

Method for producing ceramic porous body Download PDF

Info

Publication number
JPWO2007004424A1
JPWO2007004424A1 JP2007523409A JP2007523409A JPWO2007004424A1 JP WO2007004424 A1 JPWO2007004424 A1 JP WO2007004424A1 JP 2007523409 A JP2007523409 A JP 2007523409A JP 2007523409 A JP2007523409 A JP 2007523409A JP WO2007004424 A1 JPWO2007004424 A1 JP WO2007004424A1
Authority
JP
Japan
Prior art keywords
weight
component
firing
porous body
base composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007523409A
Other languages
Japanese (ja)
Other versions
JP5255836B2 (en
Inventor
芝崎 靖雄
靖雄 芝崎
高福 加藤
高福 加藤
治 沖本
治 沖本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007523409A priority Critical patent/JP5255836B2/en
Publication of JPWO2007004424A1 publication Critical patent/JPWO2007004424A1/en
Application granted granted Critical
Publication of JP5255836B2 publication Critical patent/JP5255836B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/04Clay; Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/20Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3218Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Abstract

【課題】広い焼成条件幅で細孔径を自由に設計し、均一な多孔体を製造する。
【解決手段】分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、を全体重量100%に対して各々少なくとも10重量%以上含有する素地組成物を調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の温度で焼成する。
【選択図】図1
PROBLEM TO BE SOLVED: To manufacture a uniform porous body by freely designing a pore size in a wide range of firing conditions.
A base material containing at least 10 wt% or more of a plastic clay from which feldspars containing an alkali component and quartz have been removed by classification, a lime and magnesia component, and an alumina component, relative to 100% of the total weight. The composition is prepared, and the base composition is formed into a predetermined shape and fired at a temperature of 500°C to 1400°C.
[Selection diagram] Figure 1

Description

本発明は、セラミック多孔体の製造方法に関する。   The present invention relates to a method for manufacturing a ceramic porous body.

陶磁器における素地の調合組成と焼成温度とを表1に示す(非特許文献1参照)。ここで明らかなように本焼成は1000℃以上で行われるのが通常である。その目的は焼成体の強度を重視するためであり、その結果、焼成体の組織は緻密になり、多くのガラス相と結晶相からなる傾向になっている。
しかし、1000℃以下で焼成する素焼きは意識して多孔質焼結体とされる場合が多い。その主目的は吸水性とろ過性である。すなわち、施釉工程における素焼き多孔質焼成体の毛細管吸水力で釉(スラリー)中のガラス形成成分の粒子及び溶質を主にμmの細孔に引き寄せ、本体との密着性及び釉の厚みを確保するためである。この素焼き焼成体の性質を活用した工業製品は戦前戦後に多く提案されたが、今日まで市場に残っているものの例として、ろ過器、コロイド等を多く含むゲル状のケーキの脱水用素板等のほかにヒーター用のセラミック多孔体がある。特にヒーター用のものは遠赤外線効果もあって1975年以降工業的に使用されはじめた。
Table 1 shows the composition and firing temperature of the base material in the ceramics (see Non-Patent Document 1). As is apparent here, the main firing is usually performed at 1000° C. or higher. The purpose is to attach importance to the strength of the fired body, and as a result, the structure of the fired body is dense and tends to be composed of many glass phases and crystal phases.
However, unglazed firing at 1000° C. or lower is often intentionally made into a porous sintered body. Its main purpose is water absorption and filterability. That is, the particles and solute of the glass-forming component in the glaze (slurry) are mainly attracted to the pores of μm by the capillary water absorption of the unglazed porous fired body in the glaze process, and the adhesion with the main body and the thickness of the glaze are secured This is because. Although many industrial products that utilize the properties of this unglazed fired body were proposed after the prewar period, examples of those that remain on the market to date include a filter and a base plate for dehydrating a gel cake containing a lot of colloids. Besides, there is a ceramic porous body for the heater. In particular, heaters have been used industrially since 1975 due to the far infrared effect.

Figure 2007004424
Figure 2007004424

また、従来の陶磁器は、カオリナイト質、ボーキサイト質及び陶石質粘土の可塑性粘土に、長石類と石英(珪石)とを加えた3成分から素地が構成されている。この素地は、可塑性が良好なために各種成形法を自在に用いることができ、複雑な成形体の作成も可能となっている(非特許文献2参照)。
一方、セラミック多孔体としては、日本で発展した多孔質の白雲陶器(ドロマイト立て陶器)、石灰−長石質陶器(石灰石立て陶器)がよく知られている。その素地組成は、表2に示すように、石灰石、白雲石、カオリナイト質粘土(木節粘土)、陶石質粘土、石英、長石類からの構成素材からなり、構成素材中の構成鉱物は、白雲石、石灰石、石英、カオリナイト鉱物、絹雲母、パイロフィライト、長石鉱物類であり、それらの工業原料の構成素材中には石英が含まれている場合が多い。
In addition, the conventional ceramics are composed of a matrix made of three components obtained by adding feldspar and quartz (silica) to a plastic clay of kaolinite, bauxite, and porphyry clay. Since this base material has good plasticity, various molding methods can be used freely, and it is possible to prepare complicated molded bodies (see Non-Patent Document 2).
On the other hand, as the porous ceramic body, porous white cloud cloud pottery (domite stand pottery) and lime-feldspar pottery pottery (limestone stand pottery) developed in Japan are well known. As shown in Table 2, its base composition is composed of limestone, dolomite, kaolinite clay (kibushi clay), porcelain clay, quartz, and feldspar. , Dolomite, limestone, quartz, kaolinite minerals, sericite, pyrophyllite, and feldspar minerals, and their industrial raw materials often contain quartz.

Figure 2007004424
Figure 2007004424

セラミック工学ハンドブック第5編陶磁器(1989)Ceramic Engineering Handbook Vol.5 Ceramics (1989) 芝崎靖雄「陶磁器製造から水可塑成形技術の確立へ」セラミックス、40(2)106〜110(2005)Yasuo Shibasaki "From ceramics manufacturing to establishment of water plastic molding technology" Ceramics, 40(2)106-110 (2005)

このため、ドロマイト(白雲石)や石灰石立て陶器ではCaO(MgO)−SiO−長石類の反応が1100℃前後で急激に進行し、大量の溶融体形成が生じて、焼成体の軟化歪に繋がっていた。これを防ぐためにAl成分を添加することも試みられているが、多孔体を得るには不十分となっている。
また、従来のセラミック多孔体は、可燃性の有機物と無機物とを均質混合した素地を使用し、その素地の無機物の粒子間の空隙を細孔とする焼成体が一般的であるため、焼成幅が狭くなり、細孔径を自由に設計し、均一な多孔体を製造することが困難となっている。また、素地の可塑性が低いため、成形方法にも制約を受け、板状やタイル状の成形が主流となっているのが現状である。
Therefore, dolomite (dolomite) and limestone stand in pottery CaO (MgO) -SiO 2 - reaction of feldspars rapidly proceeds at about 1100 ° C., mass of melt formation occurs, softens distortion of the sintered body It was connected. In order to prevent this, addition of an Al 2 O 3 component has been attempted, but it is insufficient to obtain a porous body.
Further, the conventional ceramic porous body uses a base material in which a combustible organic substance and an inorganic substance are homogeneously mixed, and a fired body having pores in the voids between the inorganic substance particles of the base substance is generally used. Becomes narrower, and it is difficult to freely design the pore size and manufacture a uniform porous body. Moreover, since the plasticity of the substrate is low, the molding method is also restricted, and the plate-shaped or tile-shaped molding is the mainstream at present.

そこで、本発明は、耐熱性を維持しつつ、ナノ〜サブマイクロメートルの範囲で任意に細孔径及び細孔容積を設計でき、成形性にも優れるセラミック多孔体の製造方法を提供することを目的としたものである。   Therefore, the present invention aims to provide a method for producing a ceramic porous body which is capable of arbitrarily designing a pore diameter and a pore volume in the range of nano to submicrometer while maintaining heat resistance, and which is also excellent in moldability. It is what

まず、セラミック製造上の焼成中の軟化を極力抑制するには、素地の構成素材中のガラス相(溶融体)を形成しやすいアルカリ成分の多い長石類や石英の存在を極力避け、且つセラミック多孔体の細孔の源となる単分子ガスを低温で発生する構成素材を用いる必要がある。
つまり、焼成中の高温ガスにさらされる成形体の変形を小さくする為の耐熱向上策は、Al成分の添加であり、セラミック多孔体製造には構成素材の加熱分解に伴いガスを発生しやすいAl(OH)等の含Al塩類等を主構成素材として、他の構成素材については石英の混入を極力避けて、熱分解でガス発生する各種水酸化物や塩類を用いた素地調合を行うことである。
First, in order to suppress softening during firing during ceramic production as much as possible, avoid the presence of feldspars and quartz containing a large amount of alkaline components that tend to form a glass phase (melt) in the constituent materials of the base material, and It is necessary to use constituent materials that generate a monomolecular gas that is the source of the pores of the body at a low temperature.
In other words, the heat resistance improvement measure for reducing the deformation of the molded body exposed to the high temperature gas during firing is the addition of the Al 2 O 3 component, and in the production of the ceramic porous body, gas is generated with the thermal decomposition of the constituent materials. Easy to do Al(OH) 3 and other Al-containing salts are the main constituent materials, and for other constituent materials, avoiding the inclusion of quartz as much as possible, and blending the base material using various hydroxides and salts that generate gas by thermal decomposition. Is to do.

そこで、請求項1に記載の発明は、分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、の3成分からなる素地組成物を、各成分が全体重量100%に対して各々少なくとも10重量%以上含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするものである。
また、請求項2に記載の発明は、分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、ハイドロタルサイトと、の4成分からなる素地組成物を、全体重量100%に対して先の3成分が各々少なくとも10重量%以上、ハイドロタルサイトが5〜40重量%夫々含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするものである。
請求項3に記載の発明は、請求項1又は2の目的に加えて、より良質な多孔体を得るために、素地組成物に、1000分の3重量%以下のアルカリ系泥漿調整剤を添加するものである。
Therefore, the invention according to claim 1 provides a base composition composed of three components, that is, a plastic clay that has been classified to remove feldspars containing an alkali component and quartz, a lime and magnesia component, and an alumina component, Each component is blended so as to contain at least 10% by weight or more with respect to the total weight of 100%, the base composition is molded into a predetermined shape, and the firing temperature is selected in the range of 500°C to 1400°C. By doing so, it is possible to select any pore diameter and pore volume in the range of nanometer to submicrometer.
The invention according to claim 2 is composed of four components, that is, a plastic clay that has been classified to remove feldspars containing an alkali component and quartz, a lime and magnesia component, an alumina component, and a hydrotalcite. The base composition is prepared so that the above three components are contained in an amount of at least 10% by weight and hydrotalcite is contained in an amount of 5 to 40% by weight based on 100% of the total weight, and the base composition is molded into a predetermined shape. By selecting the firing temperature in the range of 500° C. to 1400° C. and firing, it is possible to select any pore diameter and pore volume in the range of nano to sub-micrometer. is there.
In addition to the object of claim 1 or 2, the invention according to claim 3 adds 3% by weight or less of an alkaline-based sludge modifier of 1000 parts to the base composition in order to obtain a higher quality porous body. To do.

請求項1及び2に記載の発明によれば、成形体を500〜1400℃の焼成幅で焼成条件を任意に変えて焼成することによって、ナノ〜サブマイクロメートル程度の範囲で任意に細孔径及び細孔容積を設計できる。また、アルミナ成分の添加によって焼成体の変形や歪も好適に抑制可能となる。さらに、微細組織が均質な多孔体となるので、耐熱衝撃性にも優れ、広範囲な産業分野に有用である。特に、請求項2に記載の発明では、ハイドロタルサイトの含有によって焼成温度の変化に対して比表面積が直線的に変化するため、白雲石系等に比べて細孔径及び細孔容積のコントロールが容易となる。
請求項3に記載の発明によれば、請求項1又は2の効果に加えて、微量のアルカリ系泥漿調整剤の添加により、CaO(MgO)−Al−SiO組成系の固相反応開始温度を低下させてより良質な多孔体が得られる。
According to the invention described in claims 1 and 2, by firing the molded body with a firing width of 500 to 1400° C. and optionally varying the firing conditions, the pore diameter and the pore diameter can be arbitrarily adjusted in the range of about nano to sub-micrometer. Pore volume can be designed. Further, by adding the alumina component, it is possible to preferably suppress the deformation and distortion of the fired body. Furthermore, since the fine structure is a porous body having a uniform structure, it has excellent thermal shock resistance and is useful in a wide range of industrial fields. In particular, in the invention described in claim 2, since the specific surface area changes linearly with the change of the firing temperature due to the inclusion of hydrotalcite, the pore diameter and the pore volume can be controlled as compared with dolomite-based materials. It will be easy.
According to the invention described in claim 3, in addition to the effect of claim 1 or 2, by addition of alkaline mud modifiers of trace, CaO (MgO) -Al 2 O 3 -SiO 2 composition system solid phase By lowering the reaction initiation temperature, a better quality porous material can be obtained.

本発明で使用する可塑性粘土は、木節粘土、蛙目粘土、カオリナイト質粘土、ボーキサイト質粘土、陶石質粘土及び各種人工粘土から1種以上が選択される。この可塑性粘土のアルカリ成分を含む長石類及び石英、必要に応じて雲母を、水簸又は工業的遠心分離機を用いて除去する。
一方、石灰及び苦土成分は、それらの水酸化物、炭酸塩、複塩類であっても良い。
そして、アルミナ成分は、多孔質Al、水酸化物、炭酸基・アンモニウム基・水酸基からなる塩および複塩類から選ばれる1種以上であることが好ましい。
The plastic clay used in the present invention is selected from at least one kind selected from kibushi clay, frog eye clay, kaolinite clay, bauxite clay, porcelain clay and various artificial clays. The feldspars and quartz containing the alkali component of this plastic clay and, if necessary, mica are removed using an elutriate or an industrial centrifuge.
On the other hand, the lime and magnesia components may be hydroxides, carbonates or double salts thereof.
The alumina component is preferably one or more selected from porous Al 2 O 3 , hydroxides, salts of carbonic acid groups/ammonium groups/hydroxyl groups, and double salts.

これらの各成分を夫々10重量%以上含有させて素地組成物を調合する。好ましくは、可塑性粘土を素地組成物に対して15〜70重量%、石灰及び苦土成分を素地組成物に対して15〜70重量%、アルミナ成分を素地組成物に対して15〜70重量%で夫々選択して調合する。
さらに、上記3成分にハイドロタルサイトを加えた4成分で素地組成物を調合する場合は、ハイドロタルサイトを全体重量100%に対して5〜40重量%の範囲で含有させれば、細孔径及び細孔容積のコントロールに好適となる。また、アルカリ系泥漿調整剤としては水ガラス等が使用できる。
こうして調合された素地組成物を、500℃〜1400℃の範囲で焼成温度を選択して焼成することにより、ナノサイズからサブミクロンサイズ及びミクロンメーターサイズまでの任意の細孔径及び細孔容積のセラミック多孔体を得ることができる。
Each of these components is contained in an amount of 10% by weight or more to prepare a base composition. Preferably, the plastic clay is 15 to 70% by weight with respect to the base composition, the lime and magnesia components are 15 to 70% by weight with respect to the base composition, and the alumina component is 15 to 70% by weight with respect to the base composition. Select each and mix.
Furthermore, when a base composition is prepared with four components obtained by adding hydrotalcite to the above three components, if the content of hydrotalcite is in the range of 5 to 40% by weight based on the total weight of 100%, the pore size is Also, it is suitable for controlling the pore volume. Further, water glass or the like can be used as the alkaline-type slurry adjusting agent.
The thus-prepared base composition is fired at a firing temperature selected in the range of 500° C. to 1400° C. to fire a ceramic having an arbitrary pore size and pore volume from nano size to sub-micron size and micron meter size. A porous body can be obtained.

以下、本発明の実施例を説明する。   Examples of the present invention will be described below.

《石灰石系調合素地の焼成》
石灰石を16重量%、Al(OH)を47重量%、カオリナイト質粘土を37重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法でルツボ(高さ70mm×直径81.5mm)及び棒状試験体(10cm×直径2cm)を5本作成した。これを風乾燥後、電気炉内に設置して、図1に示す焼成曲線のように300℃まで加熱して1時間保持し、さらに昇温して設定温度に達した後に1時間保持後、自然放冷する形式で、600℃〜1400℃まで50℃毎に各温度で焼成した。その結果、焼成体のルツボ形状は1400℃まで十分に維持できた。
《Firing of limestone-based mixed base material》
Mixing the base material with 16% by weight of limestone, 47% by weight of Al(OH) 3 and 37% by weight of kaolinite clay, and water glass was adjusted to 3.0% by weight with respect to the weight of the basic material of 1000% by weight. Five crucibles (height 70 mm×diameter 81.5 mm) and rod-shaped test bodies (10 cm×diameter 2 cm) were prepared by the method. This was air-dried, placed in an electric furnace, heated to 300° C. as shown in the firing curve in FIG. 1 and held for 1 hour, further heated to a set temperature, and then held for 1 hour, In the form of natural cooling, it was baked at each temperature from 600°C to 1400°C at every 50°C. As a result, the crucible shape of the fired body could be sufficiently maintained up to 1400°C.

《白雲石系調合素地の焼成》
白雲石を16重量%、Al(OH)を47重量%、カオリナイト質粘土を37重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で600℃〜1400℃まで50℃毎に各温度で焼成した。
《Firing of dolomite-based compounded base》
Mixture of dolomite of 16% by weight, Al(OH) 3 of 47% by weight and kaolinite clay of 37% by weight was prepared, and water glass was adjusted to 3.0% by weight with respect to 1000 of the substrate weight. The same rod-shaped test body as in Example 1 was molded by the molding method. This was air-dried, then placed in an electric furnace, and fired in the same manner as in Example 1 at 600° C. to 1400° C. at every 50° C. at each temperature.

《ハイドロタルサイト調合素地の焼成(HT−1)》
石灰石を15重量%、Al(OH)を37重量%、ハイドロタルサイトを10重量%、蛙目粘土を18重量%、木節粘土を20重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で500℃〜1400℃まで100℃毎に各温度で焼成した。
<<Baking of hydrotalcite compounded base (HT-1)>>
15% by weight of limestone, 37% by weight of Al(OH) 3 , 10% by weight of hydrotalcite, 18% by weight of frog clay and 20% by weight of kibushi clay, and water glass as the basis weight. The same rod-shaped test body as in Example 1 was molded by the sludge casting molding method in which the amount was adjusted to 3.0% by weight with respect to 1000. This was air-dried, then placed in an electric furnace, and fired in the same manner as in Example 1 at 500° C. to 1400° C. at every 100° C. at each temperature.

《ハイドロタルサイト調合素地の焼成(HT−2)》
石灰石を15重量%、Al(OH)を27重量%、ハイドロタルサイトを20重量%、蛙目粘土を18重量%、木節粘土を20重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で500℃〜1400℃まで100℃毎に各温度で焼成した。
<<Baking of hydrotalcite compounded base (HT-2)>>
15% by weight of limestone, 27% by weight of Al(OH) 3 , 20% by weight of hydrotalcite, 18% by weight of frog clay and 20% by weight of kibushi clay. The same rod-shaped test body as in Example 1 was molded by the sludge casting molding method adjusted to 3.0% by weight with respect to 1000. This was air-dried, placed in an electric furnace, and fired in the same manner as in Example 1 at 500° C. to 1400° C. at every 100° C. at each temperature.

比較例1
木節粘土を100重量%用いて棒状試験体を成形し、乾燥後、電気炉で400℃、600℃、900℃、1000℃で夫々焼成した。
比較例2
調合された白雲陶磁器素地(カオリナイト質粘土分30%、ドロマイト30%、長石・石英40%)を成形し、乾燥後、700℃で素焼きした。得られた多孔質体は、原料基材の粒子間空隙を利用するためにμmオーダーの多孔体になる。
比較例3
Al(OH)を90重量%以上、カオリナイト質粘土を10重量%以下で調合したアルミナ触媒担体(KHA−24、NKH3−24)が市販されている。これを900℃、1000℃で夫々焼成した。
Comparative Example 1
A rod-shaped test body was formed by using 100% by weight of kibushi clay, dried, and then baked in an electric furnace at 400°C, 600°C, 900°C, and 1000°C, respectively.
Comparative example 2
The prepared Hakuun porcelain base material (30% kaolinite clay content, 30% dolomite, 40% feldspar/quartz) was molded, dried, and then unglazed at 700°C. The obtained porous body becomes a μm-order porous body because the interparticle voids of the raw material base material are used.
Comparative Example 3
Alumina catalyst carriers (KHA-24, NKH3-24) prepared by mixing Al(OH) 3 in 90% by weight or more and kaolinite clay in 10% by weight or less are commercially available. This was baked at 900° C. and 1000° C., respectively.

以下、上記実施例で得られた焼成体の評価を行った。
《収縮率及び3点曲げ強度》
上記実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、および実施例3のHT−1素地焼成体についての焼成収縮の分析を行い評価した。
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体の3点曲げ強度の測定を行い評価した。
実施例1の石灰石系素地焼成体棒状試験体(600〜1400℃)、実施例2の白雲石系素地焼成体棒状試験体(600〜1400℃)、および実施例3のHT−1素地焼成体棒状試験体(500〜1100℃)の焼成収縮曲線を図2に示す。
また、実施例1の石灰石系素地焼成体(600〜1400℃)、実施例3のHT−1素地焼成体(500〜1100℃)の3点曲げ強度曲線を図3に示す。曲げ強度は少なくとも5MPa以上得られ、焼成温度800℃以上においては10MPa以上得られる特徴がある。また、この図2、図3より見かけ上3段階の固相反応があったと推定できる。
Hereinafter, the fired bodies obtained in the above examples were evaluated.
<Shrinkage rate and 3-point bending strength>
The firing shrinkage of the limestone-based base fired body of Example 1, the dolomite-based base fired body of Example 2 and the HT-1 base body fired body of Example 3 was analyzed and evaluated.
The three-point bending strengths of the limestone-based green body of Example 1 and the HT-1 green body of Example 3 were measured and evaluated.
Limestone-based green body rod-shaped test body of Example 1 (600 to 1400° C.), dolomite-based base body baked body rod-shaped test body of Example 2 (600 to 1400° C.), and HT-1 base body fired body of Example 3. The firing shrinkage curve of the rod-shaped test body (500 to 1100° C.) is shown in FIG.
3 shows the 3-point bending strength curves of the limestone-based green body (600 to 1400° C.) of Example 1 and the HT-1 green body (500 to 1100° C.) of Example 3. The bending strength is at least 5 MPa or more, and 10 MPa or more at a firing temperature of 800° C. or more. Further, from FIGS. 2 and 3, it can be inferred that there was apparently three-stage solid-phase reaction.

《吸水率》
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体についての吸水率の測定を行い評価した。吸水率は、島津製作所社製 LIBROR ED−2000を用いて測定した。なお、測定に当っては、以下の手順で行った。
各試験体を2時間煮沸後タオルで拭って含水重量を測定し、その後各試験体を110℃で3時間乾燥させて乾燥重量を測定した。含水重量から乾燥重量を引き、乾燥重量で割り、100をかけた数値を吸水率とした。こうして得た実施例1の石灰石系素地焼成体(600〜1400℃)、実施例3のHT−1素地焼成体(500〜1100℃)の吸水率曲線を図4に示す。
この図4からも3段階の細孔容量の変化が認められる。500〜800℃の範囲では構成基礎素材が順次分解反応を起すため、発生ガスの起点の増加と発生ガスの膨張により気孔の数及び容積が増加していると推定できる。
《Water absorption rate》
The water absorption rates of the limestone-based green body of Example 1 and the HT-1 green body of Example 3 were measured and evaluated. The water absorption rate was measured using LIBROR ED-2000 manufactured by Shimadzu Corporation. The measurement was performed according to the following procedure.
Each test body was boiled for 2 hours and then wiped with a towel to measure the water content weight, and then each test body was dried at 110° C. for 3 hours to measure the dry weight. The dry weight was subtracted from the wet weight, divided by the dry weight, and multiplied by 100 to obtain the water absorption. FIG. 4 shows the water absorption curves of the limestone-based green body (600 to 1400° C.) of Example 1 and the HT-1 green body (500 to 1100° C.) of Example 3 thus obtained.
From FIG. 4 as well, a three-step change in the pore volume is recognized. In the range of 500 to 800° C., the constituent basic materials sequentially undergo decomposition reactions, so it can be estimated that the number and volume of pores are increasing due to the increase of the starting point of the generated gas and the expansion of the generated gas.

なお、800−900℃での吸水率および焼成収縮率の低下傾向は、焼結反応の開始に伴う粒子間空隙の減少であり、粒子間の接点の増加は曲げ強度を増加させている。900−1200℃の範囲では焼結反応の進行に伴い、結晶粒の成長とナノ細孔の成長と合体が進行するため、見かけ上、焼成収縮率及び吸水率の減少は無いように表示されている。しかし、3点曲げ強度では1200℃付近で低下及び吸水率と焼成収縮率の増加傾向が認められることから、焼結反応の進行により細孔の合体現象の一面をこれら3つの指標で検知できる。1300−1400℃の範囲での現象は多数の結晶のうちの一部の溶融軟化が進行したためである。   The tendency of the water absorption rate and the firing shrinkage rate at 800-900°C to decrease is a decrease in interparticle voids accompanying the initiation of the sintering reaction, and an increase in contact points between particles increases bending strength. In the range of 900 to 1200° C., as the sintering reaction proceeds, the growth of crystal grains and the growth of nanopores proceed to coalesce, so that it is apparently displayed so that the firing shrinkage and the water absorption do not decrease. There is. However, since the three-point bending strength decreases around 1200° C. and the water absorption rate and the firing shrinkage rate tend to increase, one side of the pore coalescence phenomenon due to the progress of the sintering reaction can be detected by these three indexes. The phenomenon in the range of 1300-1400° C. is due to the progress of melting and softening of a part of many crystals.

《X線粉末回折による同定》
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体のX線粉末回折による同定を行った。
実施例1の石灰石系素地焼成体及び実施例3のHT−1素地焼成体を粉砕し、粉末X線回折用試験粉とした。粉末X線回折図から求めた石灰石系素地焼成体(600〜1400℃)および、HT−1素地焼成体(500〜1400℃)の結晶相変遷をそれぞれ表3、表4に示す。
<<Identification by X-ray powder diffraction>>
The limestone-based green body of Example 1 and the HT-1 green body of Example 3 were identified by X-ray powder diffraction.
The limestone-based base fired body of Example 1 and the HT-1 base body fired body of Example 3 were crushed to obtain a test powder for powder X-ray diffraction. Tables 3 and 4 show the crystal phase transitions of the calcined limestone substrate (600 to 1400°C) and the calcined HT-1 substrate (500 to 1400°C) obtained from the powder X-ray diffraction pattern, respectively.

Figure 2007004424
Figure 2007004424

Figure 2007004424
Figure 2007004424

構成素材のCaCOは750℃、(Mg,Ca)COは700℃前後で分解し、カオリナイト質粘土に微量混在したSiOは850℃まで残存した。他の構成素材は500℃までに熱分解した。500℃以下で分解して生成した活性な多孔質Alとカオリナイトの分解生成物のメタカオリナイトによる多孔質構造的骨格は形成されていると推察される。その中でもHydrotalciteはスピネル形成へ進行している。多孔質骨格へのMgO、CaOが反応してGehleniteそしてAnorthiteへと骨格表面反応で生成するのであろう。さらに、余剰のAl成分は1100℃以上でα−Alへ相転移をすることと思われる。この反応プロセスの結果、焼結反応は抑制されて多孔質骨格が高温1000℃以上でも維持されたのであろう。CaCO 3 of the constituent materials decomposed at 750° C., (Mg,Ca)CO 3 at around 700° C., and SiO 2 mixed in a small amount in the kaolinite clay remained up to 850° C. The other constituent materials were pyrolyzed up to 500°C. It is presumed that a porous structural skeleton is formed by metakaolinite, which is a decomposition product of active porous Al 2 O 3 and kaolinite generated by decomposition at 500° C. or lower. Among them, Hydrotalcite progresses to spinel formation. It seems that MgO and CaO to the porous skeleton react with each other to form Gehlenite and Anorthite by skeleton surface reaction. Furthermore, it is considered that the surplus Al 2 O 3 component undergoes a phase transition to α-Al 2 O 3 at 1100° C. or higher. As a result of this reaction process, the sintering reaction may be suppressed and the porous skeleton may be maintained even at a high temperature of 1000° C. or higher.

《BET比表面積の測定》
実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体を粉砕後、窒素吸着法によるBET比表面積の測定を行った。
比較例1の木節粘土焼成体、比較例3のアルミナ触媒担体、実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体についてBET比表面積を測定した結果を図5に示す。
このグラフより、実施例1〜4の900℃焼成体については30m/g以上の比表面積が得られたことが示された。これにより各実施例はセラミックフィルタとして十分な細孔比表面積を持つといえる。
また、ハイドロタルサイトを調合したHT−1、HT−2は、同じくマグネシウムを含有する白雲石系と比べて、低温から高温まで比表面積のグラフが直線的に展開している。これは、白雲石系の構成素材のドロマイトが700℃前後で分解開始するのに対し、HT−1、HT−2の構成素材であるハイドロタルサイトが500℃以前で分解が開始していることに起因する。この結果HT−1、HT−2のグラフは1000℃前後でスピネルの生成が行われても直線的に変化する。これより、ハイドロタルサイトを添加すると白雲石系に比べて比表面積のコントロールがしやすい事が言える。
<<Measurement of BET specific surface area>>
After crushing the limestone-based green body of Example 1, the dolomite-based green body of Example 2, the HT-1 green body of Example 3, and the HT-2 green body of Example 4, a nitrogen adsorption method is performed. The BET specific surface area was measured by.
A kibushi clay fired body of Comparative Example 1, an alumina catalyst carrier of Comparative Example 3, a limestone base fired body of Example 1, a dolomite base fired body of Example 2, an HT-1 base fired body of Example 3, And the result of having measured the BET specific surface area about the HT-2 base calcination object of Example 4 is shown in FIG.
From this graph, it was shown that the 900° C. fired bodies of Examples 1 to 4 had a specific surface area of 30 m 2 /g or more. Therefore, it can be said that each example has a sufficient pore specific surface area as a ceramic filter.
Further, in the HT-1 and HT-2 prepared by mixing hydrotalcite, the graph of the specific surface area is linearly developed from low temperature to high temperature as compared with the dolomite system containing magnesium similarly. This is because dolomite, which is a constituent material of dolomite, starts to decompose at around 700°C, whereas hydrotalcite, which is a constituent material of HT-1 and HT-2, starts to decompose before 500°C. caused by. As a result, the graphs of HT-1 and HT-2 change linearly even when spinel is generated at around 1000°C. From this, it can be said that the addition of hydrotalcite makes it easier to control the specific surface area as compared with dolomite.

《細孔容量と細孔径との関係》
さらに、前記データを基に実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体および実施例4のHT−2素地焼成体の各焼成温度における細孔容量と細孔径との関係を示した分布曲線を得た。
実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体について、各焼成温度における細孔容量と細孔径分布曲線を、図6、図7、図8、図9に示す。
細孔径及び細孔容量は、島津製作所社製 トライスター300を用いて測定した。なお、測定にあたっては、粉末0.2gを12時間真空脱気したものを用いた。細孔容量及び細孔径は離脱側からBJHモデルに基づいて算出した。
<<Relationship between pore volume and pore diameter>>
Further, based on the above data, the limestone-based green body of Example 1, the dolomite-based green body of Example 2, the HT-1 green body of Example 3 and the HT-2 green body of Example 4 were used. A distribution curve showing the relationship between the pore volume and the pore diameter at each firing temperature was obtained.
The limestone-based green body of Example 1, the dolomite-based green body of Example 2, the HT-1 green body of Example 3 and the HT-2 green body of Example 4 were thin at each firing temperature. The pore volume and the pore size distribution curve are shown in FIGS. 6, 7, 8 and 9.
The pore diameter and the pore volume were measured using a Tristar 300 manufactured by Shimadzu Corporation. In the measurement, 0.2 g of the powder was deaerated in vacuum for 12 hours. The pore volume and pore diameter were calculated from the detached side based on the BJH model.

細孔形成と高温までの維持策(図6、図7、図8、図9参照)
本発明では、低温でカオリナイトとAl(OH)の混合体の熱分解法で多孔化し、液相焼結の原因のSiO−NaO系のガラス相の生成を極力抑える調合で、低温から耐熱性を付与できる含アルカリ土類系の結晶を析出させて焼結進行を抑制して高温まで多孔体を維持することができる。
ナノ細孔の発生は低温熱分解物であり、分解後はカオリナイト、アルミナを中心とするAl−Si−O系に加わって耐熱性向上に寄与するアルカリ土類を含む結晶相を析出するようにした。X線回折の結果から、1000℃以下でカルシウムアルミノシリケートを含む各種結晶がAl−Si−O系の多孔質骨格付近で生成したために、細孔径分布のシャープさが900℃までは維持できたと推察される。さらに、MgO成分、Al成分を添加することになるHydrotalciteは分解後、低温で耐熱性の良いスピネルが骨格細孔表面側で生成されることにより、多孔質骨格が維持されるために細孔径分布のシャープさが1100℃まで保持できたと推察できる。さらに図5の比表面積測定結果からは1300℃くらいまでは、多孔質骨格を形成している細孔は大きくなりながらも多孔質骨格は維持できていると推定した。
Pore formation and maintenance measures up to high temperature (see FIGS. 6, 7, 8 and 9)
In the present invention, a mixture of kaolinite and Al(OH) 3 is pyrolyzed at a low temperature by a thermal decomposition method to suppress the formation of a SiO 2 —Na 2 O-based glass phase that causes liquid phase sintering as much as possible. It is possible to keep the porous body up to a high temperature by precipitating the sintering progress by precipitating an alkaline earth-containing crystal capable of imparting heat resistance from a low temperature.
The generation of nanopores is a low-temperature pyrolyzate, and after decomposition it appears to precipitate a crystalline phase containing alkaline earth that contributes to the heat resistance improvement by joining the Al-Si-O system centered on kaolinite and alumina. I chose From the results of X-ray diffraction, it is estimated that various crystals containing calcium aluminosilicate were generated near the Al-Si-O-based porous skeleton at 1000°C or lower, and thus the sharpness of the pore size distribution could be maintained up to 900°C. To be done. Furthermore, since hydrotalcite, which requires addition of MgO component and Al 2 O 3 component, decomposes, spinel having good heat resistance at low temperature is generated on the surface side of the skeleton pores to maintain the porous skeleton. It can be inferred that the sharpness of the pore size distribution could be maintained up to 1100°C. Furthermore, from the results of measurement of the specific surface area in FIG. 5, it was estimated that up to about 1300° C., the pores forming the porous skeleton became large, but the porous skeleton could be maintained.

なお、参考までに比較例1〜3における焼成体の細孔要領と細孔径との関係を図10〜12に夫々示す。
比較例1で得られた各焼成体において、nmオーダーの細孔径分布曲線は図10のようになるが、細孔容量および細孔分布曲線のシャープさもフィルタとして使用するには不充分で、焼成体の強度(5MPa以下)もフィルタとして使用するには不充分である。
比較例2のように熱分解物を多く含む基材としての白雲石を用いた素地焼成体では図11のようにnmオーダーの細孔を得ることができるが、その細孔容量は依然として不充分である。
比較例3の触媒担体は強度が不足し、圧縮強度も弱く、簡単に砕かれてしまうし、図12のように細孔分布曲線のシャープさも失われる。1000℃でα−Alへの相転移に伴う焼結により多孔性も失う。
For reference, FIGS. 10 to 12 show the relationship between the pore size and the pore diameter of the fired bodies in Comparative Examples 1 to 3, respectively.
In each fired body obtained in Comparative Example 1, the pore size distribution curve on the nm order is as shown in FIG. 10, but the pore volume and the sharpness of the pore distribution curve are also insufficient for use as a filter, and firing The strength of the body (5 MPa or less) is also insufficient for use as a filter.
With the green fired body using dolomite as a base material containing a large amount of pyrolysate as in Comparative Example 2, pores of nm order can be obtained as shown in FIG. 11, but the pore volume is still insufficient. Is.
The catalyst carrier of Comparative Example 3 has insufficient strength, weak compressive strength, is easily crushed, and loses the sharpness of the pore distribution curve as shown in FIG. Porosity is also lost due to the sintering associated with the phase transition to α-Al 2 O 3 at 1000°C.

《耐熱衝撃試験》
実施例3のHT−1素地焼成体および実施例4のHT−2素地焼成体について耐熱衝撃試験を行った。
HT−1素地、HT−2素地をそれぞれ1200℃で焼成し、作成したルツボをガスバーナーで灼熱した後、水中へ投下したが破損はなかった。
<< Thermal shock test >>
A thermal shock test was carried out on the HT-1 green body fired body of Example 3 and the HT-2 base body fired body of Example 4.
Each of the HT-1 base material and the HT-2 base material was fired at 1200° C., and the crucible thus prepared was heated by a gas burner and then dropped into water, but there was no damage.

《インクテスト》
実施例1で得た各温度焼成のルツボ(色調:白色)を、透明赤色インク(パイロット製商品番号:ink-350-R)に6分目まで投入し、15分観察した。以下に各温度での所見を示す。
(1)700℃焼成は、ただ表面がうっすらと湿るだけであり高台の下には湿気は転写されない。湿気はルツボの最上部に到達した。インク排除後、内壁には暗色で赤味を帯びたゲル状の物質があり、紙で拭き取ることはできた。内壁の色調は白色であった。
(2)800℃焼成は、インク投入後、湿気が現われ次第に上部へ拡大していく。10分後位に内側の液面以下の部分は見かけ上、淡黄色になった。高台の輪は一部濡れが確認できた。インク排除後、ルツボの内壁は700℃と同様の結果であるが、暗色の赤味のゲル状の染料を除去した後の、白色素地に淡黄色味を感じた。
(3)900℃焼成は投入後、湿りは表面に表われ、次第に上昇し水面下の部分から淡黄色に変化し、これも上部へ上昇する。更に14分位から少し桃色味を帯びた。高台は完全に濡れた状態となり、淡々桃色を帯びた。インク排除後、ルツボの内面は暗赤色の染料を除去できたが、その後の白色素地は淡黄色が強くなった。
(4)1200℃では、インク投入後1分位で桃色味を帯び、水面以上に上昇していく。10分位で桃色は上部に到達するが、最上部から5mm位で上昇は止まる。残りの上部は淡黄色となった。高台跡はインク色となった。インク排除後のルツボの内面と焼成素地は同一の色調の桃色であった。これらのインクテスト結果を模式的に示すと図13の様になる。
《Ink test》
The crucible (color tone: white) fired at each temperature obtained in Example 1 was put into a transparent red ink (Pilot product number: ink-350-R) up to the 6th minute and observed for 15 minutes. The findings at each temperature are shown below.
(1) Baking at 700°C only wets the surface slightly, and moisture is not transferred to the bottom of the hill. Moisture has reached the top of the crucible. After removing the ink, there was a dark, reddish gel-like substance on the inner wall, which could be wiped off with paper. The color tone of the inner wall was white.
(2) Baking at 800° C. gradually spreads to the upper part as moisture appears after ink is added. After about 10 minutes, the portion below the inner liquid surface became apparently pale yellow. It was confirmed that part of the hill was wet. After the ink was removed, the inner wall of the crucible had the same result as at 700° C., but after the dark reddish gel dye was removed, a pale yellow tint was felt on the white pigment background.
(3) After 900° C. firing, the wetness appears on the surface and gradually rises, changing from a part under the water surface to a pale yellow, which also rises to the upper part. After about 14 minutes, it became slightly pinkish. The hill became completely wet and became pale pink. After removing the ink, the dark red dye could be removed from the inner surface of the crucible, but the white pigment background after that became light yellow.
(4) At 1200° C., it takes on a pinkish tint about one minute after the ink is added, and rises above the water surface. The pink reaches the upper part in about 10 minutes, but stops rising at about 5 mm from the top. The remaining top turned pale yellow. The traces of the plateau became an ink color. After removing the ink, the inner surface of the crucible and the fired substrate were pink with the same color tone. FIG. 13 schematically shows the results of these ink tests.

所見の結果これらの実験から、特に動的な動きとして、水分が先に透過拡散し、後に水に分散した微細な淡黄色染料が続き、μmオーダーの赤色染料が細孔の中を移動することが推定される。
一方、900℃くらいまで高台跡が濡れないことから、水の透過は900℃位までは発生しない。水分子あるいは数個の水分子(クラスター)の移動は毛細管凝縮現象で、次に水に分散したsubμmの染料の微細粒子がμm細孔径へ水とともに移動上昇する毛細管現象が確認できた。
Findings As a result of these experiments, as a particularly dynamic movement, water is permeated and diffused first, followed by fine light yellow dye dispersed in water, and red dye of μm order moves in pores. Is estimated.
On the other hand, since traces on high ground do not get wet up to about 900°C, water does not penetrate up to about 900°C. The migration of water molecules or several water molecules (clusters) was a capillary condensation phenomenon, and then a capillary phenomenon was observed in which fine particles of dye of subμm dispersed in water moved and increased to μm pore size with water.

1200℃焼成ルツボのインクテスト後の洗浄は、水中につけると長時間かかるが、桃色ルツボを水面に浮かせると12時間くらい浮遊し、内面側だけ桃色になった。3回くらいの同様の手順で洗浄できた。これは節水型の洗浄方法を見出せた。内面と外面のレベルが同じになる間は、外面側に染料粒子はでないようであった。これをフイルターとして利用すれば逆洗浄の可能性を示している。   The washing of the 1200° C. crucible after the ink test takes a long time when immersed in water, but when the pink crucible was floated on the water surface, it floated for about 12 hours, and only the inner surface became pink. It could be washed by the same procedure about three times. This has found a water-saving type cleaning method. There appeared to be no dye particles on the outside while the level of the inside and outside was the same. If this is used as a filter, it shows the possibility of backwashing.

Al(OH)、蛙目粘土、石灰石を、表5に示す001〜006の6パターンの割合で素地を調合し、泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、700℃、900℃、1100℃の各温度で焼成した。各焼成体の収縮率及び吸水率の測定結果、耐熱衝撃試験の結果を表6に示す。A base material was prepared by mixing Al(OH) 3 , frog clay and limestone in a ratio of 6 patterns of 001 to 006 shown in Table 5, and molded into a rod-shaped test body similar to that of Example 1 by a slurry casting molding method. This was dried in air, placed in an electric furnace, and fired at temperatures of 700°C, 900°C, and 1100°C. Table 6 shows the measurement results of the shrinkage rate and the water absorption rate of each fired body, and the results of the thermal shock test.

Figure 2007004424
Figure 2007004424

Figure 2007004424
Figure 2007004424

表6より、収縮率では、001,002,005,006は何れも各温度で10%を下回り(特に001,005では各温度で8%以下)、吸水率では、001,002,005,006が何れも各温度で20%を超えており、多孔体として好適に利用できることが明らかである。001,003,004,006については、焼成温度によっては性能が他よりも落ちるものがあるが、調合自体は実際に採用できる範囲と言える。
このように、本発明の製造方法によれば、3成分のうちの一部が10重量%で調合される場合でも多孔体として所望の性能が得られることがわかる。
From Table 6, in terms of shrinkage, all of 001, 002, 005, 006 are below 10% at each temperature (especially 001, 005 is 8% or less at each temperature), and water absorption is 001, 002, 005, 006. Is more than 20% at each temperature, and it is clear that it can be suitably used as a porous body. Regarding 001, 003, 004, and 006, the performance may be lower than the others depending on the firing temperature, but it can be said that the formulation itself can be actually adopted.
As described above, according to the production method of the present invention, it is understood that the desired performance as a porous body can be obtained even when a part of the three components is mixed at 10% by weight.

本発明にかかるセラミックフィルタ用多孔体は、セラミックフィルタ、耐熱反応容器、耐熱衝撃性セラミックス、軽量セラミック建材、調湿建材、軽量陶器、大形軽量セラミックス(衛生陶器、燃焼用器具等)、軽量骨材、ガス反応用触媒担体、ガス拡散分離膜、ガス分離膜、逆洗浄可能なセラミックフィルタ、イオン交換用セラミック膜、微生物ろ過器、医療用ろ過器、食品加工用各種フィルタ、などの産業分野に対し、安価な製造法と多様な形状、高い強度、耐熱性、耐化学性での活用を可能とする。
The porous body for a ceramic filter according to the present invention is a ceramic filter, a heat resistant reaction container, a heat shock resistant ceramics, a lightweight ceramic building material, a humidity controlling building material, a lightweight ceramic, a large lightweight ceramic (sanitary ceramic, a burning appliance, etc.), a lightweight bone. Materials, catalyst carriers for gas reactions, gas diffusion separation membranes, gas separation membranes, backwashable ceramic filters, ion exchange ceramic membranes, microbial filters, medical filters, various filters for food processing, etc. On the other hand, it enables the use of inexpensive manufacturing methods, various shapes, high strength, heat resistance, and chemical resistance.

調合素地の焼成曲線を示すグラフである。It is a graph which shows the baking curve of a compounding foundation. 各素地の焼成収縮率曲線を示すグラフである。It is a graph which shows the firing shrinkage rate curve of each base material. 各素地焼成体の3点曲げ強度曲線を示すグラフである。It is a graph which shows the 3-point bending strength curve of each green body. 各素地焼成体の吸水率曲線を示すグラフである。It is a graph which shows the water absorption curve of each green body. 各素地焼成体別BET比表面積を示すグラフである。It is a graph which shows the BET specific surface area according to each green body. 石灰石系素地の各焼成温度における細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and the pore diameter in each calcination temperature of a limestone base. 白雲石系素地の各焼成温度における細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and the pore diameter in each firing temperature of the dolomite base material. HT−1素地の各焼成温度における細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and the pore diameter at each firing temperature of the HT-1 substrate. HT−2素地の各焼成温度における細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and the pore diameter at each firing temperature of the HT-2 substrate. 焼成した木節粘土の多孔体の細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and pore diameter of the porous Kibushi clay porous body. 水野陶土白雲陶器仮焼体(700℃焼成)の細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and pore diameter of a Mizuno pottery clay white cloud pottery calcination body (700 degreeC baking). Al(OH)とカオリナイト質粘土を混合焼成した触媒担体(NKH3−24)の細孔容量と細孔径との関係を示すグラフである。It is a graph which shows the relationship between the pore volume and the pore diameter of the catalyst support (NKH3-24) obtained by mixing and firing Al(OH) 3 and kaolinite clay. 石灰石系調合素地の焼成体(ルツボ)への透明赤色インク投入テストを示す説明図である。It is explanatory drawing which shows the transparent red ink input test to the baked body (crucible) of a limestone type compounding base material.

Claims (3)

分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、の3成分からなる素地組成物を、各成分が全体重量100%に対して各々少なくとも10重量%以上含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするセラミック多孔体の製造方法。   A base composition consisting of three components, a plastic clay that has been classified to remove feldspars containing an alkali component and quartz, a lime and magnesia component, and an alumina component, each component being 100% by weight of the total By blending so as to contain at least 10% by weight or more, molding the base composition into a predetermined shape, and by firing at a firing temperature selected in the range of 500°C to 1400°C, the range of nano to submicrometer is obtained. A method for producing a ceramic porous body, wherein any pore diameter and pore volume can be selected by. 分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰及び苦土成分と、アルミナ成分と、ハイドロタルサイトと、の4成分からなる素地組成物を、全体重量100%に対して先の3成分が各々少なくとも10重量%以上、ハイドロタルサイトが5〜40重量%夫々含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするセラミック多孔体の製造方法。   A plastic composition from which feldspars and quartz containing an alkali component have been removed by classification, a lime and magnesia component, an alumina component, and hydrotalcite, and a base composition consisting of 4 components is used with respect to the total weight of 100%. The above three components are mixed so that each of them is at least 10% by weight or more and hydrotalcite is contained at 5 to 40% by weight respectively, and the base composition is molded into a predetermined shape in the range of 500 to 1400°C. A method for producing a ceramic porous body, which is capable of selecting an arbitrary pore diameter and pore volume in the range of nano to submicrometer by selecting a firing temperature and firing. 素地組成物に、1000分の3重量%以下のアルカリ系泥漿調整剤を添加することを特徴とする請求項1又は2に記載のセラミック多孔体の製造方法。
The method for producing a ceramic porous body according to claim 1 or 2, wherein an alkaline sludge modifier of 3/1000% by weight or less is added to the base composition.
JP2007523409A 2005-07-06 2006-06-21 Method for producing ceramic porous body Active JP5255836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007523409A JP5255836B2 (en) 2005-07-06 2006-06-21 Method for producing ceramic porous body

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005197540 2005-07-06
JP2005197540 2005-07-06
JP2007523409A JP5255836B2 (en) 2005-07-06 2006-06-21 Method for producing ceramic porous body
PCT/JP2006/312417 WO2007004424A1 (en) 2005-07-06 2006-06-21 Method for producing ceramic porous article

Publications (2)

Publication Number Publication Date
JPWO2007004424A1 true JPWO2007004424A1 (en) 2009-01-22
JP5255836B2 JP5255836B2 (en) 2013-08-07

Family

ID=37604296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007523409A Active JP5255836B2 (en) 2005-07-06 2006-06-21 Method for producing ceramic porous body

Country Status (4)

Country Link
JP (1) JP5255836B2 (en)
KR (1) KR101281569B1 (en)
CN (1) CN101218190B (en)
WO (1) WO2007004424A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2226308B1 (en) * 2007-12-28 2018-10-17 Toda Kogyo Corp. Molded porous article, method for production thereof, catalyst carrier, and catalyst
CN101830729B (en) * 2010-06-21 2012-06-27 中国建筑股份有限公司 Porous ceramic filter and preparation method thereof
KR101546240B1 (en) * 2012-10-30 2015-08-27 (주)엘지하우시스 Antimicrobial porous ceramic tile and method of manufacturing the same
CN103725053A (en) * 2013-12-12 2014-04-16 江西恒大高新技术股份有限公司 Novel boiler-dedicated overtemperature resistant paint
JP6360402B2 (en) * 2014-09-26 2018-07-18 三井金属鉱業株式会社 Method for producing porous ceramics
US10412677B2 (en) 2015-04-09 2019-09-10 Lg Electronics Inc. Method and device for an enhanced distributed channel access (EDCA) transmission
US11035048B2 (en) 2017-07-05 2021-06-15 Macdermid Enthone Inc. Cobalt filling of interconnects
JP6408678B1 (en) * 2017-10-25 2018-10-17 黒崎播磨株式会社 Hot dry spray material and hot dry spray construction method
CN112672822A (en) * 2018-09-11 2021-04-16 公立大学法人首都大学东京 Supported gold catalyst
CN110876494B (en) * 2019-11-26 2021-10-01 深圳麦克韦尔科技有限公司 Atomizer, ceramic atomizing core thereof and preparation method of ceramic atomizing core

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107876A (en) * 1986-10-24 1988-05-12 株式会社イナックス Gas permeable porous body and manufacture
JP2787708B2 (en) * 1989-05-31 1998-08-20 三井物産機械販売株式会社 Ceramic filter medium and method for producing the same
JPH0717757A (en) * 1993-06-30 1995-01-20 Takasago Ind Co Ltd Production of sintered compact using incineration ash
JPH09286875A (en) * 1996-04-23 1997-11-04 Chisso Corp Expanded refractory
JP3786230B2 (en) * 1997-06-19 2006-06-14 独立行政法人産業技術総合研究所 Manufacturing method of alumina humidity conditioning material
JP2000327398A (en) * 1999-05-20 2000-11-28 Toagosei Co Ltd Hardenable composition
JP2001226172A (en) * 2000-02-18 2001-08-21 Mizusawa Ind Chem Ltd Alumina-based formed body
JP3469208B2 (en) * 2001-02-21 2003-11-25 独立行政法人産業技術総合研究所 Method for producing alumina-based building material having autonomous humidity control function
WO2003093197A1 (en) * 2002-04-28 2003-11-13 Masafumi Koide Porous ceramic and method for production thereof
JP3997929B2 (en) * 2003-02-26 2007-10-24 滋賀県 Ceramic porous body
JP4056921B2 (en) * 2003-04-08 2008-03-05 株式会社Inax Method for producing Minamata clay and Sakai clay

Also Published As

Publication number Publication date
CN101218190B (en) 2013-01-30
KR20080044237A (en) 2008-05-20
JP5255836B2 (en) 2013-08-07
WO2007004424A1 (en) 2007-01-11
CN101218190A (en) 2008-07-09
KR101281569B1 (en) 2013-07-03

Similar Documents

Publication Publication Date Title
JP5255836B2 (en) Method for producing ceramic porous body
CN101795996B (en) Porous ceramic bodies and process for their preparation
Iqbal et al. Microstructural evolution in triaxial porcelain
Sglavo et al. Bauxite ‘red mud’in the ceramic industry. Part 2: production of clay-based ceramics
CN101885620B (en) Ceramic material with multi-stage duct structure and manufacture method thereof
Harabi et al. Production of supports and filtration membranes from Algerian kaolin and limestone
CN101215158A (en) Method for preparing lightweight magnesium-aluminum spinel raw material
Akpinar et al. Effect of calcined colemanite additions on properties of hard porcelain body
BRPI0617350A2 (en) Method for the manufacture of refractory ceramic material, Method for the manufacture of ceramic material with multimodal porosity, Method of manufacture of ceramic material with multimodal porosity from 70% to 90%, and Method of manufacture of insulating ceramic material
JPH072536A (en) Fire brick as bed of tin bath
CN108484149A (en) A kind of NaA molecular sieve film support preparation method
Mukhopadhyay et al. Microstructure and thermo mechanical properties of a talc doped stoneware composition containing illitic clay
Iqbal et al. Microstructural evolution in bone china
US3312558A (en) Calcium hexaluminate articles
JP3273310B2 (en) Porous lightweight ceramic body
JP4966596B2 (en) Ceramic substrate and ceramic fired body
JP6873427B2 (en) Manufacturing method of porous ceramics
Zenikheri et al. Elaboration of porous gehlenite and anorthite based ceramics using low price raw materials
KR100331162B1 (en) Porous ceramic carriers for biofilter and process for manufacturing them
Bhattacharyya et al. Effect of titania on fired characteristics of triaxial porcelain
JP4392460B1 (en) Calcium phosphate porous material with low residual amount of aromatic hydrocarbon
Piva et al. Sintering and crystallization of plates prepared from coarse glass ceramic frits
JP3997929B2 (en) Ceramic porous body
CN106518139B (en) A kind of preparation method of insulating fire brick
Mukhopadhyay et al. Effect of synthetic mullite aggregate on clay-based sol-bonded castable

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090528

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R150 Certificate of patent or registration of utility model

Ref document number: 5255836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250