JPWO2006126574A1 - ES cell differentiation induction method - Google Patents

ES cell differentiation induction method Download PDF

Info

Publication number
JPWO2006126574A1
JPWO2006126574A1 JP2007517854A JP2007517854A JPWO2006126574A1 JP WO2006126574 A1 JPWO2006126574 A1 JP WO2006126574A1 JP 2007517854 A JP2007517854 A JP 2007517854A JP 2007517854 A JP2007517854 A JP 2007517854A JP WO2006126574 A1 JPWO2006126574 A1 JP WO2006126574A1
Authority
JP
Japan
Prior art keywords
cells
endoderm
differentiation
cell
pdx1
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007517854A
Other languages
Japanese (ja)
Other versions
JP5092124B2 (en
Inventor
昭苑 粂
昭苑 粂
伸明 白木
伸明 白木
吉田 哲
哲 吉田
秀生 後藤
秀生 後藤
和彦 粂
和彦 粂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kumamoto University NUC
Original Assignee
Kumamoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University NUC filed Critical Kumamoto University NUC
Priority to JP2007517854A priority Critical patent/JP5092124B2/en
Publication of JPWO2006126574A1 publication Critical patent/JPWO2006126574A1/en
Application granted granted Critical
Publication of JP5092124B2 publication Critical patent/JP5092124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5073Stem cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2502/00Coculture with; Conditioned medium produced by
    • C12N2502/13Coculture with; Conditioned medium produced by connective tissue cells; generic mesenchyme cells, e.g. so-called "embryonic fibroblasts"
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/02Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from embryonic cells

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Cell Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Immunology (AREA)
  • Gynecology & Obstetrics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Hematology (AREA)
  • Reproductive Health (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Toxicology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明の目的は、大量のES細胞でも内胚葉系へと分化誘導することを可能とするような新規なES細胞の分化誘導方法を提供することである。本発明によれば、支持細胞の存在下で哺乳動物由来のES細胞を培養することを含む、ES細胞から内胚葉系細胞へと分化誘導する方法が提供される。An object of the present invention is to provide a novel method for inducing differentiation of an ES cell that makes it possible to induce differentiation into a large number of ES cells into the endoderm system. According to the present invention, there is provided a method for inducing differentiation from ES cells into endoderm cells, comprising culturing mammalian-derived ES cells in the presence of feeder cells.

Description

本発明は、ES細胞の分化誘導方法に関する。より詳細には、本発明は、中胚葉由来の細胞株を支持細胞として用いてES細胞を内胚葉へと分化誘導する方法に関する。   The present invention relates to a method for inducing differentiation of ES cells. More specifically, the present invention relates to a method for inducing differentiation of ES cells into endoderm using a cell line derived from mesoderm as a support cell.

ES細胞はその多能性のため、発生期の遺伝子機能の研究に有用なモデル系であり、医療用の移植可能な細胞源となる可能性がある。糖尿病などの疾患において細胞補充療法にES細胞を用いるためには、分化を制御する必要があり、これは依然として大きな課題である。神経組織、造血組織および心臓組織へのES細胞の分化に関する理解はかなり進んでいるが(Yamashita, J., Itoh, H., Hirashima, M., et al. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92-6;及びYing, Q. L., Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003). Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21, 183-6)、内胚葉系組織へのES細胞の分化に関する知見はほとんどない。   Due to its pluripotency, ES cells are a useful model system for studying gene function in the nascent stage, and may be a transplantable cell source for medical use. In order to use ES cells for cell replacement therapy in diseases such as diabetes, it is necessary to control differentiation, which remains a major challenge. Although understanding of the differentiation of ES cells into neural tissue, hematopoietic tissue, and heart tissue is quite advanced (Yamashita, J., Itoh, H., Hirashima, M., et al. (2000). Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408, 92-6; and Ying, QL, Stavridis, M., Griffiths, D., Li, M., and Smith, A. (2003). Conversion of embryonic stem cells Nat Biotechnol 21, 183-6), little is known about the differentiation of ES cells into endoderm tissues.

2001年に、nestin陽性神経細胞集団が濃縮される条件下で培養した後に特定の因子を添加することにより、in vitroでES細胞からインスリン含有膵細胞が形成されることが報告された(Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389-94)。しかし、このインスリン陽性細胞は、膵および十二指腸双方の内胚葉の機能性膵β細胞のマーカーであるPdx1を発現しない。この細胞はインスリンI転写物も発現しないが、痕跡量のインスリンII転写物を発現した。また、これらの細胞はインスリンについての染色は陽性であるが、インスリンのde novo合成の副産物である抗C-ペプチド抗体では染色されなかった(Rajagopal, J., Anderson, W. J., Kume, S., Martinez, O. I., and Melton, D. A. (2003). Insulin staining of ES cell progeny from insulin uptake. Science 299, 363)。これらの知見は、インスリン染色は培地からのインスリン取り込みが原因であって細胞自身はインスリンを合成していないことを示しており、nestin陽性細胞がインスリンを産生するβ細胞を生じるのかどうかについては疑問であった。しかしながら、nestin陽性細胞に選択的な同様の条件を用いてES細胞からインスリン分泌細胞が産生することを他の研究者が報告しており、この問題はまだ解明されていない(Blyszczuk, P., Czyz, J., Kania, G., et al. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci U S A 100, 998-1003;Hori, Y., Rulifson, I. C., Tsai, B. C., Heit, J. J., Cahoy, J. D., and Kim, S. K. (2002). Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc Natl Acad Sci U S A 99, 16105-10;及びMoritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S., and Miyazaki, J. (2003). Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 52, 1163-8)。グルコースを培地に添加した場合、nestin陽性前駆細胞がインスリンを遊離する細胞集団を生じさせるが、注目すべきことにC-ペプチドの遊離は全く検出されないことが最近報告された(Hansson, M., Tonning, A., Frandsen, U., et al. (2004). Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53, 2603-9)。これは、この細胞が機能性のインスリン分泌・細胞ではないことを示唆している。従って、ES細胞を操作して内分泌性の膵β細胞を作製するという課題は依然として未解決である。   In 2001, it was reported that insulin-containing pancreatic cells were formed from ES cells in vitro by adding certain factors after culturing under conditions that enriched nestin-positive neuronal populations (Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., and McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets.Science 292, 1389-94). However, this insulin positive cell does not express Pdx1, a marker of functional pancreatic beta cells in both pancreatic and duodenal endoderm. The cells did not express insulin I transcript, but expressed trace amounts of insulin II transcript. These cells also stained positively for insulin but were not stained with anti-C-peptide antibodies, which are a byproduct of insulin de novo synthesis (Rajagopal, J., Anderson, WJ, Kume, S., Martinez, OI, and Melton, DA (2003). Insulin staining of ES cell progeny from insulin uptake. Science 299, 363). These findings indicate that insulin staining is due to insulin uptake from the medium and the cells themselves do not synthesize insulin, and whether nestin-positive cells give rise to beta cells that produce insulin Met. However, other researchers have reported that insulin-secreting cells are produced from ES cells using similar conditions that are selective for nestin-positive cells, and this problem has not yet been elucidated (Blyszczuk, P., Czyz, J., Kania, G., et al. (2003). Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc Natl Acad Sci USA 100, 998-1003; Hori, Y., Rulifson, IC, Tsai, BC, Heit, JJ, Cahoy, JD, and Kim, SK (2002). Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells.Proc Natl Acad Sci USA 99, 16105- 10; and Moritoh, Y., Yamato, E., Yasui, Y., Miyazaki, S., and Miyazaki, J. (2003). Analysis of insulin-producing cells during in vitro differentiation from feeder-free embryonic stem cells. Diabetes 52, 1163-8). It has recently been reported that when glucose is added to the medium, nestin-positive progenitor cells give rise to a cell population that releases insulin, but notably no C-peptide release is detected (Hansson, M., Tonning, A., Frandsen, U., et al. (2004). Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53, 2603-9). This suggests that the cells are not functional insulin secreting cells. Therefore, the problem of manipulating ES cells to produce endocrine pancreatic β cells remains unresolved.

マウス胚では、Pdx1の発現が最初の分化シグナルであり、8.5日目胚で腸管の背側内胚葉に検出される。9.5日目胚では、Pdx1発現は背側および腹側の膵芽、と十二指腸の内胚葉で認められる。成体では、Pdx1発現は、十二指腸上皮とインスリンを分泌する膵島β細胞において維持されており、インスリン遺伝子の転写制御において重要な役割を果たしている(Offield, M. F., Jetton, T. L., Labosky, P. A., et al. (1996). PDX1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983-95)。マウスでのPdx1の標的突然変異導入から、膵および吻側十二指腸の発生にPdx1が必要であることが示されている(Ahlgren, U., Jonsson, J., and Edlund, H. (1996). The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1/PDX1-deficient mice. Development 122, 1409-16)。従って、Pdx1は膵臓の発生に必須の分子であり、膵前駆細胞および胃、十二指腸、胆管などの他の内胚葉由来組織の初期マーカーとしても有用である。   In mouse embryos, Pdx1 expression is the first differentiation signal and is detected in the dorsal endoderm of the intestine in day 8.5 embryos. In day 9.5 embryos, Pdx1 expression is found in dorsal and ventral pancreatic buds and duodenal endoderm. In adults, Pdx1 expression is maintained in the duodenal epithelium and pancreatic islet β cells secreting insulin and plays an important role in the transcriptional regulation of insulin genes (Offield, MF, Jetton, TL, Labosky, PA, et al (1996). PDX1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development 122, 983-95). Targeted mutagenesis of Pdx1 in mice has shown that Pdx1 is required for pancreatic and rostral duodenal development (Ahlgren, U., Jonsson, J., and Edlund, H. (1996). The morphogenesis of the pancreatic mesenchyme is uncoupled from that of the pancreatic epithelium in IPF1 / PDX1-deficient mice. Development 122, 1409-16). Therefore, Pdx1 is an essential molecule for the development of the pancreas, and is also useful as an initial marker for pancreatic progenitor cells and other endoderm-derived tissues such as the stomach, duodenum, and bile ducts.

本発明者らは以前に、Pdx1座位にlacZレポーター遺伝子を持つES細胞株を用いてPdx1陽性細胞を効率的に生成させるプロトコールを報告した。ES細胞を胚の膵原基または膵間葉と共培養することにより、Pdx1発現細胞に分化誘導される細胞の数の著しい増加が誘導されることを示した。われわれはES細胞の膵への分化を促進する増殖因子のスクリーニングを行い、TGFβ2が膵原基のもつ分化導能活性を部分的に模倣する因子であることを明らかにした。ニワトリmixファミリー(cmix)遺伝子の過剰発現のような遺伝子操作(Peale, F. V., Jr., Sugden, L., and Bothwell, M. (1998). Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. Mech Dev 75, 167-70;及びStein, S., Roeser, T., and Kessel, M. (1998). CMIX, a paired-type homeobox gene expressed before and during formation of the avian primitive streak. Mech Dev 75, 163-5)により、ES細胞の内胚葉系への分化が特異的に促進された。しかしながら、大量の誘導源が必要な場合には、ES細胞の分化を誘導するために胚の膵原基または膵間葉の応用は困難である。   We have previously reported a protocol for efficiently generating Pdx1-positive cells using an ES cell line with a lacZ reporter gene at the Pdx1 locus. Co-cultured ES cells with embryonic pancreatic primordia or pancreatic mesenchyme showed that a significant increase in the number of cells induced to differentiate into Pdx1-expressing cells was induced. We screened for growth factors that promote the differentiation of ES cells into pancreas and found that TGFβ2 partially mimics the differentiation-inducing activity of pancreatic primordia. Genetic manipulation such as overexpression of chicken mix family (cmix) genes (Peale, FV, Jr., Sugden, L., and Bothwell, M. (1998). Characterization of CMIX, a chicken homeobox gene related to the Xenopus gene mix.1. Mech Dev 75, 167-70; and Stein, S., Roeser, T., and Kessel, M. (1998). CMIX, a paired-type homeobox gene expressed before and during formation of the avian primitive streak Mech Dev 75, 163-5) specifically promoted the differentiation of ES cells into the endoderm system. However, when a large amount of induction source is required, application of embryonic pancreatic primordia or pancreatic mesenchyme to induce ES cell differentiation is difficult.

上記した通り、ES細胞の培養条件を変える方法を用いて、インスリン抗体で染色される細胞が増えてくることが報告されている。しかし、この方法で検出される細胞は、生体内でインスリン産生β細胞が正常に作られる過程を辿ってできた細胞ではない。しかも、細胞が培地中のインスリンを吸着することにより見かけ上の現象であることが指摘されている(Rajagopal, J. et al., Science 299, 363, 2003)。これを解決するためには、膵臓の発生初期マーカーの発現が誘導されるような培養方法が有効となる。本発明は、大量のES細胞でも内胚葉系へと分化誘導することを可能とするような新規なES細胞の分化誘導方法を提供することを解決すべき課題とした。   As described above, it has been reported that cells stained with an insulin antibody increase by using a method of changing the culture conditions of ES cells. However, the cells detected by this method are not cells that have been produced through the process of normally producing insulin-producing β cells in vivo. Moreover, it has been pointed out that this is an apparent phenomenon by the cells adsorbing insulin in the medium (Rajagopal, J. et al., Science 299, 363, 2003). In order to solve this, a culture method that induces the expression of an early marker of pancreatic development is effective. An object of the present invention is to provide a novel method for inducing differentiation of ES cells that enables differentiation of even a large amount of ES cells into the endoderm system.

何れかの種類の細胞が内胚葉細胞の増殖を促して前後軸上での特定の細胞への分化へと導いており、それらの細胞は膵原基あるいは膵間葉からのシグナルを代替すると本発明者らは推測した。そこで、本発明者らは、このような誘導源を発見する目的で、株化培養細胞のスクリーニングを行い、中胚葉由来の細胞株がES細胞の内胚葉への分化を誘導する強い活性を示すとともに、膵または肝の発生を促進することを見出した。本発明は、これらの知見に基づいて完成したものである。   Any type of cell promotes the growth of endoderm cells, leading to differentiation into specific cells on the anteroposterior axis, and these cells replace the signal from pancreatic primordia or pancreatic mesenchyme. The inventors speculated. Therefore, the present inventors screened cultured cell lines for the purpose of discovering such an induction source, and the mesoderm-derived cell line shows a strong activity of inducing differentiation of ES cells into endoderm. In addition, it was found that the development of pancreas or liver is promoted. The present invention has been completed based on these findings.

即ち、本発明によれば、支持細胞の存在下で哺乳動物由来のES細胞を培養することを含む、ES細胞から内胚葉系細胞へと分化誘導する方法が提供される。
好ましくは、支持細胞は、中胚葉に由来する細胞である。
好ましくは、支持細胞はM15細胞、MEF細胞又はST2細胞である。
That is, according to the present invention, there is provided a method for inducing differentiation from ES cells into endoderm cells, comprising culturing mammalian-derived ES cells in the presence of supporting cells.
Preferably, the feeder cells are cells derived from mesoderm.
Preferably, the feeder cells are M15 cells, MEF cells or ST2 cells.

好ましくは、ES細胞から、未分化な内胚葉の前駆細胞、内胚葉由来器官の未熟な細胞、又は内胚葉由来器官の成熟細胞の何れかへと分化誘導する。
好ましくは、内胚葉由来器官は、膵臓、肝臓、肺、咽頭、又は小腸である。
好ましくは、支持細胞の存在下でES細胞を培養する際に、アクチンビン、塩基性線維芽細胞成長増殖因子(bFGF)、及び/又はノギンを添加して培養する。
好ましくは、支持細胞の存在下でES細胞を培養する際にさらにニコチンアミドを添加して培養する。
好ましくは、哺乳動物由来のES細胞がマウス、サル又はヒト由来のES細胞である。
Preferably, differentiation is induced from ES cells to any of undifferentiated endoderm progenitor cells, immature cells of endoderm-derived organs, or mature cells of endoderm-derived organs.
Preferably, the endoderm-derived organ is the pancreas, liver, lung, pharynx, or small intestine.
Preferably, when culturing ES cells in the presence of feeder cells, actin bin, basic fibroblast growth growth factor (bFGF), and / or noggin are added and cultured.
Preferably, when culturing ES cells in the presence of feeder cells, nicotinamide is further added and cultured.
Preferably, the mammal-derived ES cells are mouse, monkey or human-derived ES cells.

本発明の別の側面によれば、上記した本発明の方法により得られる、ES細胞から分化誘導された内胚葉系細胞が提供される。   According to another aspect of the present invention, there is provided an endoderm cell obtained by the above-described method of the present invention and differentiated from an ES cell.

本発明のさらに別の側面によれば、上記した本発明の方法によりES細胞から内胚葉系細胞へと分化誘導する工程、及び分化誘導された内胚葉系細胞を蛍光標識によるフローサイトメトリー(FACS)によって分離する工程を含む、ES細胞から分化誘導された内胚葉系細胞を取得する方法が提供される。   According to still another aspect of the present invention, a step of inducing differentiation from an ES cell into an endoderm cell by the above-described method of the present invention, and a flow cytometry (FACS) using a fluorescent label for the differentiation-induced endoderm cell. The method of obtaining the endoderm type | system | group cell which differentiation-induced from ES cell including the process isolate | separated by this is provided.

本発明のさらに別の側面によれば、上記した本発明の方法により得られるES細胞から分化誘導された内胚葉系細胞を、2-メタクリルオイロキシエチル ホスホリルコリンで被覆したプレート上で培養することを含む、ES細胞から分化誘導された内胚葉系細胞の維持培養方法が提供される。
好ましくは、上記の維持培養方法では、ノックアウト血清リプレースメント(KSR)の存在下で培養を行う。
According to still another aspect of the present invention, culturing endoderm cells differentiated from ES cells obtained by the above-described method of the present invention on a plate coated with 2-methacryloxyethyl phosphorylcholine. A method for maintaining and culturing endoderm cells induced to differentiate from ES cells is provided.
Preferably, in the maintenance culture method described above, the culture is performed in the presence of knockout serum replacement (KSR).

本発明のさらに別の側面によれば、支持細胞の存在下で哺乳動物由来のES細胞を培養することによってES細胞から内胚葉系細胞へと分化誘導する際に、被験物質の存在下でES細胞を培養し、被験物質の非存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度と被験物質の存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度とを比較することを含む、ES細胞から内胚葉系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法が提供される。   According to still another aspect of the present invention, when ES cells derived from mammals are cultured in the presence of supporting cells to induce differentiation from ES cells to endoderm cells, ES cells are present in the presence of a test substance. When cells are cultured and ES cells are cultured in the absence of the test substance, the degree of differentiation induction into endoderm cells and differentiation into endoderm cells when ES cells are cultured in the presence of the test substance A method is provided for screening for a substance that promotes or inhibits differentiation induction from ES cells to endoderm cells, comprising comparing the degree of induction.

好ましくは、被験物質は成長因子又は低分子化合物である。
好ましくは、内胚葉で発現するマーカーの発現量を指標として、内胚葉系細胞へと分化誘導の程度を測定する。
好ましくは、哺乳動物由来のES細胞がマウス、サル又はヒト由来のES細胞である。
Preferably, the test substance is a growth factor or a low molecular weight compound.
Preferably, the degree of differentiation induction into endoderm cells is measured using the expression level of the marker expressed in the endoderm as an index.
Preferably, the mammal-derived ES cells are mouse, monkey or human-derived ES cells.

以下、本発明の実施の形態についてさらに詳細に説明する。
本発明は、ES細胞から内胚葉系細胞へと分化誘導する方法に関するものであり、特に支持細胞の存在下で哺乳動物由来のES細胞を培養することを特徴とする方法である。
Hereinafter, embodiments of the present invention will be described in more detail.
The present invention relates to a method for inducing differentiation from ES cells into endoderm cells, and in particular, is a method characterized by culturing mammalian-derived ES cells in the presence of supporting cells.

本発明の分化誘導方法では、支持細胞を用いてES細胞から膵などの内胚葉由来の消化器の細胞を分化誘導することができる。支持細胞を用いて、内胚葉系細胞を分化誘導することはこれまで報告がなく、本発明により初めて達成された。本発明の実施例では、膵幹細胞の遺伝子マーカー遺伝子(Pdx1)の発現を蛍光蛋白質で可視化して、迅速かつ感度の良い検出を可能にした。本発明では、支持細胞との共培養によって、ES細胞は分化誘導しやすい状態にある。そのため、特定の成長増殖因子を添加すると、さらに分化誘導が促進される。従って、本発明の方法は、未知の分化誘導因子のスクリーニングとしても利用できる。   In the differentiation-inducing method of the present invention, cells of digestive organs derived from endoderm such as pancreas can be induced from ES cells using feeder cells. Inducing differentiation of endoderm cells using feeder cells has not been reported so far and has been achieved for the first time by the present invention. In the examples of the present invention, expression of the gene marker gene (Pdx1) of pancreatic stem cells was visualized with a fluorescent protein, enabling rapid and sensitive detection. In the present invention, ES cells are easily induced to differentiate by co-culture with supporting cells. Therefore, when a specific growth growth factor is added, differentiation induction is further promoted. Therefore, the method of the present invention can also be used as a screening for unknown differentiation-inducing factors.

本発明で用いるES細胞は、哺乳動物由来のES細胞であればよく、その種類などは特に限定されず、例えば、マウス、サル又はヒト由来のES細胞などを使用することができる。ES細胞としては、例えば、その分化の程度の確認を容易とするために、Pdx1遺伝子付近にレポーター遺伝子を導入した細胞を用いることができる。例えば、以下の実施例で使用しているような、P dx1座位にlacZ遺伝子を組み込んだ129/Sv由来ES細胞株R1、J1又は、Pdx1プロモーター制御下のGFPレポータートランスジーンをもつES細胞SK7株などを使用することができる。あるいは、Hnf3β内胚葉特異的エンハンサー断片制御下のmRFP1レポータートランスジーン及びPdx1プロモーター制御下のGFPレポータートランスジーンを有するES細胞PH3株を使用することもできる。   The ES cell used in the present invention is not particularly limited as long as it is a mammal-derived ES cell. For example, mouse, monkey, or human-derived ES cells can be used. As the ES cell, for example, a cell having a reporter gene introduced in the vicinity of the Pdx1 gene can be used in order to facilitate confirmation of the degree of differentiation. For example, as used in the examples below, the 129 / Sv-derived ES cell line R1, J1 or ES cell SK7 line having a GFP reporter transgene under the control of the Pdx1 promoter, which has incorporated the lacZ gene at the P dx1 locus Etc. can be used. Alternatively, an ES cell PH3 strain having an mRFP1 reporter transgene under the control of a Hnf3β endoderm-specific enhancer fragment and a GFP reporter transgene under the control of a Pdx1 promoter can also be used.

哺乳動物由来のES細胞の培養方法は常法により行うことができ、例えば、所望によりフィーダー細胞としてのマイトマイシンC処理マウス胚線維芽細胞(MEF)の存在下において、LIF(ESGRO 1000単位/ml、Chemicon製)を添加した分化培地(10%ウシ胎児血清(FBS)、0.1mM 2-メルカプトエタノール、100μM非必須アミノ酸、2mM L-グルタミンを補充したダルベッコ改変イーグル培地(DMEM、シグマ製))で維持することができる。   Mammal-derived ES cells can be cultured by a conventional method. For example, in the presence of mitomycin C-treated mouse embryo fibroblasts (MEF) as feeder cells, LIF (ESGRO 1000 units / ml, Maintained in differentiation medium supplemented with Chemicon) (Dulbecco's modified Eagle medium (DMEM, Sigma) supplemented with 10% fetal bovine serum (FBS), 0.1 mM 2-mercaptoethanol, 100 μM non-essential amino acids, 2 mM L-glutamine) can do.

本発明では、ES細胞を支持細胞の存在下で培養すること、即ち、ES細胞を支持細胞と共培養する。本発明で用いる支持細胞としては、ES細胞を内胚葉系細胞へと分化誘導できる細胞であれば、特に限定されないが、好ましくは、中胚葉に由来する細胞を支持細胞として用いることができる。ES細胞を内胚葉系細胞へと分化誘導することができる中胚葉に由来する細胞の具体例としては、M15細胞、MEF細胞、又はST2細胞などが挙げられる。   In the present invention, ES cells are cultured in the presence of feeder cells, that is, ES cells are co-cultured with feeder cells. The feeder cells used in the present invention are not particularly limited as long as ES cells can be induced to differentiate into endoderm cells, but preferably cells derived from mesoderm can be used as feeder cells. Specific examples of cells derived from mesoderm that can induce differentiation of ES cells into endoderm cells include M15 cells, MEF cells, and ST2 cells.

M15細胞(mouse, mesonephros)は、登録番号ECACC 95102517として、細胞バンク(CAMR Centre for Applied Microbiology & Research (ECACC, Salisbury, Wiltshire))に登録されている。M15細胞は文献(Larsson, S. H., Charlieu, J. P., Miyagawa, K., et al. (1995). Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391-401)の記載に従って入手可能である。M15についてのバンク情報を以下に記載する。   M15 cells (mouse, mesonephros) are registered in the cell bank (CAMR Center for Applied Microbiology & Research (ECACC, Salisbury, Wiltshire)) as registration number ECACC 95102517. M15 cells are described in the literature (Larsson, SH, Charlieu, JP, Miyagawa, K., et al. (1995). Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391-401) Is available according to Bank information for M15 is listed below.

Version 4.200201
M15 (mouse, mesonephros)
ECACC 95102517
Morphology: Epithelial
Mouse mesonephric epithelium, polyoma virus large T transformed
Depositor: Prof V van Heyningen, MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK (Originator)
No restrictions. Patent: None Specified By Depositor
Properties: Products: WT1 (expressed gene) Applications: Gene expression and protein studies connected to kidney development and Wilms' tumourigenesis.
Available in the following LABORATORY:
CAMR Centre for Applied Microbiology & Research (ECACC, Salisbury, Wiltshire)
DMEM + 2mM Glutamine + 10% Fetal Bovine Serum (FBS). Split confluent cultures 1:5 to 1:10 i.e. seeding at 5x1,000 to 1x10,000 cells/cm2 using 0.25% trypsin or trypsin/EDTA; 5% CO2; 37C [cell growth impaired at lower densities]. Karyotype: Hyperdiploid
Hazard: CZ-II
The WT1-expressing mesonephric cell line M15 (alias Meso15) was established from mouse mesonephros transgenically expressing the large T protein of polyoma virus under the control of the early viral enhancer. As a tumour suppresser gene with a key role in urogenital development, WT1 is implicated as predisposition gene in the pathogenesis of Wilms' tumour (WT).
Further information
Research council deposit: Yes
Price_code: C
Bibliographic references:
Cell 1995;81:391
By Beatrice...
TITLE:M15
DATE:2005/04/24 00:32
URL:http://www.biotech.ist.unige.it/cldb/cl3312.html
European Collection of Cell Cultures,
Health Protection Agency, Porton Down, Salisbury, Wiltshire, UK
June Poulton
European Collection of Cell Cultures
Health Protection Agency,
Porton Down
SP40JG Salisbury, Wiltshire UK
Phone: +44-1980-612512
Fax: +44-1980-611315
E-mail: ecacc@hpa.org.uk
URL: http://www.ecacc.org.uk/
Version 4.200201
M15 (mouse, mesonephros)
ECACC 95102517
Morphology: Epithelial
Mouse mesonephric epithelium, polyoma virus large T transformed
Depositor: Prof V van Heyningen, MRC Human Genetics Unit, Western General Hospital, Edinburgh, UK (Originator)
No restrictions. Patent: None Specified By Depositor
Properties: Products: WT1 (expressed gene) Applications: Gene expression and protein studies connected to kidney development and Wilms' tumourigenesis.
Available in the following LABORATORY:
CAMR Center for Applied Microbiology & Research (ECACC, Salisbury, Wiltshire)
DMEM + 2mM Glutamine + 10% Fetal Bovine Serum (FBS). Split confluent cultures 1: 5 to 1:10 ie seeding at 5x1,000 to 1x10,000 cells / cm2 using 0.25% trypsin or trypsin / EDTA; 5% CO2; 37C [cell growth impaired at lower places]. Karyotype: Hyperdiploid
Hazard: CZ-II
The WT1-expressing mesonephric cell line M15 (alias Meso15) was established from mouse mesonephros transgenically expressing the large T protein of polyoma virus under the control of the early viral enhancer.As a tumour suppresser gene with a key role in urogenital development, WT1 is implicated as predisposition gene in the pathogenesis of Wilms' tumour (WT).
Further information
Research council deposit: Yes
Price_code: C
Bibliographic references:
Cell 1995; 81: 391
By Beatrice ...
TITLE: M15
DATE: 2005/04/24 00:32
URL: http://www.biotech.ist.unige.it/cldb/cl3312.html
European Collection of Cell Cultures,
Health Protection Agency, Porton Down, Salisbury, Wiltshire, UK
June Poulton
European Collection of Cell Cultures
Health Protection Agency,
Porton down
SP40JG Salisbury, Wiltshire UK
Phone: + 44-1980-612512
Fax: + 44-1980-611315
E-mail: ecacc@hpa.org.uk
URL: http://www.ecacc.org.uk/

MEF(ICRマウスより)はATCCにカタログ番号ATCC # SCRC- 1046として登録されている。また、MEF細胞は、文献(Nagy A , et al. Manipulating The Mouse Embryo: A Laboratory Manual. Third Edition Cold Spring Harbor Press; 2003)の記載に従って入手可能である。   MEF (from ICR mouse) is registered with ATCC as catalog number ATCC # SCRC-1046. MEF cells can be obtained according to the description in the literature (Nagy A, et al. Manipulating The Mouse Embryo: A Laboratory Manual. Third Edition Cold Spring Harbor Press; 2003).

ST2細胞は、RCB0224として、独立行政法人理化学研究所筑波研究所バイオリソースセンターに登録されている。また、ST2細胞は、文献(Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K. and Nishikawa, S. EMBO J 1988; 7:1337-1343)の記載に従って入手可能である。   ST2 cells are registered as RCB0224 in the RIKEN Tsukuba BioResource Center. In addition, ST2 cells can be used in the literature (Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K. and Nishikawa, S. EMBO J 1988; 7: 1337- 1343).

これらのフィーダー細胞は、血清などを補充した動物細胞用の通常の培地(例えば、RPMI培地又はDMEM培地など)を用いて常法に従って培養することができる。   These feeder cells can be cultured according to a conventional method using a normal medium for animal cells supplemented with serum or the like (for example, RPMI medium or DMEM medium).

支持細胞の存在下で哺乳動物由来のES細胞を培養する方法は特に限定されないが、例えば、支持細胞をフィーダー細胞として使用して、ES細胞を培養することができる。例えば、未分化のES細胞をトリプシンで解離させ、未処理培養皿で分化培地中LIF非存在下に懸濁培養し、胚様体を形成させる。2日間分化させた胚様体をトリプシンで処理し、フィーダー細胞(支持細胞)であらかじめ一層に生着させた(プレコートした)プレートで分化培地中播種する。以下、数日間培養することにより、内胚葉系細胞へと分化誘導を行うことができる。   The method for culturing mammalian-derived ES cells in the presence of feeder cells is not particularly limited. For example, ES cells can be cultured using feeder cells as feeder cells. For example, undifferentiated ES cells are dissociated with trypsin and cultured in suspension in an untreated culture dish in the presence of LIF in a differentiation medium to form embryoid bodies. Embryoid bodies that have been differentiated for 2 days are treated with trypsin, and seeded in a differentiation medium on a plate previously encapsulated (precoated) with feeder cells (supporting cells). Thereafter, differentiation can be induced into endoderm cells by culturing for several days.

本発明の分化誘導方法においては、支持細胞の存在下でES細胞を培養する際に、他の物質(例えば、増殖因子又は低分子化合物など)を添加して、培養することもできる。例えば、アクチンビン、bFGF、及び/又はノギンを添加して培養することにより、ES細胞から内胚葉系細胞への分化誘導をさらに促進することができる。また、アクチンビン、bFGF、及び/又はノギンを添加する際に、さらにニコチンアミドを添加して培養することにより、ES細胞から内胚葉系細胞への分化誘導を促進することができる。   In the differentiation-inducing method of the present invention, when culturing ES cells in the presence of supporting cells, other substances (eg, growth factors or low molecular compounds) can be added and cultured. For example, differentiation induction from ES cells to endoderm cells can be further promoted by adding and culturing with actin bin, bFGF and / or noggin. In addition, when actin bin, bFGF, and / or noggin are added, nicotinamide is further added and cultured, whereby differentiation induction from ES cells to endoderm cells can be promoted.

本発明による支持細胞を用いたES細胞の分化誘導方法によれば、ES細胞から、未分化な内胚葉の前駆細胞、内胚葉由来器官の未熟な細胞、又は内胚葉由来器官の成熟細胞の何れかへと分化誘導することができる。内胚葉由来器官としては、膵臓、肝臓、肺、咽頭、又は小腸などが挙げられるが、これらに限定されるものではない。なお、ES細胞から内胚葉系細胞への分化は、内胚葉に特異的なマーカーの発現量を測定することにより確認することができる。   According to the ES cell differentiation induction method using the feeder cells according to the present invention, any of ES cells, undifferentiated endoderm progenitor cells, immature cells of endoderm-derived organs, or mature cells of endoderm-derived organs Differentiation can be induced. Examples of the endoderm-derived organ include, but are not limited to, the pancreas, liver, lung, pharynx, or small intestine. The differentiation from ES cells to endoderm cells can be confirmed by measuring the expression level of a marker specific to endoderm.

さらに本発明によれば、支持細胞の存在下で哺乳動物由来のES細胞を培養することによってES細胞から内胚葉系細胞へと分化誘導する際に、被験物質の存在下でES細胞を培養し、被験物質の非存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度と被験物質の存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度とを比較することを含む、ES細胞から内胚葉系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法が提供される。被験物質としては、成長因子又は低分子化合物などを使用することができる。この際、内胚葉で発現するマーカーの発現量を指標として、内胚葉系細胞へと分化誘導の程度を測定することが可能である。
以下の実施例により本発明をさらに具体的に説明するが、本発明は実施例によって限定されるものではない。
Furthermore, according to the present invention, the ES cells are cultured in the presence of a test substance when differentiation induction from ES cells to endoderm cells is performed by culturing mammalian-derived ES cells in the presence of supporting cells. The degree of differentiation induction into endoderm cells when ES cells are cultured in the absence of the test substance and the degree of differentiation induction into endoderm cells when ES cells are cultured in the presence of the test substance A method for screening for a substance that promotes or inhibits differentiation induction from ES cells to endoderm cells is provided. As a test substance, a growth factor or a low molecular weight compound can be used. At this time, it is possible to measure the degree of differentiation induction into endoderm cells using the expression level of the marker expressed in the endoderm as an index.
The following examples further illustrate the present invention, but the present invention is not limited to the examples.

(A)実験方法
(1)ES細胞株
Pdx1座位にlacZ遺伝子を組み込んだ129/Sv由来ES細胞株R1は、Christopher Wright博士(バンダービルト大学)から提供された。Pdx1/LacZ ES細胞株は、フィーダー細胞としてのマイトマイシンC処理マウス胚線維芽細胞(MEF)の存在下にLIF(ESGRO 1000単位/ml、Chemicon製)を補充した分化培地(10%ウシ胎児血清(FBS)、0.1mM 2-メルカプトエタノール、100μM非必須アミノ酸、2mM L-グルタミンを補充したダルベッコ改変イーグル培地(DMEM、シグマ製))で維持した。
(A) Experimental method (1) ES cell line
The 129 / Sv-derived ES cell line R1 incorporating the lacZ gene at the Pdx1 locus was provided by Dr. Christopher Wright (Vanderbilt University). The Pdx1 / LacZ ES cell line is a differentiation medium (10% fetal bovine serum (10% fetal bovine serum) supplemented with LIF (ESGRO 1000 units / ml, manufactured by Chemicon) in the presence of mitomycin C-treated mouse embryonic fibroblasts (MEF) as feeder cells. FBS), Dulbecco's modified Eagle medium (DMEM, Sigma) supplemented with 0.1 mM 2-mercaptoethanol, 100 μM non-essential amino acids, 2 mM L-glutamine.

Pdx1プロモーター制御下のEGFPレポータートランスジーンをもつES細胞SK7株は、Pdx1/EGFP遺伝子とホモ接合性のトランスジェニックマウスから樹立した。ES細胞SK7株は、LIF(1000単位/ml)、15% Knock-out Serum Replacement(KSR、Invitrogen)、1%FBS、100μM非必須アミノ酸、2mM L-グルタミン、1mMピルビン酸ナトリウムを補充したグラスゴー最小必須培地(GMEM、シグマ製)中、MEF上で維持する。   The ES cell line SK7 having an EGFP reporter transgene under the control of the Pdx1 promoter was established from a transgenic mouse homozygous with the Pdx1 / EGFP gene. ES cell SK7 strain is the smallest Glasgow supplemented with LIF (1000 units / ml), 15% Knock-out Serum Replacement (KSR, Invitrogen), 1% FBS, 100 μM non-essential amino acids, 2 mM L-glutamine, 1 mM sodium pyruvate Maintain on MEF in essential medium (GMEM, Sigma).

Hnf3β内胚葉特異的エンハンサー断片制御下のmRFP1レポータートランスジーン及びPdx1プロモーター制御下のEGFPレポータートランスジーンを有するES細胞PH3株は、Hnf3β/mRFP1遺伝子とヘテロ接合性のトランスジェニックマウスと、Pdx1/EGFP遺伝子とホモ接合性のトランスジェニックマウスとを交配して得られる胚盤胞から樹立した。ES細胞PH3株は、MEFなしで維持すること以外は、ES細胞SK7株と同様に維持する。   The ES cell PH3 strain, which has an mRFP1 reporter transgene under the control of the Hnf3β endoderm-specific enhancer fragment and an EGFP reporter transgene under the control of the Pdx1 promoter, is a transgenic mouse heterozygous with the Hnf3β / mRFP1 gene, and the Pdx1 / EGFP gene. And a blastocyst obtained by crossing a homozygous transgenic mouse. The ES cell PH3 line is maintained in the same manner as the ES cell SK7 line except that it is maintained without MEF.

カニクイザルES細胞CMK6株は、旭テクノグラス(株)より購入した。カニクイザルES細胞株は、フィーダー細胞としてのマイトマイシンC処理マウス胚線維芽細胞(MEF)の存在下に20% KnockOut Serum Replacement(KSR、 Gibco BRL)、0.1mM 2-メルカプトエタノール、100μM非必須アミノ酸、2mM L-グルタミン、1mMピルビン酸ナトリウムを補充したダルベッコ改変イーグル培地とF-12栄養混合物の1対1混合培地(DMEM/F12、シグマ製))で維持した。   Cynomolgus monkey ES cell CMK6 strain was purchased from Asahi Techno Glass Co., Ltd. Cynomolgus monkey ES cell line is 20% KnockOut Serum Replacement (KSR, Gibco BRL), 0.1 mM 2-mercaptoethanol, 100 μM non-essential amino acids, 2 mM in the presence of mitomycin C-treated mouse embryonic fibroblasts (MEF) as feeder cells L-glutamine and Dulbecco's modified Eagle's medium supplemented with 1 mM sodium pyruvate and F-12 nutrient mixture (one-to-one mixed medium (DMEM / F12, Sigma)).

ヒトES細胞KhES-1株は、京都大学再生医科学研究所より供与された。ヒトES細胞株は、フィーダー細胞としてのマイトマイシンC処理マウス胚線維芽細胞(MEF)の存在下に20% KnockOut Serum Replacement(KSR、 Gibco BRL)、0.1mM 2-メルカプトエタノール、100μM非必須アミノ酸、2mM L-グルタミンを補充したダルベッコ改変イーグル培地とF-12栄養混合物の1対1混合培地(DMEM/F12、シグマ製))で維持した。   Human ES cell strain KhES-1 was provided by the Institute of Regenerative Medicine, Kyoto University. Human ES cell line is 20% KnockOut Serum Replacement (KSR, Gibco BRL), 0.1 mM 2-mercaptoethanol, 100 μM non-essential amino acids, 2 mM in the presence of mitomycin C-treated mouse embryonic fibroblasts (MEF) as feeder cells Dulbecco's modified Eagle's medium supplemented with L-glutamine and F-12 nutrient mixture (1: 1 mixed medium (DMEM / F12, Sigma)).

(2)ES細胞の分化
分化研究には、ゼラチンコーティングプレート上で一度継代したPdx1/LacZ ES細胞を用いた。未分化のPdx1/LacZ ES細胞をトリプシンで解離させ、未処理培養皿(バクテリアグレード、岩城硝子)で分化培地中LIF非存在下に3.0×105個/90mmプレートの濃度で懸濁培養し、胚様体を形成させた。2日間分化させた胚様体をトリプシンで処理し、フィーダー細胞でプレコートした24ウェルプレートで分化培地中1ウェル当たり5000個を播種した。対照のウェルはゼラチンのみでプレコートした。対照のゼラチンコーティングウェルまたはフィーダー細胞でコートしたウェルに播種したES細胞を分化培地中で12日間分化させた後に、細胞を固定してX-Gal染色について解析した。
(2) Differentiation of ES cells For differentiation studies, Pdx1 / LacZ ES cells once passaged on gelatin-coated plates were used. Dissociate undifferentiated Pdx1 / LacZ ES cells with trypsin, and culture in suspension in an untreated culture dish (bacterial grade, Iwaki Glass) at a concentration of 3.0 × 10 5 cells / 90 mm plate in the absence of LIF in the differentiation medium. Embryoid bodies were formed. Embryoid bodies that had been differentiated for 2 days were treated with trypsin, and seeded at 5000 per well in a differentiation medium in a 24-well plate pre-coated with feeder cells. Control wells were precoated with gelatin alone. After ES cells seeded in control gelatin-coated wells or wells coated with feeder cells were differentiated in differentiation medium for 12 days, the cells were fixed and analyzed for X-Gal staining.

MEF上で継代したES細胞SK7株は、ゼラチンコートプレート上に一度継代した後、胚様体を形成させずに分化研究に直接用いた。フィーダー細胞でプレコートした24ウェルプレート中で、1ウェル当たり500個のES細胞SK7株を分化培地中に播種し、3〜4日間培養した。3日目又は4日目に、記述した時点でFBSをKSRに置き換え、増殖因子を添加した。培地は6日目に1回のみ、増殖因子を補充したKSR置換分化培地と交換した。増殖因子を添加した正確な日付、または分化培地をKSR置換分化培地と交換した正確な日付は、各図中に記したとおりである。ES細胞の蛍光写真は、実体顕微鏡(ライカMZFLIII)下で24時間ごとに撮影した。   The ES cell strain SK7 passaged on MEF was used once for differentiation studies without forming embryoid bodies after passage once on gelatin-coated plates. In a 24-well plate pre-coated with feeder cells, 500 ES cells SK7 strain per well were seeded in a differentiation medium and cultured for 3 to 4 days. On day 3 or 4, FBS was replaced with KSR at the indicated times and growth factors were added. The medium was replaced only once on the 6th day with KSR-substituted differentiation medium supplemented with growth factors. The exact date on which growth factors were added, or the exact date on which the differentiation medium was replaced with KSR-substituted differentiation medium, is as noted in each figure. Fluorescence photographs of ES cells were taken every 24 hours under a stereomicroscope (Leica MZFLIII).

サルES細胞の分化培養方法
培養0日目: 24well plateにサルES細胞を1ウェル当たり20,000個のサルES細を分化培地に播種する。培養1,3,5,7,9日目に培地交換する。分化培地はマウスES細胞の分化培地と同様。
Method of differentiation culture of monkey ES cells Day 0 of culture: Seed 20,000 monkey ES cells per well in a differentiation medium in a 24-well plate. The medium is changed on days 1, 3, 5, 7, and 9 of the culture. The differentiation medium is the same as the differentiation medium for mouse ES cells.

ヒトES細胞の分化培養方法
ヒトES細胞の分化培養条件は以下の通りである。培養0日目に24ウエルプレートにヒトES細胞を20,000細胞/wellの濃度で播種し、培養1,3,5,7,9,11日目に培地交換した。培地はKSR置換分化培地(10%KSR/DMEM (high glucose)を用いた。
Differentiation culture method of human ES cells The differentiation culture conditions of human ES cells are as follows. On day 0 of culture, 24-well plates were seeded with human ES cells at a concentration of 20,000 cells / well, and the medium was changed on days 1, 3, 5, 7, 9, and 11 of culture. The medium used was a KSR replacement differentiation medium (10% KSR / DMEM (high glucose)).

(3)フィーダー細胞株
胎生腎由来の細胞株M15細胞は、三菱化学生命科学研究所のT. Noce博士から供与された。ST2細胞は、ES細胞から血液細胞への分化を促進する能力をもつことが既知である間質細胞である。MEFは、胚齢12.5〜14.5日の胚から単離した。ST2細胞は5%FBSおよび0.1mM 2-メルカプトエタノールを補充したRPMI培地中で、他の細胞は10%FBSを補充したDMEM培地中で培養した。ST2細胞以外のフィーダー細胞は、使用前に200μg/mlのマイトマイシンCで2.5時間処理した。M15細胞は、ゼラチンコートした24ウェルプレートに、1ウェル当たり2×105個の濃度で播種した。MEF細胞は、1ウェル当たり1×105個で用いた。ST2細胞はマイトマイシンC処理を行わずに用い、ES細胞を播種する3〜4日前に24ウェルプレートに5×104個/ウェルで播種した。
(3) Feeder cell line M15 cells derived from embryonic kidney were provided by Dr. T. Noce of Mitsubishi Chemical Life Science Institute. ST2 cells are stromal cells known to have the ability to promote differentiation from ES cells to blood cells. MEFs were isolated from embryonic day 12.5-14.5 day embryos. ST2 cells were cultured in RPMI medium supplemented with 5% FBS and 0.1 mM 2-mercaptoethanol, and other cells were cultured in DMEM medium supplemented with 10% FBS. Feeder cells other than ST2 cells were treated with 200 μg / ml mitomycin C for 2.5 hours before use. M15 cells were seeded in gelatin-coated 24-well plates at a concentration of 2 × 10 5 per well. MEF cells were used at 1 × 10 5 cells per well. ST2 cells were used without mitomycin C treatment, and were seeded at 5 × 10 4 cells / well in a 24-well plate 3 to 4 days before seeding of ES cells.

(4)増殖因子
組換えヒトフォリスタチン300(GT、#2669)はGTから購入した。組換えヒトアクチビンA(GT、#2338)は10ng/mlで使用した。組換えマウスノギン/Fcキメラ(R&D、#719-NG)は100ng/mlで使用した。組換えヒト骨形成タンパク(BMP)2(Osteogenetics GmbH、ヴュルツブルク、ドイツ)は、5ng/mlまたは25ng/mlで使用した。ニコチンアミドはSigmaから購入した。
(4) Growth factor Recombinant human follistatin 300 (GT, # 2669) was purchased from GT. Recombinant human activin A (GT, # 2338) was used at 10 ng / ml. Recombinant mouse noggin / Fc chimera (R & D, # 719-NG) was used at 100 ng / ml. Recombinant human bone morphogenetic protein (BMP) 2 (Osteogenetics GmbH, Wurzburg, Germany) was used at 5 ng / ml or 25 ng / ml. Nicotinamide was purchased from Sigma.

(5)β-ガラクトシダーゼ活性検出のためのX-gal染色
ES細胞培養物を、PBS中4%パラホルムアルデヒド中で室温で20分間固定し、PBSで数回すすぎ、β-ガラクトシダーゼ活性について染色した。X-gal染色のために、細胞を、1mg/mlのX-galの存在下、PBS中に20mM K3Fe(CN)6、20mM K4Fe(CN)6-3H2O、2mM MgCl2、0.02% Nonidet-P40、0.01%デオキシコール酸を含む緩衝液中で37℃で一晩インキュベートした。各ウェルのLacZ陽性細胞数を顕微鏡下でカウントした。X-gal染色後に細胞からDNAを抽出して定量した。各ウェルの細胞の総数をDNA標準から測定し、各ウェルでのX-gal陽性細胞の割合を算出した。12日間分化させた細胞の総数は3×105〜1×106個であった。
(5) X-gal staining for detecting β-galactosidase activity
ES cell cultures were fixed in 4% paraformaldehyde in PBS for 20 minutes at room temperature, rinsed several times with PBS, and stained for β-galactosidase activity. For X-gal staining, cells were washed with 20 mM K 3 Fe (CN) 6 , 20 mM K 4 Fe (CN) 6 -3H 2 O, 2 mM MgCl 2 in PBS in the presence of 1 mg / ml X-gal. Incubate overnight at 37 ° C. in a buffer containing 0.02% Nonidet-P40, 0.01% deoxycholic acid. The number of LacZ positive cells in each well was counted under a microscope. DNA was extracted from the cells after X-gal staining and quantified. The total number of cells in each well was measured from the DNA standard and the percentage of X-gal positive cells in each well was calculated. The total number of cells differentiated for 12 days was 3 × 10 5 to 1 × 10 6 .

(6)GFP陽性細胞の定量
ES細胞の蛍光写真を実体顕微鏡(ライカMZFLIII)下で24時間ごとに撮影し、Lumina Visionソフトウェア(三谷商事、日本)で蛍光強度を定量した。免疫蛍光写真は、CCDカメラ(DP50)を使用したOlympus IX70で撮影した。
(6) Quantification of GFP positive cells
Fluorescence photographs of ES cells were taken every 24 hours under a stereomicroscope (Leica MZFLIII), and fluorescence intensity was quantified with Lumina Vision software (Mitani Corporation, Japan). Immunofluorescence photographs were taken with an Olympus IX70 using a CCD camera (DP50).

(7)逆転写ポリメラーゼ連鎖反応(RT-PCR)による解析
TRIZOL試薬(Gibco BRL)、その後DNase(Sigma)を使用して、ES細胞からRNAを抽出した。逆転写(RT)反応には、M-MLV逆転写酵素(Toyobo)およびオリゴdTプライマー(Gibco BRL)を用いて、3μgのRNAを逆転写した。1μlの5倍希釈cDNA(逆転写産物の1/100に相当)をPCR解析に用いた。
(7) Analysis by reverse transcription polymerase chain reaction (RT-PCR)
RNA was extracted from ES cells using TRIZOL reagent (Gibco BRL) followed by DNase (Sigma). For reverse transcription (RT) reaction, 3 μg of RNA was reverse transcribed using M-MLV reverse transcriptase (Toyobo) and oligo dT primer (Gibco BRL). 1 μl of 5-fold diluted cDNA (corresponding to 1/100 of reverse transcript) was used for PCR analysis.

プライマーの各組み合わせについて、サイクル数と直線範囲のRT-PCRに必要なcDNA量を経験的に決定した。プライマーの配列、各プライマー対に用いたサイクル数を表1に示す。RT-PCR産物の1/5を5%非変性ポリアクリルアミドゲル電気泳動(PAGE)にロードし、DNA感受性の色素SYBRGreenI(Molecular Probes)を用いてFluoroImager(Molecular Dynamics)で解析した。   For each primer combination, the number of cycles and the amount of cDNA required for RT-PCR in the linear range were determined empirically. Table 1 shows the primer sequences and the number of cycles used for each primer pair. 1/5 of the RT-PCR product was loaded on 5% non-denaturing polyacrylamide gel electrophoresis (PAGE) and analyzed with FluoroImager (Molecular Dynamics) using the DNA sensitive dye SYBRGreenI (Molecular Probes).

PCR条件:
Iapp, Ins2 及びPP:
96℃(変性)で30秒、60℃(アニーリング)で2秒、及び72℃(伸長)で45秒(Hot start)
Amylase, Ins1 及び Kir6.2
96℃(変性)で30秒、及び70℃(アニーリング及び伸長)で30秒(Hot start)
その他:
96℃(変性)で30秒、60℃(アニーリング)で2秒、及び72℃(伸長)で45秒
PCR conditions:
Iapp, Ins2 and PP:
96 ° C (denaturation) for 30 seconds, 60 ° C (annealing) for 2 seconds, and 72 ° C (extension) for 45 seconds (Hot start)
Amylase, Ins1 and Kir6.2
30 seconds at 96 ° C (denaturation) and 30 seconds at 70 ° C (annealing and elongation) (Hot start)
Other:
30 seconds at 96 ° C (denaturation), 2 seconds at 60 ° C (annealing), and 45 seconds at 72 ° C (extension)

(8)免疫組織化学検査(図5及び図16の実験方法)
全マウント免疫組織化学検査を行う際、中胚葉細胞又はES細胞をNunc Thermanox Colerslips 24well type (Nunc, # 174950)上に置いた。細胞を、4%パラホルムアルデヒド中で室温で20分間固定し、0.1%tween含有リン酸緩衝生理食塩水(PBS-T)で充分に洗浄した。1% TritonX-100を含有するPBSで室温で10分間浸透させ、ブロッキング溶液(x5 Blocking One, Nacalai Tesque)で1時間インキュベートした後、ブロッキング溶液中の一次抗体を試料に添加し、4℃で一夜インキュベートした。試料をPBS-Tで充分に洗浄し、PermaFluor Aqueous Mounting Medium (IMMUNON)でマウントした。共焦点画像をLeica Spectral Confocal Scanning System, TCS-SP2 (Leica)を用いて取得した。
(8) Immunohistochemical examination (experimental method of FIGS. 5 and 16)
When performing a full mount immunohistochemistry, mesoderm cells or ES cells were placed on a Nunc Thermanox Colerslips 24-well type (Nunc, # 174950). Cells were fixed in 4% paraformaldehyde for 20 minutes at room temperature and washed thoroughly with 0.1% tween-containing phosphate buffered saline (PBS-T). Infiltrate with PBS containing 1% TritonX-100 at room temperature for 10 minutes, incubate with blocking solution (x5 Blocking One, Nacalai Tesque) for 1 hour, then add the primary antibody in blocking solution to the sample and overnight at 4 ° C Incubated. The sample was thoroughly washed with PBS-T and mounted with PermaFluor Aqueous Mounting Medium (IMMUNON). Confocal images were acquired using a Leica Spectral Confocal Scanning System, TCS-SP2 (Leica).

検出に用いた抗体は、ウサギ抗AFP (Biomeda, #A02)、ヤギ抗アルブミン(Sigma, #A1151)、マウス抗Cdx2 (BioGenex, #MU392-UC)、マウス抗CK19 (DAKO, #M0888)、ヤギ抗HNF3β(Santa Cruz, #sc-9187)、ウサギ抗Pdx1 (Chemicon, #AB5754)、及びウサギ抗T (Santa Cruz, #sc-20109)、ウサギ抗Nkx2.1 (Santa Cruz, #sc-13040)、ウサギ抗GFP(MBL, #598)である。用いた二次抗体は、Allexa 568結合ヤギ抗ウサギ及びマウス抗体(Molecular Probes, #A11036 and #A11019), Allexa 488結合ヤギ抗ウサギ及びマウス抗体(Molecular Probes, #A11070)、C y3結合ロバ抗ヤギ抗体(Jackson Lab, #705-166-147)である。   The antibodies used for detection were rabbit anti-AFP (Biomeda, # A02), goat anti-albumin (Sigma, # A1151), mouse anti-Cdx2 (BioGenex, # MU392-UC), mouse anti-CK19 (DAKO, # M0888), goat Anti-HNF3β (Santa Cruz, # sc-9187), rabbit anti-Pdx1 (Chemicon, # AB5754), and rabbit anti-T (Santa Cruz, # sc-20109), rabbit anti-Nkx2.1 (Santa Cruz, # sc-13040) Rabbit anti-GFP (MBL, # 598). Secondary antibodies used were Allexa 568-conjugated goat anti-rabbit and mouse antibody (Molecular Probes, # A11036 and # A11019), Allexa 488-conjugated goat anti-rabbit and mouse antibody (Molecular Probes, # A11070), Cy3-conjugated donkey anti-goat. Antibody (Jackson Lab, # 705-166-147).

(9)蛍光標識によるフローサイトメトリー(FACS)(図12の実験方法)
M15細胞は、ウエル当たり2×10個で播種し、使用前に培養した。5,000細胞のSK7 ES細胞を、分化培地中の中胚葉細胞層に播種し、8日間分化させた。分化の8日目に、SK7 ES細胞をCell dissociation buffer (GIBCO BRL)を用いて37℃で20分間解離させた。細胞を、モノクローナル抗体(mAb)の組み合わせを用いて染色した。この実験で使用した抗体は、ビオチン結合抗E-カドヘリンモノクローナル抗体ECCD2(熊本大学永渕昭良教授、小川峰太郎教授より供与、非標識抗体はタカラバイオ(株)より購入可能)、PE結合抗Cxcr4モノクローナル抗体2B11 (Becton, Dickinson and Company)である。表面染色のために、細胞を標識したモノクローナル抗体の混合物と一緒にインキュベートした。染色した細胞を、40μmのメッシュで濾過し、ヨウ化プロピジウムを含むHBSS-1%BSAに再懸濁し、FAC S Canto (Becton, Dickinson and Company)で解析した。データは、CellQuest Prosoftware (Becton, Dickinson and Company)を用いて記録し、Flowjo program (Tree Star)を用いて解析した。
(9) Flow cytometry with fluorescent labeling (FACS) (experimental method of FIG. 12)
M15 cells were seeded at 2 × 10 5 cells per well and cultured before use. 5,000 SK7 ES cells were seeded on the mesodermal cell layer in differentiation medium and allowed to differentiate for 8 days. On the 8th day of differentiation, SK7 ES cells were dissociated using Cell dissociation buffer (GIBCO BRL) at 37 ° C. for 20 minutes. Cells were stained with a combination of monoclonal antibodies (mAb). The antibodies used in this experiment are biotin-conjugated anti-E-cadherin monoclonal antibody ECCD2 (provided by Prof. Akiyoshi Nagahama and Prof. Taro Ogawa, Kumamoto University; unlabeled antibody can be purchased from Takara Bio Inc.), PE-conjugated anti-Cxcr4 monoclonal Antibody 2B11 (Becton, Dickinson and Company). Cells were incubated with a mixture of labeled monoclonal antibodies for surface staining. Stained cells were filtered through a 40 μm mesh, resuspended in HBSS-1% BSA containing propidium iodide and analyzed by FAC S Canto (Becton, Dickinson and Company). Data was recorded using CellQuest Prosoftware (Becton, Dickinson and Company) and analyzed using Flowjo program (Tree Star).

(10)蛍光標識によるフローサイトメトリー(FACS)(図13の実験方法)
マイトマイシン処理したM15細胞は、使用前に90mmプレート1枚当たり6×106個を一晩培養した。3×105個のES細胞SK7株を分化培地中のM15細胞層上に播種し、9日間分化させた。分化の9日目に、ES細胞SK7株を0.25%トリプシン-EDTAで10分間トリプシン処理し、40μmのメッシュで濾過し、1×106〜2×106個/mlの濃度で、ヨウ化プロピジウムを含むHBSS-1%BSAに再懸濁し、FACS Vantage SEで解析した。未分化のES細胞SK7株をネガティブコントロールとして用いた。分化したES細胞を緑色蛍光の強度により5画分に分け、RNA抽出およびRT-PCR解析を行った。
(10) Flow cytometry by fluorescence labeling (FACS) (experimental method of FIG. 13)
M15 cells treated with mitomycin were cultured overnight at 6 × 10 6 cells per 90 mm plate before use. 3 × 10 5 ES cells, strain SK7, were seeded on the M15 cell layer in differentiation medium and allowed to differentiate for 9 days. On day 9 of differentiation, ES cell SK7 strain was trypsinized with 0.25% trypsin-EDTA for 10 minutes, filtered through a 40 μm mesh, and propidium iodide at a concentration of 1 × 10 6 to 2 × 10 6 cells / ml It was resuspended in HBSS-1% BSA containing and analyzed by FACS Vantage SE. Undifferentiated ES cell line SK7 was used as a negative control. Differentiated ES cells were divided into 5 fractions according to the intensity of green fluorescence, and RNA extraction and RT-PCR analysis were performed.

(11)ES細胞由来分化細胞の維持培養方法
分化したES(dES)細胞を、M15の下、アクチビン及びbFGFの両方を添加して、10%FBSを添加した培地中で8日間培養した。ES細胞を8日間培養した後、dESを0.05%トリプシン/EDTAでトリプシン処理し、2-メタクリルオイロキシエチル ホスホリルコリン(2-Methacryloyloxyethyl PhosphorylCholine;MPC)を被覆した低細胞結合ディッシュ(ローセルバインディングディッシュ&プレート; Nalgenunc, #145389)に再度播種することでPdx1陽性細胞を維持培養することが出来る。
(11) Method for maintaining culture of ES cell-derived differentiated cells Differentiated ES (dES) cells were cultured for 8 days in a medium supplemented with 10% FBS, with both activin and bFGF added under M15. After culturing ES cells for 8 days, dES was trypsinized with 0.05% trypsin / EDTA and coated with 2-Methacryloyloxyethyl PhosphorylCholine (MPC) (low cell binding dish and plate) Pdx1-positive cells can be maintained and cultured by seeding again in Nalgenunc, # 145389).

(12)マウス腎臓皮膜下への移植
(上記の項で維持培養1日目のPdx1陽性分化細胞を改修し、移植実験に使用した(図14)。通常の麻酔下で、マウスの左腎臓皮膜下にdES(約3×10細胞)を移植した。移植の1週間後に、ES細胞を移植したマウスを殺し、腎臓を取り出し、4%パラホルムアルデヒドで固定化した。移植片(10μm)の凍結切片を免疫組織化学により解析した。
(12) Transplantation under the mouse kidney capsule
(The Pdx1-positive differentiated cells on the first day of maintenance culture were modified in the above section and used for transplantation experiments (FIG. 14). Under normal anesthesia, dES (about 3 × 10 6 cells under the left kidney capsule of mice) One week after transplantation, mice transplanted with ES cells were killed, kidneys were removed and fixed with 4% paraformaldehyde, and frozen sections of the grafts (10 μm) were analyzed by immunohistochemistry.

(13)ES細胞の分化(図17の実験方法)
血清なしの条件下での分化のために、SK7 ES細胞を、分化培地中において、中胚葉細胞で予め被覆した24ウエルプレートにウエル当たり5,000細胞で播種し、8日間培養した。培地は2日毎に交換した。胚性内胚葉(E-cadherin +/CXCR4+ cells)に分化したES細胞又はPdx1/EGFP細胞を比較した。ES細胞は、10%FBS (FBS)中において、又は20ng/mlのアクチビンありの場合となしの場合で、10μg/mlインスリン (Sigma), 5.5μg/mlトランスフェリン(Sigma), 6.7 pg/mlセレン(S igma)及び0.25% アルブミン(Albmax, GIBCO) を補充した血清なしの基礎培地(DMEM, Gibco BRL) (ITS)中において分化させた。
(13) Differentiation of ES cells (experimental method of FIG. 17)
For differentiation under serum-free conditions, SK7 ES cells were seeded at 5,000 cells per well in 24-well plates pre-coated with mesoderm cells in differentiation medium and cultured for 8 days. The medium was changed every 2 days. ES cells or Pdx1 / EGFP cells differentiated into embryonic endoderm (E-cadherin + / CXCR4 + cells) were compared. ES cells were 10 μg / ml insulin (Sigma), 5.5 μg / ml transferrin (Sigma), 6.7 pg / ml selenium in 10% FBS (FBS) or with and without 20 ng / ml activin. Differentiation was performed in serum-free basal medium (DMEM, Gibco BRL) (ITS) supplemented with (Sigma) and 0.25% albumin (Albmax, GIBCO).

(B)結果
(1)中胚葉細胞による、ES細胞からPdx1発現腸管内胚葉細胞への分化を促進する因子の産生
共培養系を用いて、ES細胞の内胚葉分化を促進する活性について、初代培養細胞と株化細胞のスクリーニングを行った。Pdx1座位にlacZレポーター遺伝子を挿入したES細胞株を用いたため、Pdx1遺伝子の発現はin situ X-Gal染色により視覚化することができた。その結果、中腎細胞株M15(Larsson, S. H., Charlieu, J. P., Miyagawa, K., et al. (1995). Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391-401)、マウス胚線維芽細胞(MEF)(Nagy A , et al. (2003) Manipulating The Mouse Embryo: A Laboratory Manual. Third Edition Cold Spring Harbor Press)、及びST2細胞(Ogawa, M., Nishikawa, S., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K. and Nishikawa, S. (1988) EMBO J, 7:1337-1343)など数種の中胚葉由来細胞株をフィーダー細胞として用いてES細胞と共培養した場合に、ES細胞のPdx1/β-gal発現細胞への分化が促進されることが判明した。M15細胞株により、ES細胞のPdx1/β-gal発現内胚葉細胞への分化が顕著に促進された。M15細胞層上で培養した場合、分化した全ES細胞の0.1%がPdx1/β-gal発現細胞になった(図1)。これは、胚性膵原基との共培養で誘導されるPdx1/β-gal発現細胞の割合と同様である。MEFにより、ES細胞のPdx1/β-gal発現内胚葉細胞への分化が中程度に促進された。M15細胞上で培養したES細胞は再現性よくPdx1/β-gal発現細胞を最も多く生じさせたため、以後の実験にはM15細胞株を用いた。
(B) Results (1) Production of factors that promote the differentiation of ES cells into Pdx1-expressing intestinal endoderm cells by mesoderm cells About the activity of promoting the endoderm differentiation of ES cells using a co-culture system Cultured cells and cell lines were screened. Since an ES cell line with a lacZ reporter gene inserted at the Pdx1 locus was used, the expression of the Pdx1 gene could be visualized by in situ X-Gal staining. As a result, the middle kidney cell line M15 (Larsson, SH, Charlieu, JP, Miyagawa, K., et al. (1995). Subnuclear localization of WT1 in splicing or transcription factor domains is regulated by alternative splicing. Cell 81, 391- 401), mouse embryo fibroblasts (MEF) (Nagy A, et al. (2003) Manipulating The Mouse Embryo: A Laboratory Manual. Third Edition Cold Spring Harbor Press), and ST2 cells (Ogawa, M., Nishikawa, S) ., Ikuta, K., Yamamura, F., Naito, M., Takahashi, K. and Nishikawa, S. (1988) EMBO J, 7: 1337-1343) It was found that differentiation of ES cells into Pdx1 / β-gal expressing cells was promoted when co-cultured with ES cells. The M15 cell line significantly promoted the differentiation of ES cells into Pdx1 / β-gal expressing endoderm cells. When cultured on the M15 cell layer, 0.1% of all differentiated ES cells became Pdx1 / β-gal expressing cells (FIG. 1). This is similar to the proportion of Pdx1 / β-gal expressing cells induced by co-culture with embryonic pancreatic primordia. MEF moderately promoted differentiation of ES cells into Pdx1 / β-gal expressing endoderm cells. Since ES cells cultured on M15 cells produced the highest number of Pdx1 / β-gal expressing cells with good reproducibility, the M15 cell line was used in subsequent experiments.

M15フィーダー細胞層上のPdx1/β-gal発現細胞の時間依存性の変化をモニターした。図2は、Pdx1/β-gal発現細胞数が12日目にピークに達し、その後は減少したことを示す。分化したES細胞を7日目にトリプシン処理し、新たに調製したM15細胞層上で継代した場合、15日目(継代後8日目に相当)にPdx1/β-gal陽性細胞が再び出現した。Pdx1/β-gal陽性細胞の再出現までに、短い時間しか要しないことは、ES細胞をM15フィーダー細胞層上で培養する場合に培養物中に未分化細胞またはある種の内胚葉前駆細胞が存在することを示している。10回まで継代を行ったところ、Pdx1/β-gal陽性細胞の再出現が同様に観察された。   The time-dependent changes of Pdx1 / β-gal expressing cells on the M15 feeder cell layer were monitored. FIG. 2 shows that the number of Pdx1 / β-gal expressing cells peaked on day 12 and then decreased. When differentiated ES cells were trypsinized on day 7 and passaged on a freshly prepared M15 cell layer, Pdx1 / β-gal positive cells reappeared on day 15 (equivalent to day 8 after passage). Appeared. The short time required for the reappearance of Pdx1 / β-gal positive cells means that when ES cells are cultured on the M15 feeder cell layer, undifferentiated cells or certain endoderm progenitor cells are present in the culture. Indicates that it exists. When subculture was performed up to 10 times, reappearance of Pdx1 / β-gal positive cells was also observed.

(2)Pdx1/GFP発現を利用した生存ES細胞での内胚葉系への分化のモニタリング
蛍光色素を用いて生存ES細胞でのpdx1発現を追跡するため、Pdx1/GFPを含むプラスミドを導入したP#48.9系統のトランスジェニックマウス(Gu, G., Wells, J. M., Dombkowski, D., Preffer, F., Aronow, B., and Melton, D. A. (2004). Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131, 165-79)からES細胞株を樹立した。P#48.9系統のトランスジェニックマウスは、胚形成を通じてPdx1の発現を再現することが示された。当初、ES細胞株を8系統樹立したが、これらすべてはin vitroでの分化中に類似のPdx1/GFP発現パターンを示した。この中で、SK7と命名したES細胞株が良好に増殖したので、これを以後の実験に用いた。Pdx1/GFP発現ES細胞(SK7)をマイトマイシンで処理したM15細胞上で分化させ、Pdx1/GFP発現の時間依存性の変化をモニターした。
(2) Monitoring of endoderm differentiation in living ES cells using Pdx1 / GFP expression In order to track pdx1 expression in living ES cells using fluorescent dyes, a plasmid containing Pdx1 / GFP was introduced. # 48.9 transgenic mice (Gu, G., Wells, JM, Dombkowski, D., Preffer, F., Aronow, B., and Melton, DA (2004) .Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131, 165-79), an ES cell line was established. The P # 48.9 strain of transgenic mice has been shown to reproduce Pdx1 expression through embryogenesis. Initially, eight ES cell lines were established, all of which showed similar Pdx1 / GFP expression patterns during in vitro differentiation. Among them, the ES cell line named SK7 proliferated well and was used for the subsequent experiments. Pdx1 / GFP-expressing ES cells (SK7) were differentiated on M15 cells treated with mitomycin, and the time-dependent changes in Pdx1 / GFP expression were monitored.

分化手順の略図を図3Aに示す。ES細胞SK7株は、10%のFBSを含む分化培地を含む24ウェルプレートに、500個/ウェルという低密度で播種した。対照の分化培地と、第4日以降分化培地中のFBSをKnocked-out Serum Replacementで置換えた培地(KSR置換分化培地)で、培養条件を比較した。低密度培養では、ES細胞をKSR置換分化培地中で培養した場合、第4日以降のPdx1/EGFP陽性細胞数が増加することが明らかとなった(図3A)。分化の中のES細胞のコロニーの形態変化を図3Cに示す。コロニーの多くは分化第5日まで盛り上がった形を保ち、6日目前後にはコロニーの中心からの細胞の移動が観察される(図3C)。細胞の移動に伴い、6日目にはPdx1/EGFP発現が検出できるようになり、8日目には発現細胞が最多値に達してその後は減少する(図3B)。Pdx1/EGFP陽性コロニーでは、細胞はコロニーの中心から移動し、その後、Pdx1/EGFP陽性細胞がコロニー周縁部にあり、丸く大きい平坦なコロニーを形成した。Pdx1/EGFP陰性コロニーは、盛り上がった密集したコロニーの特徴を示した。これらの結果は、膵の分化には移動性能の獲得が必要であることを示している。   A schematic diagram of the differentiation procedure is shown in FIG. 3A. The ES cell SK7 strain was seeded at a low density of 500 cells / well in a 24-well plate containing a differentiation medium containing 10% FBS. The culture conditions were compared between a control differentiation medium and a medium in which FBS in the differentiation medium after 4th day was replaced with Knocked-out Serum Replacement (KSR-substituted differentiation medium). In the low-density culture, it was revealed that the number of Pdx1 / EGFP positive cells after day 4 increased when ES cells were cultured in KSR-substituted differentiation medium (FIG. 3A). The morphological changes of ES cell colonies during differentiation are shown in FIG. 3C. Many of the colonies remain swelled until the fifth day of differentiation, and cell migration from the center of the colonies is observed around the sixth day (FIG. 3C). As the cells migrate, Pdx1 / EGFP expression can be detected on the 6th day, and the number of expressed cells reaches the maximum value on the 8th day and then decreases (FIG. 3B). In the Pdx1 / EGFP positive colony, the cells migrated from the center of the colony, and then the Pdx1 / EGFP positive cells were in the periphery of the colony to form a round large flat colony. Pdx1 / EGFP negative colonies showed features of raised and dense colonies. These results indicate that it is necessary to acquire migration performance for pancreatic differentiation.

(3)RT-PCR解析によるM15フィーダー細胞層上で分化させたES細胞における膵内分泌マーカーと他の内胚葉由来組織マーカーの発現の検出
M15フィーダー細胞上のES細胞SK7株の分化状態の特徴を明らかにするため、膵内分泌マーカーの発現を解析した。Pdx1の発現は4日目に検出され、8日目にピークに達した(図4)。Nkx2.2、Nkx6.1、Pax 4、Pax6、Isl1、NeuroD、Ngn3などの他の内分泌前駆細胞のマーカーも検出された。Pax4とIsl1の発現は、ゼラチンコートしたウェルで分化した対照ES細胞でも検出されるが、他のマーカーの発現はM1 5フィーダー細胞層上で分化させたES細胞で特異的に誘導される。M15フィーダー細胞層上で分化させたES細胞でのインスリン2発現は、第8日に検出された。グルカゴン、膵ポリペプチド(Pp)、ソマトスタチン(Sst)などの成熟膵の他の内分泌の分子マーカーや外分泌マーカーであるアミラーゼも、M15フィーダー細胞上で分化させたES細胞で特異的に検出される。Iapp、グルコキナーゼ、Kir6.2などの成熟・細胞のマーカーが検出される。
(3) Detection of expression of pancreatic endocrine markers and other endoderm-derived tissue markers in ES cells differentiated on the M15 feeder cell layer by RT-PCR analysis
In order to characterize the differentiation state of ES cell line SK7 on M15 feeder cells, the expression of pancreatic endocrine markers was analyzed. Pdx1 expression was detected on day 4 and peaked on day 8 (FIG. 4). Other endocrine progenitor markers such as Nkx2.2, Nkx6.1, Pax 4, Pax6, Isl1, NeuroD, Ngn3 were also detected. Expression of Pax4 and Isl1 is also detected in control ES cells differentiated in gelatin-coated wells, while expression of other markers is specifically induced in ES cells differentiated on the M1 5 feeder cell layer. Insulin 2 expression in ES cells differentiated on the M15 feeder cell layer was detected on day 8. Other endocrine molecular markers and exocrine markers such as glucagon, pancreatic polypeptide (Pp) and somatostatin (Sst) are also specifically detected in ES cells differentiated on M15 feeder cells. Maturation / cell markers such as Iapp, glucokinase, Kir6.2 are detected.

また、未熟肝臓マーカー(アルブミン、αフェトプロテイン、Met)、肺のマーカー(Sftpc(図5の免疫染色ではさらにNkx2.1の発現が示されている))、口腔マーカー(Pax9)が検出されている。即ち、M15を用いた誘導方法によって、内胚葉性器官が膵臓以外にも、肝臓、肺、口腔が誘導されている。さらに小腸も(図5)誘導されているので、広い器官誘導能があることが示されている。従って、本発明の分化誘導法は、膵臓、肝臓、肺、小腸、口腔(Pax9, RT-PCR)を含む内胚葉性器官の分化誘導に有用である。   In addition, immature liver markers (albumin, α-fetoprotein, Met), lung markers (Sftpc (Nkx2.1 expression is shown in the immunostaining in Fig. 5)), and oral marker (Pax9) are detected. . That is, by the induction method using M15, the endoderm organ is induced in the liver, lungs and oral cavity in addition to the pancreas. Furthermore, since the small intestine is also induced (FIG. 5), it is shown that it has a wide organ-inducing ability. Therefore, the differentiation induction method of the present invention is useful for inducing differentiation of endoderm organs including pancreas, liver, lung, small intestine and oral cavity (Pax9, RT-PCR).

上述の結果は、M15支持細胞が、ES細胞の膵や肝などの内胚葉由来臓器への分化を特異的に促していることを裏付けている。この活性をMesodermal Derived Inducing Activity(中胚葉由来分化誘導活性 ; MDIA)と名づけた。The above results support that the M15 feeder cells specifically promote the differentiation of ES cells into endoderm-derived organs such as pancreas and liver. The active M esodermal D erived I nducing A ctivity ( mesoderm-derived differentiation-inducing activity; mdia) was named.

さらに、他のES細胞(R1、及びJ1 ES細胞)に対するMDIA(中胚葉由来分化誘導活性)の効果を調べた。Pdx1、又は内分泌マーカー(インスリン、膵ポリペプチド、及びソマトスタチン)の発現はMDIA処理したR1及びJ1 ES細胞で上昇していた(図4の右図)。従って、MDIAは、各種のES細胞に適用できることが示された。   Furthermore, the effect of MDIA (mesoderm-derived differentiation inducing activity) on other ES cells (R1 and J1 ES cells) was examined. Expression of Pdx1 or endocrine markers (insulin, pancreatic polypeptide, and somatostatin) was elevated in RIA and J1 ES cells treated with MDIA (right diagram in FIG. 4). Therefore, it was shown that MDIA can be applied to various types of ES cells.

(4)SK7細胞由来の分化細胞における内胚葉関連マーカーの発現の検出
免疫組織化学検査によりSK7細胞由来の分化細胞における内胚葉関連マーカーの発現を検出した結果を図5に示す。図5に示す通り、内胚葉細胞の共通マーカーであるHNF3β、各種内胚葉系器官関連遺伝子:肝臓マーカー遺伝子のアルブミン、肺のマーカー遺伝子のNkx2.1、小腸のマーカーのCdx2遺伝子の発現(赤色)が認められた。また、Hnf3βの発現細胞はPdx1/EGFP陽性細胞と重なるが、肺や肝臓などの膵臓以外の内胚葉系器官関連遺伝子を発現する細胞はPdx1/EGFP陽性細胞(緑)とは異なった細胞であった。
(4) Detection of expression of endoderm-related marker in differentiated cells derived from SK7 cells FIG. 5 shows the results of detecting the expression of the endoderm-related marker in differentiated cells derived from SK7 cells by immunohistochemical examination. As shown in Figure 5, HNF3β, a common marker of endoderm cells, various endoderm organ-related genes: albumin of liver marker gene, Nkx2.1 of lung marker gene, Cdx2 gene of small intestine marker (red) Was recognized. Hnf3β-expressing cells overlap with Pdx1 / EGFP-positive cells, but cells expressing endoderm organ-related genes other than the pancreas such as lung and liver are different from Pdx1 / EGFP-positive cells (green). It was.

(5)MDIA処理により誘導される内胚葉前駆細胞
RT-PCR分析の結果により、他の内胚葉由来組織(肝臓等)もES細胞のMDIA処理により誘導されることが示された。これにより、MDIA処理が、ES細胞から内胚葉への分化を特異的に誘導することが分かる。内胚葉前駆体の分化をモニターするために、Hnf3β遺伝子の内胚葉特異的エンハンサー断片を使用して (Nishizaki, Y., Shimazu, K., Kondoh, H., Sasaki, H.(2001) Identification of essential sequence motifs in the node/notochord enhancer of Foxa2 (Hnf3beta) gene that are conserved across vertebrate species. Mech Dev 102, 57-66)、単量体赤色蛍光タンパク質Iレポーター遺伝子(mRFP1)の発現を制御するように設計したHnf3β/mRFP1遺伝子を導入したトランスジェニックマウスを作製した。Hnf3β/mRFP1トランスジェニックマウスは、Hnf3βの発現パターンを既報の通り再現した(Nishizaki et al., 2001)。Hnf3β/mRFP1トランスジェニックマウスは、Pdx1/EGFPトランスジェニックマウス株P#48.9(Gu, G., Wells, J. M., Dombkowski, D., Preffer, F., Aronow, B., and Melton, D. A. (2004). Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131, 165-79)と交配させた。Hnf3β/mRFP1とPdx1/EGFPの両方の導入遺伝子を有するES細胞株を樹立し、PH3と命名したES細胞株を以後の実験で使用した。ES細胞PH3株を、マイトマイシンで処理したM15細胞上で分化させ、Pdx1/EGFP及びHnf3β/mRFP1の発現の時間に依存した動態をモニターした。図6は、 Hnf3β/mRFP1の発現が分化の7日目に観察され、これはPdx1/EGFPの発現より1日先行していることを示す。Hnf3βを発現するES細胞の集団は、Pdx1を発現する集団より大きい。時間依存的な発現及びHnf3β及びPdx1を発現するES細胞の集団は、通常の胚発生を再現する。これらの結果から、ES細胞のMDIA処理により内胚葉前駆体が誘導されることが示された。
(5) Endoderm precursor cells induced by MDIA treatment
The results of RT-PCR analysis indicated that other endoderm-derived tissues (such as liver) were also induced by MDIA treatment of ES cells. This shows that MDIA treatment specifically induces differentiation from ES cells to endoderm. To monitor the differentiation of endoderm progenitors, we used an endoderm-specific enhancer fragment of the Hnf3β gene (Nishizaki, Y., Shimazu, K., Kondoh, H., Sasaki, H. (2001) Identification of essential sequence motifs in the node / notochord enhancer of Foxa2 (Hnf3beta) gene that are conserved across vertebrate species. Mech Dev 102, 57-66), to control the expression of monomeric red fluorescent protein I reporter gene (mRFP1) A transgenic mouse into which the designed Hnf3β / mRFP1 gene was introduced was prepared. Hnf3β / mRFP1 transgenic mice reproduced the expression pattern of Hnf3β as previously reported (Nishizaki et al., 2001). The Hnf3β / mRFP1 transgenic mouse is a Pdx1 / EGFP transgenic mouse strain P # 48.9 (Gu, G., Wells, JM, Dombkowski, D., Preffer, F., Aronow, B., and Melton, DA (2004) Global expression analysis of gene regulatory pathways during endocrine pancreatic development. Development 131, 165-79). An ES cell line carrying both Hnf3β / mRFP1 and Pdx1 / EGFP transgenes was established, and the ES cell line designated PH3 was used in subsequent experiments. The ES cell PH3 line was differentiated on M15 cells treated with mitomycin and the time-dependent kinetics of expression of Pdx1 / EGFP and Hnf3β / mRFP1 were monitored. FIG. 6 shows that Hnf3β / mRFP1 expression is observed on day 7 of differentiation, which is one day ahead of Pdx1 / EGFP expression. The population of ES cells that express Hnf3β is larger than the population that expresses Pdx1. A population of ES cells that express time-dependent expression and Hnf3β and Pdx1 reproduces normal embryonic development. From these results, it was shown that endoderm precursor is induced by MDIA treatment of ES cells.

(6)中胚葉由来分化誘導活性(MDIA)の一部はアクチビンによる作用である
中胚葉由来分化誘導活性(MDIA)の分子メカニズムを明らかにするため、実験に用いたフィーダー細胞株でのアクチビンβA、アクチビンβB、フォリスタチンなどの数種の増殖因子の発現をスクリーニングした。アクチビンβAとアクチビンβBはM15細胞中で高レベルで、MEF細胞中で中レベルで発現している。フォリスタチンは、M15細胞では発現しないが、MEF細胞、ST2細胞では高レベルに発現している(図7A)。ES細胞の分化培養物中でのアクチビンA添加の効果を分析した。10ng/mlのアクチビンAの添加により、M15細胞上でのPdx1/EGFP発現が有意に促進された(図7B、Studentのt-検定、*p<0.01)。フォリスタチンを25ng/mlで添加した場合、Pdx1/EGFP陽性細胞は減少し、250ng/mlで添加するとさらに有意に減少した。アクチビンA(10ng/ml)を外から添加することによるMDIA促進は250ng/mlのフォリスタチンで阻害される。これらの結果は、MDIAを媒介する分子についての研究が、ES細胞の膵への分化に必要とされる誘導シグナルを研究する際に有用であることを示している。上記の結果は、アクチビンがMDIAを媒介する分子の一つであることを示している。MDIAはフォリスタチンによって完全には阻害されないため、ES細胞を内胚葉系細胞に分化させるMDIAに関与するM15細胞には他の分子が含まれている可能性がある。M15細胞、またはMDIAを示す他のフィーダー細胞中で発現される分泌型または膜結合型の分子について研究することにより、ES細胞の内胚葉系への分化の分子メカニズム解明に関する情報を得ることができる。
(6) Part of mesoderm-derived differentiation-inducing activity (MDIA) is the action of activin. To clarify the molecular mechanism of mesoderm-derived differentiation-inducing activity (MDIA), activin βA in the feeder cell line used in the experiment Expression of several growth factors such as activin βB and follistatin was screened. Activin βA and activin βB are expressed at high levels in M15 cells and at moderate levels in MEF cells. Follistatin is not expressed in M15 cells, but is expressed at high levels in MEF cells and ST2 cells (FIG. 7A). The effect of activin A addition in ES cell differentiation cultures was analyzed. Addition of 10 ng / ml activin A significantly promoted Pdx1 / EGFP expression on M15 cells (FIG. 7B, Student t-test, * p <0.01). When follistatin was added at 25 ng / ml, Pdx1 / EGFP positive cells decreased, and when added at 250 ng / ml, it decreased further significantly. MDIA promotion by external addition of activin A (10 ng / ml) is inhibited by 250 ng / ml follistatin. These results indicate that studies on MDIA-mediated molecules are useful in studying the inductive signals required for ES cell differentiation into pancreas. The above results indicate that activin is one of the molecules that mediate MDIA. Since MDIA is not completely inhibited by follistatin, M15 cells involved in MDIA, which differentiate ES cells into endoderm cells, may contain other molecules. By studying secreted or membrane-bound molecules expressed in M15 cells or other feeder cells exhibiting MDIA, information on the molecular mechanism of ES cell differentiation into endoderm can be obtained. .

(7)MDIAはES細胞の内胚葉系への分化を促進し、この分化を促進する誘導因子または培養条件のスクリーニングに利用できる
M 15細胞層上で培養したES細胞に添加した際にES細胞の内胚葉系への分化をさらに促進する誘導分子のスクリーニングのために、MDIAを利用できるかどうかをさらに検討した。KSR置換分化培地で培養したES細胞はPdx1/EGFP発現細胞の産生がより多いことが図3Aから示されたことから、血清中に阻害因子が存在する可能性を推測した。BMPの阻害因子であるノギンを様々な時期に添加し、MDIAに対する効果を試験した。その結果、第5 - 8日目に添加した100ng/mlのノギンはMDIAを増強することが明らかになった。図8に示すように、ノギンの増強効果は分化培地の代わりにKSR置換分化培地を用いても観察できる。しかしながら、ノギン添加の効果は分化の後期に限定されなかった。第0 - 4日の100ng/mlのノギンの添加によりMDIAが増強された。より短い時期にノギンを添加した追加実験からは、第3 - 4日のノギン添加が第0 - 4日まで添加した場合と同様の結果になることが示されている(図8)。次に、血清中のBMPがES細胞の内胚葉系への分化に対し阻害的に作用するかどうかを検討した。図9は、第3 - 4日の分化培地へのノギン添加により、ノギン非添加のKSR置換分化培地で培養した場合と同程度のPdx1/EGFP発現細胞が生じたことを示す。KSR置換分化培地中で分化させたES細胞中のPdx1/EGFP発現細胞の数はBMP2添加により減少したが、これはノギンの添加の追加により相殺された(図9)。しかしながら、第0 - 4日に無血清状態でのES細胞の分化では、細胞の増殖が不良なため、Pdx1/EGFP発現が低いことが明らかになった。従って、以後の実験では、ES細胞の内胚葉系への分化を促進するために第3 - 4日目にノギンを添加し、分化第4日以降は分化培地の代わりにKSR置換分化培地を用いている。
(7) MDIA promotes the differentiation of ES cells into the endoderm system and can be used for screening of inducers or culture conditions that promote this differentiation.
We further examined whether MDIA could be used to screen for induced molecules that further promote the differentiation of ES cells into endoderm lineage when added to ES cells cultured on M15 cell layers. Since it was shown from FIG. 3A that ES cells cultured in KSR-substituted differentiation medium produced more Pdx1 / EGFP-expressing cells, the possibility of the presence of an inhibitor in serum was estimated. Noggin, a BMP inhibitor, was added at various times to test its effect on MDIA. As a result, it was revealed that 100 ng / ml noggin added on days 5-8 enhanced MDIA. As shown in FIG. 8, the enhancement effect of Noggin can be observed using a KSR-substituted differentiation medium instead of the differentiation medium. However, the effect of noggin addition was not limited to the late stages of differentiation. Addition of 100 ng / ml noggin on days 0-4 enhanced MDIA. Additional experiments in which noggin was added in a shorter period of time show that noggin addition on days 3-4 is similar to that on days 0-4 (Figure 8). Next, it was examined whether BMP in the serum has an inhibitory effect on the differentiation of ES cells into the endoderm system. FIG. 9 shows that the addition of noggin to the differentiation medium on days 3-4 produced Pdx1 / EGFP-expressing cells of the same level as when cultured in KSR-substituted differentiation medium without addition of noggin. The number of Pdx1 / EGFP-expressing cells in ES cells differentiated in KSR-substituted differentiation medium decreased with the addition of BMP2, which was offset by the addition of noggin (FIG. 9). However, the differentiation of ES cells in the serum-free state on days 0-4 revealed that Pdx1 / EGFP expression was low due to poor cell growth. Therefore, in subsequent experiments, noggin was added on the 3rd to 4th days in order to promote the differentiation of ES cells into the endoderm system, and after the 4th day of differentiation, KSR-substituted differentiation medium was used instead of the differentiation medium. ing.

さらに、ニコチンアミド(NA)をノギンまたはアクチビンAとともに添加した場合の効果を検討した。図10は、ノギンとアクチビン、またはノギンとニコチンアミドの添加で相加効果を示さなかったことを示す。しかしながら、ノギン、アクチビン、ニコチンアミドの添加でPdx1/EGFP発現が促進された。挿入図は、ノギン、アクチビン、ニコチンアミドのいずれかを添加した場合の時系列データを示す。   Furthermore, the effect of adding nicotinamide (NA) with noggin or activin A was examined. FIG. 10 shows that the addition of noggin and activin or noggin and nicotinamide showed no additive effect. However, the addition of noggin, activin, and nicotinamide promoted Pdx1 / EGFP expression. The inset shows time-series data when any of noggin, activin, or nicotinamide is added.

BMP2とニコチンアミドは、M15細胞でも他の細胞株でも発現していないため、これらの結果は、内胚葉分化を促進する増殖因子または化合物のスクリーニングにMDIAが利用可能であることを示している。   Since BMP2 and nicotinamide are not expressed in M15 cells or other cell lines, these results indicate that MDIA can be used to screen for growth factors or compounds that promote endoderm differentiation.

(8)成長増殖因子の添加による膵臓への分化誘導の促進
10%FBS入りの分化培地中へのアクチビン、bFGF、又はアクチビン+bFGFの添加により、Pdx1/EGFPの発現細胞の数が増えることが示された。図11Aは、8日目のPdx1/EGFP像を示す。アクチビン20ng/ml, bFGF 5ng/mlになるように加えた。図11Aでは、アクチビンとFGFを加えることで、Pdx1/EGFP陽性コロニーの形態が変化した。陽性コロニーの中心部にあった細胞の塊が消えて、その結果、Pdx1/EGFPを発現する細胞の数が増加した。また、両者を同時にES細胞に作用させることにより、相乗効果を示した。また、d8/M15最上の図は、M15を用いて分化誘導した場合のPdx1/EGFP陽性コロニーは広がった形態を示し、中心には細胞の塊が小さく見え、Pdx1/EGFP陽性細胞がコロニーの辺縁部に位置する(矢印)。Pdx1陰性コロニーでは、中心に丸い大きいコロニーが観察される(矢頭)。+アクチビン(20)では、分化0日目から8日目までアクチビンを20ng/ml加えている。Pdx1/EGFP陽性膵幹細胞が多く出現し、広がったコロニーの形態を示し、Pdx1/EGFP陰性コロニーが減少している。Pdx1/EGFP陽性コロニーの中心に見えていた細胞の小さい塊が消失している。+bFGF(5)では、分化0日目から8日目まで、bFGFを5ng/m l添加している。中心部の細胞の移動が促進され、広がったコロニーの形態を示す。その結果、Pdx1/EGFP陽性細胞がコロニーの辺縁部により集積されるようになる。また、+アクチビン(20)+bFGF(5)では、分化0日目から8日目まで、アクチビンとbFGFを加えている。両者がさらに相乗作用し、Pdx1/EGFP陽性膵幹細胞がさらに多く出現した。
(8) Promotion of differentiation induction into pancreas by addition of growth growth factor
It was shown that the number of Pdx1 / EGFP-expressing cells increased by adding activin, bFGF, or activin + bFGF into a differentiation medium containing 10% FBS. FIG. 11A shows a Pdx1 / EGFP image on day 8. Activin was added to 20 ng / ml and bFGF 5 ng / ml. In FIG. 11A, the morphology of Pdx1 / EGFP positive colonies was changed by adding activin and FGF. The cell clumps at the center of the positive colony disappeared, and as a result, the number of cells expressing Pdx1 / EGFP increased. Moreover, the synergistic effect was shown by making both act on ES cell simultaneously. In addition, the uppermost figure of d8 / M15 shows that the Pdx1 / EGFP positive colony expanded when M15 was used for differentiation, the cell mass appears to be small in the center, and the Pdx1 / EGFP positive colony is around the colony. Located at the edge (arrow). In the Pdx1-negative colony, a large round colony is observed in the center (arrow head). + In activin (20), 20 ng / ml of activin was added from day 0 to day 8 of differentiation. A large number of Pdx1 / EGFP positive pancreatic stem cells appear, showing a form of expanded colonies, and a decrease in Pdx1 / EGFP negative colonies. The small mass of cells that was visible in the center of the Pdx1 / EGFP positive colony disappeared. In + bFGF (5), 5 ng / ml of bFGF is added from the 0th day to the 8th day of differentiation. The migration of cells in the center is promoted, showing an expanded colony morphology. As a result, Pdx1 / EGFP positive cells are accumulated by the marginal part of the colony. In addition, in activin (20) + bFGF (5), activin and bFGF are added from the 0th day to the 8th day of differentiation. The two further synergized and more Pdx1 / EGFP positive pancreatic stem cells appeared.

図11Bは、図11AにおけるアクチビンとbFGFの両方を加えている条件で得た分化細胞についてC−ペプチドに対する抗体で染色した結果を示す。C−ペプチドはインスリン生合成時の副産物として生じるので、陽性細胞はインスリンを実際生合成していることが示される。Pdx1/EGFP陽性細胞は緑色である。分化細胞では、C−ペプチド単独陽性(赤色)の細胞も観察されたが、多くの細胞がC−ペプチド/Pdx1両陽性(黄色)であった。拡大写真をAとBに示している。   FIG. 11B shows the result of staining the differentiated cells obtained with the addition of both activin and bFGF in FIG. 11A with an antibody against C-peptide. Since C-peptide occurs as a by-product during insulin biosynthesis, positive cells are shown to actually biosynthesize insulin. Pdx1 / EGFP positive cells are green. Among the differentiated cells, cells positive for C-peptide alone (red) were also observed, but many cells were positive for both C-peptide / Pdx1 (yellow). Enlarged photos are shown in A and B.

さらにFACSを用いて分化を評価した。図12Aでは、内胚葉(胚性内胚葉;definitive endoderm)はE-cadherin,Cxcr4両陽性細胞とする。膵臓前駆細胞はE-cadherin,Pdx1/EGFP両陽性細胞とする。M15上では、8日目では内胚葉が全細胞の8%を占める。アクチビンとbFGF添加条件では内胚葉の割合が上昇し、全細胞の47%を占めるようになる。また、膵前駆細胞はM15上では内胚葉中の22%を占めるが、アクチビンとbFGF添加条件では内胚葉における膵前駆細胞の割合が67%に上昇した。   Furthermore, differentiation was evaluated using FACS. In FIG. 12A, it is assumed that the endoderm (definitive endoderm) is both E-cadherin and Cxcr4 positive cells. Pancreatic progenitor cells are E-cadherin and Pdx1 / EGFP positive cells. On M15, endoderm accounts for 8% of all cells on day 8. Under the conditions where activin and bFGF were added, the endoderm ratio increased, accounting for 47% of all cells. In addition, pancreatic progenitor cells accounted for 22% of the endoderm on M15, but the ratio of pancreatic progenitor cells in the endoderm increased to 67% under the conditions where activin and bFGF were added.

また、図12Bは、細胞の内部構造の複雑さを反映する側方散乱光(SSC)と細胞の大きさを反映する前方散乱光(FSC)の指標を用いたES細胞、M15細胞、分化ES細胞のFACS展開像を示す。SSCとFSCの指標を用いて、図の多辺形で囲む部分を分取することで、M15細胞を除くことができる。図12Bは、アクチビンとbFGF添加条件での実施例を示しているが、このM15不含画分にPdx1/EGFP陽性細胞が含まれることが分かる。   Figure 12B also shows ES cells, M15 cells, and differentiated ES using indicators of side scattered light (SSC) that reflects the complexity of the cell's internal structure and forward scattered light (FSC) that reflects the size of the cell. The FACS development image of a cell is shown. Using the SSC and FSC indices, M15 cells can be removed by sorting out the part enclosed by the polygon in the figure. FIG. 12B shows an example under the conditions where activin and bFGF were added, and it can be seen that this M15-free fraction contains Pdx1 / EGFP positive cells.

(9)FACSによるES細胞由来Pdx1/EGFP陽性細胞の分離および発現解析
ES細胞由来Pdx1/EGFP発現細胞の分子的特徴を検討するために、分化したES細胞集団をFACSで解析した。図13A及びBは、M15細胞上で分化したES細胞では、未分化ES細胞の場合と比較して、Pdx1/EGPF陽性細胞の集団がGFP陽性側にシフトしていることを示す。分化ES細胞をGFP発現量により5画分に分け、各画分について、膵分化の分子マーカー発現をRT-PCR法で解析した。RT-PCR解析により、GFP陽性シグナルが強いno.4の画分でPdx1発現が高いことが示される(図13C)。この画分は分化したES細胞全体の約1%に相当する(図13B)。GFP陽性シグナルが強いこの画分ではNeuroD、インスリン、PP、Sstの発現も観察されており、この画分の細胞が膵の系譜であることを示している。
(9) Isolation and expression analysis of ES cell-derived Pdx1 / EGFP positive cells by FACS
In order to investigate the molecular characteristics of ES cell-derived Pdx1 / EGFP-expressing cells, the differentiated ES cell population was analyzed by FACS. FIGS. 13A and B show that the population of Pdx1 / EGPF positive cells is shifted to the GFP positive side in ES cells differentiated on M15 cells compared to undifferentiated ES cells. Differentiated ES cells were divided into 5 fractions based on the expression level of GFP, and molecular marker expression of pancreatic differentiation was analyzed by RT-PCR for each fraction. RT-PCR analysis shows that Pdx1 expression is high in the no.4 fraction with strong GFP positive signal (FIG. 13C). This fraction represents approximately 1% of the total differentiated ES cells (FIG. 13B). In this fraction with a strong GFP-positive signal, expression of NeuroD, insulin, PP, and Sst was also observed, indicating that the cells of this fraction are of pancreatic lineage.

(10)分化ES細胞の維持培養
分化したES細胞は図14に示す方法で維持培養できる。即ち、分化したES細胞を、M15の下、アクチビン及びbFGFの両方を添加して、MPCを被覆した低細胞結合ディッシュに再度播種することでPdx1陽性細胞を維持培養することができた(図14)。
(10) Maintenance culture of differentiated ES cells Differentiated ES cells can be maintained by the method shown in FIG. That is, it was possible to maintain and culture Pdx1-positive cells by redifferentiating the differentiated ES cells in a low cell binding dish coated with MPC under the addition of both activin and bFGF under M15 (FIG. 14). ).

(11)マウスの腎臓皮膜下へ移植したES細胞におけるPdx1/EGFP及びインスリンの発現の維持
分化したES細胞を腎臓皮膜下に移植した。移植マウスを1週間後に殺し、移植片の凍結切片を免疫組織化学により分析した。図15は、Pdx1/EGFP発現が維持され、インスリン発現も見られることを示す。これらの結果は、Pdx1/EGFP陽性細胞は、マウスに移植した際に、増殖してインスリン産生細胞に分化できることを示している。
(11) Maintenance of Pdx1 / EGFP and insulin expression in ES cells transplanted under the kidney capsule of mice Differentiated ES cells were transplanted under the kidney capsule. The transplanted mice were killed one week later and the frozen sections of the grafts were analyzed by immunohistochemistry. FIG. 15 shows that Pdx1 / EGFP expression is maintained and insulin expression is also seen. These results indicate that Pdx1 / EGFP positive cells can proliferate and differentiate into insulin producing cells when transplanted into mice.

(12)サルES細胞を用いた分化誘導

サルES細胞を用いて、マウスES細胞のと同様にM15上で分化誘導した細胞についての染色像を図16に示す。サルES細胞の培養条件(旭テクノグラス(株)より購入)は以下の通りである。培養0日目に24ウエルプレートにサルES細胞を20,000細胞/wellの濃度で播種し、培養1,3,5,7,9日目に培地交換した。培地は分化培地(10%FBS/DMEM (high glucose)を用いた。図16のA及びBは、分化誘導して4日目と8日目の染色像で、中胚葉前駆細胞のマーカーであるHNF3β、と中胚葉のマーカーT(Brachyury)で染色した結果を示す。4日目と8日目にはともにHNF3βの発現が強く検出された。図16のC,D,Eは、10日目には膵臓前駆細胞のマーカーPdx1、小腸のマーカーであるCdx2、肝臓のマーカーのアルブミン、胆管のマーカーのCK19が発現していることから、内胚葉系細胞(膵臓、肝臓、胆管、小腸)への分化が示された。
(12) Differentiation induction using monkey ES cells

FIG. 16 shows a stained image of cells induced to differentiate on M15 using monkey ES cells in the same manner as mouse ES cells. The culture conditions of monkey ES cells (purchased from Asahi Techno Glass Co., Ltd.) are as follows. On day 0 of culture, monkey ES cells were seeded in a 24-well plate at a concentration of 20,000 cells / well, and the medium was changed on days 1, 3, 5, 7, and 9 of culture. The culture medium used was a differentiation medium (10% FBS / DMEM (high glucose). A and B in FIG. 16 are stained images on the 4th and 8th days after induction of differentiation, and are markers for mesoderm progenitor cells. The results of staining with HNF3β and mesoderm marker T (Brachyury) showed strong expression of HNF3β on both day 4 and day 8. C, D, and E in FIG. It expresses the pancreatic progenitor cell marker Pdx1, the small intestine marker Cdx2, the liver marker albumin, and the bile duct marker CK19, so that the endoderm cells (pancreas, liver, bile duct, small intestine) Differentiation was shown.

(13)ヒトES細胞を用いた分化誘導
ヒトES細胞を用いて、マウスES細胞のと同様にM15上で分化誘導した細胞についての染色像を図17に示す。ヒトES細胞の分化培養条件は以下の通りである。培養0日目に24ウエルプレートにヒトES細胞を20,000細胞/wellの濃度で播種し、培養1,3,5,7,9,11日目に培地交換した。培地は分化培地(10%KSR/DMEM (high glucose)を用いた。図17のA, Bおよびにおいて、12日目には内胚葉細胞のマーカーHNF3β、小腸のマーカーであるCdx2、肝臓のマーカーのアルブミン、αフェトプロテイン、胆管のマーカーのCK19が発現していることから、内胚葉系細胞(肝臓、胆管、小腸)への分化が示された。
(13) Differentiation induction using human ES cells FIG. 17 shows a stained image of cells induced to differentiate on M15 using human ES cells in the same manner as mouse ES cells. Differentiation culture conditions for human ES cells are as follows. On day 0 of culture, 24-well plates were seeded with human ES cells at a concentration of 20,000 cells / well, and the medium was changed on days 1, 3, 5, 7, 9, and 11 of culture. As a medium, differentiation medium (10% KSR / DMEM (high glucose) was used. In FIGS. 17A and 17B, on day 12, endoderm cell marker HNF3β, small intestine marker Cdx2, liver marker The expression of albumin, α-fetoprotein, and bile duct marker CK19 indicated differentiation into endoderm cells (liver, bile duct, small intestine).

(14)M15支持細胞上における無血清培地を用いた膵前駆細胞の誘導
M15支持細胞上での SK7細胞を用いて、分化能を評価した結果を図18に示す。内胚葉(definitive endoderm)は E-cadherin,Cxcr4 の両陽性細胞とする。内胚葉の維持及びPdx1/EGFP陽性細胞への分化には血清中の因子が必要と考えられる。無血清培地のみでは、M15細胞上では、内胚葉や膵前駆細胞への分化が低いが、アクチビンを加えると、内胚葉や膵前駆細胞への分化能が上昇した(図18)。特に膵前駆細胞へ分化した細胞が2%であり、かなり高い効率を達成できた。
(14) Induction of pancreatic progenitor cells using serum-free medium on M15 feeder cells
FIG. 18 shows the results of evaluating differentiation potential using SK7 cells on M15 feeder cells. The definitive endoderm is a positive cell for both E-cadherin and Cxcr4. Serum factors are considered necessary for endoderm maintenance and differentiation into Pdx1 / EGFP positive cells. In serum-free medium alone, differentiation into endoderm and pancreatic progenitor cells was low on M15 cells, but when activin was added, the ability to differentiate into endoderm and pancreatic progenitor cells increased (FIG. 18). In particular, 2% of the cells differentiated into pancreatic progenitor cells, and a fairly high efficiency was achieved.

本発明の方法によれば、ES細胞から膵幹細胞などの内胚葉系細胞を効率よく分化誘導することができる。また、本発明の培養方法を用いることにより、未知の物質の膵への分化誘導効果を感度良く測定することができることから、分化誘導物質のスクリーニング方法として応用できる。本発明によれば、分化したES細胞由来の膵幹細胞又は肝幹細胞などを純化し、それを試験管内で維持培養することができる。また、本発明の方法は、複数種類のES細胞株に応用できる。本発明の方法は、発生が同じ内胚葉起源の細胞にも応用できる。   According to the method of the present invention, endoderm cells such as pancreatic stem cells can be efficiently induced to differentiate from ES cells. In addition, by using the culture method of the present invention, the differentiation induction effect of an unknown substance on the pancreas can be measured with high sensitivity. According to the present invention, differentiated ES cell-derived pancreatic stem cells or hepatic stem cells can be purified and maintained and cultured in vitro. In addition, the method of the present invention can be applied to a plurality of types of ES cell lines. The method of the present invention can also be applied to cells of endoderm origin that have the same development.

図1は、各種細胞株における膵分化誘導能のスクリーニングを示す。A:分化誘導法の模式図。Pdx1プロモーターにLacZ遺伝子ノックインしたES細胞を培養細胞上に5000 cells/well (24well)の密度で播種後、血清存在下で培養し12日目にX-gal染色をすることにより各種細胞株の膵分化誘導効果を評価した。浮遊胚様体(EB)形成後2日目に培養細胞上に播種するので、培養14日目でX-gal 染色による評価をしたこととなる。B:X-gal染色像。各写真に支持細胞に用いた細胞名を示した。C:各細胞株を支持細胞 に用いた時のPdx1/β-gal陽性の細胞の占める割合を縦軸に示す。M15, MEF, ST2について誘導効果が認められた。Student's t-test で対照実験のゲル上で分化させたES細胞と差が有意であったもの:**, p<0.01。FIG. 1 shows screening for pancreatic differentiation-inducing ability in various cell lines. A: Schematic diagram of differentiation induction method. After seeding ES cells in which LacZ gene was knocked into the Pdx1 promoter at a density of 5000 cells / well (24 wells) on cultured cells, they were cultured in the presence of serum and X-gal stained on the 12th day to obtain pancreatic cells from various cell lines. The differentiation induction effect was evaluated. Since the cells are seeded on the cultured cells on the second day after the formation of the floating embryoid bodies (EB), the evaluation by X-gal staining was performed on the 14th day of the culture. B: X-gal stained image. Each photograph shows the cell name used as a feeder cell. C: The ratio of Pdx1 / β-gal positive cells when each cell line is used as a feeder cell is shown on the vertical axis. Inductive effects were observed for M15, MEF, and ST2. Student's t-test was significantly different from ES cells differentiated on the control gel: **, p <0.01. 図2は、M15を用いたES細胞からのPdx1/β-gal陽性細胞の経時的な評価を示す。A:スクリーニングによって一番高い膵分化誘導効果が認められたM15を用いて、ES細胞からの分化誘導実験を行い、経時的にX-gal染色で評価した。写真には分化誘導開始後の日数を示した。括弧の中の日数は継代後の日数。B:M15 支持細胞 細胞上への継代によるPdx1/β-gal陽性細胞の出現の時間経過。分化誘導開始後の日数を横軸、Pdx1/β-gal陽性細胞の数を縦軸に示した。M15を用いた分化誘導では、最初にPdx1/β-gal陽性細胞は12日目をピークに出現するが、その後減少する。M15 支持細胞 細胞上へ継代すると、Pdx1/β-gal陽性細胞が継代後7-8日目に再びピークに達した。1回目の継代を黒丸、2回目の継代は黒四角で示す。FIG. 2 shows evaluation of Pdx1 / β-gal positive cells over time from ES cells using M15. A: Using M15, which showed the highest pancreatic differentiation-inducing effect by screening, differentiation induction experiments from ES cells were performed and evaluated with X-gal staining over time. The photo shows the number of days after the start of differentiation induction. The number of days in parentheses is the number of days after passage. B: Time course of the appearance of Pdx1 / β-gal positive cells by passage on M15 feeder cells. The number of days after the start of differentiation induction is shown on the horizontal axis, and the number of Pdx1 / β-gal positive cells is shown on the vertical axis. In differentiation induction using M15, Pdx1 / β-gal positive cells first appear at the peak on day 12, but then decrease. When subcultured onto M15 feeder cells, Pdx1 / β-gal positive cells peaked again at 7-8 days after passage. The first passage is indicated by a black circle, and the second passage is indicated by a black square. 図3は、Pdx1プロモーター下にGFPを遺伝子導入したES細胞(SK7細胞)を用いたリアルタイムでのPdx1/EGFP陽性細胞への分化の評価を示す。A:分化誘導法の模式図を示す。SK7を用いた分化誘導方法ではEBを形成せずにM15上に播種する。どちらの図も500cells/well(24well)で播種後、培養4日目までは10%血清培地で培養し、培養4日目からは10% KSR培地で培養した。分化誘導後6 - 8日目のPdx1/EGFP陽性細胞の経時的出現を評価した。高密度(5000cells/well)では10%血清培地のみで分化するが低密度(500cells/well)の場合では分化効率が悪く、10%KSR培地に置換すると6日目からPdx1/EGFP陽性細胞が出現してくる。8日目にはピークに達する。Pdx1/EGFP陽性細胞への分化の評価は蛍光写真について、Luminavision ソフトウエアを用いて蛍光強度の総和により行った。B:M15を用いて分化誘導した場合のPdx1/EGFP陽性コロニーは広がった形態を示し、Pdx1/EGFP陽性細胞がコロニーの辺縁部に位置する。Pdx1/EGFP陰性コロニーは丸いコロニーの形態を示す。分化誘導後7日目の分化像を示す。C:SK7細胞を用いた経時的な培養像とPdx1/EGFP陽性膵幹細胞の出現。分化誘導後5日目までは丸いコロニーを示すが、分化誘導後6日目には、細胞の移動が急激に起こり、広がったコロニーの形態を示す。Pdx1/EGFP陽性細胞がコロニーの辺縁部に位置する。分化誘導後9日目にはPdx1/EGFP陽性細胞が減少する。FIG. 3 shows evaluation of differentiation into Pdx1 / EGFP positive cells in real time using ES cells (SK7 cells) in which GFP is introduced under the Pdx1 promoter. A: A schematic diagram of the differentiation induction method is shown. In the differentiation induction method using SK7, seeding is carried out on M15 without forming EB. In both figures, after seeding at 500 cells / well (24 wells), the cells were cultured in 10% serum medium until the fourth day of culture, and cultured in 10% KSR medium from the fourth day of culture. Appearance of Pdx1 / EGFP positive cells over 6 to 8 days after differentiation induction was evaluated. At high density (5000 cells / well), differentiation occurs only in 10% serum medium, but at low density (500 cells / well), differentiation efficiency is poor. Come on. It reaches its peak on the 8th day. Evaluation of differentiation into Pdx1 / EGFP positive cells was performed on the fluorescence photographs by the sum of fluorescence intensities using Luminavision software. B: The Pdx1 / EGFP positive colony when differentiated using M15 shows an expanded form, and the Pdx1 / EGFP positive cell is located at the edge of the colony. Pdx1 / EGFP negative colonies show round colony morphology. The differentiation image of the 7th day after differentiation induction is shown. C: Image of culture with SK7 cells over time and appearance of Pdx1 / EGFP positive pancreatic stem cells. A round colony is shown until 5th day after differentiation induction, but on the 6th day after differentiation induction, cell migration occurs rapidly and shows an expanded colony morphology. Pdx1 / EGFP positive cells are located at the margin of the colony. On day 9 after differentiation induction, Pdx1 / EGFP positive cells decrease. 図4は、RT-PCR解析の結果を示す。各種膵臓前駆細胞関連遺伝子、膵臓内分泌細胞マーカー遺伝子、外分泌細胞マーカー遺伝子、分化β細胞マーカー遺伝子、肝臓マーカー遺伝子の発現が認められた。SK7ES細胞株はICRマウスより樹立したが、ほかのR1, J1 ES細胞株についても同様なM15支持細胞による分化誘導の促進が検出された。M15支持細胞上で分化誘導した細胞では8日目にはpdx1 遺伝子、あるいはインスリン、膵ペプチド, ソマトスタチンなどの内分泌細胞のマーカー遺伝子の発現が検出された。FIG. 4 shows the results of RT-PCR analysis. Expressions of various pancreatic progenitor cell-related genes, pancreatic endocrine cell marker genes, exocrine cell marker genes, differentiated β-cell marker genes, and liver marker genes were observed. Although the SK7ES cell line was established from ICR mice, the same promotion of differentiation induction by M15 support cells was detected for other R1, J1 ES cell lines. In cells induced to differentiate on M15 feeder cells, expression of the pdx1 gene or endocrine marker genes such as insulin, pancreatic peptide, and somatostatin was detected on day 8. 図5は、免疫組織化学検査によりSK7細胞由来の分化細胞における内胚葉関連マーカーの発現を検出した結果を示す。HNF3β、アルブミン、Nkx2.1、Cdx2の発現が認められた。FIG. 5 shows the results of detection of endoderm-related marker expression in differentiated cells derived from SK7 cells by immunohistochemical examination. Expression of HNF3β, albumin, Nkx2.1, and Cdx2 was observed. 図6は、ES細胞から内胚葉前駆細胞が誘導されていることを示す。ES細胞から分化した内胚葉前駆細胞の動態をさらに調べるために、マウスHnf3β遺伝子の内胚葉特異的発現制御エンハンサー領域を用いた。Hnf3β遺伝子の発現をmRFP1(monomeric Red Fluorescent Protein 1) レポーター蛋白質で可視化できるように、Pdx1/GFP, Hnf3β/mRFP1 ダブルトランスジエニックマウスよりES細胞株を樹立した。樹立されたPdx1/EGFP- Hnf3β/mRFP1 ES細胞株では、Pdx1/EGFPの発現が8日目より発現しているのに対して、Hnf3β/mRFP1の発現が7日目より(1日早く)検出され、しかもPdx1/EGFP発現細胞より広範囲の細胞においてHnf3β/mRFP1の発現が誘導されている。トランスジニックマウスの解析により、Hnf3β遺伝子は発生初期内胚葉の領域化が決定される時期(胎生8.5日目ころ)の腸管上皮で前後軸に沿って発現していること、pdx1遺伝子に比べて、1日ほど早く、より広範囲において発現していることが確認されているので、このHNF3β陽性細胞が領域化される前のステージにある内胚葉前駆細胞に相当すると示唆された。したがって、M15支持細胞上での分化誘導は正常発生過程を反映しているものと考えられる。FIG. 6 shows that endoderm progenitor cells are derived from ES cells. In order to further investigate the dynamics of endoderm progenitor cells differentiated from ES cells, the endoderm-specific expression enhancer region of the mouse Hnf3β gene was used. An ES cell line was established from Pdx1 / GFP and Hnf3β / mRFP1 double transgenic mice so that the expression of the Hnf3β gene could be visualized with a mRFP1 (monomeric Red Fluorescent Protein 1) reporter protein. In the established Pdx1 / EGFP-Hnf3β / mRFP1 ES cell line, Pdx1 / EGFP expression is detected from the 8th day, whereas Hnf3β / mRFP1 expression is detected from the 7th day (1 day earlier). Moreover, expression of Hnf3β / mRFP1 is induced in a wider range of cells than Pdx1 / EGFP expressing cells. Analysis of transgenic mice shows that the Hnf3β gene is expressed along the anteroposterior axis in the intestinal epithelium at the time when the region of the early endoderm is determined (embryonic day 8.5), compared to the pdx1 gene Since it was confirmed that it was expressed in a wider range as early as 1 day, it was suggested that this HNF3β-positive cell corresponds to an endoderm progenitor cell in the stage before it was localized. Therefore, differentiation induction on M15 supporting cells is considered to reflect the normal development process. 図7は、M15による分化誘導の機序の一部はアクチビン を介していることを示す。A:M15による膵分化誘導機序を解明するためにスクリーニングで用いた培養細胞についてAffymetrixのGene Chipを用いて網羅的遺伝子発現解析を行い、生理活性作用を示す遺伝子の発現を調べた。その結果、正常発生において膵分化誘導に関与するアクチビンの阻害因子フォリスタチンがM15で極端に低いことが明らかになった。また、M15細胞、MEF, ST2細胞において、ある程度アクチビンが発現されている。B:アクチビンにより膵分化誘導が促進され、フォリスタチン によって分化誘導が阻害された。アクチビン、フォリスタチンは分化誘導後3日目に添加した。3日目まではFBS入り培地で培養し、3-8日目まではKSRで置換した培地を用いた。8日目のPdx1/EGFP陽性膵幹細胞の出現を評価した。フォリスタチンの影響を評価するために分化誘導時にフォリスタチンを添加すると、濃度依存的に膵分化誘導を阻害した。(Cont 比較して有意Student's t-test, *p<0.05, n=3)。しかし、M15による膵分化誘導効果を100%阻害することはできなかった。また、アクチビン(10ng/ml)により膵分化誘導効果の促進が見られたが、過剰量のフォリスタチン添加によりその効果を阻害することができた(アクチビン 10ng/ml 添加群と比較してstudent's t-test で有意、**p<0.01, n=3)。FIG. 7 shows that part of the mechanism of differentiation induction by M15 is mediated by activin. A: Exhaustive gene expression analysis was performed on cultured cells used for screening to elucidate the mechanism of pancreatic differentiation induction by M15 using Affymetrix Gene Chip, and the expression of genes showing bioactive effects was examined. As a result, it was clarified that the follistatin inhibitor of activin involved in pancreatic differentiation induction in normal development is extremely low at M15. In addition, activin is expressed to some extent in M15 cells, MEF, and ST2 cells. B: Activation of pancreatic differentiation was promoted by activin, and differentiation induction was inhibited by follistatin. Activin and follistatin were added on the third day after differentiation induction. The culture was carried out in a medium containing FBS until the third day, and a medium substituted with KSR was used until the third to the eighth day. The appearance of Pdx1 / EGFP positive pancreatic stem cells on day 8 was evaluated. When follistatin was added during differentiation induction to evaluate the effect of follistatin, pancreatic differentiation induction was inhibited in a concentration-dependent manner. (Significant Student's t-test compared to Cont, * p <0.05, n = 3). However, pancreatic differentiation induction effect by M15 could not be inhibited 100%. In addition, activation of pancreatic differentiation was promoted by activin (10 ng / ml), but the effect could be inhibited by adding an excessive amount of follistatin (student's t Significant for -test, ** p <0.01, n = 3). 図8は、培地中にノギン を加えることによる分化誘導に対する効果を調べた結果を示す。初期の分化誘導ではFBS入りの培地を用いるが、この中に含まれる阻害因子が考えられた。様々な期間にノギン を加え、リアルタイムに現れるPdx1/EGFP陽性細胞を評価した。分化誘導の初期にノギン を加えることにより膵分化誘導が促進された。ノギン を加えることによる促進効果のある日数は2-4日目、あるいは最小日数として3-4日目に特定できた。FIG. 8 shows the results of examining the effect on differentiation induction by adding noggin to the medium. In the early differentiation induction, a medium containing FBS was used, and the inhibitors contained therein were considered. Noggin was added for various periods, and Pdx1 / EGFP positive cells appearing in real time were evaluated. Induction of pancreatic differentiation was promoted by adding Noggin at the early stage of differentiation induction. The number of days that promoted by adding noggin could be identified on days 2-4, or on days 3-4 as a minimum. 図9は、ノギン による膵分化誘導の促進は血清中に含まれるBMP2を阻害することによるものであることを示す。分化誘導3-4日目にノギン100ng/ml、あるいは所定濃度のBMP2を添加した。標記がある場合は3-4日目の培地中のFBSをKSRに置換している。6日目にPdx1/EGFP陽性細胞を評価した。FBS入り分化培地ではノギン 添加により、非添加群と比較し、有意に差があった(Student's t-test, **p<0.01)。KSRに置換した場合は膵分化誘導の促進が見られた(ノギン(-)と比較。Student's t-test, *p<0.05,)。この促進はBMP2の添加により阻害された(KSR置換分化培地ノギン(-)とBMP添加群と比較(*p<0.05, **p<0.01)。BMP2による阻害はノギン添加で再び消去された(**, p<0.01)。FIG. 9 shows that the promotion of pancreatic differentiation induction by noggin is due to inhibition of BMP2 contained in the serum. On day 3-4 of differentiation induction, 100 ng / ml of noggin or a predetermined concentration of BMP2 was added. When there is a mark, FBS in the medium on the 3rd to 4th days is replaced with KSR. On day 6, Pdx1 / EGFP positive cells were evaluated. In the FBS-containing differentiation medium, there was a significant difference with the addition of noggin compared to the non-addition group (Student's t-test, ** p <0.01). When replaced with KSR, pancreatic differentiation induction was promoted (Comparison with Noggin (-). Student's t-test, * p <0.05,). This promotion was inhibited by the addition of BMP2 (comparison between the KSR-substituted differentiation medium noggin (-) and the BMP addition group (* p <0.05, ** p <0.01). The inhibition by BMP2 was eliminated again by the addition of noggin ( **, p <0.01). 図10は、ノギン とニコチンアミド、あるいはアクチビン とニコチンアミドは相乗的に膵分化誘導を促進することを示す。ニコチンアミド単独では膵分化誘導を促進しないが、ノギンあるいはアクチビンと併用することにより相乗的に膵分化誘導を促進した。ノギン,アクチビン, ニコチンアミドの3つの併用によりPdx1/EGFP陽性細胞の出現が早い時期にシフトし、分化誘導後6日目にピークを示すようになった。KSR置換分化培地の対照群とそれぞれの日数で比較しStudent's t-test, **p<0.01)FIG. 10 shows that noggin and nicotinamide, or activin and nicotinamide synergistically promote pancreatic differentiation induction. Nicotinamide alone did not promote pancreatic differentiation but synergistically induced pancreatic differentiation when combined with noggin or activin. The combination of noggin, activin, and nicotinamide shifted the appearance of Pdx1 / EGFP positive cells to an early stage, and peaked on the 6th day after induction of differentiation. (Student's t-test, ** p <0.01 compared with the control group of KSR-substituted differentiation medium in each day) 図11は、アクチビンとbFGFの添加による膵臓への分化誘導の促進を示す。図11Aは、10%FBS入りの分化培地中へのアクチビン、bFGF、又はアクチビンとbFGFの両方の添加により、Pdx1/EGFPの発現細胞の数が大きく増えることを8日目のPdx1/EGFP像で示す。図11Bは、図11AにおけるアクチビンとbFGFの両方を加えている条件で得た分化細胞についてC−ペプチドに対する抗体で染色した結果を示す。FIG. 11 shows the promotion of differentiation induction into the pancreas by the addition of activin and bFGF. FIG. 11A shows that the number of Pdx1 / EGFP-expressing cells greatly increased by the addition of activin, bFGF, or both activin and bFGF in a differentiation medium containing 10% FBS. Show. FIG. 11B shows the result of staining a differentiated cell obtained with the addition of both activin and bFGF in FIG. 11A with an antibody against C-peptide. 図12は、FACSを用いて、アクチビンとbFGFの添加による膵臓への分化誘導の促進を定量的に評価でき、その程度が非常に大きいことを示す。また、FACSを用いて、M15支持細胞を分化ES細胞から選択的に除くことが出来ることを示す。図12Aは、内胚葉(胚性内胚葉;definitive endoderm)は E-cadherin,Cxcr4両陽性細胞とすることを示す。図12Bは、細胞の内部構造の複雑さを反映する側方散乱光(SSC)と細胞の大きさを反映する前方散乱光(FSC)を用いた分化したES細胞の集団から、M15細胞を選択的に除く前後の、分化ES細胞のFACS展開像を示す。FIG. 12 shows that the promotion of differentiation induction into the pancreas by the addition of activin and bFGF can be quantitatively evaluated using FACS, and the degree thereof is very large. Moreover, it shows that M15 supporting cells can be selectively removed from differentiated ES cells using FACS. FIG. 12A shows that the endoderm (definitive endoderm) is a positive cell for both E-cadherin and Cxcr4. Figure 12B selects M15 cells from a population of differentiated ES cells using side-scattered light (SSC) that reflects the complexity of the cell's internal structure and forward-scattered light (FSC) that reflects the size of the cell. 2 shows FACS development images of differentiated ES cells before and after removal. 図13は、セルソーターを用いたES細胞由来の膵幹細胞の純化とその発現する分子マーカーの解析を示す。M15細胞上でSK7 ES細胞を300,000cells/ 90mm dish でFBS入り培地で分化誘導し、9日目にFACSを行った。分化誘導によりGFP陽性細胞の分画の細胞集団が増えた。分画1 - 4の4つを分取した。分画4はGFP強陽性であり、この分画にPdx1遺伝子の発現細胞が濃縮されている。ほかにもNeuroD, Somatostatin,インスリンを発現している。FIG. 13 shows the purification of ES cell-derived pancreatic stem cells using a cell sorter and the analysis of molecular markers that are expressed. SK7 ES cells were induced to differentiate in FBS-containing medium in 300,000 cells / 90 mm dish on M15 cells, and FACS was performed on the 9th day. Due to differentiation induction, the cell population of the fraction of GFP positive cells increased. Fractions 1 to 4 were collected. Fraction 4 is strongly GFP positive, and cells expressing Pdx1 gene are concentrated in this fraction. In addition, NeuroD, Somatostatin, and insulin are expressed. 図14は、分化誘導したPdx1陽性膵前駆細胞の維持培養方法を示す。分化したES細胞を、M15の下、アクチビン及びbFGFの両方を添加して、MPCを被覆した低細胞結合ディッシュに再度播種することでPdx1の発現細胞を維持培養できる。FIG. 14 shows a method for maintaining and culturing differentiation-induced Pdx1-positive pancreatic progenitor cells. Pdx1-expressing cells can be maintained by culturing the differentiated ES cells by adding both activin and bFGF under M15 and seeding again on a low cell binding dish coated with MPC. 図15は、分化誘導したES細胞をマウス成体腎臓皮膜下への移植を示す。図14の方法でES細胞由来のPdx1陽性膵前駆細胞をマウス成体腎臓皮膜下へ移植する。図15A及びBは蛍光顕微鏡写真像を示し、Pdx1/EGFP陽性細胞が保持されている。図15Cは、移植片についての免疫組織化学的な解析によりインスリン、Pdx1/EGFPダブル陽性細胞が存在していることを示す。FIG. 15 shows transplantation of differentiated ES cells under the adult mouse kidney capsule. The Pdx1-positive pancreatic progenitor cells derived from ES cells are transplanted under the adult mouse capsule by the method of FIG. FIGS. 15A and 15B show fluorescence micrograph images, in which Pdx1 / EGFP positive cells are retained. FIG. 15C shows the presence of insulin, Pdx1 / EGFP double positive cells by immunohistochemical analysis of the graft. 図16は、カニクイザルES細胞を用いた内胚葉前駆細胞および肝膵の細胞への分化誘導の結果を示す。図Aでは、分化誘導4日目には内胚葉前駆細胞と中胚葉前駆細胞が多く分化誘導されている。分化後4日目(A)と8日目(B)の細胞について、HNF3β(赤:内胚葉マーカー)、T(緑:中胚葉マーカー)とDAPIによる核染を重ねた像。図Bでは、分化誘導8日目には内胚葉細胞が多く残っている。中胚葉前駆細胞はもう検出できない。図Cでは、分化誘導10日目には膵臓前駆細胞のPdx1陽性細胞(赤色)と小腸前駆細胞のCdx2陽性細胞(緑色)が検出された。両者は異なる細胞集団である。図Dでは、分化誘導10日目には肝臓前駆細胞のアルブミン陽性細胞(赤色)とαフェトプロテイン陽性細胞(緑色)が検出された。それぞれ単独に発現する細胞が多いが、共発現する細胞も観察された。図Eでは、分化誘導10日目には胆管細胞のCK19陽性細胞(赤色)とαフェトプロテイン陽性細胞(緑色)が検出された。それぞれ単独に発現する細胞が観察された。FIG. 16 shows the results of induction of differentiation into endoderm progenitor cells and hepatopancreas cells using cynomolgus monkey ES cells. In FIG. A, on the fourth day of differentiation induction, many endoderm progenitor cells and mesoderm progenitor cells are induced to differentiate. Images of cells on day 4 (A) and day 8 (B) after differentiation of HNF3β (red: endoderm marker), T (green: mesoderm marker) and DAPI nuclear staining. In FIG. B, many endoderm cells remain on the 8th day of differentiation induction. Mesodermal progenitor cells can no longer be detected. In FIG. C, Pdx1-positive cells (red) of pancreatic progenitor cells and Cdx2-positive cells (green) of small intestinal progenitor cells were detected on day 10 of differentiation induction. Both are different cell populations. In FIG. D, albumin positive cells (red) and α-fetoprotein positive cells (green) of liver progenitor cells were detected on day 10 of differentiation induction. There were many cells that were expressed independently, but co-expressed cells were also observed. In FIG. E, CK19 positive cells (red) and α-fetoprotein positive cells (green) of bile duct cells were detected on day 10 of differentiation induction. Cells expressing each independently were observed. 図17は、ヒトES細胞を用いた内胚葉臓器への分化誘導の結果を示す。図Aでは分化誘導12日目には内胚葉細胞のHnf3β陽性細胞(赤色)と小腸前駆細胞のCdx2陽性細胞(緑色)が検出された。共発現する細胞が多いが、Cdx2単独陽性細胞も見られた。図Bでは、分化誘導12日目には肝臓前駆細胞のアルブミン陽性細胞(赤色)とαフェトプロテイン陽性細胞(緑色)が検出された。図Cでは、分化誘導12日目には胆管細胞のCK19陽性細胞(緑色)とαフェトプロテイン陽性細胞(赤色)が検出された。FIG. 17 shows the results of induction of differentiation into endoderm organs using human ES cells. In FIG. A, on the 12th day of differentiation induction, Hnf3β positive cells (red) of endoderm cells and Cdx2 positive cells (green) of small intestinal progenitor cells were detected. Although many cells co-expressed, Cdx2-only positive cells were also observed. In FIG. B, on the 12th day of differentiation induction, albumin positive cells (red) and α-fetoprotein positive cells (green) of liver progenitor cells were detected. In FIG. C, CK19 positive cells (green) and α-fetoprotein positive cells (red) of bile duct cells were detected on the 12th day of differentiation induction. 図18は、M15支持細胞上における無血清培地を用いた分化誘導による膵前駆細胞の誘導の結果を示す。FIG. 18 shows the results of induction of pancreatic progenitor cells by differentiation induction using a serum-free medium on M15 feeder cells.

Claims (16)

支持細胞の存在下で哺乳動物由来のES細胞を培養することを含む、E S細胞から内胚葉系細胞へと分化誘導する方法。 A method for inducing differentiation of ES cells into endoderm cells, comprising culturing mammalian-derived ES cells in the presence of feeder cells. 支持細胞が中胚葉に由来する細胞である、請求項1に記載の方法。 The method according to claim 1, wherein the feeder cell is a cell derived from mesoderm. 支持細胞がM15細胞、MEF細胞又はST2細胞である、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the feeder cells are M15 cells, MEF cells or ST2 cells. ES細胞から、未分化な内胚葉の前駆細胞、内胚葉由来器官の未熟な細胞、又は内胚葉由来器官の成熟細胞の何れかへと分化誘導する、請求項1から3の何れかに記載の方法。 4. Differentiation induction from ES cells to any of undifferentiated endoderm progenitor cells, immature cells of endoderm-derived organs, or mature cells of endoderm-derived organs. Method. 内胚葉由来器官が膵臓、肝臓、肺、咽頭、又は小腸である、請求項4に記載の方法。 The method according to claim 4, wherein the endoderm-derived organ is pancreas, liver, lung, pharynx, or small intestine. 支持細胞の存在下でES細胞を培養する際にアクチンビン、塩基性線維芽細胞成長増殖因子(bFGF)、及び/又はノギンを添加して培養する、請求項1から5の何れかに記載の方法。 The method according to any one of claims 1 to 5, wherein when culturing ES cells in the presence of supporting cells, actin bin, basic fibroblast growth growth factor (bFGF) and / or noggin are added and cultured. . 支持細胞の存在下でES細胞を培養する際にさらにニコチンアミドを添加して培養する、請求項6に記載の方法。 The method according to claim 6, wherein when culturing ES cells in the presence of feeder cells, nicotinamide is further added and cultured. 哺乳動物由来のES細胞がマウス、サル又はヒト由来のES細胞である、請求項1から7の何れかに記載の方法。 The method according to any one of claims 1 to 7, wherein the mammal-derived ES cell is a mouse, monkey or human-derived ES cell. 請求項1から8の何れかに記載の方法により得られる、ES細胞から分化誘導された内胚葉系細胞。 An endoderm cell obtained by differentiation from ES cells, obtained by the method according to claim 1. 請求項1から8の何れかに記載の方法によりES細胞から内胚葉系細胞へと分化誘導する工程、及び分化誘導された内胚葉系細胞を蛍光標識によるフローサイトメトリー(FACS)によって分離する工程を含む、ES細胞から分化誘導された内胚葉系細胞を取得する方法。 A step of inducing differentiation from an ES cell into an endoderm cell by the method according to any one of claims 1 to 8, and a step of separating the differentiation-induced endoderm cell by flow cytometry (FACS) using a fluorescent label. A method of obtaining endoderm cells induced to differentiate from ES cells. 請求項1から8の何れかに記載の方法により得られるES細胞から分化誘導された内胚葉系細胞を、2-メタクリルオイロキシエチル ホスホリルコリンで被覆したプレート上で培養することを含む、ES細胞から分化誘導された内胚葉系細胞の維持培養方法。 From the ES cell, comprising culturing an endoderm cell differentiated from the ES cell obtained by the method according to any one of claims 1 to 8 on a plate coated with 2-methacryloxyethyl phosphorylcholine. A maintenance culture method of differentiation-induced endoderm cells. ノックアウト血清リプレースメント(KSR)の存在下で培養を行う、請求項11に記載の方法。 The method according to claim 11, wherein the culture is performed in the presence of knockout serum replacement (KSR). 支持細胞の存在下で哺乳動物由来のES細胞を培養することによってES細胞から内胚葉系細胞へと分化誘導する際に、被験物質の存在下でES細胞を培養し、被験物質の非存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度と被験物質の存在下でES細胞を培養した場合における内胚葉系細胞へと分化誘導の程度とを比較することを含む、ES細胞から内胚葉系細胞へと分化誘導を促進又は阻害する物質をスクリーニングする方法。 When inducing differentiation from ES cells to endoderm cells by culturing mammalian-derived ES cells in the presence of feeder cells, the ES cells are cultured in the presence of the test substance and in the absence of the test substance. Comparing the degree of differentiation induction into endoderm cells when cultivating ES cells and the degree of differentiation induction into endoderm cells when ES cells are cultured in the presence of a test substance, A method of screening for a substance that promotes or inhibits differentiation induction from ES cells to endoderm cells. 被験物質が成長因子又は低分子化合物である、請求項13に記載のスクリーニング方法。 The screening method according to claim 13, wherein the test substance is a growth factor or a low molecular compound. 内胚葉で発現するマーカーの発現量を指標として、内胚葉系細胞へと分化誘導の程度を測定する、請求項13又は14に記載のスクリーニング方法。 The screening method according to claim 13 or 14, wherein the degree of differentiation induction into endoderm cells is measured using the expression level of a marker expressed in the endoderm as an index. 哺乳動物由来のES細胞がマウス、サル又はヒト由来のES細胞である、請求項13から15の何れかに記載のスクリーニング方法。 The screening method according to any one of claims 13 to 15, wherein the mammal-derived ES cells are mouse, monkey or human-derived ES cells.
JP2007517854A 2005-05-24 2006-05-24 ES cell differentiation induction method Active JP5092124B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007517854A JP5092124B2 (en) 2005-05-24 2006-05-24 ES cell differentiation induction method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005150800 2005-05-24
JP2005150800 2005-05-24
JP2007517854A JP5092124B2 (en) 2005-05-24 2006-05-24 ES cell differentiation induction method
PCT/JP2006/310324 WO2006126574A1 (en) 2005-05-24 2006-05-24 Method for induction of es cell differentiation

Publications (2)

Publication Number Publication Date
JPWO2006126574A1 true JPWO2006126574A1 (en) 2008-12-25
JP5092124B2 JP5092124B2 (en) 2012-12-05

Family

ID=37451998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007517854A Active JP5092124B2 (en) 2005-05-24 2006-05-24 ES cell differentiation induction method

Country Status (2)

Country Link
JP (1) JP5092124B2 (en)
WO (1) WO2006126574A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018139600A1 (en) * 2017-01-27 2019-11-21 株式会社カネカ Endoderm cell population and method for producing any of the three germ layers from pluripotent cells
CN115644455A (en) * 2022-12-08 2023-01-31 北京第一生物科技开发有限公司 Application of bovine spleen peptide powder in improving intestinal function

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169051B1 (en) * 2007-05-30 2016-02-10 Kumamoto University Method for induction of differentiation of es cell
US9080145B2 (en) 2007-07-01 2015-07-14 Lifescan Corporation Single pluripotent stem cell culture
KR101617243B1 (en) 2007-07-31 2016-05-02 라이프스캔, 인코포레이티드 Differentiation of human embryonic stem cells
EP2584034B8 (en) * 2007-07-31 2017-12-06 Lifescan, Inc. Pluripotent stem cell differentiation by using human feeder cells
JP5733986B2 (en) 2008-02-21 2015-06-10 ヤンセン バイオテツク,インコーポレーテツド Methods, surface modified plates, and compositions for cell attachment, culture and detachment
KR101651661B1 (en) 2008-06-30 2016-08-26 얀센 바이오테크 인코포레이티드 Differentiation of pluripotent stem cells
CA2731007A1 (en) 2008-07-16 2010-01-21 Dnavec Corporation Method for production of reprogrammed cell using chromosomally unintegrated virus vector
US8895300B2 (en) 2008-11-04 2014-11-25 Viacyte, Inc. Scalable primate pluripotent stem cell aggregate suspension culture and differentiation thereof
KR101774546B1 (en) 2008-11-20 2017-09-04 얀센 바이오테크 인코포레이티드 Pluripotent stem cell culture on micro-carriers
JP5719305B2 (en) 2008-11-20 2015-05-13 ヤンセン バイオテツク,インコーポレーテツド Methods and compositions for cell attachment and culture on a planar support
EP2412800A1 (en) * 2010-07-29 2012-02-01 Koninklijke Nederlandse Akademie van Wetenschappen Liver organoid, uses thereof and culture method for obtaining them
JP2011010653A (en) * 2009-06-05 2011-01-20 Kumamoto Univ Method for induction of cell differentiation
JP5810435B2 (en) * 2009-09-30 2015-11-11 国立大学法人 熊本大学 Method for detecting endoderm cells, intestinal cells or pancreatic cells
JP2011115161A (en) * 2009-11-05 2011-06-16 Kumamoto Univ Method for inducing differentiation of cell
CN102741395B (en) 2009-12-23 2016-03-16 詹森生物科技公司 The differentiation of human embryo stem cell
JP6013196B2 (en) 2010-03-01 2016-10-25 ヤンセン バイオテツク,インコーポレーテツド Method for purifying cells derived from pluripotent stem cells
CA2809300A1 (en) 2010-08-31 2012-03-08 Janssen Biotech, Inc. Differentiation of human embryonic stem cells
WO2012056997A1 (en) 2010-10-28 2012-05-03 国立大学法人熊本大学 Method and culture medium for improving pluripotent stem cell differentiation inducing efficiency
JP5875007B2 (en) 2010-11-02 2016-03-02 国立大学法人 熊本大学 Method for producing enterocytes
JP6051378B2 (en) 2011-05-02 2016-12-27 国立大学法人 熊本大学 Low molecular weight compound that promotes differentiation induction from stem cells to insulin producing cells, and method for inducing differentiation from stem cells to insulin producing cells using the compounds
SG10201608914WA (en) 2011-12-22 2016-12-29 Janssen Biotech Inc Differentiation of human embryonic stem cells into single hormonal insulin positive cells
US10066210B2 (en) 2012-06-08 2018-09-04 Janssen Biotech, Inc. Differentiation of human embryonic stem cells into pancreatic endocrine cells
SG10201709338RA (en) 2012-12-31 2017-12-28 Janssen Biotech Inc Culturing of human embryonic stem cells at the air-liquid interface for differentiation into pancreatic endocrine cells
US10370644B2 (en) 2012-12-31 2019-08-06 Janssen Biotech, Inc. Method for making human pluripotent suspension cultures and cells derived therefrom
KR101942769B1 (en) 2012-12-31 2019-01-28 얀센 바이오테크 인코포레이티드 Differentiation of human embryonic stem cells into pancreatic endocrine cells using hb9 regulators
BR112015015714A2 (en) 2012-12-31 2017-07-11 Janssen Biotech Inc suspension and agglomeration of human pluripotent cells for differentiation into pancreatic endocrine cells
JP2014036660A (en) * 2013-10-09 2014-02-27 Viacyte Inc Stem cell aggregate suspension composition and method of differentiation thereof
JP7253692B2 (en) 2014-12-26 2023-04-07 国立大学法人京都大学 Hepatocyte induction method
MA45479A (en) 2016-04-14 2019-02-20 Janssen Biotech Inc DIFFERENTIATION OF PLURIPOTENT STEM CELLS IN ENDODERMAL CELLS OF MIDDLE INTESTINE
JP7470342B2 (en) 2018-04-26 2024-04-18 国立大学法人東京工業大学 Method for promoting differentiation of pluripotent stem cells
EP3831933A4 (en) * 2018-07-27 2021-06-16 FUJIFILM Corporation Method for producing intestinal epithelial cells and intestinal epithelial cells

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4795616B2 (en) * 2000-06-20 2011-10-19 イーエス・セル・インターナショナル・プライヴェート・リミテッド Method for controlling differentiation of embryonic stem cells by culturing ES cells in the presence of a BMP-2 pathway antagonist
GB0201472D0 (en) * 2002-01-23 2002-03-13 Accentus Plc Method and apparatus for mediated electrochemical redox reaction
JPWO2005040361A1 (en) * 2003-10-28 2007-03-22 国立大学法人京都大学 Simple preparation method of stem cells and feeder cells used therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018139600A1 (en) * 2017-01-27 2019-11-21 株式会社カネカ Endoderm cell population and method for producing any of the three germ layers from pluripotent cells
CN115644455A (en) * 2022-12-08 2023-01-31 北京第一生物科技开发有限公司 Application of bovine spleen peptide powder in improving intestinal function
CN115644455B (en) * 2022-12-08 2023-04-04 北京第一生物科技开发有限公司 Application of bovine spleen peptide powder in improving intestinal function

Also Published As

Publication number Publication date
JP5092124B2 (en) 2012-12-05
WO2006126574A1 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP5092124B2 (en) ES cell differentiation induction method
Yamashita et al. Prospective identification of cardiac progenitors by a novel single cell‐based cardiomyocyte induction
US10947506B2 (en) Human cardiovascular progenitor cells
Tropepe et al. Direct neural fate specification from embryonic stem cells: a primitive mammalian neural stem cell stage acquired through a default mechanism
Gouon-Evans et al. BMP-4 is required for hepatic specification of mouse embryonic stem cell–derived definitive endoderm
JP2022188229A (en) Method for inducing differentiation from intermediate mesoderm cells to renal progenitor cells, and method for inducing differentiation from pluripotent stem cells to renal progenitor cells
JP5124820B2 (en) ES cell differentiation induction method
EP3059308B1 (en) Method of inducing kidney from pluripotent stem cells
CA2902857C (en) Generation of thymic epithelial progenitor cells in vitro
JP7176764B2 (en) Method for inducing primitive endoderm from naive pluripotent stem cells
JP2005502356A (en) Methods for isolation, culture and differentiation of intestinal stem cells for therapy
WO2011009294A1 (en) Methods for obtaining hepatic cells, hepatic endoderm cells and hepatic precursor cells by inducing the differentiation
JP7045363B2 (en) Method for Producing Mesoderm Cells and / or Vascular Endothelial Colony-forming Cell-like Cells with Angiogenic Capability in vivo
Li et al. Targeted disruption of TCF12 reveals HEB as essential in human mesodermal specification and hematopoiesis
KR102360023B1 (en) Expandable liver organoids
JP7274683B2 (en) METHOD FOR GENERATING KIDNEY CONSTRUCTION WITH DENDRITIC DRANGED COLLECTING ductS FROM PLIPOTENTIAL STEM CELLS
JP2011010653A (en) Method for induction of cell differentiation
Blin et al. Human embryonic and induced pluripotent stem cells in basic and clinical research in cardiology
Nair et al. Ectopic Ptf1a expression in murine ESCs potentiates endocrine differentiation and models pancreas development in vitro
Park et al. Modification of a purification and expansion method for human embryonic stem cell-derived cardiomyocytes
Drobinskaya et al. Scalable selection of hepatocyte-and hepatocyte precursor-like cells from culture of differentiating transgenically modified murine embryonic stem cells
JP2008206510A (en) Method for obtaining intestinal stem/precursor cell
Song et al. The mesenchymal property of mouse mammary anlagen repopulating cell population is associated with its stemness
Hu et al. Hepatic differentiation of mouse ES cells into BE cells in vitro
JP7148134B2 (en) Stepwise induction method from hepatoblasts to bile duct epithelial progenitor cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150