JPWO2006112371A1 - Insulating window plate - Google Patents

Insulating window plate Download PDF

Info

Publication number
JPWO2006112371A1
JPWO2006112371A1 JP2007526847A JP2007526847A JPWO2006112371A1 JP WO2006112371 A1 JPWO2006112371 A1 JP WO2006112371A1 JP 2007526847 A JP2007526847 A JP 2007526847A JP 2007526847 A JP2007526847 A JP 2007526847A JP WO2006112371 A1 JPWO2006112371 A1 JP WO2006112371A1
Authority
JP
Japan
Prior art keywords
layer
plate
infrared shielding
glass
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007526847A
Other languages
Japanese (ja)
Inventor
哲司 入江
哲司 入江
大輔 山▲崎▼
大輔 山▲崎▼
浩之 朝長
浩之 朝長
広和 小平
広和 小平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2006112371A1 publication Critical patent/JPWO2006112371A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/001Double glazing for vehicles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/44Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the composition of the continuous phase
    • C03C2217/45Inorganic continuous phases
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/40Coatings comprising at least one inhomogeneous layer
    • C03C2217/43Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase
    • C03C2217/46Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase
    • C03C2217/47Coatings comprising at least one inhomogeneous layer consisting of a dispersed phase in a continuous phase characterized by the dispersed phase consisting of a specific material
    • C03C2217/475Inorganic materials
    • C03C2217/476Tin oxide or doped tin oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Glass (AREA)
  • Laminated Bodies (AREA)

Abstract

可視光透過性、電波透過性に優れ、赤外線透過率が低く、かつ自動車用窓ガラスなどの機械的耐久性が要求される部位へも適用が可能な断熱性窓用板状体の提供。平均一次粒子径100nm以下の透明導電性酸化物微粒子が酸化ケイ素を主体とするマトリックス中に質量比[透明導電性酸化物微粒子]/[酸化ケイ素]=10/20〜10/0.5の比率で分散している構成の、300〜400nmの層厚を有する第1層と、酸化ケイ素を含む第2層とが、透明な板状体の表面に、板状体/第1層/第2層の順に設けられ、かつ第2層/第1層の層厚比が0.1〜0.5であることを特徴とする。Provided is a heat-insulating window plate that is excellent in visible light transmission and radio wave transmission, has low infrared transmission, and can be applied to parts that require mechanical durability such as automotive window glass. The transparent conductive oxide fine particles having an average primary particle diameter of 100 nm or less are in a matrix mainly composed of silicon oxide in a mass ratio of [transparent conductive oxide fine particles] / [silicon oxide] = 10/20 to 10 / 0.5. The first layer having a layer thickness of 300 to 400 nm and the second layer containing silicon oxide are dispersed on the surface of the transparent plate-like body on the surface of the transparent plate-like body / first layer / second layer. The layers are provided in the order of layers, and the layer thickness ratio of the second layer / first layer is 0.1 to 0.5.

Description

本発明は、断熱性窓用板状体に関し、特に電波透過性、耐摩耗性、透明性に優れた断熱性窓用板状体に関する。   The present invention relates to a heat insulating window plate, and more particularly to a heat insulating window plate excellent in radio wave transmission, wear resistance, and transparency.

近年、車両用ガラスや建築用ガラスなどの透明な窓用板状体を通して車内や建物内に流入する赤外線を遮蔽し、車内や建物内の温度上昇、冷房負荷を軽減する目的から断熱性窓用板状体が採用されている(たとえば、特許文献1)。また、車両用ガラスや建築用ガラスでは、安全性や視界を確保するため、可視光透過率が高いことが要求される場合も多い。   In recent years, for the purpose of insulating windows for the purpose of reducing temperature rise and cooling load in cars and buildings by shielding infrared rays flowing into cars and buildings through transparent window plates such as glass for vehicles and glass for buildings. A plate-like body is employed (for example, Patent Document 1). In addition, vehicle glass and architectural glass are often required to have high visible light transmittance in order to ensure safety and visibility.

ガラス板に赤外線遮蔽性能を付加させ熱線遮蔽性を高める手法は、これまでにも数多く提案されている。たとえば、ガラスに赤外線吸収性のイオンを加えることによりガラス板そのものに赤外線遮蔽性能を付加しようとしたもの、またはガラス基板表面に導電膜を形成することにより赤外線遮蔽性能を付加しようとしたものなどが提案され、実際に使用されてきている。   Many methods have been proposed so far to add infrared shielding performance to a glass plate to enhance heat ray shielding. For example, there is an attempt to add infrared shielding performance to the glass plate itself by adding infrared absorbing ions to the glass, or an attempt to add infrared shielding performance by forming a conductive film on the glass substrate surface. It has been proposed and used in practice.

しかし、ガラスに赤外線吸収性のイオンを加えたガラス板では、可視光透過率を高く保ったまま赤外線吸収性を高めることは困難であり、また特に波長1.5μm〜2.7μmの中波長赤外線の遮蔽性を高めるのは困難であった。また、ガラス板表面に導電膜を形成する方法では、導電膜のために電波がガラスを透過することができず、近年の移動体通信の普及に伴って開口部の電波透過性が要求されるようになってきていることから不都合が生じることがあった。このように、透明性、赤外線遮蔽性、および電波透過性を有する窓用板状体を製造することは極めて困難であった。   However, it is difficult to increase the infrared absorptivity while keeping the visible light transmittance high with the glass plate in which the infrared absorptive ions are added to the glass, and in particular, the medium wavelength infrared light having a wavelength of 1.5 μm to 2.7 μm. It was difficult to improve the shielding property. In addition, in the method of forming a conductive film on the surface of a glass plate, radio waves cannot pass through the glass because of the conductive film, and radio wave permeability of the opening is required with the recent spread of mobile communication. Inconvenience may have arisen from this. As described above, it has been extremely difficult to produce a window plate having transparency, infrared shielding properties, and radio wave transmission properties.

以上のような問題を解決するために、高い赤外線遮蔽性を発現する酸化錫がドープされた酸化インジュウム(ITO)微粒子をバインダに分散させた被膜を透明な板状体上に塗布し、断熱性窓用板状体を得る方法が提案されている(特許文献2、3)。この方法であれば、比較的高い可視光透過率を維持したまま赤外線遮蔽性を付与できるとともに、膜としての導電性もバインダの存在によって抑制されるため、電波透過性を付与させることも可能となる。   In order to solve the above problems, a coating in which fine particles of indium oxide (ITO) doped with tin oxide, which exhibits high infrared shielding properties, are dispersed in a binder is applied on a transparent plate-like body to provide heat insulation properties. A method for obtaining a window plate has been proposed (Patent Documents 2 and 3). With this method, it is possible to impart infrared shielding properties while maintaining a relatively high visible light transmittance, and it is also possible to impart radio wave transparency because the conductivity as a film is suppressed by the presence of a binder. Become.

上記の方法において、通常用いられるバインダは有機系バインダもしくは無機系バインダであるが、有機系バインダでは得られる被膜の機械的耐久性は乏しく、例えば自動車用ドアガラス板など機械的耐久性を要求される部位には使用できないという問題があった。一方無機系バインダとして、ゾルゲル法をはじめとする材料が用いられることが多いが、それでも上記のような機械的耐久性が要求される部位で使用できるほどに耐久性の優れた被膜を製造するためには、比較的高い温度、例えば400℃以上、好ましくは500℃以上の温度で熱処理をする必要があった。   In the above method, the binder that is usually used is an organic binder or an inorganic binder. However, the organic binder has poor mechanical durability of the coating film, and is required to have mechanical durability such as an automotive door glass plate. There was a problem that it was not possible to use it on the site. On the other hand, materials such as the sol-gel method are often used as inorganic binders, but in order to produce coatings that are still durable enough to be used in areas where mechanical durability is required. However, it was necessary to perform heat treatment at a relatively high temperature, for example, 400 ° C. or higher, preferably 500 ° C. or higher.

しかしながら、ITO導電体は酸素欠損型の半導体であり、酸素の存在下に300℃以上の温度におかれると自由電子が酸化によって失われてしまい、赤外線遮蔽性は消失してしまう。このため、赤外線遮蔽性を保ち、機械的耐久性に優れた被膜を製造するためには、コスト面で圧倒的に不利な非酸化性雰囲気下での熱処理を行う必要がある。しかし、大気中での熱処理において簡便かつ安価に高耐久性の断熱性窓用板状体を製造する方法、さらには、自動車用窓ガラス板などの高い機械的耐久性を要求される部位へ適用できる赤外線遮蔽層を有する断熱性窓用板状体はこれまで得られていなかった。   However, the ITO conductor is an oxygen-deficient semiconductor, and when it is placed at a temperature of 300 ° C. or higher in the presence of oxygen, free electrons are lost due to oxidation, and the infrared shielding property is lost. For this reason, in order to produce a coating film that maintains infrared shielding properties and is excellent in mechanical durability, it is necessary to perform heat treatment in a non-oxidizing atmosphere that is overwhelmingly disadvantageous in terms of cost. However, it is easy and inexpensive to produce a highly durable heat insulating window plate in heat treatment in the atmosphere, and is also applicable to parts that require high mechanical durability such as automotive window glass plates. A heat insulating window plate having an infrared shielding layer that can be produced has not been obtained so far.

近年、特許文献4に、耐摩耗性、透明性に優れた熱線遮蔽膜付きガラス板が提案されている。この熱線遮蔽膜付きガラス板は、熱線遮蔽膜をアルカリ金属を含む酸化ケイ素保護膜で被覆することで熱線遮蔽膜の酸化を防いでおり、熱線遮蔽性と耐摩耗性の両方に優れるという特徴がある。しかし一方で、アルカリ金属を含む保護膜は耐薬品性が比較的低いため、自動車用ドアガラス板や窓ガラス板など長期間、厳しい外部環境にさらされる部位には適用できないおそれがあった。最近ではさらに、高い赤外線遮蔽性、電波透過性を併せ持ち、かつ機械的および化学的耐久性に優れた断熱性窓用板状体の開発が求められている。   In recent years, Patent Document 4 proposes a glass plate with a heat ray shielding film having excellent wear resistance and transparency. This glass plate with a heat ray shielding film prevents the oxidation of the heat ray shielding film by covering the heat ray shielding film with a silicon oxide protective film containing an alkali metal, and is characterized by both excellent heat ray shielding properties and wear resistance. is there. However, since the protective film containing an alkali metal has relatively low chemical resistance, there is a possibility that it cannot be applied to a part exposed to a severe external environment for a long period of time, such as an automobile door glass plate or a window glass plate. Recently, there has been a demand for the development of a heat-insulating window plate having both high infrared shielding properties and radio wave transmission properties, and excellent mechanical and chemical durability.

特開平10−279329号公報(特許請求の範囲)JP-A-10-279329 (Claims) 特開平7−70482号公報(特許請求の範囲)JP-A-7-70482 (Claims) 特開平8−41441号公報(特許請求の範囲)JP-A-8-41441 (Claims) 特開2004−338985号公報(特許請求の範囲、実施例)JP 2004-338985 A (Claims, Examples)

本発明は、可視光透過率が高く、赤外線透過率が低く、電波透過性に優れ、かつ自動車用窓ガラスなどの機械的耐久性が要求される部位へも適用が可能な断熱性窓用板状体を提供することを目的とする。   INDUSTRIAL APPLICABILITY The present invention is a heat insulating window plate that has high visible light transmittance, low infrared transmittance, excellent radio wave transmittance, and can be applied to parts that require mechanical durability such as automotive window glass. The object is to provide a body.

本発明は、透明な板状体と、該板状体の表面に設けられた下記第1層および下記第2層からなる赤外線遮蔽層(ただし、該第1層が板状体側に存在する)とを有し、第1層が、平均一次粒子径100nm以下の透明導電性酸化物微粒子が酸化ケイ素を主体とするマトリックス中に質量比で[透明導電性酸化物微粒子]/[酸化ケイ素]=10/20〜10/0.5の比率で分散して含まれ、かつ層厚300〜400nmを有する層であり、第2層が酸化ケイ素を含む層であって、かつ、第2層/第1層の層厚比が0.1〜0.5であることを特徴とする断熱性窓用板状体を提供する。   The present invention provides a transparent plate-like body and an infrared shielding layer comprising the following first layer and the following second layer provided on the surface of the plate-like body (however, the first layer is present on the plate-like body side). The transparent conductive oxide fine particles having an average primary particle diameter of 100 nm or less in a matrix mainly composed of silicon oxide in a mass ratio of [transparent conductive oxide fine particles] / [silicon oxide] = 10/20 to 10 / 0.5 in a dispersed manner and having a layer thickness of 300 to 400 nm, the second layer is a layer containing silicon oxide, and the second layer / second layer A layer thickness ratio of one layer is 0.1 to 0.5.

本発明の断熱性窓用板状体は、可視光透過率が高く、赤外線透過率が低く、電波透過性が高く、機械的耐久性が高い。特に、第1層の層厚が適度であるため、高い赤外線遮蔽性を保持しつつ、携帯電話・光ビーコンなどの電波透過性をも発現させることが可能であり、特に自動車用窓ガラス用途に好適に用いられる。   The heat insulating window plate of the present invention has high visible light transmittance, low infrared transmittance, high radio wave permeability, and high mechanical durability. In particular, since the layer thickness of the first layer is moderate, it is possible to express radio wave transmissivity of mobile phones, optical beacons, etc. while maintaining high infrared shielding properties, especially for automotive window glass applications. Preferably used.

また、焼成時に第1層/第2層(保護膜)の界面で発生する膜応力を緩和する機能の高い保護膜材料を用いているため、保護膜の層厚が薄くても酸素バリヤ性を確保でき、したがって生産性の点でも優れている。   In addition, since a protective film material having a high function to relieve the film stress generated at the interface between the first layer and the second layer (protective film) at the time of firing is used, even if the protective film is thin, the oxygen barrier property is maintained. Therefore, it is excellent in productivity.

本発明の一実施の形態による断熱性窓用板状体の断面図。Sectional drawing of the plate-like body for heat insulation windows by one embodiment of this invention. 本発明の実施例における電波損失の測定方法の概略図。The schematic of the measuring method of the radio wave loss in the Example of the present invention.

符号の説明Explanation of symbols

10・・透明な板状体
20・・第1層((ITO+酸化ケイ素)からなる赤外線遮蔽層)
30・・第2層(酸化ケイ素を含む保護層)
40・・受信機
50・・サンプル
60・・送信機
70・・ネットワークアナライザ
10. · Transparent plate 20 ·· First layer (infrared shielding layer made of (ITO + silicon oxide))
30 .. Second layer (protective layer containing silicon oxide)
40 ··· Receiver 50 ··· Sample 60 · · Transmitter 70 · · Network analyzer

以下に本発明の構成要素について詳細に説明する。
まず、第1層(図1における20)について説明する。
平均一次粒子径が100nm以下の透明導電性酸化物微粒子は、赤外線遮蔽性を発現させる構成因子であり、平均一次粒子径が100nm以下であることが重要である。平均一次粒子径がこれ以上大きくなると、透明な板状体の表面上に成膜した際に散乱による曇り(曇価、ヘイズ)の原因となるため好ましくない。平均一次粒子径が5〜50nmであるとさらに透明性維持の点で好ましい。
The components of the present invention will be described in detail below.
First, the first layer (20 in FIG. 1) will be described.
The transparent conductive oxide fine particles having an average primary particle size of 100 nm or less is a constituent factor for developing infrared shielding properties, and it is important that the average primary particle size is 100 nm or less. If the average primary particle size is larger than this, it is not preferable because it causes clouding (cloudiness, haze) due to scattering when a film is formed on the surface of a transparent plate. The average primary particle diameter is preferably 5 to 50 nm from the viewpoint of maintaining transparency.

赤外線遮蔽性を発現する透明導電性酸化物微粒子は、酸化インジュウム、酸化錫、および酸化亜鉛からなる群より選ばれる1種類以上からなる微粒子が好ましい。赤外線遮蔽性の観点からは、酸化錫が酸化インジュウムに混合された材料(以下ITOと呼ぶ)からなる微粒子が好ましい。ITOの酸化錫と酸化インジュウムとの混合比率は錫原子数に対するインジュウム原子数(In/Sn)で表すとき、In/Sn=2〜20であることが好ましく、特にIn/Sn=3〜10が好ましい。   The transparent conductive oxide fine particles that exhibit infrared shielding properties are preferably fine particles composed of one or more selected from the group consisting of indium oxide, tin oxide, and zinc oxide. From the viewpoint of infrared shielding properties, fine particles made of a material in which tin oxide is mixed with indium oxide (hereinafter referred to as ITO) are preferable. When the mixing ratio of tin oxide and indium oxide of ITO is expressed by the number of indium atoms to the number of tin atoms (In / Sn), it is preferable that In / Sn = 2 to 20, and in particular, In / Sn = 3 to 10 preferable.

また、酸化ケイ素を主体とするマトリックスは、前記透明導電性酸化物微粒子のバインダーとして機能する成分であり、透明な板状体の表面への密着性や被膜硬度を高める働きを有する。ところで、透明導電性酸化物微粒子自身は導電性に優れているため、透明導電性酸化物微粒子が被膜内で連続的に密着すると被膜自身が導電性を発現し、電波透過性に悪影響を与える。酸化ケイ素を主体とするマトリックスは、透明導電性酸化物微粒子同士の接触を制限し、被膜自身が導電膜となることを防止する効果があり、被膜の電波透過性を発現させる重要な構成因子である。ここで、酸化ケイ素とは、厳密な意味でSiOの組成となっている必要はなく、Si−O−Si結合(シロキサン結合)の網目構造を含む非晶質成分として存在していればよい。また、酸化ケイ素を主体とするマトリックス中にはSi、O以外の構成元素が含まれていてもよく、TiやN、さらには質量比で5%程度を限度とする少量成分、たとえばC、Sn、Zr、Al、B、P、Nb、Taなどが含まれていてもよい。The matrix mainly composed of silicon oxide is a component that functions as a binder of the transparent conductive oxide fine particles, and has a function of increasing the adhesion to the surface of the transparent plate-like body and the film hardness. By the way, since the transparent conductive oxide fine particles themselves are excellent in conductivity, when the transparent conductive oxide fine particles are in close contact with each other continuously in the coating, the coating itself develops conductivity and adversely affects radio wave transmission. The matrix mainly composed of silicon oxide has the effect of limiting the contact between the transparent conductive oxide fine particles and preventing the coating itself from becoming a conductive film, and is an important constituent factor for developing the radio wave transmission of the coating. is there. Here, the silicon oxide does not need to have a composition of SiO 2 in a strict sense, and may be present as an amorphous component including a network structure of Si—O—Si bonds (siloxane bonds). . In addition, the matrix mainly composed of silicon oxide may contain constituent elements other than Si and O, and Ti, N, and a small amount of components up to about 5% by mass ratio, such as C and Sn. , Zr, Al, B, P, Nb, Ta and the like may be included.

第1層中において、マトリックスは、質量比で[透明導電性酸化物微粒子]/[酸化ケイ素]=10/20〜10/0.5の比率で存在している必要がある。上記比率を10/0.5以下とすることで、被膜の密着性や硬度を保ち、また電波透過性を維持することが可能になる。一方、上記比率を10/20以上とすることで、必要な赤外線遮蔽性を維持できる。好ましくは、上記比率を[透明導電性酸化物微粒子]/[酸化ケイ素]=10/10〜10/0.5の範囲とする。   In the first layer, the matrix needs to be present at a mass ratio of [transparent conductive oxide fine particles] / [silicon oxide] = 10/20 to 10 / 0.5. By setting the ratio to 10 / 0.5 or less, it becomes possible to maintain the adhesion and hardness of the coating and to maintain radio wave transmission. On the other hand, the required infrared shielding property can be maintained by setting the ratio to 10/20 or more. Preferably, the ratio is in the range of [transparent conductive oxide fine particles] / [silicon oxide] = 10/10 to 10 / 0.5.

本発明において、第1層の層厚は300〜400nmとする。300nm以上の層厚にすることにより、所望の日射透過率が得られ、赤外線遮蔽性を充分に確保できるとともに、摩耗により反射色が変化しにくくなり、外観品質の劣化を防止できる。一方、400nm以下の層厚とすることにより、可視光線が拡散して透明性が低下することを防止でき、赤外線遮蔽層の導電性を低くできる結果、車両用ガラス板に求められる、高周波の電波に対する透過性を確保可能となる。   In the present invention, the first layer has a thickness of 300 to 400 nm. By setting the layer thickness to 300 nm or more, a desired solar transmittance can be obtained, the infrared shielding property can be sufficiently secured, the reflected color is hardly changed by abrasion, and the appearance quality can be prevented from being deteriorated. On the other hand, by setting the layer thickness to 400 nm or less, it is possible to prevent visible light from diffusing and lowering transparency, and to reduce the conductivity of the infrared shielding layer. As a result, high-frequency radio waves required for glass plates for vehicles are required. Can be secured.

一方、車両窓、特に自動車窓にはアンテナ機能が付与されることがあるが、窓の電波透過損失が大きいと、電波の受信性能が落ちるため、自動車用窓ガラスには電波に対する透過性を確保することが求められる。アンテナの受信感度はアンテナのパタン形状やアンテナパタンの形成領域の広さで調整できるが、窓ガラスにアンテナパタンを付与する場合には設置面積や外観に制約があるため、できるだけ減衰させずに電波を受信させる必要がある。近年、自動車で受信すべき信号は高周波化してきているため、電波に指向性がある。例えばリヤガラスにアンテナパタンを設置し、摺動窓に赤外線遮蔽性板状体を設ける場合、摺動窓が充分に電波透過させないと受信できなくなる。そのため、特に高周波の電波透過性能を損ねないことが求められる。窓ガラスアンテナの受信感度を向上させるためには、摺動窓の透過損失を少しでも抑えることは有用であり、第1層の層厚を400nm以下にすることで、透過損失を抑えることができる。なかでも、第1層の層厚を300〜330nmの範囲にすると、高い赤外線遮蔽性と電波透過性が得られる点で好ましく、特に好ましくは310〜320nmの範囲とする。   On the other hand, antenna functions may be added to vehicle windows, especially automobile windows. However, if the window radio wave transmission loss is large, radio wave reception performance deteriorates, so the window glass for automobiles has radio wave permeability. It is required to do. The reception sensitivity of the antenna can be adjusted by the antenna pattern shape and the size of the antenna pattern formation area. However, when an antenna pattern is applied to the window glass, the installation area and appearance are limited. Need to be received. In recent years, since signals to be received by automobiles have become higher in frequency, radio waves have directivity. For example, when an antenna pattern is installed on the rear glass and an infrared shielding plate-like body is provided on the sliding window, the sliding window cannot be received unless the radio wave is sufficiently transmitted. Therefore, it is required not to impair the radio wave transmission performance particularly at high frequencies. In order to improve the reception sensitivity of the window glass antenna, it is useful to suppress the transmission loss of the sliding window as much as possible, and the transmission loss can be suppressed by setting the thickness of the first layer to 400 nm or less. . Especially, it is preferable when the layer thickness of the first layer is in the range of 300 to 330 nm because high infrared shielding properties and radio wave transmission properties can be obtained, and particularly preferably in the range of 310 to 320 nm.

具体的には、第1層および第2層からなる赤外線遮蔽層の電波透過損失(1GHzの周波数における断熱性窓用板状体の電波透過損失TLWと、1GHzの周波数における透明な板状体の電波透過損失TLGとの差TLW−TLG)を2dB以下に抑えることが好ましい。より好ましくは、上記の電波の透過損失を1dB以下とする。Specifically, the radio wave transmission loss of the infrared shielding layer composed of the first layer and the second layer (the radio wave transmission loss T LW of the heat insulating window plate at a frequency of 1 GHz and the transparent plate at a frequency of 1 GHz It is preferable to suppress the difference (T LW −T LG ) from the radio wave transmission loss T LG to 2 dB or less. More preferably, the transmission loss of the radio wave is 1 dB or less.

次に、第2層(図1における30)について説明する。第2層は、被膜の機械的耐久性の向上に寄与する構成因子であり、また後述するように高温で被膜を焼成する際に、透明導電性酸化物微粒子の酸化を防止する酸素バリヤ膜として働く。第2層は、酸化ケイ素を含む層である。この第2層中は、ケイ素原子と酸素原子を主たる構成原子とする均一な酸化物からなる緻密な層であることが好ましい。第2層中には、Siに結合した窒素原子が少量(たとえば、質量比で5%程度以下)含まれていてもよい。すなわち、第2層中の酸化ケイ素の一部は酸窒化ケイ素となっていてもよい。   Next, the second layer (30 in FIG. 1) will be described. The second layer is a constituent factor contributing to the improvement of the mechanical durability of the coating, and as an oxygen barrier film for preventing the oxidation of the transparent conductive oxide fine particles when the coating is fired at a high temperature as will be described later. work. The second layer is a layer containing silicon oxide. The second layer is preferably a dense layer made of a uniform oxide having silicon atoms and oxygen atoms as main constituent atoms. The second layer may contain a small amount of nitrogen atoms bonded to Si (for example, about 5% or less by mass ratio). That is, a part of the silicon oxide in the second layer may be silicon oxynitride.

本発明では、第2層の層厚/第1層の層厚比が0.1〜0.5である必要がある。層厚比が0.1未満では耐摩耗性を維持できなくなり、また酸素バリヤ性も不足する。一方、0.5を超える層厚比では膜にクラックが入り、可視光透過率および透明性が低下するおそれがある。なかでも、層厚比を0.2〜0.5の範囲にすると、耐摩耗性、赤外線遮蔽性、電波透過性および透明性をバランスよく発現できる点で好ましい。   In the present invention, the layer thickness ratio of the second layer / the layer thickness of the first layer needs to be 0.1 to 0.5. If the layer thickness ratio is less than 0.1, the wear resistance cannot be maintained, and the oxygen barrier property is insufficient. On the other hand, if the layer thickness ratio exceeds 0.5, the film may crack, and the visible light transmittance and transparency may be reduced. Especially, when layer thickness ratio is made into the range of 0.2-0.5, it is preferable at the point which can express abrasion resistance, infrared rays shielding, radio wave permeability, and transparency with sufficient balance.

なお、具体的には、第2層の層厚は80〜140nmとすると好ましい。80nm未満の層厚では酸素バリヤ性が不足し、良好な赤外線遮蔽性を維持できなくなるおそれがある。一方、140nmを超えると上記したようなクラックの発生が起きやすくなるほか、後述する焼成時に下層から発生する分解成分、例えば有機成分などが抜けにくくなり、被膜が着色し、可視光透過率および透明性が低下するおそれもある。   Specifically, the thickness of the second layer is preferably 80 to 140 nm. If the layer thickness is less than 80 nm, the oxygen barrier property is insufficient, and good infrared shielding properties may not be maintained. On the other hand, if it exceeds 140 nm, cracks as described above are likely to occur, and decomposition components generated from the lower layer during firing, such as organic components, are difficult to escape, the coating is colored, visible light transmittance and transparency There is also a possibility that the property may be lowered.

本発明では、透明な板状体上に、第1層と第2層とがこの順に隣接してなる赤外線遮蔽層(ただし、第1層が透明な板状体側に存在する)を有する断熱性窓用板状体が提供される。この断熱性窓用板状体においては、JIS−R3212(1998年)3.7項に規定される耐摩耗性試験において、CS−10F摩耗ホイールで1000回転試験後の摩耗による曇価の増加量が5%以下であると好ましい。このことにより、自動車用のドアガラス板など、非常に高い機械的耐久性が要求される部位への適用も可能であり、かつ、赤外線遮蔽性と電波透過性の両方を発現可能となる。   In the present invention, on the transparent plate-like body, the heat insulating property having the infrared shielding layer (where the first layer exists on the transparent plate-like body side) in which the first layer and the second layer are adjacent in this order. A window plate is provided. In this heat-insulating window plate, in the abrasion resistance test specified in Section 3.7 of JIS-R3212 (1998), the amount of increase in cloudiness due to wear after 1000 rotation tests with a CS-10F abrasion wheel Is preferably 5% or less. As a result, it can be applied to parts that require extremely high mechanical durability, such as automotive door glass plates, and can exhibit both infrared shielding properties and radio wave transmission properties.

また、自動車用窓ガラス板として使用する際には、部位によっては高い可視光透過率が要求される場合があるが、そのためには、赤外線遮蔽層(ガラス基板を含まない)としての可視光透過率が好ましくは90%以上、さらに好ましくは95%以上、特に98%以上となることが好ましい。ここでいう可視光透過率とは、JIS−R3212で規定される計算式から算出される被膜単体での可視光透過率を示している。前記可視光透過率が90%以上の赤外線遮蔽層をガラス基板の表面上に形成することで、可視光透過率が著しく低下することを防止できる。すなわち、該ガラス基板の可視光透過率の90%以上を維持できる。   In addition, when used as a window glass plate for automobiles, high visible light transmittance may be required depending on the part. For that purpose, visible light transmission as an infrared shielding layer (not including a glass substrate) is required. The rate is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more. The visible light transmittance here refers to the visible light transmittance of a single coating film calculated from a calculation formula defined in JIS-R3212. By forming the infrared ray shielding layer having a visible light transmittance of 90% or more on the surface of the glass substrate, it is possible to prevent the visible light transmittance from being significantly lowered. That is, 90% or more of the visible light transmittance of the glass substrate can be maintained.

また、本発明に使用される透明な板状体(図1における10)は特に限定されず、無機系のガラス材料からなるガラス板や、有機系のガラス材料からなるガラス板を例示できる。自動車の窓用、特にウインドシールドや摺動窓用には無機系のガラス材料からなるガラス板を用いることが好ましい。無機系のガラス材料としては、通常のソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス、石英ガラスなどのガラス材料が挙げられる。   Moreover, the transparent plate-shaped body (10 in FIG. 1) used for this invention is not specifically limited, The glass plate which consists of an inorganic type glass material and the glass plate which consists of organic type glass materials can be illustrated. It is preferable to use a glass plate made of an inorganic glass material for automobile windows, particularly for windshields and sliding windows. Examples of the inorganic glass material include glass materials such as ordinary soda lime glass, borosilicate glass, alkali-free glass, and quartz glass.

無機系のガラス板としては、紫外線や赤外線を吸収するガラスを用いることもできる。具体的には、JIS−R3212(1998年)により定められる可視光透過率が好ましくは70%以上、特に好ましくは72%以上であり、波長1μmの光の透過率が好ましくは30%以下、特に好ましくは25%以下であり、かつ波長2μmの光の透過率が好ましくは40〜70%、特に好ましくは45〜65%であるガラス板を用いると、特に効果が高い。本発明における赤外線遮蔽層は、1μm近傍の近赤外領域の遮蔽性はそれほど高くないため、1μm付近の波長の光の遮蔽性能が高いガラス板を透明な板状体として用いることで、全赤外領域にわたって優れた赤外線遮蔽性を具備させることができる。   As the inorganic glass plate, glass that absorbs ultraviolet rays or infrared rays can also be used. Specifically, the visible light transmittance defined by JIS-R3212 (1998) is preferably 70% or more, particularly preferably 72% or more, and the transmittance of light having a wavelength of 1 μm is preferably 30% or less, particularly The effect is particularly high when a glass plate having a transmittance of 25% or less and a light transmittance of 2 μm is preferably 40 to 70%, particularly preferably 45 to 65%. In the infrared shielding layer of the present invention, the shielding property in the near-infrared region near 1 μm is not so high, and a glass plate having a high shielding property for light having a wavelength in the vicinity of 1 μm is used as a transparent plate-like body. An excellent infrared shielding property can be provided over the outer region.

本発明の断熱性窓用板状体は、以下のようにして製造することが好ましい。
(1)透明な板状体の表面上に、平均一次粒子径が100nm以下である透明導電性酸化物微粒子を含む下層形成用分散液を塗布し、乾燥して、前記透明導電性酸化物微粒子が分散している層(以下、下層ともいう)を形成する。
(2)上記下層の上に、酸化ケイ素ゲルを形成しうるケイ素化合物(以下、ケイ素化合物ともいう)を含む上層形成用組成物を塗布して、ケイ素化合物および/またはそのゲル化物を含む層(以下、上層ともいう)を形成する。
(3)上記2つの層が形成された透明な板状体を、酸素を含む雰囲気下で透明な板状体の温度が400〜750℃となる温度で焼成する。
The heat insulating window plate of the present invention is preferably produced as follows.
(1) On the surface of the transparent plate-like body, a dispersion for forming a lower layer containing transparent conductive oxide fine particles having an average primary particle diameter of 100 nm or less is applied, dried, and then the transparent conductive oxide fine particles Is formed (hereinafter also referred to as the lower layer).
(2) An upper layer forming composition containing a silicon compound that can form a silicon oxide gel (hereinafter also referred to as a silicon compound) is applied on the lower layer, and a layer containing a silicon compound and / or a gelled product thereof ( Hereinafter, it is also referred to as an upper layer).
(3) The transparent plate-like body on which the two layers are formed is fired at a temperature at which the temperature of the transparent plate-like body is 400 to 750 ° C. in an atmosphere containing oxygen.

焼成後の第1層内の透明導電性酸化物微粒子の凝集状態は、下層形成用組成物中での凝集状態を反映するため、被膜の透明性や電波透過性を維持するためには、透明導電性酸化物微粒子は下層形成用組成物中で高度に分散されていることが好ましい。分散状態としては、数平均の凝集粒子径として500nm以下、さらには200nm以下、さらには100nm以下であることが好ましい。分散媒としては、水、アルコールなどの極性溶媒や、トルエン、キシレンといった非極性溶媒など、種々の溶媒が適宜利用できる。分散させるための方法としては、公知の方法を利用でき、超音波照射、ホモジナイザー、ボールミル、ビーズミル、サンドミル、ペイントシェーカーなどのメディアミルや、ジェットミルやナノマイザーなどの高圧衝撃ミルなどを利用できる。   The state of aggregation of the transparent conductive oxide fine particles in the first layer after firing reflects the state of aggregation in the composition for forming the lower layer. Therefore, in order to maintain the transparency and radio wave transparency of the coating, The conductive oxide fine particles are preferably highly dispersed in the lower layer forming composition. As the dispersion state, the number average aggregate particle diameter is preferably 500 nm or less, more preferably 200 nm or less, and further preferably 100 nm or less. As the dispersion medium, various solvents such as polar solvents such as water and alcohol, and nonpolar solvents such as toluene and xylene can be appropriately used. As a method for dispersing, a known method can be used, and a media mill such as ultrasonic irradiation, a homogenizer, a ball mill, a bead mill, a sand mill, and a paint shaker, or a high-pressure impact mill such as a jet mill or a nanomizer can be used.

上記(2)の工程を採用する場合には、下層として多孔質の層を形成し、上層形成時に後述する上層形成用組成物中に含まれるケイ素化合物をこの下層の空隙に浸透させて、ケイ素化合物またはそのゲル化物が該空隙に充填された層を形成することができる。
下層を多孔質の層とした場合、後述する上層形成用組成物中に含まれるケイ素化合物が塗布時に下層の空隙に浸透し、透明な板状体の表面まで到達する。そのため、下層形成用分散液中に、ケイ素化合物を添加することは必須とはされないが、添加してもよい。
When the step (2) is employed, a porous layer is formed as a lower layer, and a silicon compound contained in an upper layer forming composition described later is infiltrated into the voids of the lower layer when the upper layer is formed. A layer in which the compound or gelated product thereof is filled in the voids can be formed.
When the lower layer is a porous layer, a silicon compound contained in the composition for forming an upper layer described later penetrates into the voids in the lower layer at the time of application and reaches the surface of the transparent plate-like body. Therefore, it is not essential to add a silicon compound to the dispersion for forming the lower layer, but it may be added.

ケイ素化合物とは、加熱によりシロキサン結合を有する酸化ケイ素マトリックスとなりうる成分(以降、シロキサンマトリックス材料ともいう。)をいう。シロキサンマトリックス材料とは、加熱によってシロキサン結合(Si−O−Si)が形成されて3次元ネットワーク化し、硬質、透明な酸化ケイ素マトリックスとなりうる化合物である。具体的にはゾルゲル法で利用されるアルコキシシラン類や該アルコキシシラン類の部分加水分解物、該アルコキシシラン類の部分加水分解縮合物、水ガラス、ポリシラザンなどが挙げられる。そのうちでも、ポリシラザン、テトラアルコキシシラン、テトラアルコキシシランの部分加水分解物、又はテトラアルコキシシランの部分加水分解縮合物が好ましく、特にポリシラザンが好ましい。   The silicon compound refers to a component that can be converted into a silicon oxide matrix having a siloxane bond by heating (hereinafter also referred to as a siloxane matrix material). The siloxane matrix material is a compound that can form a rigid and transparent silicon oxide matrix by forming a siloxane bond (Si—O—Si) by heating to form a three-dimensional network. Specific examples include alkoxysilanes used in the sol-gel method, partial hydrolysates of the alkoxysilanes, partial hydrolysis condensates of the alkoxysilanes, water glass, and polysilazane. Among them, polysilazane, tetraalkoxysilane, a partial hydrolyzate of tetraalkoxysilane, or a partial hydrolysis condensate of tetraalkoxysilane is preferable, and polysilazane is particularly preferable.

ポリシラザンとは、−SiR −NR−SiR −(R、Rはそれぞれ独立に水素もしくは炭化水素基)で表される構造を有する線状または環状の化合物の総称であり、水分との反応によってSi−NR−Si結合が分解してSi−O−Siネットワークを形成する材料である。テトラアルコキシシランなどから得られる酸化ケイ素系被膜と比較して、ポリシラザンから得られる酸化ケイ素系被膜は高い機械的耐久性やガスバリヤ性を有する。なお、ポリシラザンから得られる酸化ケイ素には窒素原子が少量含まれることがあり、一部に酸窒化ケイ素が生成していると考えられる。本発明における酸化ケイ素はこのような窒素原子を含む酸化ケイ素であってよい。また、このような窒素原子を含む酸化ケイ素についての前記質量比(質量比[SiO]/[TiO]など)は、ケイ素原子の全てが酸化ケイ素のケイ素原子であるとして計算した数値(酸化ケイ素に換算した数値)をいう。The polysilazane, -SiR 1 2 -NR 2 -SiR 1 2 - is a general term for (R 1, R 2 are each independently hydrogen or a hydrocarbon group), a linear or cyclic compound having a structure represented by, This is a material in which Si—NR 2 —Si bonds are decomposed by reaction with moisture to form a Si—O—Si network. Compared with a silicon oxide-based film obtained from tetraalkoxysilane or the like, a silicon oxide-based film obtained from polysilazane has higher mechanical durability and gas barrier properties. Note that silicon oxide obtained from polysilazane may contain a small amount of nitrogen atoms, and it is considered that silicon oxynitride is partially formed. The silicon oxide in the present invention may be silicon oxide containing such a nitrogen atom. The mass ratio (mass ratio [SiO 2 ] / [TiO 2 ], etc.) for silicon oxide containing such nitrogen atoms is a numerical value (oxidation) calculated assuming that all of the silicon atoms are silicon atoms of silicon oxide. (Numerical value converted to silicon).

本発明においてポリシラザンとしては、上記化学式でR=R=Hであるペルヒドロポリシラザン、R=メチル基等の炭化水素基であり、R=Hである部分有機化ポリシラザン、又はこれらの混合物が好ましく用いられる。これらのポリシラザンを用いて形成される赤外線遮蔽層は酸素バリヤ性が高いため、非常に好適である。特に好ましいポリシラザンはペルヒドロポリシラザンである。
また、下層形成用分散液中にはTi、Sn、Zr、Al、B、P、Nb、Taなど、ガラス形成もしくは修飾成分となりうる他の元素やその化合物を含んでいてもよい。
In the present invention, the polysilazane is a perhydropolysilazane in which R 1 = R 2 = H in the above chemical formula, a hydrocarbon group such as R 1 = methyl group, and a partially organized polysilazane in which R 2 = H, or these Mixtures are preferably used. Infrared shielding layers formed using these polysilazanes are highly suitable because of their high oxygen barrier properties. A particularly preferred polysilazane is perhydropolysilazane.
Further, the lower layer forming dispersion may contain other elements or compounds thereof that can be glass forming or modifying components, such as Ti, Sn, Zr, Al, B, P, Nb, and Ta.

下層形成用分散液中にケイ素化合物を添加する場合の透明導電性酸化物微粒子とケイ素化合物の存在比は、酸化物換算の質量比で[透明導電性酸化物微粒子]/[酸化ケイ素]=1/2以上であると好ましく、さらに好ましくは1/1以上である。上記比率を質量比で1/2以上とすることで、赤外線遮蔽性を充分に確保できる。   When the silicon compound is added to the dispersion for forming the lower layer, the abundance ratio between the transparent conductive oxide fine particles and the silicon compound is [transparent conductive oxide fine particles] / [silicon oxide] = 1 as a mass ratio in terms of oxide. / 2 or more is preferable, and more preferably 1/1 or more. By setting the ratio to 1/2 or more in terms of mass ratio, sufficient infrared shielding properties can be secured.

以上のようにして得られた下層形成用分散液を、透明な板状体の表面上に塗布して下層を形成する。塗布方法は特に限定はされず、ディップコート法、スピンコート法、スプレーコート法、フレキソ印刷法、スクリーン印刷法、グラビア印刷法、ロールコート法、メニスカスコート法、ダイコート法など、公知の方法を用いることができる。   The lower layer-forming dispersion obtained as described above is applied onto the surface of a transparent plate to form a lower layer. The coating method is not particularly limited, and a known method such as a dip coating method, a spin coating method, a spray coating method, a flexographic printing method, a screen printing method, a gravure printing method, a roll coating method, a meniscus coating method, or a die coating method is used. be able to.

ここで、赤外線遮蔽性微粒子としてITOを用いる場合、ITO微粒子としては、公知のものを用いることができる。また、上記シロキサンマトリックス材料を用いれば、通常の立方晶ITOだけでなく、一般に赤外線の遮蔽性に関しては劣るといわれている六方晶ITOも使用することができる。なかでも、本発明においては、下層を形成する際に、上記の工程(1)に代えて下記の工程(1’)を採用することが好ましい。
(1’)透明な板状体の表面上に、xy色度座標におけるc光源、2°視野での粉体色がx値0.3以上、y値0.33以上であって、平均一次粒子径が100nm以下であるITO微粒子を含む下層形成用分散液を塗布し、乾燥して、前記ITO微粒子が分散している構成の下層を形成する。
Here, when ITO is used as the infrared shielding fine particles, known ITO fine particles can be used. If the siloxane matrix material is used, not only ordinary cubic ITO but also hexagonal ITO, which is generally said to be inferior in terms of infrared shielding properties, can be used. Especially, in this invention, when forming a lower layer, it is preferable to employ | adopt the following process (1 ') instead of said process (1).
(1 ′) On the surface of the transparent plate-like body, the c light source in the xy chromaticity coordinates, the powder color in the 2 ° field of view has an x value of 0.3 or more, a y value of 0.33 or more, and an average primary A lower layer-forming dispersion liquid containing ITO fine particles having a particle diameter of 100 nm or less is applied and dried to form a lower layer having a configuration in which the ITO fine particles are dispersed.

ここで用いられるITO微粒子は、xy色度座標におけるc光源、2°視野での粉体色がx値0.3以上、y値0.33以上であると好ましい。かかるITO微粒子は、そのものでは赤外線遮蔽性は有していないが、後工程の焼成工程において膜中で還元が起こり、キャリアが発生して赤外線遮蔽性を有する膜となるものである。   The ITO fine particles used here preferably have a c light source in the xy chromaticity coordinates and a powder color in a 2 ° field of view having an x value of 0.3 or more and a y value of 0.33 or more. Such ITO fine particles themselves do not have infrared shielding properties, but reduction occurs in the film in a subsequent baking step, and carriers are generated to form a film having infrared shielding properties.

上記のITO微粒子は、共沈法などで得られた前駆体粉末を大気中もしくは窒素などの通常の不活性ガス中での焼成するだけで作製可能である。従来用いられてきた高性能な赤外線遮蔽性を有するITO微粒子のように、危険を伴う水素などの還元性雰囲気下や加圧不活性雰囲気下での焼成を必要としないため、より低コストで安全に作製することができる。   The above ITO fine particles can be produced simply by firing the precursor powder obtained by the coprecipitation method or the like in the air or in a normal inert gas such as nitrogen. Unlike conventional ITO fine particles with high-performance infrared shielding that do not require firing in a reducing atmosphere such as dangerous hydrogen or in a pressurized inert atmosphere, it is safer and cheaper Can be produced.

上記のITO微粒子は、透明性という観点から、平均一次粒子径が100nm以下であることが好ましい。特に好ましくは、粉末X線回折分析から算出される結晶子径が15〜50nmであるITO微粒子を用いるとよい。結晶子径がこれより小さくなると膜中での還元が起こった後でも高い赤外線遮蔽性を発現することができず、またこれ以上の結晶子径を有する微粒子では透明性が低下するおそれがあるからである。   The ITO fine particles preferably have an average primary particle size of 100 nm or less from the viewpoint of transparency. It is particularly preferable to use ITO fine particles having a crystallite diameter calculated from powder X-ray diffraction analysis of 15 to 50 nm. If the crystallite size is smaller than this, high infrared shielding properties cannot be developed even after reduction in the film, and transparency may be lowered with fine particles having a crystallite size larger than this. It is.

上記のようにして透明な板状体上に形成された下層は、200℃以下の温度で乾燥させると好ましい。この工程では、膜中の溶媒成分などを揮発除去するのが主目的であり、これ以上温度を上げても効果はないため非経済的である。処理時間は、好ましくは30秒〜2時間程度である。また、実用的な温度の下限は50℃程度であり、より好ましくは120℃以上である。50℃未満でも溶媒成分を除去できる場合があるが、時間を要するために実用的でない。ただし、下層形成用分散液中にケイ素化合物を含まない場合には、下限は室温付近となりうる。またどちらの場合も半硬化させる雰囲気は、大気下でも、非酸化性雰囲気での乾燥でもよいが、非酸化性雰囲気で乾燥させる効果は特には期待できない。   The lower layer formed on the transparent plate-like body as described above is preferably dried at a temperature of 200 ° C. or lower. In this step, the main purpose is to volatilize and remove the solvent component and the like in the film, and it is uneconomical because there is no effect even if the temperature is raised further. The treatment time is preferably about 30 seconds to 2 hours. Moreover, the minimum of practical temperature is about 50 degreeC, More preferably, it is 120 degreeC or more. Although the solvent component may be removed even at less than 50 ° C., it is not practical because it takes time. However, when the lower layer forming dispersion does not contain a silicon compound, the lower limit may be around room temperature. In either case, the semi-curing atmosphere may be air or drying in a non-oxidizing atmosphere, but the effect of drying in a non-oxidizing atmosphere cannot be particularly expected.

なお、この乾燥処理の前後、乾燥処理中、もしくは乾燥処理の代わりに、波長300nm以下の紫外線を1分以上照射することも好適に行われる。この紫外線照射は、300nm以下の短波長の紫外線を含むランプ下に被膜付き板状体を放置する程度の簡便な処理でよく、ランプとしては水銀灯が好ましく用いられる。なかでも、低圧水銀灯と呼ばれる、300nm以下の波長の紫外線を多く放出するランプを用いると効果が高い。300nm以下の波長の紫外線は、膜中の有機物の分解に寄与し、後述する焼成時に膜中から有機成分を抜けやすくする働きを有する。   In addition, before and after this drying process, during the drying process, or instead of the drying process, irradiation with ultraviolet rays having a wavelength of 300 nm or less for 1 minute or longer is also preferably performed. This irradiation with ultraviolet rays may be as simple as leaving the coated plate under a lamp containing ultraviolet rays having a short wavelength of 300 nm or less, and a mercury lamp is preferably used as the lamp. In particular, a lamp called a low-pressure mercury lamp that emits a large amount of ultraviolet rays having a wavelength of 300 nm or less is highly effective. Ultraviolet light having a wavelength of 300 nm or less contributes to the decomposition of organic substances in the film, and has a function of easily removing organic components from the film during firing, which will be described later.

さらに、この乾燥処理の前後、乾燥処理中、もしくは乾燥処理の代わりに、真空乾燥による硬化も好適に行われる。このとき、塗布方法や含まれる溶剤の種類にもよるが、真空度は0.01〜10kPa程度とすることが好ましく、処理時間は数秒〜数分程度である。   Further, curing by vacuum drying is also preferably performed before and after the drying process, during the drying process, or instead of the drying process. At this time, although depending on the coating method and the type of solvent contained, the degree of vacuum is preferably about 0.01 to 10 kPa, and the treatment time is about several seconds to several minutes.

以上のようにして得られた半硬化状態の下層上に隣接して、ケイ素化合物を含む上層形成用組成物を塗布して上層を形成すると好ましい。上層は、後述する焼成時に下層の透明導電性酸化物微粒子中に酸素が供給されて透明導電性酸化物微粒子が酸化されるのを防ぐ、酸素バリヤ膜としての働きを有する。   An upper layer is preferably formed by applying an upper layer-forming composition containing a silicon compound adjacent to the semi-cured lower layer obtained as described above. The upper layer functions as an oxygen barrier film that prevents oxygen from being supplied to the transparent conductive oxide fine particles in the lower layer during baking, which prevents the transparent conductive oxide fine particles from being oxidized.

上層形成用組成物中のケイ素化合物としては、硬質膜を作製する観点から、上記一般式のRが水素であるペルヒドロポリシラザンが好ましく用いられる。このポリシラザンから形成される第2層は比較的酸素バリヤ性が高く、本工程で用いられる第2層形成用材料として非常に好適である。上層形成用組成物中には硬化触媒、溶媒、活性剤が添加されることが好ましく、また、上層形成用組成物中のケイ素化合物としてポリシラザンを用いる場合、ポリシラザンの量は、上層形成用組成物全体に対し質量比で20%以下が望ましい。また、上層形成用組成物中にはTiや、被膜形成性を有しない他の金属源などが少量含まれていてもよい。   As the silicon compound in the composition for forming the upper layer, perhydropolysilazane in which R in the above general formula is hydrogen is preferably used from the viewpoint of producing a hard film. The second layer formed from this polysilazane has a relatively high oxygen barrier property and is very suitable as the second layer forming material used in this step. It is preferable that a curing catalyst, a solvent, and an activator are added to the upper layer forming composition. When polysilazane is used as the silicon compound in the upper layer forming composition, the amount of polysilazane is the upper layer forming composition. 20% or less is desirable by mass ratio with respect to the whole. Further, the upper layer forming composition may contain a small amount of Ti, other metal sources that do not have film-forming properties, and the like.

該上層形成用組成物は、成膜、半硬化された下層上に塗布されるが、上記のとおり、下層が多孔質である場合、組成物が下層被膜中に浸透し、下層被膜中の透明導電性酸化物微粒子同士の結合剤および透明な板状体の表面との密着性向上剤としても働く。特に下層形成用分散液中にシロキサンマトリックス材料を含まない場合や、シロキサンマトリックス材料が少量しか含まれない場合にはこの上層形成用組成物の浸透が著しくなる。このため、下層形成用分散液中のシロキサンマトリックス材料の存在比が透明導電性酸化物微粒子に対して酸化物換算の質量比で5%以下であっても、2層膜となった際には第1層中に、透明導電性酸化物微粒子に対して質量比で5〜200%の酸化ケイ素を含む構成とすることができ、本発明の構成を満足する第1層となる。なお、上層の形成方法としては、下層の形成方法と同様、公知の技術が利用できる。   The upper layer-forming composition is applied onto a film-formed, semi-cured lower layer. As described above, when the lower layer is porous, the composition penetrates into the lower layer film and is transparent in the lower layer film. It also acts as a binder between the conductive oxide fine particles and an adhesion improver with the surface of the transparent plate. In particular, when the siloxane matrix material is not included in the dispersion for forming the lower layer or when only a small amount of the siloxane matrix material is included, the penetration of the composition for forming the upper layer becomes significant. For this reason, even when the ratio of the siloxane matrix material in the lower layer forming dispersion is 5% or less in terms of oxide relative to the transparent conductive oxide fine particles, It can be set as the structure which contains 5 to 200% of silicon oxide by mass ratio with respect to transparent conductive oxide microparticles | fine-particles in a 1st layer, and becomes a 1st layer which satisfies the structure of this invention. As a method for forming the upper layer, a known technique can be used as in the method for forming the lower layer.

以上のようにして積層膜とした後、400℃以上の温度で焼成を行って被膜を硬化させ、第1層および第2層を形成することが好ましい。焼成時間は、通常30秒〜2時間程度である。この焼成時の雰囲気は、通常の大気中など、酸素を含む雰囲気下で行うことができ、経済的である。非酸化性雰囲気での焼成も可能であるが、特に大型の窓ガラスなどを作製する際には雰囲気の維持に非常にコストが掛かるので好ましくない。特に、自動車用窓ガラスとして用いられている強化ガラスを作製する際には、大気中650〜700℃近い温度まで昇温されたのち、風冷して強化処理を行うが、本発明の赤外線遮蔽層は、強化処理のための焼成を行っても赤外線遮蔽特性の劣化が見られないため、この強化工程の高温の熱を利用して焼成が可能であり、高い耐久性を備えた赤外線遮蔽層付き自動車用、建築用の強化ガラス板を効率よく経済的に製造できる。熱処理温度は、透明な板状体の温度が400〜750℃となる温度、特に500〜700℃となる温度が好ましい。   After forming a laminated film as described above, it is preferable to form the first layer and the second layer by baking at a temperature of 400 ° C. or more to cure the coating. The firing time is usually about 30 seconds to 2 hours. The firing atmosphere can be carried out in an atmosphere containing oxygen, such as normal air, and is economical. Firing in a non-oxidizing atmosphere is also possible, but it is not preferable because it is very expensive to maintain the atmosphere, particularly when producing a large window glass or the like. In particular, when producing a tempered glass used as a window glass for automobiles, the temperature is raised to a temperature close to 650 to 700 ° C. in the atmosphere, and then subjected to a tempering treatment by air cooling. Since the layer does not show deterioration in infrared shielding properties even after firing for strengthening treatment, it can be fired using the high-temperature heat of this strengthening process, and the infrared shielding layer has high durability. It is possible to efficiently and economically manufacture tempered glass sheets for automobiles and buildings. The heat treatment temperature is preferably a temperature at which the temperature of the transparent plate-like body is 400 to 750 ° C., particularly 500 to 700 ° C.

以下、本発明の実施例を挙げてさらに説明するが、本発明はこれらに限定されない。なお、形成された赤外線遮蔽層中の導電性酸化物微粒子の平均粒径はTEM観察により見積り、得られた赤外線遮蔽層付きガラスを以下のとおり評価した。   Hereinafter, the present invention will be further described with reference to examples, but the present invention is not limited thereto. In addition, the average particle diameter of the conductive oxide fine particles in the formed infrared shielding layer was estimated by TEM observation, and the obtained glass with an infrared shielding layer was evaluated as follows.

[評価]
(1)層厚:走査電子顕微鏡(日立製作所社製:S−800)によって膜の断面観察を行い、得られた観察像より第1層および第2層の層厚を得た。
(2)可視光透過率(Tv):分光光度計(日立製作所社製:U−3500)により380〜780nmの赤外線遮蔽層付きガラス板の透過率を測定し、JIS−R3212(1998年)により可視光透過率を算出した。
(3)赤外線遮蔽層単体の可視光透過率[%]:2)の方法により測定したガラス基板単体の可視光透過率と赤外線遮蔽層付きガラス板の可視光透過率とを比較して、(赤外線遮蔽層付きガラス板の可視光透過率)/(ガラス基板単体の可視光透過率)×100%で評価した。
[Evaluation]
(1) Layer thickness: Cross-sectional observation of the film was performed with a scanning electron microscope (manufactured by Hitachi, Ltd .: S-800), and the layer thicknesses of the first layer and the second layer were obtained from the obtained observation images.
(2) Visible light transmittance (Tv): The transmittance of a glass plate with an infrared shielding layer of 380 to 780 nm is measured with a spectrophotometer (manufactured by Hitachi, Ltd .: U-3500), and according to JIS-R3212 (1998). Visible light transmittance was calculated.
(3) The visible light transmittance [%] of the infrared shielding layer alone is compared with the visible light transmittance of the glass substrate alone measured by the method of 2) and the visible light transmittance of the glass plate with the infrared shielding layer. Visible light transmittance of glass plate with infrared shielding layer) / (visible light transmittance of glass substrate alone) × 100%.

(4)日射透過率(Te):分光光度計(日立製作所社製:U−3500)により300〜2100nmの赤外線遮蔽層付きガラス板の透過率を測定し、JIS−R3106(1998年)により日射透過率を算出した。なお、本発明における赤外線遮蔽性能は日射透過率の性能で表現した。
(5)耐摩耗性:テーバー式耐摩耗試験機を用い、JIS−R3212(1998年)に記載の方法によって、CS−10F摩耗ホイールで1000回転の摩耗試験を行い、試験前後の傷の程度を曇価(ヘイズ値)によって測定し、曇価の増加量で評価した。
(6)耐薬品性:0.05モル/リットルの硫酸溶液および0.1モル/リットルの水酸化ナトリウム溶液を第2層上に滴下し、25℃で24時間放置したのち水洗して試験前後での外観、特性の変化を追跡した。特性、外観ともに変化のないものを合格とした。
(4) Solar transmittance (Te): The transmittance of a glass plate with an infrared shielding layer of 300 to 2100 nm was measured with a spectrophotometer (manufactured by Hitachi, Ltd .: U-3500), and the solar radiation was measured with JIS-R3106 (1998). The transmittance was calculated. In addition, the infrared shielding performance in this invention was expressed by the performance of solar radiation transmittance.
(5) Abrasion resistance: Using a Taber type abrasion resistance tester, a wear test of 1000 rotations was performed with a CS-10F wear wheel by the method described in JIS-R3212 (1998), and the degree of scratches before and after the test was determined. It measured by the haze value (haze value), and evaluated by the increase amount of the haze value.
(6) Chemical resistance: 0.05 mol / liter sulfuric acid solution and 0.1 mol / liter sodium hydroxide solution were dropped on the second layer, left at 25 ° C. for 24 hours, then washed with water before and after the test. Changes in appearance and characteristics were tracked. Those with no change in characteristics and appearance were accepted.

(7)電波損失:図2に示すように、ネットワークアナライザ(ヒューレットパッカード社製:8510B)により、1GHzの周波数における電波透過損失を測定した。このとき、測定サンプルの大きさは300mm×300mmとし、受信機と送信機はそれぞれ、サンプルから160mmの距離に設置した。
(8)透明性:ヘイズメーター(スガ試験機社製:HZ−1)により、赤外線遮蔽層付きガラス板を透過する可視光線の透明性(ヘイズ値)を測定した。
(7) Radio wave loss: As shown in FIG. 2, radio wave transmission loss at a frequency of 1 GHz was measured with a network analyzer (manufactured by Hewlett Packard: 8510B). At this time, the size of the measurement sample was 300 mm × 300 mm, and the receiver and the transmitter were each installed at a distance of 160 mm from the sample.
(8) Transparency: Transparency (haze value) of visible light transmitting through the glass plate with an infrared shielding layer was measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd .: HZ-1).

[透明導電性酸化物微粒子分散液の作製例]
c光源、2°視野でのxy色度座標上における粉体色が(x、y)=(0.353、0.374)であり、平均一次粒子径が45nmであるITO微粒子10gと、ジイソプロポキシビス(アセチルアセトナト)チタン(三菱ガス化学社製、商品名:TAA)3gとを、濃硝酸を0.02質量%含むエタノール/1−プロパノール混合(体積比50/50)溶媒37g中にビーズミルを用いて分散させ、20質量%のITOを含む分散液Aを作製した。動的光分散法により測定した平均分散粒子径は80nmであった。
[Example of preparation of transparent conductive oxide fine particle dispersion]
10 g of ITO fine particles having a powder color (x, y) = (0.353, 0.374) on the xy chromaticity coordinates in a 2 ° visual field and an average primary particle diameter of 45 nm; Isopropoxybis (acetylacetonato) titanium (Mitsubishi Gas Chemical Co., Ltd., trade name: TAA) 3 g and ethanol / 1-propanol mixed (volume ratio 50/50) containing 0.02% by mass of concentrated nitric acid in 37 g of solvent Was dispersed using a bead mill to prepare a dispersion A containing 20% by mass of ITO. The average dispersed particle size measured by the dynamic light dispersion method was 80 nm.

[例1]
分散液Aに対し、2−ブタノールを添加して固形分濃度が7質量%となるよう希釈したものを分散液Bとした。得られた分散液Bを、厚さ5.0mmの紫外線吸収グリーンガラス(Tv:72.5%、Te:44.2%、波長1μmの赤外線の透過率T1:22%、波長2μmの赤外線の透過率T2:49%、1GHzの周波数における電波透過損失TLG:0.95dB、旭硝子社製、通称UVFL)上にスピンコート法によって塗布し、大気中、120℃で10分間乾燥させて下層とした。
[Example 1]
Dispersion B was prepared by adding 2-butanol to dispersion A and diluting it so that the solid content concentration became 7% by mass. Dispersion B thus obtained was converted into an ultraviolet-absorbing green glass having a thickness of 5.0 mm (Tv: 72.5%, Te: 44.2%, infrared transmittance of wavelength 1 μm T1: 22%, infrared wavelength of 2 μm). transmittance T2: 49%, radio transmission loss T LG at a frequency of 1 GHz: 0.95 dB, manufactured by Asahi Glass Co., Ltd., was applied by commonly known UVFL) spin coating onto, and in the air and dried for 10 minutes at 120 ° C. lower did.

3.5質量%のペルヒドロポリシラザン(AZ−エレクトロニックマテリアルズ社製、商品名:アクアミカNV−110)および1.2質量%のテトラ−n−ブトキシチタン(松本製薬社製、商品名:TA−25)を含むキシレン溶液を、下層上にスピンコート法によって塗布し、大気中で120℃で10分間乾燥させて上層とした。   3.5% by mass of perhydropolysilazane (manufactured by AZ-Electronic Materials, trade name: Aquamica NV-110) and 1.2% by mass of tetra-n-butoxytitanium (manufactured by Matsumoto Pharmaceutical Co., Ltd., trade name: TA-) The xylene solution containing 25) was applied onto the lower layer by a spin coating method and dried in air at 120 ° C. for 10 minutes to form an upper layer.

上記で得られた被膜付きガラスを720℃に保った大気雰囲気の電気炉中で、ガラス基板温度が685℃になるまで熱処理して赤外線遮蔽層付きガラス板を得た。熱処理に掛かった時間はおおよそ4分であった。   The glass with a coating obtained above was heat treated in an electric furnace in an air atmosphere maintained at 720 ° C. until the glass substrate temperature reached 685 ° C. to obtain a glass plate with an infrared shielding layer. The time required for the heat treatment was approximately 4 minutes.

また、第1層中のITOと酸化ケイ素の存在比をX線光電子分光法(XPS)により測定し、質量比で表わすと、[ITO]/[酸化ケイ素]=10/4であった。さらに、2次イオン質量分析によって第2層の組成分析を行うと、主成分はTiOを含む酸化ケイ素であるが、わずかに窒素を含むケイ素の酸窒化物であることが判明した。Further, the abundance ratio of ITO and silicon oxide in the first layer was measured by X-ray photoelectron spectroscopy (XPS), and expressed by mass ratio, [ITO] / [silicon oxide] = 10/4. Further, when the composition analysis of the second layer was performed by secondary ion mass spectrometry, it was found that the main component is silicon oxide containing TiO 2 , but silicon oxynitride containing nitrogen slightly.

得られた赤外線遮蔽層付きガラス板の特性を表1に示す。表1において、層厚1は第1層の層厚[nm]、層厚2は第2層の層厚[nm]、層厚比は[第2層層厚]/[第1層層厚]の比、Tv−1はガラス基板単体の可視光透過率[%]、Tv−2は赤外線遮蔽層付きガラス板の可視光透過率[%]、Tv−3は計算によって求めた赤外線遮蔽層の可視光透過率[%]、TLW−TLGは1GHzの周波数における赤外線遮蔽層付きガラス板の電波透過損失TLWと、TLGとの差を示す。Table 1 shows the properties of the obtained glass plate with an infrared shielding layer. In Table 1, the layer thickness 1 is the first layer thickness [nm], the layer thickness 2 is the second layer thickness [nm], and the layer thickness ratio is [second layer thickness] / [first layer thickness]. ], Tv-1 is the visible light transmittance [%] of the glass substrate alone, Tv-2 is the visible light transmittance [%] of the glass plate with an infrared shielding layer, and Tv-3 is the infrared shielding layer obtained by calculation. Visible light transmittance [%], T LW -T LG indicates a difference between T LG and radio wave transmission loss T LW of the glass plate with an infrared shielding layer at a frequency of 1 GHz.

[例2〜5]
第1層の層厚、第2層の層厚を表1に示すように変更した以外は例1と同様にして、赤外線遮蔽層付きガラス板を作製した。得られた赤外線遮蔽層付きガラス板の特性を表1に示す。
[Examples 2 to 5]
A glass plate with an infrared shielding layer was produced in the same manner as in Example 1 except that the thickness of the first layer and the thickness of the second layer were changed as shown in Table 1. Table 1 shows the properties of the obtained glass plate with an infrared shielding layer.

[例6(比較例)]
第1層の層厚、第2層の層厚を表1に示すように変更した以外は例1と同様にして、赤外線遮蔽層付きガラス板を作製した。得られた赤外線遮蔽層付きガラス板の特性を表1に示す。
[Example 6 (comparative example)]
A glass plate with an infrared shielding layer was produced in the same manner as in Example 1 except that the thickness of the first layer and the thickness of the second layer were changed as shown in Table 1. Table 1 shows the properties of the obtained glass plate with an infrared shielding layer.

本発明の比較例である例6では、例1〜5と比較して赤外線遮蔽性が若干低下していることがわかる。   In Example 6, which is a comparative example of the present invention, it can be seen that the infrared shielding property is slightly lowered as compared with Examples 1-5.

Figure 2006112371
Figure 2006112371

[例7〜9(参考例)]
第1層の層厚、第2層の層厚を表2に示すように変更する以外は例1と同様にして、赤外線遮蔽層付きガラス板を作製すると、表2に示す特性を有する赤外線遮蔽層付きガラス板が得られる。例7〜9の赤外線遮蔽層付きガラス板は、例1〜5と比較して赤外線遮蔽性、電波透過性、可視光透過率および透明性のいずれかが若干劣る結果となる。
[Examples 7 to 9 (reference examples)]
Except for changing the thickness of the first layer and the thickness of the second layer as shown in Table 2, when a glass plate with an infrared shielding layer was prepared in the same manner as in Example 1, the infrared shielding having the characteristics shown in Table 2 was made. A layered glass plate is obtained. The glass plates with infrared shielding layers of Examples 7 to 9 are slightly inferior in any of infrared shielding properties, radio wave transparency, visible light transmittance and transparency as compared with Examples 1 to 5.

以上のように、第1層の層厚および第2層/第1層の層厚比を本発明の範囲内とすることで、赤外線遮蔽性、電波透過性、可視光透過率、透明性をバランスよく発現できると考えられる。   As described above, by setting the layer thickness of the first layer and the layer thickness ratio of the second layer / first layer within the scope of the present invention, the infrared shielding property, radio wave transmittance, visible light transmittance, and transparency can be achieved. It can be expressed in a balanced manner.

Figure 2006112371
Figure 2006112371

本発明の断熱性窓用板状体は、可視光透過率が高く、電波透過性が高く、機械的耐久性に優れており、特に自動車用ガラス、建材用ガラス等の用途への使用が期待できる。特に、自動車用のドアガラスなど、非常に高い耐久性を要求される部位にも適用可能である。

なお、2005年4月15日に出願された日本特許出願2005−118414号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The heat insulating window plate of the present invention has high visible light transmittance, high radio wave transmission, and excellent mechanical durability, and is particularly expected to be used for applications such as automotive glass and glass for building materials. it can. In particular, the present invention can also be applied to parts that require extremely high durability, such as automobile door glass.

It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2005-118414 filed on April 15, 2005 are cited herein as the disclosure of the specification of the present invention. Incorporated.

Claims (8)

透明な板状体と、該透明な板状体の表面に設けられた下記第1層および下記第2層からなる赤外線遮蔽層(ただし、該第1層が透明な板状体側に存在する)とを有し、
第1層が、平均一次粒子径100nm以下の透明導電性酸化物微粒子が酸化ケイ素を主体とするマトリックス中に質量比で[透明導電性酸化物微粒子]/[酸化ケイ素]=10/20〜10/0.5の比率で分散して含まれ、かつ層厚300〜400nmを有する層であり、第2層が酸化ケイ素を含む層であって、
かつ、第2層/第1層の層厚比が0.1〜0.5である
ことを特徴とする断熱性窓用板状体。
A transparent plate-like body and an infrared shielding layer comprising the following first layer and the following second layer provided on the surface of the transparent plate-like body (however, the first layer exists on the transparent plate-like body side) And
The transparent conductive oxide fine particles having an average primary particle diameter of 100 nm or less in the first layer are contained in a matrix mainly composed of silicon oxide in a mass ratio of [transparent conductive oxide fine particles] / [silicon oxide] = 10 / 20-10. And a layer having a thickness of 300 to 400 nm and dispersed at a ratio of 0.5, and the second layer is a layer containing silicon oxide,
And the layer thickness ratio of 2nd layer / 1st layer is 0.1-0.5. The plate-like body for heat insulation windows characterized by the above-mentioned.
第1層の層厚が300〜330nmである請求項1に記載の断熱性窓用板状体。   The plate-like body for heat-insulating windows according to claim 1, wherein the thickness of the first layer is 300 to 330 nm. 第2層の層厚が80〜140nmである請求項1または2に記載の断熱性窓用板状体。   The plate-like body for heat-insulating windows according to claim 1 or 2, wherein the second layer has a thickness of 80 to 140 nm. 第2層/第1層の層厚比が0.2〜0.5である請求項1〜3のいずれかに記載の断熱性窓用板状体。   The layer thickness ratio of 2nd layer / 1st layer is 0.2-0.5, The plate-like body for heat insulation windows in any one of Claims 1-3. 前記赤外線遮蔽層の可視光透過率が90%以上である請求項1〜4のいずれかに記載の断熱性窓用板状体。   The visible light transmittance of the said infrared shielding layer is 90% or more, The plate-shaped body for heat insulation windows in any one of Claims 1-4. 前記透明な板状体が、JIS−R3212(1998年)により定められる可視光透過率70%以上、波長1.0μmの光の透過率30%以下、かつ波長2.0μmの光の透過率40〜70%を有するガラス板である請求項1〜5のいずれかに記載の断熱性窓用板状体。   The transparent plate-like body has a visible light transmittance of 70% or more, a light transmittance of 30 μm or less at a wavelength of 1.0 μm and a light transmittance of 40 μm at a wavelength of 2.0 μm as defined by JIS-R3212 (1998). It is a glass plate which has -70%, The plate-like body for heat insulating windows in any one of Claims 1-5. 前記断熱性窓用板状体が、自動車窓用ガラス板である請求項1〜6のいずれかに記載の断熱性窓用板状体。   The plate for an insulating window according to any one of claims 1 to 6, wherein the plate for an insulating window is a glass plate for an automobile window. 前記赤外線遮蔽層は、1GHzの周波数における断熱性窓用板状体の電波透過損失TLWと、1GHzの周波数における前記透明な板状体の電波透過損失TLGとの差TLW−TLGが2dB以下となる層である請求項1〜7のいずれかに記載の断熱性窓用板状体。The infrared shielding layer, a radio transmission loss T LW thermally insulating window plate-like member at a frequency of 1GHz, the difference T LW -T LG with radio transmission loss T LG of the transparent plate-shaped body at a frequency of 1GHz It is a layer used as 2 dB or less, The plate-like body for heat insulation windows in any one of Claims 1-7.
JP2007526847A 2005-04-15 2006-04-13 Insulating window plate Withdrawn JPWO2006112371A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005118414 2005-04-15
JP2005118414 2005-04-15
PCT/JP2006/307869 WO2006112371A1 (en) 2005-04-15 2006-04-13 Heat insulating plate material for window

Publications (1)

Publication Number Publication Date
JPWO2006112371A1 true JPWO2006112371A1 (en) 2008-12-11

Family

ID=37115093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007526847A Withdrawn JPWO2006112371A1 (en) 2005-04-15 2006-04-13 Insulating window plate

Country Status (2)

Country Link
JP (1) JPWO2006112371A1 (en)
WO (1) WO2006112371A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1842834A1 (en) 2006-04-04 2007-10-10 Asahi Glass Company, Limited Infrared shielding film-coated glass plate and process for its production
JP2008169074A (en) * 2007-01-11 2008-07-24 Asahi Glass Co Ltd Platy body for insulating window

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770482A (en) * 1993-06-30 1995-03-14 Mitsubishi Materials Corp Infrared cut-off film and forming material thereof
JPH09165232A (en) * 1995-12-15 1997-06-24 Central Glass Co Ltd Non-iridescent transparent electroconductive film and glass having the same
JPH09176527A (en) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp Uv and/or ir shielding film, coating material for forming the film and forming method
JP2004338985A (en) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd Substrate with heat ray shielding film, and its production method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0770482A (en) * 1993-06-30 1995-03-14 Mitsubishi Materials Corp Infrared cut-off film and forming material thereof
JPH09165232A (en) * 1995-12-15 1997-06-24 Central Glass Co Ltd Non-iridescent transparent electroconductive film and glass having the same
JPH09176527A (en) * 1995-12-22 1997-07-08 Mitsubishi Materials Corp Uv and/or ir shielding film, coating material for forming the film and forming method
JP2004338985A (en) * 2003-05-14 2004-12-02 Nippon Sheet Glass Co Ltd Substrate with heat ray shielding film, and its production method

Also Published As

Publication number Publication date
WO2006112371A1 (en) 2006-10-26

Similar Documents

Publication Publication Date Title
US20080090073A1 (en) Infrared shielding layer-coated glass plate and process for its production
US20080020134A1 (en) Infrared shielding film-coated glass and process for its production
CN101309759B (en) Process for producing base material for forming heat shielding film
US20050164014A1 (en) Infrared shielding glass
CN100429168C (en) Transparent heat insulating glass
EP2647677B1 (en) Anti-fog coated article
JP2008037668A (en) Laminated glass for window
EP1816109A1 (en) Infrared shielding film-coated glass plate and process for its production
US8216670B2 (en) Heat ray shielding glass for vehicle and process for producing the same
US7771831B2 (en) Infrared shielding film-coated glass plate and process for its production
JP2008037671A (en) Glass plate with infrared-ray shielding film
JP2008201624A (en) Method for manufacturing sheet glass with colored layer
Morimoto et al. Wet chemical functional coatings for automotive glasses and cathode ray tubes
JP2005194169A (en) Glass lined with infrared-ray shield film and its manufacturing method
JPWO2006112371A1 (en) Insulating window plate
JP2008169074A (en) Platy body for insulating window
JP2005022941A (en) Infrared shielding glass and method of manufacturing the same
JP2006193670A (en) Hexaborate particulate coated with silica film, method for producing the same, coating liquid for optical component produced by using the particulate and optical component
JP2007297264A (en) Infrared shielding film-coated glass plate and its production method
WO2022107717A1 (en) Glass substrate with thermal barrier film
JP2008024577A (en) Infrared shielding film-coated glass plate and production process therefor
JPWO2004046057A1 (en) Thermal shielding plate, method for producing the same, and liquid composition used therefor
JPH09227168A (en) Ultraviolet screening glass and its production

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120706

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120706

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20121001