JPWO2006064819A1 - Method for diagnosing diseases caused by protein morphological changes using neutron scattering - Google Patents

Method for diagnosing diseases caused by protein morphological changes using neutron scattering Download PDF

Info

Publication number
JPWO2006064819A1
JPWO2006064819A1 JP2006548864A JP2006548864A JPWO2006064819A1 JP WO2006064819 A1 JPWO2006064819 A1 JP WO2006064819A1 JP 2006548864 A JP2006548864 A JP 2006548864A JP 2006548864 A JP2006548864 A JP 2006548864A JP WO2006064819 A1 JPWO2006064819 A1 JP WO2006064819A1
Authority
JP
Japan
Prior art keywords
protein
scattering
uch
change
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006548864A
Other languages
Japanese (ja)
Inventor
幸雄 内藤
幸雄 内藤
道弘 古坂
道弘 古坂
進 池田
進 池田
望月 秀樹
秀樹 望月
徹 安田
徹 安田
和田 圭司
圭司 和田
俊介 青木
俊介 青木
淳市 鈴木
淳市 鈴木
藤原 悟
悟 藤原
清水 裕彦
裕彦 清水
智宏 安達
智宏 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Juntendo University
RIKEN Institute of Physical and Chemical Research
Inter University Research Institute Corp High Energy Accelerator Research Organization
Original Assignee
Japan Atomic Energy Agency
Juntendo University
RIKEN Institute of Physical and Chemical Research
Inter University Research Institute Corp High Energy Accelerator Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Agency, Juntendo University, RIKEN Institute of Physical and Chemical Research, Inter University Research Institute Corp High Energy Accelerator Research Organization filed Critical Japan Atomic Energy Agency
Publication of JPWO2006064819A1 publication Critical patent/JPWO2006064819A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • G01N33/6896Neurological disorders, e.g. Alzheimer's disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/60Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances involving radioactive labelled substances

Abstract

本発明は、重水中に溶解又は分散した被検タンパク質に冷中性子を照射し、当該冷中性子の散乱から被検タンパク質の形態を測定することを特徴とする、被検タンパク質の形態変化に起因する疾患の診断方法に関する。本発明によれば、タンパク質に対して無侵襲で自然なまま、水溶液中のタンパク質の形態変化を観察でき、その形態変化と疾患との関係を解明することができた。その結果、タンパク質の形態変化に起因する疾患の診断及び医薬のスクリーニングが可能となった。The present invention results from a change in the shape of a test protein, characterized by irradiating a test protein dissolved or dispersed in heavy water with cold neutrons and measuring the form of the test protein from the scattering of the cold neutrons The present invention relates to a method for diagnosing a disease. According to the present invention, it was possible to observe the morphological change of a protein in an aqueous solution while being non-invasive and natural with respect to the protein, and to elucidate the relationship between the morphological change and a disease. As a result, it became possible to diagnose diseases caused by protein morphological changes and to screen for drugs.

Description

本発明は、生体中に存在するタンパク質の形態変化を、タンパク質に対して無侵襲で自然なまま観察することにより、タンパク質の形態変化に起因する疾患を診断する方法及び医薬のスクリーニング方法に関する。   The present invention relates to a method for diagnosing a disease caused by a change in the form of a protein and a method for screening a drug by observing the change in the form of the protein present in the living body in a non-invasive and natural manner.

近年、パーキンソン病を初めとして、アルツハイマー病など多くの脳疾患に微小管結合タンパク質タウやシヌクレインの代謝異常や構造異常によるタンパク質の線維化や、細胞内の不要なタンパク質の分解系に関与するプロテオゾームシステムに関与するユビキチンの細胞内リサイクルシステムを司るUCH−L1(ubiquitin carboxyl−terminal hydrolase)の遺伝子異常に起因するタンパク質凝集体形成と神経原線維細胞変性、細胞死が深く関わっていることが分かってきた。従って、生体中におけるタンパク質の線維化、凝集体形成等の形態変化は、種々の疾患の原因、進展、治癒過程等に深く関与していると考えられている。   In recent years, proteosome is involved in many fibrotic diseases such as Parkinson's disease, Alzheimer's disease, etc., and protein fibrosis due to abnormalities or structural abnormalities of microtubule-binding proteins tau and synuclein, and degradation of unwanted proteins in cells It has been found that protein aggregate formation, neurofibrillary cell degeneration, and cell death caused by gene abnormality of UCH-L1 (ubiquitin carboxyl-terminal hydrolase), which controls the intracellular recycling system of ubiquitin involved in the system, are deeply involved. It was. Therefore, it is considered that morphological changes such as protein fibrillation and aggregate formation in the living body are deeply involved in the cause, progress, healing process, and the like of various diseases.

従来のタンパク質の構造解析に関しては、結晶化したタンパク質の構造を解析しようとする技術が種々開発されているが、この技術によって生体中のタンパク質の実質的な形態変化(例、自己集合によるオリゴマー形成等)を予測することは大変困難である。そこで、水溶液中でナノレベルのタンパク質構造を解析する技術がいくつか開発されている。このうち、X線小角散乱法によれば、タンパク質の水溶液構造を観察することが可能であるが、特に水中でのX線照射によるタンパク質の損傷は免れ得ず、ラジカル生成・重合反応による分子間共有結合形成が生じる。従って、この方法は、分子間相互作用による複合体構造の解析には不向きである。核磁気共鳴法(NMR)によれば、分子量が3万程度までの単一タンパク質分子であれば、解析が可能であるが、それ以上の分子量を有するタンパク質や複合体を形成すると、13Cや15N等の同位元素を用いて特殊な分子修飾を行わないと解析が困難である。また、原子間力顕微鏡(AFM)は、タンパク質を水中でマイカ表面に吸着させ、マイクロプローブでタンパク質表面を走査し、その形状を観察する手法であるが、タンパク質を基盤表面に固定するため、化学修飾が必要となるという問題がある。With regard to conventional protein structure analysis, various techniques for analyzing the structure of crystallized proteins have been developed. By this technique, substantial morphological changes of proteins in living bodies (eg, oligomer formation by self-assembly) Etc.) is very difficult to predict. Thus, several techniques for analyzing nano-level protein structures in aqueous solutions have been developed. Of these, the X-ray small-angle scattering method can observe the aqueous solution structure of proteins. However, protein damage due to X-ray irradiation in water is inevitable, and intermolecular due to radical generation and polymerization reactions. Covalent bond formation occurs. Therefore, this method is not suitable for analysis of complex structure by intermolecular interaction. According to the nuclear magnetic resonance method (NMR), analysis is possible if it is a single protein molecule having a molecular weight of up to about 30,000, but if a protein or complex having a molecular weight higher than that is formed, 13 C or Analysis is difficult without special molecular modification using isotopes such as 15 N. Atomic force microscopy (AFM) is a technique in which protein is adsorbed on the mica surface in water, the surface of the protein is scanned with a microprobe, and its shape is observed. There is a problem that modification is required.

従って、本発明は、タンパク質に対して無侵襲で自然なまま、水溶液中のタンパク質の形態変化を観察し、その形態変化と疾患との関係を解明し、当該手段を用いた診断方法及び医薬のスクリーニング方法を提供することを目的とする。   Therefore, the present invention observes the morphological change of the protein in the aqueous solution while keeping it non-invasive and natural with respect to the protein, elucidates the relationship between the morphological change and the disease, An object is to provide a screening method.

そこで本発明者は、中性子小角散乱法を用いて水溶液中のタンパク質を観察してきたところ、重水中のタンパク質に冷中性子を照射すれば水溶液中でタンパク質に何ら化学修飾や力学的作用を及ぼさずに、無侵襲で自然なままタンパク質構造が観察でき、かつ正常なタンパク質と異常なタンパク質の水溶液中での形態と、疾患との間に相関性があること、さらにこの結果を用いれば医薬のスクリーニングもできることを見出し、本発明を完成した。   Therefore, the present inventor has observed the protein in the aqueous solution by using the small-angle neutron scattering method. When the cold neutron is irradiated to the protein in the heavy water, the protein does not have any chemical modification or mechanical action in the aqueous solution. The protein structure can be observed in a non-invasive and natural manner, and there is a correlation between the form of a normal protein and an abnormal protein in an aqueous solution and the disease. The present invention has been completed by finding out what can be done.

すなわち、本発明は、重水中に溶解又は分散した被検タンパク質に冷中性子を照射し、当該冷中性子の散乱から被検タンパク質の形態を測定することを特徴とする、被検タンパク質の形態変化に起因する疾患の診断方法を提供するものである。
また、本発明は、被検物質で処理された対象タンパク質又は被検物質を投与された動物から分離された対象タンパク質を用いる医薬のスクリーニング方法であって、重水中に溶解又は分散した対象タンパク質に冷中性子を照射し、当該冷中性子の散乱から対象タンパク質の形態を測定することを特徴とする、対象タンパク質の形態変化に起因する疾患の治療薬のスクリーニング方法を提供するものである。
That is, the present invention relates to a change in the form of a test protein, characterized by irradiating a test protein dissolved or dispersed in heavy water with cold neutrons and measuring the form of the test protein from the scattering of the cold neutrons. The present invention provides a method for diagnosing a disease caused by the disease.
The present invention also relates to a pharmaceutical screening method using a target protein treated with a test substance or a target protein isolated from an animal to which the test substance is administered, the target protein dissolved or dispersed in heavy water. The present invention provides a screening method for a therapeutic drug for a disease caused by morphological change of a target protein, characterized by irradiating cold neutrons and measuring the form of the target protein from the scattering of the cold neutrons.

本発明方法によれば、生体中に存在する状態と同様である、水溶液中でのタンパク質の構造、形態変化が無侵襲で自然なまま観察できるため、真に生体中で起こっているタンパク質の形態変化と疾患との関係が観察できることになり、種々の疾患の初期状態、進展状態、治癒過程等が正確に診断でき、かつ医薬がスクリーニングできる。   According to the method of the present invention, the structure of the protein in the aqueous solution, which is similar to the state existing in the living body, can be observed without being invasive and natural. The relationship between the change and the disease can be observed, the initial state, progress state, healing process, etc. of various diseases can be accurately diagnosed, and medicines can be screened.

中性子小角散乱による重水溶媒中の蛋白質構造の観察方法の概念図である。It is a conceptual diagram of the observation method of the protein structure in the heavy water solvent by neutron small angle scattering. コア、シェル型のタンパク質構造の散乱ベクトルqと散乱強度I(q)を求める場合の理論式である。This is a theoretical formula for obtaining a scattering vector q and scattering intensity I (q) of a core-shell type protein structure. 正常型UCH−L1の結晶構造を示す図である。(UCH−L1と同様にhydrolase活性(50%のアミノ酸配列が一致する)を有し、生体に広く分布しているUCH−L3の結晶構造解析データからSWISS−MODELによって解析)It is a figure which shows the crystal structure of normal type UCH-L1. (Analyzed by SWISS-MODEL from crystal structure analysis data of UCH-L3, which has hydrolase activity (50% amino acid sequence matches) as in UCH-L1, and is widely distributed in the living body) 球状タンパク質UCH−L1の単量体、二量体からの理論曲線と、実際の正常型UCH−L1の測定結果を示す図である。I(q);測定(●)、I(q);理論曲線、(−-−)、モノマー;(−−−)、ダイマー。It is a figure which shows the measurement result of the normal curve from the monomer and dimer of globular protein UCH-L1, and an actual normal type UCH-L1. I e (q); measurement (●), I c (q); theoretical curve, (−−−), monomer; (−−−), dimer. UCH−L1回転楕円体とした場合の理論曲線である。a.球状の単量体の短径aを徐々に変化させた回転円盤体(短径;a、長径;b、(=c))の理論曲線、b.球状の二量体の短径aを徐々に変化させた回転円盤体(短径;a、長径;b、(=c))の理論曲線、c.球状の二量体の短径a,(=b)を徐々に変化させた紡錘体(短径;a、(=b)、長径;c)の理論曲線である。It is a theoretical curve at the time of setting it as a UCH-L1 spheroid. a. A theoretical curve of a rotating disk body (minor axis; a, major axis; b, (= c)) in which the minor axis a of the spherical monomer is gradually changed, b. A theoretical curve of a rotating disc body (minor axis; a, major axis; b, (= c)) in which the minor axis a of the spherical dimer is gradually changed, c. It is a theoretical curve of a spindle (minor axis; a, (= b), major axis; c) in which the minor axis a, (= b) of a spherical dimer is gradually changed. 正常型UCH−L1及びアミノ酸置換体の中性子散乱曲線及び理論曲線によるフィッティングを示す図である。a.正常型UCH−L1、I(q);測定(●)、I(q);理論曲線、(−-−)、モノマー(a,29Å,b,(=c),52Å);(−−−)、ダイマー、b.I93M置換、I(q);測定(●)、I(q);理論曲線、(−-−)、モノマー(a,20Å,b,(=c),62Å);(−−−)、ダイマー、c.S18Y置換、I(q);測定(●)、I(q);理論曲線、(−-−)、モノマー(a,43Å,b,(=c),43Å);(−−−)、ダイマー、d.I93M+S18Y置換、I(q);測定(●)、I(q);理論曲線、(−-−)、モノマー(a,31Å,b,(=c),50Å);(−−−)、ダイマー。It is a figure which shows fitting by the neutron scattering curve and theoretical curve of normal type UCH-L1 and an amino acid substitution product. a. Normal type UCH-L1, I e (q); Measurement (●), I c (q); Theoretical curve, (−−−), monomer (a, 29Å, b, (= c), 52Å); (− -), Dimer, b. I93M substitution, I e (q); measurement (●), I c (q); theoretical curve, (---), monomer (a, 20Å, b, (= c), 62Å); (---) Dimer, c. S18Y substitution, I e (q); measurement (●), I c (q); theoretical curve, (---), monomer (a, 43Å, b, (= c), 43Å); (---) Dimer, d. I93M + S18Y substitution, I e (q); measurement (●), I c (q); theoretical curve, (−−−), monomer (a, 31Å, b, (= c), 50Å); (−−−) , Dimer. 正常型UCH−L1及びアミノ酸置換体の円二色性測定による二次構造変化を示す図である。It is a figure which shows the secondary structure change by the circular dichroism measurement of normal type UCH-L1 and an amino acid substitution product. 正常型UCH−L1及びアミノ酸置換による形態変化と機能変化を示す図である。It is a figure which shows the form change and functional change by normal type UCH-L1 and amino acid substitution. 微小管結合タンパク質タウの単分子(自己集合により球状クラスター形成)構造、及び、SS結合形成による線維化を示す図である。線維化タウ(○);SS結合還元・切断によるタウの自己集合体(●)。比較として、黒の実線にタウと同等の分子量を有する球状タンパク質からの理論的散乱曲線を示した。It is a figure which shows the single molecule | numerator (spherical cluster formation by self-assembly) structure of microtubule binding protein tau, and the fibrosis by SS bond formation. Fibrosis tau (◯); Tau self-assembly by reduction and cleavage of SS bond (●). As a comparison, the theoretical scattering curve from a globular protein having a molecular weight equivalent to that of tau is shown as a black solid line.

本発明の診断方法においては、被検タンパク質を重水中に溶解又は分散して用いる。生体中においてタンパク質は、細胞中又は体液中に溶解して存在している。従って、本発明においては、生体中において、そのタンパク質が存在している自然な状態の形態を観察することができる。ここで被検タンパク質としては、種々の疾患に関与していると考えられるすべてのタンパク質、例えば酵素、膜タンパク質、受容体タンパク質、構造蛋白質等が挙げられる。より具体的な例としては、UCH−L1、微小管結合タンパク質タウ等を挙げることができる。   In the diagnostic method of the present invention, the test protein is dissolved or dispersed in heavy water. In the living body, proteins are dissolved in cells or body fluids. Therefore, in the present invention, it is possible to observe the natural state of the protein in the living body. Here, examples of the test protein include all proteins considered to be involved in various diseases, such as enzymes, membrane proteins, receptor proteins, structural proteins, and the like. More specific examples include UCH-L1, microtubule binding protein tau and the like.

これらのタンパク質としては、生体から分離されたタンパク質でもよいし、生体由来の遺伝子を使用して合成されたタンパク質でもよい。遺伝子を使用したタンパク質の合成には、当該遺伝子の構造さえ判明していれば、公知の手法により行うことができる。   These proteins may be proteins isolated from living organisms or may be proteins synthesized using genes derived from living organisms. The synthesis of a protein using a gene can be performed by a known method as long as the structure of the gene is known.

重水中のタンパク質濃度は、特に限定されないが、10μM以上あれば十分である。好ましくは10μM〜100mM、より好ましくは10μM〜10mMである。   The protein concentration in heavy water is not particularly limited, but 10 μM or more is sufficient. Preferably it is 10 μM to 100 mM, more preferably 10 μM to 10 mM.

冷中性子は、公知の手段により中性子から変換させることができる。すなわち、加速器によって加速された陽子等の粒子線を重元素(例えば、ウラン、タングステン、水銀etc)からなるターゲットにあて、原子核の分裂的崩壊を起こさせ、パルス中性子を得、これを減速材(液体水素、液体重水素、固体メタン等)で冷却することにより得られる。同様に原子炉からウランの崩壊に伴い発生する中性子も同様な方法で冷中性子に変化できる(新高分子実験学6 高分子構造(2)散乱実験と形態観察、p282 高分子学会編 共立出版株式会社参照)。ここで冷中性子の波長は、およそ0.5〜1.5nm前後である。   Cold neutrons can be converted from neutrons by known means. That is, a particle beam such as a proton accelerated by an accelerator is applied to a target made of a heavy element (for example, uranium, tungsten, mercury etc), causing nuclear fragmentation, obtaining pulsed neutrons, which are used as moderators ( Liquid hydrogen, liquid deuterium, solid methane, etc.). Similarly, neutrons generated from nuclear reactors as uranium decays can be converted to cold neutrons in the same way (New Polymer Experiment 6 Polymer Structure (2) Scattering Experiments and Morphology, p282 Kyoritsu Publishing Co., Ltd.) reference). Here, the wavelength of the cold neutron is about 0.5 to 1.5 nm.

当該冷中性子は、タンパク質の原子核に照射しても、散乱するだけで原子核を破砕しないためタンパク質へのダメージは殆どない。冷中性子の原子に対する散乱能は、原子の散乱長密度によって決まる。特に、重水素(H、deuterium;D)は大きな正の散乱長を有するのに対し、軽水素(H)のそれは負である。このことを利用すると、冷中性子は相対的に、タンパク質中の水素原子(H)に散乱されやすく、溶媒である重水(DO)に吸収されやすい性質を有している。従って、重水中にタンパク質を溶解、分散すると、大きなコントラストが生じ、タンパク質構造が観察できる(中性子小角散乱法)。その解析範囲は、数Åからサブミクロンに及ぶ。この概念図を図1に示す。Even when the cold neutrons are irradiated to protein nuclei, they are only scattered and do not crush the nuclei, so there is almost no damage to the proteins. The scattering ability of cold neutrons to atoms is determined by the scattering length density of the atoms. In particular, deuterium ( 2 H, deuterium; D) has a large positive scattering length, whereas that of light hydrogen ( 1 H) is negative. When this is utilized, cold neutrons are relatively easily scattered by hydrogen atoms ( 1 H) in proteins and easily absorbed by heavy water (D 2 O) as a solvent. Therefore, when protein is dissolved and dispersed in heavy water, a large contrast is produced and the protein structure can be observed (neutron small angle scattering method). The analysis range ranges from several to submicrons. This conceptual diagram is shown in FIG.

ここで、中性子小角散乱法について説明する。生成した冷中性子はスリット系の中性子導管を通じて、試料に照射させる。試料から生じた散乱光の検出は、二次元検出器が用いられる。測定したいq(運動量変化)範囲に応じて真空チャンバー中を移動してカメラ長を任意に変えることができる。カメラ長に応じてスリット部のコリメーションも調整する必要があるが、この機構により、広いq範囲で精度良いデータを得ることができる。異なるカメラ長、すなわちq範囲で測定を行い、それらを重ね合わせて1本の合成曲線にすることもできる。セル部分は、温度制御やサンプルチェンジャーなどが組込めるような工夫をするのが好ましい。高温や低温、高圧などの特殊セルユニットも用いることができる。   Here, the neutron small angle scattering method will be described. The generated cold neutron is irradiated onto the sample through a slit-type neutron conduit. A two-dimensional detector is used to detect scattered light generated from the sample. The camera length can be arbitrarily changed by moving through the vacuum chamber according to the q (momentum change) range to be measured. Although it is necessary to adjust the collimation of the slit portion according to the camera length, this mechanism can obtain accurate data in a wide q range. It is also possible to perform measurements at different camera lengths, i.e. q ranges, and superimpose them into a single composite curve. The cell portion is preferably devised so that a temperature control, a sample changer, or the like can be incorporated. Special cell units such as high temperature, low temperature, and high pressure can also be used.

試料セルとしては、角型又は太鼓型の石英製の容器を用いるのが普通である。中性子線は、ホウ素フリーの石英ガラスをほとんど吸収されることなく透過するので、セル容器壁の厚さは1mm程度の扱いやすいセルを使用できる。100% DOで1〜10mmとするのが普通である。セル厚が薄いほど散乱は弱く、長時間の積算を要する。セルは超音波洗浄などで十分に清浄にするのが望ましい。As the sample cell, it is common to use a square or drum-shaped quartz container. The neutron beam passes through the boron-free quartz glass with almost no absorption, so that an easy-to-handle cell having a cell container wall thickness of about 1 mm can be used. It is common that the thickness is 1 to 10 mm with 100% D 2 O. The thinner the cell thickness, the weaker the scattering and the longer integration is required. It is desirable to clean the cell sufficiently by ultrasonic cleaning or the like.

散乱光の測定は、散乱測定と別個に透過率(transmittance)の測定を行い、その値を用いてセル及び溶媒などによるバックグラウンド散乱を差引くことにより行うのが好ましい。組成が既知であれば計算で差引くこともできるが、十分に広角側まで測定し、このバックグラウンドを実験的に求め差引くことが好ましい。中性子小角散乱法ではポイントビームを用いるので、通常デスメアーの必要はない。等方性試料の場合は、二次元検出器で得られた二次元データのサーキュラーアベレージをとり、一次元データに変換する処理をコンピューターで行う。   The measurement of scattered light is preferably performed by measuring transmittance separately from the scattering measurement, and subtracting the background scattering due to the cell, the solvent, and the like using the measured value. If the composition is known, it can be subtracted by calculation, but it is preferable to measure sufficiently to the wide-angle side and experimentally obtain and subtract this background. Since point beams are used in the small-angle neutron scattering method, there is usually no need for desmearing. In the case of an isotropic sample, a circular average of two-dimensional data obtained by a two-dimensional detector is taken and converted into one-dimensional data by a computer.

散乱光のコンピューター処理により、タンパク質の形態が観察できるので、この形態の変化、例えば形状及び/又は大きさの変化を観察することにより、疾患の診断ができる。診断に用いる解析方法とは、表1、2、3に示すように様々なタンパク質の形状を予測して、散乱ベクトル、q=(4π/λ)sinθと散乱強度を計算し、どの形状が最も実験値に相応しいか解析できる。   Since the form of the protein can be observed by computer processing of scattered light, a disease can be diagnosed by observing the change in the form, for example, the change in shape and / or size. The analysis method used for diagnosis is to predict the shape of various proteins as shown in Tables 1, 2, and 3, calculate the scattering vector, q = (4π / λ) sin θ and the scattering intensity, and which shape is the most It can be analyzed whether it corresponds to the experimental value.

Figure 2006064819
Figure 2006064819

Figure 2006064819
Figure 2006064819

Figure 2006064819
Figure 2006064819

(1)松岡秀樹「コロイド、ミセル、高分子溶液への応用」日本結晶学会誌、41、269(1999).
(2)J.S.Higgins,H.G.Benoit,“Polymerand Neutron Scattering”,Oxford,(1994).
(3)O.Kratky,O.Glatter,ed.“Small−angle X−ray Scattering”,Chap.12,Academic 1982.
(4)T.Neugebauer,Ann.Phy.,42,509(1943).
(5)P.Debye,J.Phys.Colloid Chem.,51,18(1948).
(6)H.Benoit,J.Polym.Sci.,11,507(1953).
(7)K.Kajiwara,W.Burchard,M.Gordon,Br.Polym.J.,2,110(1970).
その他の参考文献
E.F.Casassa,G.C.Berry,J.Polym.Sci.,A−2,4,881(1966).
E.F.Casassa,J.Polym.Sci.,A.3,605(1965).
O.B.Ptiysyn,Zhurnal Fizicheskoi Khimii,31.1091(1957).
A.Peterlin,J.Chem.Phys.,23,2464(1955).
(1) Hideki Matsuoka, “Application to colloids, micelles and polymer solutions”, Journal of the Crystallographic Society of Japan, 41, 269 (1999).
(2) J. Org. S. Higgins, H .; G. Benoiit, “Polymerand Neutron Scattering”, Oxford, (1994).
(3) O.I. Kratky, O .; Glalter, ed. “Small-angle X-ray Scattering”, Chap. 12, Academic 1982.
(4) T.W. Neugebauer, Ann. Phy. , 42, 509 (1943).
(5) P.I. Debye, J .; Phys. Colloid Chem. 51, 18 (1948).
(6) H. Benoit, J.A. Polym. Sci. 11, 507 (1953).
(7) K. Kajiwara, W. et al. Burchard, M .; Gordon, Br. Polym. J. et al. 2,110 (1970).
Other references F. Casassa, G .; C. Berry, J .; Polym. Sci. , A-2, 4, 881 (1966).
E. F. Casassa, J. et al. Polym. Sci. A. 3,605 (1965).
O. B. Ptyysyn, Zhurnal Fizicheskoi Kimii, 31.1091 (1957).
A. Peterlin, J. et al. Chem. Phys. , 23, 2464 (1955).

また、散乱ベクトル、q、が大きい領域(q〜1/Rg、Rgは重心回転半径)ではギニエの法則(参考文献:A.Gunier,G.Fournet,Small Angle Scattering of X−rays,Wiley,New York,1955.)によれば、散乱ベクトルqと散乱強度I(q)の関係は、I(q)=I(0)exp(−1/3 Rg2q2)と表すことができ、表4に示すような計算により、タンパク質の形状を推定することもできる。I(0)はqを0外挿して得られる値であり、散乱強度を絶対値換算すると、この値は分子量に依存する値となる(参考文献:Jacrot and Zaccai(Biopolymers,20(1981),2413−2426))。   In the region where the scattering vector q is large (q to 1 / Rg, Rg is the radius of rotation of the center of gravity), Guinier's law (reference: A. Gunier, G. Fournet, Small Angle Scattering of X-rays, Wiley, New). According to York, 1955.), the relationship between the scattering vector q and the scattering intensity I (q) can be expressed as I (q) = I (0) exp (−1/3 Rg2q2), as shown in Table 4. The protein shape can also be estimated by such calculation. I (0) is a value obtained by extrapolating q to 0. When the scattering intensity is converted into an absolute value, this value depends on the molecular weight (reference: Jacrot and Zaccai (Biopolymers, 20 (1981), 2413-2426)).

Figure 2006064819
Figure 2006064819

また、タンパク質の中心にコアを形成するような複雑なタンパク質構造についても、図2に示すような解析方法(J.Marignan,P.Basserau,and P.Delord,J.Phys.Chem.,90,645(1986))によって、形状パラメーターを求めることができる。   In addition, an analysis method as shown in FIG. 2 (J. Marignan, P. Basserau, and P. Delord, J. Phys. Chem., 90, etc.) is also used for complex protein structures that form a core at the center of the protein. 645 (1986)), shape parameters can be determined.

一方、散乱ベクトルqが比較的大きな領域では、棒状のタンパク質で、散乱ベクトルqと断面の重心平均半径Rcとの関係が、q*Rc<1である時、すなわち、棒の太さに対応する散乱強度I(q)thinが棒の長さLに対して、Lπ/qの関係のある時、ln(I(q)=K+(−1/2*Rc*q)となるため、ln(I(q)とqでプロットして得られる直線の傾きよりRcを求めることができる。実際の断面半径Rは、R=Rc1/2から求めることができる(参考文献;H.Matsuoka et al.,J.Colloid.Interface Sci.,118,387(1987))。On the other hand, in a region where the scattering vector q is relatively large, it is a rod-like protein, and when the relationship between the scattering vector q and the center-of-gravity average radius Rc is q 2 * Rc 2 <1, that is, the thickness of the rod When the corresponding scattering intensity I (q) thin has a relationship of Lπ / q with respect to the rod length L, ln (I (q) = K + (− ½ * Rc 2 * q 2 ). Therefore, Rc can be obtained from the slope of a straight line obtained by plotting with ln (I (q) and q 2. The actual cross-sectional radius R can be obtained from R = Rc 1/2 (references; H. Matsuoka et al., J. Colloid.Interface Sci., 118, 387 (1987)).

ここでは、例えば、パーキンソン病の発症に関わるユビキチンリサイクル機能を有する、UCH−L1について、正常型UCH−L1タンパク質構造と、パーキンソン病危険増幅因子であるUCH−L1(I93M置換体)とパーキンソン病危険軽減因子であるUCH−L1(S18Y置換体)のヒト遺伝子から大腸菌を用いてタンパク質を合成・精製し、重水素中で構造を解析した。その結果、(1)UCH−L1は、水中で二量体として存在する。(2)二量体を形成する単量体の構造は各々異なっており、パーキンソン病危険増幅因子であるUCH−L1(I93M置換体)は正常型よりも楕円性が高く、一方、パーキンソン病危険軽減因子であるUCH−L1(S18Y置換体)は、楕円性が低く、ほぼ球状の二量体であることが判明した。タンパク質の球状性は円二色性計測によるタンパク質内部のβ−ターン(折り返し構造)の増加(球状性増加)・減少(楕円性増加)によっても裏付けられる。   Here, for example, UCH-L1 having a ubiquitin recycling function related to the onset of Parkinson's disease, normal UCH-L1 protein structure, Parkinson's disease risk amplification factor UCH-L1 (I93M substitution) and Parkinson's disease risk A protein was synthesized and purified from a human gene of UCH-L1 (S18Y substitute), which is a mitigating factor, using E. coli, and the structure was analyzed in deuterium. As a result, (1) UCH-L1 exists as a dimer in water. (2) The structure of the monomer that forms the dimer is different, and UCH-L1 (I93M substitution product), which is a Parkinson's disease risk amplification factor, is more elliptical than the normal type, whereas Parkinson's disease risk It was found that UCH-L1 (S18Y substitution product), which is a mitigating factor, has a low ellipticity and is a substantially spherical dimer. The globularity of the protein is also supported by the increase (increase in globularity) and decrease (increase in ellipticity) of the β-turn (folding structure) inside the protein by circular dichroism measurement.

ユビキチンリサイクル機能である加水分解活性はI93M<正常型<S18Yの順に高く、タンパク質の球状性(globularity)とは病理学的にも一致することを初めて明らかにした。この手法を用いれば、タンパク質の遺伝子変異による水中での実質的な構造変化が判明するため、病理的な予知と診断が可能となる。   It was revealed for the first time that the hydrolytic activity, which is a ubiquitin recycling function, was higher in the order of I93M <normal type <S18Y, and was consistent with the globularity of the protein. If this method is used, a substantial structural change in water due to a gene mutation of the protein is revealed, and thus pathological prediction and diagnosis are possible.

正常な微小管結合タンパク質タウの水中での単分子構造と、脳疾患で見られるタウの線維構造(病的状態)をin vitroで直接比較した例はない。中性子小角散乱法で、SS結合で部分的に架橋されたタウ分子は直径が36Åの線維状の長線維を形成するが、SS結合を完全に切断すると、タウは自発的により半径が350Åの球状クラスターを形成することが明らかになった。これにより、正常な状態から病的な状態に至るプロセスの解明が容易となり、細胞変性や細胞死を誘発する異常なタンパク質の線維化を抑制する医薬の開発が可能となる。   There is no direct in vitro comparison between the single molecule structure of normal microtubule-binding protein tau in water and the tau fiber structure (pathological state) found in brain disease. In the neutron small angle scattering method, tau molecules partially cross-linked by SS bonds form long filaments with a diameter of 36 mm, but when SS bonds are completely broken, tau spontaneously becomes spherical with a radius of 350 mm. It became clear to form a cluster. This facilitates the elucidation of the process from a normal state to a pathological state, and enables the development of a medicine that suppresses abnormal protein fibrosis that induces cell degeneration and cell death.

また、被検物質で処理された対象タンパク質又は被検物質を投与された動物から分離された対象タンパク質を試料として、前記同様に中性子小角散乱法により形態を測定すれば、当該被検物質が医薬として有用か否かがスクリーニングできる。ここで、対象タンパク質は、前記被検タンパク質と同様に、合成されたものでも生体から分離されたものでもよい。   In addition, if the target protein treated with the test substance or the target protein separated from the animal to which the test substance is administered is used as a sample and the form is measured by the neutron small angle scattering method as described above, the test substance becomes a pharmaceutical product. Can be screened as useful. Here, the target protein may be synthesized or separated from a living body, like the test protein.

本発明によれば、病因に関わるタンパク質を直接生体より抽出・精製するか、あるいは、脳のように直接タンパク質の抽出が困難な場合、クローニングした遺伝子からタンパク質を合成・精製した試料に対して本発明により直接タンパク質構造(複合体)を観察し、正常型と比較することで、診断が実施できる。   According to the present invention, the protein involved in the pathogenesis is extracted and purified directly from the living body, or when it is difficult to extract the protein directly such as the brain, the protein is synthesized against the sample synthesized and purified from the cloned gene. Diagnosis can be carried out by directly observing the protein structure (complex) according to the invention and comparing it with the normal type.

また、UCH−L1のような二量体形成タンパク質に対しては、遺伝子治療により、I93M変異型パーキンソン病患者にS18Y球状タンパク質を発現させ、酵素機能を回復させる可能性への道を開く、また、異常タンパク質の形状を正常に回復させ(球状化)、機能を回復させる薬剤のスクリーニング方法となる。また、タウのような異常なタンパク質会合・凝集に対する抑制剤のスクリーニングが可能となる。   In addition, for dimerization proteins such as UCH-L1, gene therapy can open the way to the possibility of expressing S18Y globular protein in I93M mutant Parkinson's disease patients and restoring enzyme function. It becomes a screening method for a drug that restores the shape of abnormal protein normally (spheroidization) and restores its function. In addition, it is possible to screen for inhibitors against abnormal protein association / aggregation such as tau.

疾患患者から抽出した病的因子の候補となる種々のタンパク質と正常人から抽出された正常なタンパク質を比較し、どのタンパク質の形態が変化しているかを検査し、発症原因を明らかにすることができる。また、脳疾患のように被検タンパク質が直接抽出できない場合には、患者から抽出した遺伝子からタンパク質を合成し、正常なタンパク質と比較することにより診断を行うことができる。更には、正常なタンパク質であっても代謝異常によって線維化など、異常な高分子体が認められる疾患では、タンパク質が直接抽出されたものか、あるいは遺伝子から合成されたかに関わらず、正常なタンパクに種々の処理、例えばリン酸化や酸化ストレスを負荷し、負荷前後の形態を比較すれば、どのような代謝過程の異常により正常なタンパクが高分子化するかがわかり、発症原因を明らかにすることができる。また、さらにはこれらの知見に基づき、現状における治療方針の決定、遺伝子治療への展開、タンパク質の異常な会合や凝集を抑制する新規医薬スクリーニング方法への展開や、強いては疾患予防対策法を図ることが可能となる。   It is possible to compare various proteins that are candidates for pathological factors extracted from patients with diseases and normal proteins extracted from normal people, examine which protein forms have changed, and clarify the cause of the onset it can. Moreover, when a test protein cannot be extracted directly as in a brain disease, a diagnosis can be performed by synthesizing a protein from a gene extracted from a patient and comparing it with a normal protein. Furthermore, even in the case of a disease in which an abnormal macromolecule is observed, such as fibrosis due to a metabolic abnormality, even if it is a normal protein, the normal protein, regardless of whether the protein is directly extracted or synthesized from a gene By applying various treatments such as phosphorylation and oxidative stress and comparing the forms before and after loading, it is possible to determine what abnormal metabolic processes cause normal proteins to become polymerized and to clarify the cause of the onset be able to. In addition, based on these findings, we will determine the current treatment policy, develop gene therapy, develop new drug screening methods that suppress abnormal association and aggregation of proteins, and plan disease prevention measures. It becomes possible.

本発明において、診断又はスクリーニングされる医薬の対象となる疾患は、タンパク質の形状や大きさの変化に起因する疾患であり、例えば脳内タンパク質であるシヌクレインの遺伝子異常が関連する家族性パーキンソン病、特発性パーキンソン病、ユビキチンリサイクル機能を有する、UCH−L1の遺伝子異常に関連する家族性パーキンソン病が挙げられる。また、Tauopathyと称される神経原線維変化型痴呆で、一般的なアルツハイマー病の他、タウ遺伝子の変異が認められる前頭側頭葉痴呆、老人斑が認められない神経原線維優位痴呆がある。一方、電子顕微鏡で観察すると、周期が80nmで繰り返し構造を有する、タウのPHF(paired helical filament)が見られる疾患としては、遺伝性疾患や発達異常、炎症性疾患でも認められるが、常染色体劣性遺伝疾患では、Niemann−Pick typeC等の代謝疾患、Hallervoden−Spatz症候群等の変性疾患、常染色体優性遺伝疾患では、筋ジストロフィー症、家族性プリオン病が揚げられる。また、亜急性硬化性全脳膜炎等の慢性疾患がある。家族性のPick病では、PHF(paired helical filament)の主用な構成要素である異常なタウ(three repeat tau)凝集体が見られる。正常なタウ(four repeat tau)でも、例えば進行性核上性麻痺や皮質基底核変性症では、その凝集体が認められている。更には、ポリグルタミンが蓄積する疾患としては、ハンチントン舞踏病やマシャド・ジョセフ病が挙げられる。本発明は、これらの脳疾患に制限されるものではなく、種々のタンパク質構造異常に起因する細胞死を伴う、癌やエイズ等のウイルス性疾患、感染症、代謝異常病、先天性疾患など生体の広範囲な領域に渡る様々な組織・細胞でのタンパク質構造異常の診断・治療・新薬スクリーニングにも応用できる。   In the present invention, the disease to be diagnosed or screened for a drug is a disease caused by a change in the shape or size of the protein, for example, familial Parkinson's disease associated with an abnormal gene of synuclein, which is a brain protein, Examples include idiopathic Parkinson's disease and familial Parkinson's disease that has a ubiquitin recycling function and is related to UCH-L1 gene abnormality. In addition, neurofibrillary tangle dementia called Taupathy includes general Alzheimer's disease, frontotemporal lobe dementia in which tau gene mutation is observed, and neurofibrillary dominant dementia in which no senile plaque is observed. On the other hand, when observed with an electron microscope, tau PHF (paired helical filament) having a repetitive structure with a period of 80 nm is observed in hereditary diseases, developmental abnormalities, and inflammatory diseases, but autosomal recessive In genetic diseases, metabolic diseases such as Niemann-Pick type C, degenerative diseases such as Hallervoden-Spatz syndrome, and autosomal dominant genetic diseases include muscular dystrophy and familial prion disease. There are also chronic diseases such as subacute sclerosing panencephalitis. In familial Pick's disease, abnormal tau aggregates, which are the main component of PHF (paired helical filament), are observed. Even in normal tau (four repeat tau), for example, in the case of progressive supranuclear palsy or cortical basal ganglia degeneration, aggregates are observed. Furthermore, examples of diseases in which polyglutamine accumulates include Huntington's chorea and Machado Joseph disease. The present invention is not limited to these brain diseases, but includes biological diseases such as viral diseases such as cancer and AIDS, infectious diseases, metabolic disorders, and congenital diseases, which are accompanied by cell death caused by various protein structural abnormalities. It can also be applied to diagnosis and treatment of protein structure abnormalities in various tissues and cells over a wide range of areas, and screening for new drugs.

実施例1
中性子散乱法によるUCH−L1の遺伝子変異タンパク質の構造解析によるパーキンソン病の診断
ヒト正常型 UCH−L1 cDNA及び、これにI93M,S18Y,I93M+S18Yの変異を加えたcDNAを調製した。各々のcDNAを大腸菌用の発現ベクターpPROtetE233にサブクローニングし、大腸菌株DH5aPROへ導入した。得られた形質転換体をCircle Grow mediumでODが約0.5になるまで37℃で振とう培養し(約2時間)、最終濃度0.1mMになるようにイソプロピル−β−D−チオガラクトシド(IPTG)を加えた後、さらに6時間培養した。菌体を遠心操作(5000×g、20分、室温)により回収し、20mM HEPES、pH7.8に懸濁した。超音波破砕法により菌体を溶解し、Co2+−Sepharose(TALON purification kit,Clontech)を用いて、指示に従いUCH−L1を精製した。これを凍結乾燥し、−80℃で保存した(参考文献;K.Nishikawa,et.all.,B.B.R.C.,304,176−183(2003))。
Example 1
Diagnosis of Parkinson's disease by structural analysis of UCH-L1 gene mutant protein by neutron scattering method Normal human UCH-L1 cDNA and cDNA with I93M, S18Y, I93M + S18Y mutation added thereto were prepared. Each cDNA was subcloned into the expression vector pPROtetE233 for E. coli and introduced into E. coli strain DH5aPRO. The obtained transformant was cultured with shaking in a medium growth medium at 37 ° C. until the OD was about 0.5 (about 2 hours), and isopropyl-β-D-thiogalactoside was brought to a final concentration of 0.1 mM. After adding (IPTG), the cells were further cultured for 6 hours. The cells were collected by centrifugation (5000 × g, 20 minutes, room temperature) and suspended in 20 mM HEPES, pH 7.8. Bacteria were lysed by ultrasonic disruption, and UCH-L1 was purified using Co 2+ -Sepharose (TALON purification kit, Clontech) according to the instructions. This was lyophilized and stored at −80 ° C. (references; K. Nishikawa, et. All., BBRC, 304, 176-183 (2003)).

濃度が0.86mg/mLとなるように重水を用いた緩衝液(最終的に、50mM HEPES pH7.8,5mMジチオスレイトール(DTT))に溶解し、高エネルギー加速器研究機構に設置された中性子散乱装置(WINK、0.03<q(Å−1)<0.15)により中性子散乱測定を室温下で行った。ここで、qは、ブラッグ角をθ、とした時にq=(4π/λ)sinθと表される運動量変化である。溶媒とUCH−L1溶液の透過率を測定し、バックグラウンドを差し引き、標準化して得られた各々の散乱強度を求めた。UCH−L1溶液からの散乱強度から溶媒の散乱強度を差し引いたものを、タンパク質から散乱する中性子の散乱強度とした。Neutrons dissolved in a buffer solution using heavy water (finally 50 mM HEPES pH 7.8, 5 mM dithiothreitol (DTT)) to a concentration of 0.86 mg / mL and installed at the High Energy Accelerator Research Organization Neutron scattering measurement was performed at room temperature using a scattering device (WINK, 0.03 <q (Å −1 ) <0.15). Here, q is a momentum change expressed as q = (4π / λ) sin θ, where the Bragg angle is θ. The transmittance of the solvent and the UCH-L1 solution was measured, the background was subtracted, and each scattering intensity obtained by standardization was determined. The value obtained by subtracting the scattering intensity of the solvent from the scattering intensity from the UCH-L1 solution was used as the scattering intensity of neutrons scattered from the protein.

次に水溶液中でのタンパク質の形態を解析する。タンパク質の水中での構造から予測される理論的な中性子散乱曲線と、実験で得られたUCH−L1の中性子散乱曲線が最も一致するようなタンパク質の形態を求めた。より具体的には、UCH−L1の結晶構造はまだ未知であるが、UCH−L1と同様にhydrolase活性(50%のアミノ酸配列が一致する)を有し、生体に広く分布しているUCH−L3の結晶構造解析データからSWISS−MODELによって解析(参考文献;Schwede,T.et.al.,Nucleic Acids Res.31,3381−3385(2003).、Guex,N.et al.,Electrophoresis 18,2714−2723(1997).、Peitsch,M.C.,Bio/Technology 13,658−660(1995).)した結果を用いて、UCH−L1の結晶構造を算定した(図3)。次に結晶構造情報より、タンパク質の回転半径を計算すると(参考文献;Svergun,D.I.et al.,Proc.Matl.Acad.Sci.USA,95,2267−227)(1998).、Svergun,D.I.et al.,J.Appl.Cryst.28,768−77)(1995).)、重心回転半径Rgが、16.5Å(実際の回転半径は、   Next, the form of the protein in the aqueous solution is analyzed. The protein morphology was determined so that the theoretical neutron scattering curve predicted from the protein structure in water and the experimentally obtained UCH-L1 neutron scattering curve most closely matched. More specifically, although the crystal structure of UCH-L1 is not yet known, UCH-L1 has a hydrolase activity (50% amino acid sequence matches) and is widely distributed in the living body, like UCH-L1. Analyzed by SWISS-MODEL from crystal structure analysis data of L3 (reference document: Schwede, T. et. Al., Nucleic Acids Res. 31, 3381-3385 (2003)., Guex, N. et al., Electrophoresis 18, 2714-2723 (1997)., Peitsch, MC, Bio / Technology 13, 658-660 (1995).), The crystal structure of UCH-L1 was calculated (FIG. 3). Next, when the rotation radius of the protein is calculated from the crystal structure information (reference: Svergun, DI et al., Proc. Matl. Acad. Sci. USA, 95, 2267-227) (1998). Svergun, D .; I. et al. , J .; Appl. Cryst. 28, 768-77) (1995). ), The center of gravity rotation radius Rg is 16.5 mm (the actual rotation radius is

Figure 2006064819
Figure 2006064819

である球状タンパク質であることが想定された。算定された球状タンパク質の半径から、重水中でのUCH−L1の単量体の中性子散乱曲線を次式(1)により、理論的に得ることができる。また、二量体についても二分子の中心間距離から求めることができる。 Was assumed to be a globular protein. From the calculated globular protein radius, a neutron scattering curve of the monomer of UCH-L1 in heavy water can be theoretically obtained by the following equation (1). The dimer can also be determined from the distance between the centers of the two molecules.

Figure 2006064819
Figure 2006064819

図4に、算定した球状タンパク質UCH−L1の単量体、二量体からの理論曲線と、実際の正常型の測定結果を示す。明らかに単量体ではなく二量体に近いが、更に球状でないことが分かった。そこで、タンパク質の体積はアミノ酸数が一定であれば、変形してもその体積はあまり変化しないので、徐々にタンパク質の形状を回転円盤体(短径;a、長径;b、(=c))もしくは紡錘体(短径;a、(=b)、長径;c)として変形させ、更にこれらの形態として、単量体及び二量体を予測した。これらのタンパク質を全て5Åの立方体に分割し、分割された立方体間の散乱長密度差は水素原子(H)と重水素(D)間の差に比べると極めて小さいことを考慮し、タンパク質の全ての部位間の相関を計算することにより、水溶液からの理論的な中性子散乱曲線を次式(2)により求めた。図5aに単量体もしくは二量体の5Åの立方体間全ての相関を求める場合の概念図を示す。図5bは単量体の回転円盤体(短径;a、長径;b、(=c))で短径、a、を次第に変化させた場合の散乱ベクトルqと散乱強度I(q)との関係を示す。図5cは二量体とした場合の回転円盤体(短径;a、長径;b、(=c))で短径、a、を次第に変化させた場合の散乱ベクトルqと散乱強度I(q)との関係を示す。更に、図5dは二量体でも、紡錘体(短径;a、(=b)、長径;c)として、短径、a、を次第に変化させた場合の散乱ベクトルqと散乱強度I(q)との関係を示す。図5bの回転円盤体二量体のみにおいて、0.1<q(Å−1)<0.15の範囲で、特徴的な散乱強度の減衰が見られ、図4のUCH−L1の散乱曲線は回転円盤体に最も近いことが分かる。FIG. 4 shows the calculated theoretical curve from the monomer and dimer of the globular protein UCH-L1, and the actual measurement results of the normal type. It was clearly close to the dimer, not the monomer, but was found to be less spherical. Therefore, if the number of amino acids is constant, the volume of the protein does not change so much even if it is deformed. Therefore, the shape of the protein is gradually changed to a rotating disk (minor axis; a, major axis; b, (= c)). Alternatively, it was deformed as a spindle (minor axis; a, (= b), major axis; c), and monomers and dimers were predicted as these forms. All these proteins are divided into 5 cm cubes, and the scattering length density difference between the divided cubes is extremely small compared to the difference between hydrogen atoms (H) and deuterium (D). The theoretical neutron scattering curve from the aqueous solution was obtained by the following equation (2) by calculating the correlation between the sites. FIG. 5a shows a conceptual diagram in the case of obtaining all the correlations between 5 cubic cubes of monomers or dimers. FIG. 5b shows the relationship between the scattering vector q and the scattering intensity I (q) when the minor axis, a, is gradually changed in a monomer rotating disk (minor axis; a, major axis; b, (= c)). Show the relationship. FIG. 5c shows a scattering vector q and a scattering intensity I (q when the minor axis, a, is gradually changed in a rotating disk body (minor axis; a, major axis; b, (= c)) in the case of a dimer. ). Furthermore, FIG. 5d shows that even if the dimer is a spindle (minor axis; a, (= b), major axis; c), the scattering vector q and the scattering intensity I (q ). Only in the rotating disk body dimer of FIG. 5b, characteristic scattering intensity attenuation is observed in the range of 0.1 <q (Å −1 ) <0.15, and the UCH-L1 scattering curve of FIG. Is the closest to the rotating disk.

Figure 2006064819
Figure 2006064819

次に、実験値と理論値の差が最小となるように、次式(3)を用いてフィッティングを行った。   Next, fitting was performed using the following equation (3) so that the difference between the experimental value and the theoretical value was minimized.

Figure 2006064819
Figure 2006064819

ここで、mはスケーリングファクター、nはバックグラウンドファクター、I(q)は実際に中性子散乱測定で得られた散乱強度、I(q)は理論的に得られた散乱強度である。Rが最も小さくなるようなタンパク質の形態をUCH−L1の水溶液中の構造とした。紡錘体では長径が極めて長い紡錘体でなければ、実際の測定曲線と一致しなかったため、回転円盤体を採用した。図6に示すように、正常型UCH−L1、I93M、S18Y、I93M+S18Y全ては二量体であるが、二量体を形成する単量体は、正常型[短径、29Å;長径、52Å(図6a)]、I93M[短径、20Å;長径、62Å(図6b)]、S18Y[短径、43Å;長径、43Å(図6c)]、I93M+S18Y[短径、31Å;長径、50Å(図6d)]であった。すなわち、アミノ酸置換によって、水中での単量体の球状性は異なることが判明した。アミノ酸置換によるUCH−L1の球状性変化は、タンパク質の二次構造におけるβ−ターン(ペプチド鎖の折り返し)含有率とよく相関することが知られている。図7に円二色性測定結果から、α−へリックス、β−シート、β−ターン、ランダムコイル成分が、アミノ酸置換によってどのように変化したかを示した。正常型と比較して、I93M置換により、β−シートの増加、β−ターンの減少が見られた。一方、正常型と比較して、S18Y置換により、β−ターンの増加が見られた。更にI93M置換体と比較しても、S18Y置換により、β−ターンの増加が見られた。すなわち表5に示すように、中性子散乱実験から得られた、アミノ酸置換によるUCH−L1の球状性変化と、円二色性測定によるβ−ターンを指標としたUCH−L1の球状性変化はよく一致することが確認された。Here, m is a scaling factor, n is a background factor, I e (q) is a scattering intensity actually obtained by neutron scattering measurement, and I c (q) is a scattering intensity obtained theoretically. The form of the protein with the smallest R was taken as the structure in the aqueous solution of UCH-L1. Since the spindle did not match the actual measurement curve unless the spindle had a very long major axis, a rotating disk was used. As shown in FIG. 6, the normal UCH-L1, I93M, S18Y, I93M + S18Y are all dimers, but the monomers forming the dimer are normal types [minor axis, 29 mm; major axis, 52 mm ( 6a)], I93M [minor axis, 20 mm; major axis, 62 mm (FIG. 6b)], S18Y [minor axis, 43 mm; major axis, 43 mm (FIG. 6c)], I93M + S18Y [minor axis, 31 mm; major axis, 50 mm (FIG. 6d). )]Met. That is, it was found that the spherical nature of the monomer in water differs depending on the amino acid substitution. It is known that the change in sphericity of UCH-L1 due to amino acid substitution correlates well with the β-turn (peptide chain folding) content in the secondary structure of the protein. FIG. 7 shows how the α-helix, β-sheet, β-turn, and random coil component were changed by amino acid substitution from the circular dichroism measurement results. Compared with the normal type, I93M substitution showed an increase in β-sheet and a decrease in β-turn. On the other hand, compared to the normal type, an increase in β-turn was observed by S18Y substitution. Furthermore, even when compared with the I93M substitution product, an increase in β-turn was observed by the S18Y substitution. That is, as shown in Table 5, the change in sphericity of UCH-L1 by amino acid substitution obtained from neutron scattering experiments and the change in sphericity of UCH-L1 with β-turn as an index by circular dichroism measurement are good. It was confirmed that they matched.

Figure 2006064819
Figure 2006064819

これらの結果とUCH−L1の機能、すなわちユビキチンの細胞内回収機能である加水分解活性から、図8に要約するように、
(1)UCH−L1は水中で二量体を形成している。
(2)アミノ酸置換により、二量体を形成するUCH−L1の単量体の球状性は変化し、I93M置換ではより球状から変形した形状となり、一方、S18Y置換ではより球状性が高まる。
(3)より変形されたI93M置換体では、加水分解活性が低下し、パーキンソン病危険増幅因子となる。
(4)より球状性の高いS18Y置換体では、加水分解活性が増加し、パーキンソン病危険軽減因子となって発症を抑制する。
From these results and the hydrolytic activity that is the function of UCH-L1, that is, the intracellular recovery function of ubiquitin, as summarized in FIG.
(1) UCH-L1 forms a dimer in water.
(2) The sphericity of the monomer of UCH-L1 that forms the dimer is changed by amino acid substitution, and the I93M substitution has a more spherical shape, whereas the S18Y substitution has more sphericity.
In the I93M substitution product modified from (3), the hydrolytic activity decreases and becomes a Parkinson's disease risk amplification factor.
(4) In the S18Y substitution product having higher globularity, the hydrolytic activity increases, and becomes a Parkinson's disease risk reduction factor to suppress the onset.

以上が明らかになった。このように、中性子散乱法を用いることにより、従来の結晶構造解析からは予測が困難であった、生体に即した水中でのタンパク質の形態を明らかにすることが可能であるばかりではなく、タンパク質の形態を正常なタンパク質と比較すれば、パーキンソン病の診断ができることが判明した。   The above became clear. Thus, by using the neutron scattering method, it is not only possible to clarify the form of the protein in water in line with the living body, which was difficult to predict from the conventional crystal structure analysis, but also the protein. It was found that Parkinson's disease can be diagnosed by comparing the form of with normal protein.

実施例2
中性子散乱法による微小管結合タンパク質タウの構造解析によるアルツハイマー病の診断
大腸菌用の発現ベクターpRK172にヒトTau 40蛋白質(441アミノ酸)のcDNAをサブクローニングし、大腸菌株BL21(DE3)pLysSへ導入した。得られた形質転換体をCircle Grow mediumでODが約0.5になるまで37℃で振とう培養し(約2時間)、最終濃度が0.1mMになるようにIPTGを加えた後、さらに6時間培養した。菌体を遠心操作(5000×g、20分、室温)により回収し、PC buffer(20mM MES−NaOH,pH6.8,0.5mM Mg Acetate,1mM EGTA,2mM PMSF)に懸濁した。超音波破砕法により菌体を溶解し、1/150倍量の2−メルカプトエタノール、最終濃度0.8mMのNaClを加えた後、95℃で15分間処理した。冷却後、遠心(20000×g、30分、4℃)して上清を回収し、PC bufferに対して一晩透析した。PC bufferで平衡化したPC11樹脂と、透析後の蛋白質溶液を混合し、4℃で5時間以上撹拌した。0.1mM NaClを含むPC bufferで樹脂を十分に洗浄した後、0.5mM NaClを含むPC bufferによりTau 40蛋白質画分を溶出した。Tau 40蛋白質画分をMilliQ水に対して一晩透析し、更に50mM Tris−HCl,5mM EDTA,10mM DTT,pH7緩衝液に置き換え、凍結乾燥した後、中性子散乱実験に供した。また、タウ精製過程において、空気酸化で一旦タウ分子間にSS結合が形成されると、容易にこれを還元・切断できないため、SS結合による高分子化現象を解消するため、更に、20mM DTTを加えて70℃で加熱し、SS結合を還元・切断したタウについても同様に中性子散乱測定を行った。高分子化したタウは、日本原子力研究所の中性子散乱装置(SANS−J;0.0013<q(Å−1)<0.014)、及び高エネルギー加速器研究機構の中性子散乱装置(SWAN;0.009<q(Å−1)<0.99)で測定した。また、SS結合を還元・切断し、精製された低濃度のタウについては、日本原子力研究所の中性子散乱装置に40枚の物質レンズを組み込むことにより、中性子を集光させて測定した。
Example 2
Diagnosis of Alzheimer's disease by structural analysis of microtubule-binding protein tau by neutron scattering method cDNA of human Tau 40 protein (441 amino acids) was subcloned into expression vector pRK172 for E. coli and introduced into E. coli strain BL21 (DE3) pLysS. The obtained transformant was cultured with shaking in a circle growth medium at 37 ° C. until the OD was about 0.5 (about 2 hours). After adding IPTG to a final concentration of 0.1 mM, Cultured for 6 hours. The cells were collected by centrifugation (5000 × g, 20 minutes, room temperature) and suspended in PC buffer (20 mM MES-NaOH, pH 6.8, 0.5 mM Mg Acetate, 1 mM EGTA, 2 mM PMSF). The cells were dissolved by ultrasonic disruption, 1/150 times the amount of 2-mercaptoethanol and NaCl at a final concentration of 0.8 mM were added, followed by treatment at 95 ° C. for 15 minutes. After cooling, the supernatant was collected by centrifugation (20000 × g, 30 minutes, 4 ° C.) and dialyzed against PC buffer overnight. PC11 resin equilibrated with PC buffer and the dialyzed protein solution were mixed and stirred at 4 ° C. for 5 hours or more. After thoroughly washing the resin with a PC buffer containing 0.1 mM NaCl, the Tau 40 protein fraction was eluted with a PC buffer containing 0.5 mM NaCl. The Tau 40 protein fraction was dialyzed overnight against MilliQ water, further replaced with 50 mM Tris-HCl, 5 mM EDTA, 10 mM DTT, pH 7 buffer, lyophilized, and subjected to neutron scattering experiments. In addition, once an SS bond is formed between tau molecules by air oxidation in the tau purification process, it cannot be reduced or cleaved easily. Therefore, in order to eliminate the polymerization phenomenon due to SS bond, 20 mM DTT is further added. In addition, neutron scattering measurement was similarly performed on tau heated at 70 ° C. to reduce and cut SS bonds. The polymerized tau is produced by the Japan Atomic Energy Research Institute neutron scattering system (SANS-J; 0.0013 <q (Å −1 ) <0.014) and the High Energy Accelerator Research Organization neutron scattering apparatus (SWAN; 0 0.009 <q (Å −1 ) <0.99). In addition, the low concentration tau purified by reducing and cleaving the SS bond was measured by focusing 40 neutrons into the neutron scattering apparatus of the Japan Atomic Energy Research Institute to collect neutrons.

結果を図9に示す。SS結合を還元・切断する前のタウは、q<〜0.008Å−1で見られるように、直線の傾きが、q−2に比例することから、ランダムコイルを形成して水中に溶解・分散しており、鎖の太さは、0.009<q(Å−1)<0.025の範囲で横断面解析(参考文献;H.Matsuoka et al.,J.Colloid.Interface Sci.,118,387(1987))を行った結果(図5中の挿入図)、直径が36Åであることが判明した。一方、SS結合を還元・切断した後は散乱曲線は処理前と全く異なり、qが小さくなるにつれ、散乱強度は増加しなくなり、また、qが大きくなるにつれ、散乱強度の減少はq−4に比例することから粒子は球状となっていることが判明した。Gunier法(参考文献;A.Gunier,et.al.,“Small−angle Scattering of X−rays”,Wiley,New York(1955))により、粒子の回転半径は350Åであり、数十個のタウ分子が自己集合によって会合し、球状クラスターを形成していることが判明した。正常なタウであっても、種々の脳疾患で凝集体が見つけられている。従って、本解析により、正常なタウ分子は水溶液中で、他のタンパク質と結合するか、あるいは弱い分子間相互作用によって会合体を形成しているが、酸化ストレスが細胞に加わると、分子間にSS結合が導入され、線維化してしまうことが判明した。中性子散乱法を用いる評価系により、脳細胞内で生じる異常なタンパク質の高次構造化現象をin vitroで再現することができ、これを阻害、抑制するような新規薬剤のスクリーニングが可能となる。The results are shown in FIG. The tau before reducing and cleaving the SS bond is dissolved in water by forming a random coil because the slope of the straight line is proportional to q −2 , as seen in q <˜0.008Å− 1. Cross-sectional analysis in the range of 0.009 <q (Å −1 ) <0.025 (reference: H. Matsuoka et al., J. Colloid. Interface Sci., 118, 387 (1987)) (inset in FIG. 5), it was found that the diameter was 36 mm. On the other hand, after the reduction and cleavage of the SS bond, the scattering curve is completely different from that before the treatment, and as q decreases, the scattering intensity does not increase, and as q increases, the scattering intensity decreases to q −4 . From the proportionality, it was found that the particles were spherical. According to the Gunier method (reference: A. Gunier, et.al., “Small-angle Scattering of X-rays”, Wiley, New York (1955)), the turning radius of the particle is 350 mm, and several tens of tau It was found that the molecules assembled by self-assembly and formed spherical clusters. Even in normal tau, aggregates have been found in various brain diseases. Therefore, according to this analysis, normal tau molecules bind to other proteins in aqueous solution or form aggregates due to weak intermolecular interactions, but when oxidative stress is applied to cells, It was found that SS bonds were introduced and fibrillated. The evaluation system using the neutron scattering method can reproduce the abnormal protein conformation phenomenon occurring in the brain cells in vitro, and can screen for new drugs that inhibit or suppress this phenomenon.

Claims (6)

重水中に溶解又は分散した被検タンパク質に冷中性子を照射し、当該冷中性子の散乱から被検タンパク質の形態を測定することを特徴とする、被検タンパク質の形態変化に起因する疾患の診断方法。   A method for diagnosing a disease caused by a change in the shape of a test protein, comprising irradiating a test protein dissolved or dispersed in heavy water with cold neutrons and measuring the form of the test protein from the scattering of the cold neutrons . 被検タンパク質の形態変化が、被検タンパク質の形状及び/又は大きさの変化である請求項1記載の診断方法。   The diagnostic method according to claim 1, wherein the morphological change of the test protein is a change in the shape and / or size of the test protein. 被検タンパク質が、生体由来の遺伝子を使用して合成されたもの又は生体から分離されたものである請求項1又は請求項2記載の診断方法。   The diagnostic method according to claim 1 or 2, wherein the test protein is synthesized using a gene derived from a living organism or separated from a living organism. 被検物質で処理された対象タンパク質又は被検物質を投与された動物から分離された対象タンパク質を用いる医薬のスクリーニング方法であって、重水中に溶解又は分散した対象タンパク質に冷中性子を照射し、当該冷中性子の散乱から対象タンパク質の形態を測定することを特徴とする、対象タンパク質の形態変化に起因する疾患の治療薬のスクリーニング方法。   A pharmaceutical screening method using a target protein treated with a test substance or a target protein separated from an animal administered with the test substance, wherein the target protein dissolved or dispersed in heavy water is irradiated with cold neutrons, A method for screening a therapeutic agent for a disease caused by a change in the shape of a target protein, comprising measuring the shape of the target protein from the scattering of the cold neutrons. 対象タンパク質の形態変化が、対象タンパク質の形状及び/又は大きさの変化である請求項4記載のスクリーニング方法。   The screening method according to claim 4, wherein the morphological change of the target protein is a change in the shape and / or size of the target protein. 対象タンパク質が、生体由来の遺伝子を使用して合成されたもの又は生体から分離されたものである請求項4又は5記載のスクリーニング方法。   The screening method according to claim 4 or 5, wherein the target protein is synthesized using a gene derived from a living body or separated from a living body.
JP2006548864A 2004-12-14 2005-12-13 Method for diagnosing diseases caused by protein morphological changes using neutron scattering Pending JPWO2006064819A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004361158 2004-12-14
JP2004361158 2004-12-14
PCT/JP2005/022898 WO2006064819A1 (en) 2004-12-14 2005-12-13 Method of diagnosing disease caused by morphological change in protein by using the neutron scattering method

Publications (1)

Publication Number Publication Date
JPWO2006064819A1 true JPWO2006064819A1 (en) 2008-06-12

Family

ID=36587874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006548864A Pending JPWO2006064819A1 (en) 2004-12-14 2005-12-13 Method for diagnosing diseases caused by protein morphological changes using neutron scattering

Country Status (2)

Country Link
JP (1) JPWO2006064819A1 (en)
WO (1) WO2006064819A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7061765B2 (en) * 2017-07-07 2022-05-02 株式会社 資生堂 Thin film measuring method and measuring device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085086A2 (en) * 2002-04-09 2003-10-16 The Scripps Research Institute Motif-grafted hybrid polypeptides and uses thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003085086A2 (en) * 2002-04-09 2003-10-16 The Scripps Research Institute Motif-grafted hybrid polypeptides and uses thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6011003727, P. Calmettes 他, ""Structures of phosphoglycerate kinase and β−casein denatured in guanidinium chloride"", Physica B, 1995, Vols. 213&214, pp.754−756 *

Also Published As

Publication number Publication date
WO2006064819A1 (en) 2006-06-22

Similar Documents

Publication Publication Date Title
Xue et al. Regulator-dependent mechanisms of C3b processing by factor I allow differentiation of immune responses
Sporny et al. Structural evidence for an octameric ring arrangement of SARM1
Gallat et al. Dynamical coupling of intrinsically disordered proteins and their hydration water: comparison with folded soluble and membrane proteins
Relini et al. Collagen plays an active role in the aggregation of β2-microglobulin under physiopathological conditions of dialysis-related amyloidosis
Blachly‐Dyson et al. VDAC channels
Nichols et al. Growth of β-amyloid (1− 40) protofibrils by monomer elongation and lateral association. Characterization of distinct products by light scattering and atomic force microscopy
Gordon et al. Atom probe tomography of apatites and bone-type mineralized tissues
Nichols et al. Amyloid-β protofibrils differ from amyloid-β aggregates induced in dilute hexafluoroisopropanol in stability and morphology
Nithianantham et al. Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble αβ-tubulin pool for microtubule dynamics
Tao et al. Control of calcium phosphate nucleation and transformation through interactions of enamelin and amelogenin exhibits the “goldilocks effect”
Fleming et al. Intracrystalline proteins and urolithiasis: a synchrotron X‐ray diffraction study of calcium oxalate monohydrate
Bazin et al. Therapy modifies cystine kidney stones at the macroscopic scale. Do such alterations exist at the mesoscopic and nanometre scale?
Safari et al. Polymorphism of lysozyme condensates
Aichmayer et al. Amelogenin nanoparticles in suspension: deviations from spherical shape and pH-dependent aggregation
Fermani et al. Heterogeneous crystallization of proteins: Is it a prenucleation clusters mediated process?
Yang et al. Molecular mechanisms of the ultra-strong inhibition effect of oxidized carbon dots on human insulin fibrillation
Simon et al. Residue R120 is essential for the quaternary structure and functional integrity of human αB-crystallin
Kuwata et al. Structure, function, folding, and aggregation of a neuroferritinopathy-related ferritin variant
Nichols et al. Rapid assembly of amyloid-β peptide at a liquid/liquid interface produces unstable β-sheet fibers
Lau et al. Single molecule fingerprinting reveals different amplification properties of α-synuclein oligomers and preformed fibrils in seeding assay
JPWO2006064819A1 (en) Method for diagnosing diseases caused by protein morphological changes using neutron scattering
Patterson-Orazem et al. Differential misfolding properties of glaucoma-associated olfactomedin domains from humans and mice
Chen et al. Neurotrophic effects of serum-and glucocorticoid-inducible kinase on adult murine mesencephalic dopamine neurons
Luo et al. Characterization of sol− gel-encapsulated proteins using small-angle neutron scattering
Yuzawa et al. The domain organization of p67phox, a protein required for activation of the superoxide-producing NADPH oxidase in phagocytes

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081204

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110325

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110621