JP7061765B2 - Thin film measuring method and measuring device - Google Patents

Thin film measuring method and measuring device Download PDF

Info

Publication number
JP7061765B2
JP7061765B2 JP2017133999A JP2017133999A JP7061765B2 JP 7061765 B2 JP7061765 B2 JP 7061765B2 JP 2017133999 A JP2017133999 A JP 2017133999A JP 2017133999 A JP2017133999 A JP 2017133999A JP 7061765 B2 JP7061765 B2 JP 7061765B2
Authority
JP
Japan
Prior art keywords
thin film
sample
film sample
substrate
stratum corneum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017133999A
Other languages
Japanese (ja)
Other versions
JP2019015638A (en
Inventor
隆史 岡
広子 一和多
智 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shiseido Co Ltd
Ibaraki University NUC
Original Assignee
Shiseido Co Ltd
Ibaraki University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shiseido Co Ltd, Ibaraki University NUC filed Critical Shiseido Co Ltd
Priority to JP2017133999A priority Critical patent/JP7061765B2/en
Publication of JP2019015638A publication Critical patent/JP2019015638A/en
Application granted granted Critical
Publication of JP7061765B2 publication Critical patent/JP7061765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

特許法第30条第2項適用 小泉智、岡隆史、一和多広子「膜厚方向のミクロ構造と物質移動を計測する斜入射中性子散乱法」第24回燃料電池シンポジウム、平成29年5月26日発表Application of Article 30, Paragraph 2 of the Patent Law Satoshi Koizumi, Takashi Oka, Hiroko Ichiwa "Diagonal incident neutron scattering method for measuring microstructure and mass transfer in the film thickness direction" 24th Fuel Cell Symposium, May 2017 Announced on the 26th

本発明は、薄膜の測定に関し、特に中性子小角散乱法を用いた薄膜測定に関する。 The present invention relates to the measurement of a thin film, and particularly to the measurement of a thin film using a small-angle neutron scattering method.

物質の非破壊検査に、X線、γ線、中性子線等の放射線が用いられている。X線は原子の持つ電子によって散乱されるのに対し、中性子線は原子核によって散乱される。X線小角散乱法は原子番号の大きい原子ほど感度が高くなるが、各原子の中性子に対する散乱能はほぼ同じオーダーの大きさである。一方、中性子による構造解析は、水素原子をはじめとする質量の軽い元素の観察に有効である。また、中性子は水素と重水素などの同位体を区別して評価することができる。 Radiation such as X-rays, γ-rays, and neutrons is used for non-destructive inspection of substances. X-rays are scattered by the electrons of the atom, while neutrons are scattered by the atomic nucleus. The small-angle X-ray scattering method has higher sensitivity for atoms with a larger atomic number, but the scattering ability of each atom to neutrons is on the order of magnitude. On the other hand, structural analysis using neutrons is effective for observing light-mass elements such as hydrogen atoms. In addition, neutrons can be evaluated by distinguishing isotopes such as hydrogen and deuterium.

中性子散乱法を用いたタンパク質の形態変化に起因する疾患の診断方法が提案されている(たとえば、特許文献1参照)。この方法は、重水中に溶解または分散した披検タンパク質に冷中性子を照射し、冷中性子の散乱から被検タンパク質の形態を測定する。 A method for diagnosing a disease caused by a change in protein morphology using a neutron scattering method has been proposed (see, for example, Patent Document 1). In this method, the test protein dissolved or dispersed in heavy water is irradiated with cold neutrons, and the morphology of the test protein is measured from the scattering of the cold neutrons.

皮膚等の生体薄膜の表面特性の評価は、様々な分野で有用である。たとえば、皮膚の水分状態を測定することで、肌のうるおいの程度を評価することができる。皮膚の最外層にある角層は、生命活動の維持に必要なバリア機能や保湿機能を備えており、角層の正確な測定は美容・化粧品の分野だけでなく、医療、製薬の分野でも重要な課題である。 Evaluation of the surface properties of biological thin films such as skin is useful in various fields. For example, by measuring the water content of the skin, the degree of moisture of the skin can be evaluated. The outermost layer of the skin, the stratum corneum, has barrier and moisturizing functions necessary for maintaining vital activity, and accurate measurement of the stratum corneum is important not only in the fields of beauty and cosmetics, but also in the fields of medicine and pharmaceuticals. Is a challenge.

非生体の有機または無機の薄膜は、再生医療、燃料電池、光学ディスプレイ等、多様な分野に用いられている。これらの薄膜の表面構造は、適用される治療の効果やデバイスの性能に影響する。非生体の薄膜においても、生体薄膜と同様に、表面状態の正確な測定・評価が求められている。 Non-living organic or inorganic thin films are used in various fields such as regenerative medicine, fuel cells, and optical displays. The surface structure of these thin films affects the effectiveness of the treatment applied and the performance of the device. Similar to the biological thin film, the non-living thin film is also required to accurately measure and evaluate the surface state.

国際公開2006/064819号International Publication 2006/064819

薄膜表面の組成、物質濃度等の状態を定量化して正確に測定することができれば、様々な分野で有用である。特に、水素のような軽元素を含む薄膜の表面状態を非破壊で精度良く測定、評価できる手法が望まれる。 It is useful in various fields if the state such as the composition of the thin film surface and the substance concentration can be quantified and accurately measured. In particular, a method capable of non-destructively and accurately measuring and evaluating the surface state of a thin film containing a light element such as hydrogen is desired.

本発明は、薄膜の表面の状態を精度良く測定し定量化することのできる手法を提供することを目的とする。 An object of the present invention is to provide a method capable of accurately measuring and quantifying the state of the surface of a thin film.

上記課題を解決するために、中性子線の小角散乱を利用して薄膜の表面の状態を測定する。具体的には、薄膜測定方法は、
シリコンの第1基板と、1以上の貫通開口を有する第2基板の間に薄膜試料を配置し、
前記第2基板で、前記薄膜試料の第1の面を前記第1基板に対して押圧し、
前記貫通開口から前記薄膜試料の前記第1の面と反対側の第2の面に少なくとも1種類の物質を含む気体または液体を供給しながら、前記第1基板を介して前記薄膜試料に中性子ビームを照射し、
前記薄膜試料からの反射ビームを検出して、前記薄膜試料の前記第1の面の表面の状態を測定する。
In order to solve the above problems, the state of the surface of the thin film is measured by using small-angle scattering of neutron rays. Specifically, the thin film measurement method is
A thin film sample is placed between the first substrate of silicon and the second substrate with one or more through openings.
With the second substrate, the first surface of the thin film sample is pressed against the first substrate.
A neutron beam is supplied to the thin film sample through the first substrate while supplying a gas or liquid containing at least one substance to the second surface of the thin film sample opposite to the first surface through the through opening. Irradiate and
The reflected beam from the thin film sample is detected, and the state of the surface of the first surface of the thin film sample is measured.

上記手法により、薄膜の表面の状態を精度良く測定し定量化することができる。 By the above method, the state of the surface of the thin film can be accurately measured and quantified.

第1の実施形態で行う斜入射中性子小角散乱測定を説明する図である。It is a figure explaining the oblique incident neutron small angle scattering measurement performed in 1st Embodiment. 斜入射中性子小角散乱測定装置の側断面図と正面図である。It is a side sectional view and the front view of the oblique incident neutron small angle scattering measuring apparatus. 第1の実施形態で用いる薄膜測定キットの概略図である。It is a schematic diagram of the thin film measurement kit used in the 1st Embodiment. 実施例1の薄膜測定の模式図である。It is a schematic diagram of the thin film measurement of Example 1. 角層の斜入射中性子小角散乱測定の結果を示す図である。It is a figure which shows the result of the oblique incident neutron small angle scattering measurement of the stratum corneum. 角層の反射強度の時間変化を示す図である。It is a figure which shows the time change of the reflection intensity of the stratum corneum. 角層の表面から加湿したときの温度と湿度の時間変化を示す図である。It is a figure which shows the time change of temperature and humidity at the time of humidifying from the surface of the stratum corneum. 角層の裏面から加湿したときの温度と湿度の時間変化を示す図である。It is a figure which shows the time change of temperature and humidity at the time of humidifying from the back surface of the stratum corneum.

以下、図面を参照して本発明の実施の形態を説明する。
<第1の実施形態>
図1は、第1の実施形態で行う斜入射中性子小角散乱(GSANS:Grazing Incidence Small Angle Neutron Scattering)測定を説明する図である。中性子小角散乱測定は、測定装置10に試料60をセットし、試料60の表面に中性子ビームを照射して、試料60からの反射光を検出することで試料60の表面の状態(特性)を測定し、評価する。試料60からの反射光に加えて、透過光を検出してもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
FIG. 1 is a diagram illustrating a Grazing Incidence Small Angle Neutron Scattering (GSANS) measurement performed in the first embodiment. In the small-angle neutron scattering measurement, the sample 60 is set in the measuring device 10, the surface of the sample 60 is irradiated with a neutron beam, and the reflected light from the sample 60 is detected to measure the state (characteristic) of the surface of the sample 60. And evaluate. In addition to the reflected light from the sample 60, transmitted light may be detected.

第1の実施形態では、試料60を薄膜測定キット50で保持した状態で測定装置10にセットする。詳細は後述するが、試料60は、薄膜測定キット50の2枚の基板の間に平坦に保持される。一方の基板には1以上の貫通開口が形成されており、貫通開口から試料60に液体や気体を供給しながら試料60の表面で散乱された中性子ビームを検出する。中性子ビームは、試料60の表面に対して浅い角度で斜入射される。 In the first embodiment, the sample 60 is set in the measuring device 10 while being held by the thin film measuring kit 50. Although details will be described later, the sample 60 is held flat between the two substrates of the thin film measurement kit 50. One or more through openings are formed on one of the substrates, and the neutron beam scattered on the surface of the sample 60 is detected while supplying a liquid or gas to the sample 60 from the through openings. The neutron beam is obliquely incident on the surface of the sample 60 at a shallow angle.

中性子ビームは、図示しない中性子源から出力される。中性子源として、たとえば加速器による核破砕を利用したパルス中性子源を用いる。試料60への入射中性子ビームNBinは、光学系30のスリット31で整形され、たとえば鏡面反射が起きる0.1°~1.0°の入射角で試料60に入射する。光学系30のスリット31の位置と幅は調整可能である。入射中性子ビームNBinは試料60の表面で散乱され、散乱中性子ビームNBoutが検出器で検出される。 The neutron beam is output from a neutron source (not shown). As the neutron source, for example, a pulsed neutron source using spallation by an accelerator is used. The neutron beam NBin incident on the sample 60 is shaped by the slit 31 of the optical system 30, and is incident on the sample 60 at an incident angle of 0.1 ° to 1.0 ° at which specular reflection occurs, for example. The position and width of the slit 31 of the optical system 30 can be adjusted. The incident neutron beam NBin is scattered on the surface of the sample 60, and the scattered neutron beam NBout is detected by the detector.

ここでは、飛行時間法を用いて散乱強度を測定する。飛行時間法は、入射角度を固定して広い波長範囲の中性子ビームを試料60に入射して散乱強度を測定するものである。入射中性子は、単色化されずに白色のまま試料60に入射し、散乱される。散乱強度は、波数qの関数として計測される。波数qは式(1)で表され、入射角度θに比例し、中性子の波長λに反比例する。 Here, the scattering intensity is measured using the flight time method. In the flight time method, a neutron beam having a wide wavelength range is incident on the sample 60 at a fixed angle of incidence, and the scattering intensity is measured. The incident neutrons enter the sample 60 in white without being monochromatic and are scattered. Scattering intensity is measured as a function of wavenumber q. The wave number q is expressed by Eq. (1), is proportional to the incident angle θ, and is inversely proportional to the wavelength λ of the neutron.

q=4π×sinθ/λ (1)
飛行時間法では検出器で検出された時間、すなわち中性子が検出器に到達した時間により波長を選別することができる。複数の検出器を広い散乱角にわたって配置することで、広範な波数qの範囲で散乱強度を測定することができる。
q = 4π × sinθ / λ (1)
In the flight time method, the wavelength can be selected by the time detected by the detector, that is, the time when the neutron reaches the detector. By arranging a plurality of detectors over a wide scattering angle, it is possible to measure the scattering intensity in a wide range of wavenumber q.

GSANS測定の間、薄膜測定キット50に保持された試料60に、重水素または軽水素を含む気体または液体を供給する。これを実現するため、測定装置10は、供給口15と排出口16を有する。測定装置10に試料60または薄膜測定キット50がセットされると、測定装置10の内部に大気環境チャンバが形成され、大気環境チャンバ内に所望の物質(重水素、軽水素、酸素等)を含む液体または気体を供給することができる。 During the GSANS measurement, the sample 60 held in the thin film measurement kit 50 is supplied with a gas or liquid containing deuterium or light hydrogen. To achieve this, the measuring device 10 has a supply port 15 and a discharge port 16. When the sample 60 or the thin film measurement kit 50 is set in the measuring device 10, an atmospheric environment chamber is formed inside the measuring device 10, and a desired substance (heavy hydrogen, light hydrogen, oxygen, etc.) is contained in the atmospheric environment chamber. It can supply liquid or gas.

図2は、測定装置10の側断面図(A)と正面図(B)である。測定装置10の本体17の前面に支持部12が設けられており、支持部12に薄膜測定キット50をセットすることができる。支持部12は、試料設置部101の両側にスリットを形成して、縦方向に薄膜測定キット50を挿入して定位置に支持する構成でもよいし、試料設置部101の上下にスリットを形成して、横方向に薄膜測定キット50を挿入して定位置に支持する構成でもよい。あるいは薄膜測定キット50の4隅を留める留め具で支持部12を構成してもよい。 2A and 2B are a side sectional view (A) and a front view (B) of the measuring device 10. A support portion 12 is provided on the front surface of the main body 17 of the measuring device 10, and the thin film measurement kit 50 can be set on the support portion 12. The support portion 12 may be configured such that slits are formed on both sides of the sample mounting portion 101 and the thin film measurement kit 50 is inserted in the vertical direction to support the sample in a fixed position, or slits are formed above and below the sample mounting portion 101. Alternatively, the thin film measurement kit 50 may be inserted and supported in a fixed position. Alternatively, the support portion 12 may be configured with fasteners that fasten the four corners of the thin film measurement kit 50.

薄膜測定支持部12に薄膜測定キット50がセットされると、測定装置10の内部にチャンバ11が形成される。チャンバ11は、供給口15及び排出口16と連通している。薄膜測定キット50が測定装置10にセットされた状態で、薄膜測定キット50の裏面はチャンバ11内を向いている。支持部12とチャンバ11を含む試料設置部101の高さhはたとえば50mm、幅Wは、たとえば50mmである。 When the thin film measurement kit 50 is set on the thin film measurement support portion 12, the chamber 11 is formed inside the measuring device 10. The chamber 11 communicates with the supply port 15 and the discharge port 16. With the thin film measuring kit 50 set in the measuring device 10, the back surface of the thin film measuring kit 50 faces the inside of the chamber 11. The height h of the sample setting portion 101 including the support portion 12 and the chamber 11 is, for example, 50 mm, and the width W is, for example, 50 mm.

使用時には、図1に示すように、供給口15と排出口16にチューブ18等を接続して外部から所望の液体または気体をチャンバ11内に導入し、排出する。チャンバ内11に気体または液体を導入しながら、SANS測定を行う。中性子ビームは、図1のスリット31を介して、試料設置部101の照射領域Rに照射される。測定装置10の内部に薄膜測定キット50の角度を制御する回転ゴニオメータを配置してもよい。 At the time of use, as shown in FIG. 1, a tube 18 or the like is connected to the supply port 15 and the discharge port 16, and a desired liquid or gas is introduced into the chamber 11 from the outside and discharged. SANS measurement is performed while introducing a gas or liquid into the chamber 11. The neutron beam is applied to the irradiation region R of the sample setting portion 101 through the slit 31 of FIG. A rotating goniometer that controls the angle of the thin film measuring kit 50 may be arranged inside the measuring device 10.

図3は、薄膜測定キット50の模式図である。図3(A)に示すように、薄膜測定キット50は、シリコン(Si)の第1基板51と、1つ以上の貫通孔55を有する第2基板52を有する。第1基板51と第2基板52は、第1基板51と第2基板52の間に試料60を挟み込んだ状態で、ホルダ53で保持される。ホルダ53は、図3のようなラッチホルダでもよいし、測定装置10の支持部12に形成されたスリットまたは留め具をホルダ53として使用してもよい。 FIG. 3 is a schematic diagram of the thin film measurement kit 50. As shown in FIG. 3A, the thin film measurement kit 50 has a first substrate 51 made of silicon (Si) and a second substrate 52 having one or more through holes 55. The first substrate 51 and the second substrate 52 are held by the holder 53 in a state where the sample 60 is sandwiched between the first substrate 51 and the second substrate 52. The holder 53 may be a latch holder as shown in FIG. 3, or a slit or fastener formed in the support portion 12 of the measuring device 10 may be used as the holder 53.

第1基板51は、第1基板51に接触した薄膜の試料60の表面に平滑面を形成することができれば、任意の厚さとすることができる。第1基板として、たとえば厚さ5mmのシリコン基板を用いる。第2基板52は、シリコン、アルミニウム(Al)、ゲルマニウム(Ge)など、中性子ビームに対して質量減衰係数が小さい材料で形成されている。第2基板52の厚さは、試料60を第1基板51に対して押圧して試料60の表面に平滑面を形成することができ、かつ貫通開口を形成できる厚さであれば、任意の厚さとすることができる。一例として、第2基板52の厚さは2~5mmである。 The first substrate 51 can have an arbitrary thickness as long as a smooth surface can be formed on the surface of the thin film sample 60 in contact with the first substrate 51. As the first substrate, for example, a silicon substrate having a thickness of 5 mm is used. The second substrate 52 is made of a material having a small mass attenuation coefficient with respect to the neutron beam, such as silicon, aluminum (Al), and germanium (Ge). The thickness of the second substrate 52 is arbitrary as long as the sample 60 can be pressed against the first substrate 51 to form a smooth surface on the surface of the sample 60 and a through opening can be formed. Can be thickness. As an example, the thickness of the second substrate 52 is 2 to 5 mm.

第2基板52としてシリコン基板を用いる場合は、YAGレーザ、フェムト秒レーザ等を用いたレーザ加工、深堀RIE(Reactive Ion Etching:反応性イオンエッチング)、光アシスト電解エッチングなどで貫通孔55を形成することができる。第2基板としてアルミニウム基板を用いる場合は、YAGレーザ等を用いたレーザ加工で貫通孔55を形成することができる。 When a silicon substrate is used as the second substrate 52, the through hole 55 is formed by laser processing using a YAG laser, femtosecond laser, etc., Fukahori RIE (Reactive Ion Etching), optical assist electrolytic etching, or the like. be able to. When an aluminum substrate is used as the second substrate, the through hole 55 can be formed by laser processing using a YAG laser or the like.

試料60は、皮膚、人工生体膜、高分子膜、電解質膜などの薄膜試料である。図3(B)に示すように、第1基板51と第2基板52の間に試料60を挟み込んでホルダ53で保持し、中性子ビームを照射する。入射中性子ビームNBinは、第1基板51を介して浅い角度で試料60の表面に入射する。中性子ビームの入射角度が0.1~1.0°程度に設定される場合は、中性子ビームを第1基板51のエッジから試料60の表面に入射させてもよい。 The sample 60 is a thin film sample such as a skin, an artificial biological membrane, a polymer membrane, and an electrolyte membrane. As shown in FIG. 3B, the sample 60 is sandwiched between the first substrate 51 and the second substrate 52, held by the holder 53, and irradiated with a neutron beam. The incident neutron beam NBin is incident on the surface of the sample 60 at a shallow angle via the first substrate 51. When the incident angle of the neutron beam is set to about 0.1 to 1.0 °, the neutron beam may be incident on the surface of the sample 60 from the edge of the first substrate 51.

入射中性子ビームNBinは、試料60の表面で入射角度とほぼ同じ角度で反射される。異なる波長(λ)の中性子を照射して測定されたデータは、試料60の表面または界面の組成、構造、状態等の情報を含んでいる。実施形態では、測定結果から試料60の表面のミクロ構造の平衡状態を観測する手法を「静的観測」と呼ぶ。一方で、試料60の薄膜の厚さ方向の水分子やプロトンの移動を観測する場合を「動的観測」と呼ぶ。これら2種類の計測は、中性子ビームの入射角度を制御するだけで、測定装置10で実施することができる。 The incident neutron beam NBin is reflected on the surface of the sample 60 at an angle substantially the same as the incident angle. The data measured by irradiating neutrons of different wavelengths (λ) include information such as the composition, structure, and state of the surface or interface of the sample 60. In the embodiment, the method of observing the equilibrium state of the microstructure on the surface of the sample 60 from the measurement result is called "static observation". On the other hand, the case of observing the movement of water molecules and protons in the thickness direction of the thin film of the sample 60 is called "dynamic observation". These two types of measurements can be carried out by the measuring device 10 only by controlling the incident angle of the neutron beam.

図4は、実施例1の薄膜測定の模式図である。実施例1では薄膜の試料60Aとして、たとえば50mm×50mmの大きさの角層を用いる。角層は皮膚の最表面の層であり、その厚さは20μm程度である。角層の表面は、皮溝と皮丘により細かい凹凸が形成されている。角層の表面側をシリコンの第1基板51に接触させて第2基板52で押圧し、角層の表面に平滑な面を形成する。これにより、角層の凹凸面は平滑な基板面上に再構築される。
(a)試料裏面への重水蒸気の供給
試料60Aとして用いる角層の表面側を第1基板51側に配置する場合、第2基板52の貫通孔55から、角層の裏面に気体または液体が供給される。この例では、測定装置10の供給口15から重水(DO)の蒸気をチャンバ11内に導入し、第2基板52の貫通孔55から角層の裏面に重水の蒸気をあてる。重水の蒸気は角層の裏側から表面側へマイグレーションまたは拡散する。測定装置10を用いたGSANS測定により、角層の表面の組成(静的観測)と、湿潤過程(動的観測)を測定することができる。
FIG. 4 is a schematic diagram of the thin film measurement of Example 1. In Example 1, as the thin film sample 60A, for example, a stratum corneum having a size of 50 mm × 50 mm is used. The horny layer is the outermost layer of the skin, and its thickness is about 20 μm. On the surface of the stratum corneum, fine irregularities are formed by the skin grooves and the skin hills. The surface side of the stratum corneum is brought into contact with the first substrate 51 of silicon and pressed by the second substrate 52 to form a smooth surface on the surface of the stratum corneum. As a result, the uneven surface of the stratum corneum is reconstructed on the smooth substrate surface.
(A) Supply of heavy water vapor to the back surface of the sample When the front surface side of the stratum corneum used as the sample 60A is arranged on the side of the first substrate 51, gas or liquid is discharged from the through hole 55 of the second substrate 52 to the back surface of the stratum corneum. Will be supplied. In this example, the steam of heavy water ( D2O) is introduced into the chamber 11 from the supply port 15 of the measuring device 10, and the steam of heavy water is applied to the back surface of the stratum corneum from the through hole 55 of the second substrate 52. Heavy water vapor migrates or diffuses from the back side to the front side of the stratum corneum. By GSANS measurement using the measuring device 10, the composition of the surface of the stratum corneum (static observation) and the wetting process (dynamic observation) can be measured.

図5は、GSANS測定結果を示す図である。入射角0.5°で角層(試料60A)に中性子ビームを照射し、反射中性子ビームNBrefを検出器で検出して反射方向の散乱プロファイルを得る。図5の横軸は0.1nm当たりの波数q(Å-1)、縦軸は散乱強度(任意単位)である。 FIG. 5 is a diagram showing a GSANS measurement result. A neutron beam is irradiated to the stratum corneum (sample 60A) at an incident angle of 0.5 °, and the reflected neutron beam NBref is detected by a detector to obtain a scattering profile in the reflection direction. The horizontal axis of FIG. 5 is the wave number q (Å -1 ) per 0.1 nm, and the vertical axis is the scattering intensity (arbitrary unit).

散乱強度プロファイルで、一定のレベルから強度変化(傾斜)が始まる地点の波数が、臨界反射波数qである。図5では、臨界反射波数qは0.016(Å-1)である。実施例1では、中性子ビームの入射角を一定にして波長λを変えているが(白色ビームの使用)、波長λを一定にして入射角を変えたときにも、同様の散乱強度プロファイルを得ることができる。この場合は、散乱強度の変化が始まるときの角度が、臨界反射角θになる。臨界反射波数qまたは臨界反射角θは、試料60Aの表面の組成と相関があり、試料60Aの表面状態を評価することができる。 In the scattering intensity profile, the wave number at the point where the intensity change (gradient) starts from a certain level is the critical reflected wave number q c . In FIG. 5, the critical reflected wavenumber q c is 0.016 (Å -1 ). In Example 1, the incident angle of the neutron beam is constant and the wavelength λ is changed (using a white beam), but the same scattering intensity profile is obtained even when the wavelength λ is constant and the incident angle is changed. be able to. In this case, the angle at which the change in the scattering intensity starts becomes the critical reflection angle θ c . The critical reflected wavenumber q c or the critical reflection angle θ c correlates with the composition of the surface of the sample 60A, and the surface state of the sample 60A can be evaluated.

臨界反射角θ(または臨界反射波数q)よりも小さい領域であるθ<θ(またはq<q)では、反射率が1になる(全反射)。臨界反射角θと組成の関係は、式(2)で与えられる。 In the region where the critical reflection angle θ c (or the critical reflected wavenumber q c ) is smaller than θ <θ c (or q <q c ), the reflectance becomes 1 (total reflection). The relationship between the critical reflection angle θ c and the composition is given by Eq. (2).

θ=λ(ρbav/π)1/2 (2)
ここで、ρは密度、bavはフレネル界面における膜表面の組成で平均化された干渉散乱長である。
θ c = λ (ρb av / π) 1/2 (2)
Here, ρ is the density and bav is the interference scattering length averaged by the composition of the film surface at the Fresnel interface.

上述した例では、試料60Aとして用いた角層の裏面から重水素(デュウテロン)が拡散し、フレネル界面に到達する。そうすると角層表面の組成が変わり、干渉性散乱長bavが変化してθが変化する。臨界反射角θまたは臨界反射波数qを特定することで、そのときの膜表面の組成を識別することができる。 In the above example, deuterium diffuses from the back surface of the stratum corneum used as sample 60A and reaches the Fresnel interface. Then, the composition of the surface of the stratum corneum changes, the coherent scattering length b av changes, and θ c changes. By specifying the critical reflection angle θ c or the critical reflected wave number q c , the composition of the film surface at that time can be identified.

フレネル界面の組成で平均化された干渉性散乱長bavは、式(3)で定義される。 The coherent scattering length bav averaged by the composition of the Fresnel interface is defined by Eq. (3).

av(t)=(1-Φ)bM+Φ[φ(t)bD+(1-φ(t))bH] (3)
ここで、
M: 膜の平均散乱長
H: 水素(プロトン)の平均散乱長
D: 重水素(デュウテロン)の平均散乱長
Φ : 膜表面における含水率
φ(t):時間依存重水置換率
である。
b av (t) = (1-Φ) b M + Φ [φ (t) b D + (1-φ (t)) b H ] (3)
here,
b M : Average scattering length of the film b H : Average scattering length of hydrogen (proton) b D : Average scattering length of deuterium (duteron) Φ: Water content on the film surface φ (t): Time-dependent heavy water replacement rate ..

薄膜のφ(t)を求めることで、フィックの法則によるモデル解析を行い拡散係数(cm/sec)を定量的に評価することができる。 By obtaining φ (t) of the thin film, it is possible to quantitatively evaluate the diffusion coefficient (cm 2 / sec) by performing model analysis according to Fick's law.

図5に戻って、散乱強度プロファイルのピーク位置も試料60Aの表面の状態の評価に用いることができる。図5では、波数q=0.05とq=0.1にピークが観察される。波数qは、式(4)で実空間位置dに変換することができる。 Returning to FIG. 5, the peak position of the scattering intensity profile can also be used to evaluate the surface condition of the sample 60A. In FIG. 5, peaks are observed at wavenumbers q = 0.05 and q = 0.1. The wave number q can be converted into the real space position d by the equation (4).

d=2π/q (4)
0.05(Å-1)は12.5nmの実空間位置に対応し、0.1(Å-1)は6.2nmの実空間位置に対応する。
d = 2π / q (4)
0.05 (Å -1 ) corresponds to a real space position of 12.5 nm and 0.1 (Å -1 ) corresponds to a real space position of 6.2 nm.

これらのピークは、角層細胞間資質のラメラ構造(層状構造体)における13nmの長周期ラメラ構造と、6nmの短周期ラメラ構造にプールされた重水由来のピークと考えられる。すなわち、ラメラ構造に含まれている水(軽水)の水素(H)が、角層(試料60A)の裏面から供給された重水に含まれる重水素(D)に置換されたものであると考えられる。 These peaks are considered to be peaks derived from heavy water pooled in a 13 nm long-period lamellar structure and a 6 nm short-period lamellar structure in the lamellar structure (layered structure) of the intercellular qualities of the stratum corneum. That is, it is considered that the hydrogen (H) of the water (light water) contained in the lamellar structure is replaced with the deuterium (D) contained in the heavy water supplied from the back surface of the stratum corneum (sample 60A). Be done.

短周期ラメラでのピークの方が大きいのは、短周期ラメラに含まれる水分量が長周期ラメラに含まれる水分量よりも多く、水分子は短周期ラメラ構造に優先的に入っていくことを示唆している。この現象は既報と一致している。
(b)試料の表面への重水蒸気の供給
図4の薄膜測定キット50で、角層の裏面を第1基板51に接触させ、第2基板52の貫通孔55から角層の表面側に重水の蒸気を供給してGSANS測定することもできる。中性子ビームは、シリコンの第1基板51を介して、角層の裏面で散乱される。角層の裏面で反射された中性子の反射強度を検出することで、角層の裏面の組成、構造などの情報を取得することができる。
The reason why the peak in the short-period lamellar is larger is that the amount of water contained in the short-period lamellar is larger than the amount of water contained in the long-period lamellar, and the water molecules preferentially enter the short-period lamellar structure. Suggests. This phenomenon is consistent with the previous report.
(B) Supply of heavy water vapor to the surface of the sample In the thin film measurement kit 50 of FIG. 4, the back surface of the stratum corneum is brought into contact with the first substrate 51, and heavy water is applied to the front surface side of the stratum corneum from the through hole 55 of the second substrate 52. It is also possible to supply the steam of the above and measure the GSANS. The neutron beam is scattered on the back surface of the stratum corneum via the first substrate 51 of silicon. By detecting the reflection intensity of the neutrons reflected on the back surface of the stratum corneum, information such as the composition and structure of the back surface of the stratum corneum can be obtained.

反射強度プロファイルから臨界反射波数qまたは臨界反射角θを特定することで、式(2)及び式(3)に基づいて、角層の裏面の組成を評価することができる。また、散乱強度プロファイルのピーク位置とピークの大きさから、短周期ラメラと長周期ラメラに存在する水分量を推定し、皮膚の表面から加湿したときの角層内部への水分の浸透を評価することができる。
(c)透過ビームの利用
図3(B)に示すように、中性子ビームの試料60への入射角を臨界反射角よりも大きく設定し、反射位置と透過位置に検出器を配置することで、反射中性子ビームNBrefと透過中性子ビームNBtrを同時に検出してもよい。中性子はシリコン、アルミ等の第2基板52を透過する。反射中性子ビームNBrefは、試料60の表面の組成、構造等の情報を載せている。透過中性子ビームNBtrは、試料60の内部構造の情報を載せている。試料60で反射された中性子と試料60を透過した中性子をそれぞれ個別の検出器で検出することで、一度の測定で、試料60の表面情報と内部情報の両方を検出することができる。
(d)臨界反射の時間変化
図6は、臨界反射領域q<qcにおける反射強度の時間変化を示す図である。室温でフル加湿(100%)して、図5の臨界反射波数q=0.016(Å-1)の反射強度を一定時間にわたって測定したものである。図の上側の曲線は、角膜の表面から重水で加湿したときの測定結果、下側の曲線は角層の裏面から加湿したときの反射強度の測定結果である。
By specifying the critical reflected wave number q c or the critical reflection angle θ c from the reflection intensity profile, the composition of the back surface of the stratum corneum can be evaluated based on the equations (2) and (3). In addition, the amount of water present in the short-period lamella and long-period lamella is estimated from the peak position and peak size of the scattering intensity profile, and the penetration of water into the stratum corneum when humidified from the surface of the skin is evaluated. be able to.
(C) Utilization of transmitted beam As shown in Fig. 3 (B), the angle of incidence of the neutron beam on the sample 60 is set larger than the critical reflection angle, and detectors are placed at the reflection and transmission positions. The reflected neutron beam NBref and the transmitted neutron beam NBtr may be detected at the same time. Neutrons pass through the second substrate 52 such as silicon and aluminum. The reflected neutron beam NBref carries information such as the composition and structure of the surface of the sample 60. The transmitted neutron beam NBtr carries information on the internal structure of the sample 60. By detecting the neutrons reflected by the sample 60 and the neutrons transmitted through the sample 60 with individual detectors, both the surface information and the internal information of the sample 60 can be detected by one measurement.
(D) Time change of critical reflection FIG. 6 is a diagram showing a time change of reflection intensity in the critical reflection region q <qc. It was fully humidified (100%) at room temperature, and the reflection intensity of the critical reflected wave number q c = 0.016 (Å -1 ) in FIG. 5 was measured over a certain period of time. The upper curve of the figure is the measurement result when humidified from the front surface of the cornea with heavy water, and the lower curve is the measurement result of the reflection intensity when humidified from the back surface of the cornea.

表面から加湿したときは、反射強度変化が緩やかであるが、裏面から加湿したときは飽和状態に至るまでの変化が急峻である。この測定結果は、角層中における水分浸透速度は、表面から裏面と比較して、裏面から表面の方がより速いと考えられる。即ち、角層の内側から表面への水分蒸散速度の方が、表面から内側への水分供給速度より速いことが示唆される。 When humidified from the front surface, the change in reflection intensity is gradual, but when humidified from the back surface, the change to the saturated state is steep. From this measurement result, it is considered that the water permeation rate in the stratum corneum is faster from the back surface to the front surface as compared with the front surface to the back surface. That is, it is suggested that the rate of water evaporation from the inside to the surface of the stratum corneum is faster than the rate of water supply from the surface to the inside.

図7は、角層の表面から加湿したときの温度と湿度の時間変化を示す図、図8は、角層の裏面から加湿したときの温度と湿度の時間変化を示す図である。図7と図8の双方で、湿度は数パーセント範囲でほぼフル加湿(100%)である。温度も2℃の誤差範囲で一定である。温度と湿度からは、角層の表裏の差を見いだすことはできない。 FIG. 7 is a diagram showing the time change of temperature and humidity when humidified from the front surface of the stratum corneum, and FIG. 8 is a diagram showing the time change of temperature and humidity when humidifying from the back surface of the stratum corneum. In both FIGS. 7 and 8, the humidity is almost full humidification (100%) in the range of a few percent. The temperature is also constant within an error range of 2 ° C. From the temperature and humidity, we cannot find the difference between the front and back of the stratum corneum.

これに対し、図6で角層の表側から加湿するか裏側から加湿するかで反射強度の時間変化に差が生じるのは、角層の裏面と表面での組成または構造の差によるものである。角層構造の表裏の差は、図6の時間変化で示される水の拡散挙動で捉えることができる。 On the other hand, in FIG. 6, the difference in the time change of the reflection intensity depending on whether the humidification is performed from the front side or the back side of the stratum corneum is due to the difference in the composition or structure between the back surface and the front surface of the stratum corneum. .. The difference between the front and back of the stratum corneum structure can be grasped by the diffusion behavior of water shown by the time change in FIG.

薄膜の試料60Aの裏面から重水素を供給し、表面で中性子の散乱強度の時間変化を観測することで、重水素の表面への浸潤状態を追跡することができる(同位体を用いたトレーサ法)。
(e)角層の測定の変形例
実施例1では、試料60Aとして通常の(乾燥した)角層を試料60に用い、角層に重水の蒸気を供給して角層に存在する軽水素(プロトン)を重水素(デュウテロン)で置換して中性子反射率を測定した。試料60Aの裏面に重水の蒸気を供給する替わりに、軽水の蒸気を供給しながら、GSANS測定を行ってもよい。この場合は、試料60Aに含まれる重水素(デュウテロン)が軽水素(プロトン)に置換されることで表面の組成が変化する。臨界反射角(または臨界反射波数)での反射率の時間変化を観測することで、試料60Aへの軽水の浸潤状態を評価することができる。
By supplying deuterium from the back surface of the thin film sample 60A and observing the time change of the scattering intensity of neutrons on the surface, the infiltration state of deuterium on the surface can be traced (tracer method using isotopes). ).
(E) Modification example of measurement of the stratum corneum In Example 1, a normal (dried) stratum corneum was used as the sample 60A, and deuterium vapor was supplied to the stratum corneum to supply light hydrogen existing in the stratum corneum (e). The neutron reflectance was measured by substituting deuterium (proton) with deuterium. Instead of supplying the steam of heavy water to the back surface of the sample 60A, the GSANS measurement may be performed while supplying the steam of light water. In this case, the surface composition changes by substituting deuterium (duuteron) contained in sample 60A with light hydrogen (proton). By observing the time change of the reflectance at the critical reflection angle (or the critical reflected wave number), the infiltration state of light water into the sample 60A can be evaluated.

さらに別の変形例として、角層をあらかじめ重水または軽水に浸漬した試料60Aを薄膜測定キット50の第1基板51と第2基板52の間に挟み、第2基板52の貫通孔55から試料の裏面に乾燥気流を供給し、重水素と軽水素の同位体置換に基づいて試料60の表面の組成と、膜厚方向への水分子の挙動を評価してもよい。 As yet another modification, a sample 60A in which the stratum corneum is previously immersed in heavy water or light water is sandwiched between the first substrate 51 and the second substrate 52 of the thin film measurement kit 50, and the sample is obtained from the through hole 55 of the second substrate 52. A dry air stream may be supplied to the back surface, and the composition of the surface of the sample 60 and the behavior of water molecules in the film thickness direction may be evaluated based on the isotope substitution of deuterium and light hydrogen.

以上、特定の実施例に基づいて本発明を説明したが、本発明は上述した例に限定されない。たとえば、薄膜試料として電解質膜を第1基板51と第2基板52の間に挟み、第2基板52の貫通孔55から電解液を供給しながら電解質膜に前記中性子ビームを斜め照射し、電解質膜への電解液の浸潤挙動を測定してもよい。 Although the present invention has been described above based on the specific examples, the present invention is not limited to the above-mentioned examples. For example, as a thin film sample, an electrolyte membrane is sandwiched between a first substrate 51 and a second substrate 52, and the electrolyte membrane is obliquely irradiated with the neutron beam while supplying an electrolytic solution from a through hole 55 of the second substrate 52 to obliquely irradiate the electrolyte membrane. The infiltration behavior of the electrolytic solution into the water may be measured.

10 測定装置
11 チャンバ
12 支持部
15 供給口
16 排出口
17 本体
50 薄膜測定キット
51 第1基板
52 第2基板
53 ホルダ
55 貫通孔(貫通開口)
60、60A 試料
101 試料設置部
10 Measuring device 11 Chamber 12 Support 15 Supply port 16 Discharge port 17 Main body 50 Thin film measurement kit 51 First board 52 Second board 53 Holder 55 Through hole (through opening)
60, 60A Sample 101 Sample setting part

Claims (10)

シリコンの第1基板と、1以上の貫通開口を有する第2基板の間に薄膜試料を配置し、
前記第2基板で、前記薄膜試料の第1の面を前記第1基板に対して押圧し、前記貫通開口から前記薄膜試料の前記第1の面と反対側の第2の面に少なくとも1種類の物質を含む気体または液体を供給しながら、前記第1基板を介して前記薄膜試料に中性子ビームを照射し、
前記薄膜試料からの反射ビームを検出して、前記薄膜試料の前記第1の面の表面の状態を測定する
ことを特徴とする測定方法。
A thin film sample is placed between the first substrate of silicon and the second substrate with one or more through openings.
With the second substrate, the first surface of the thin film sample is pressed against the first substrate, and at least one kind is applied to the second surface of the thin film sample opposite to the first surface from the through opening. While supplying a gas or liquid containing the substance of the above, the thin film sample is irradiated with a neutron beam through the first substrate.
A measuring method comprising detecting a reflected beam from the thin film sample and measuring the state of the surface of the first surface of the thin film sample.
中性子反射率で評価される臨界反射の時間変化を測定し、
前記第1の面における水の濃度の時間変化を追跡して拡散係数を定量的に評価することを特徴とする請求項1に記載の測定方法。
Measure the time change of critical reflection evaluated by neutron reflectance,
The measuring method according to claim 1, wherein the diffusion coefficient is quantitatively evaluated by tracking the time change of the water concentration in the first surface.
前記薄膜試料は、乾燥薄膜試料であり、
前記貫通開口から重水または軽水の蒸気を前記第2の面に供給し、
軽水素と重水素の同位体置換に基づいて前記第1の面における軽水素または重水素の組成を測定することを特徴とする請求項1または2に記載の測定方法。
The thin film sample is a dry thin film sample.
Heavy water or light water vapor is supplied to the second surface from the through opening.
The measuring method according to claim 1 or 2, wherein the composition of the light hydrogen or the deuterium in the first surface is measured based on the isotope substitution of the light hydrogen and the deuterium.
前記薄膜試料は、乾燥薄膜試料をあらかじめ軽水または重水に浸漬した試料であり、
前記貫通開口から、乾燥気流を前記第2の面に供給し、軽水素と重水素の同位体置換に基づいて前記第1の面における軽水素または重水素の組成を測定することを特徴とする請求項1または2に記載の測定方法。
The thin film sample is a sample obtained by immersing a dry thin film sample in light water or heavy water in advance.
A dry air stream is supplied to the second surface from the through opening, and the composition of the light hydrogen or deuterium in the first surface is measured based on the isotope substitution of light hydrogen and deuterium. The measuring method according to claim 1 or 2.
前記薄膜試料からの前記反射ビームと同時に、前記薄膜試料の透過ビームを検出し、
前記反射ビームと前記透過ビームの検出結果から、前記薄膜試料の前記第1の面の表面の組成に関する情報と、前記薄膜試料の内部の情報を同時に取得することを特徴とする請求項1~4のいずれか1項に記載の測定方法。
At the same time as the reflected beam from the thin film sample, the transmitted beam of the thin film sample is detected.
Claims 1 to 4 are characterized in that information on the surface composition of the first surface of the thin film sample and information on the inside of the thin film sample are simultaneously acquired from the detection results of the reflected beam and the transmitted beam. The measuring method according to any one of the above items.
前記薄膜試料は、皮膚または人工生体膜であり、
前記貫通開口から重水の蒸気を供給しながら前記薄膜試料の前記第1の面に前記中性子ビームを照射し、
前記薄膜試料への水分子の浸透状態を測定する
ことを特徴とする請求項1または2に記載の測定方法。
The thin film sample is a skin or artificial biological membrane.
The first surface of the thin film sample is irradiated with the neutron beam while supplying heavy water vapor from the through opening.
The measuring method according to claim 1 or 2, wherein the state of permeation of water molecules into the thin film sample is measured.
前記薄膜試料は角層であり、
前記角層の表面を前記第1基板に押圧し、
前記貫通開口から前記角層の裏面に前記重水の蒸気を供給しながら、前記第1基板を介して前記角層の表面に前記中性子ビームを照射して、前記角層の表面の組成と水分子の浸透状態を測定することを特徴とする請求項6に記載の測定方法。
The thin film sample is a stratum corneum.
The surface of the stratum corneum is pressed against the first substrate,
While supplying the vapor of the heavy water to the back surface of the stratum corneum from the through opening, the surface of the stratum corneum is irradiated with the neutron beam through the first substrate to obtain the composition of the surface of the stratum corneum and water molecules. The measuring method according to claim 6, wherein the permeation state of the water is measured.
前記薄膜試料は電解質膜であり、
前記貫通開口から電解液を供給しながら前記電解質膜に前記中性子ビームを照射し、
前記電解質膜への前記電解液の浸潤挙動を測定する、
ことを特徴とする請求項1または2に記載の測定方法。
The thin film sample is an electrolyte membrane.
The electrolyte membrane is irradiated with the neutron beam while supplying the electrolytic solution from the through opening.
Measuring the infiltration behavior of the electrolyte solution into the electrolyte membrane,
The measuring method according to claim 1 or 2.
前記中性子ビームを、前記第1基板のエッジから前記薄膜試料に入射することを特徴とする請求項1~8のいずれか1項に記載の測定方法。 The measuring method according to any one of claims 1 to 8, wherein the neutron beam is incident on the thin film sample from the edge of the first substrate. 本体と、
前記本体の前面の中性子照射領域で試料を支持可能な試料設置部と、
前記試料設置部に前記試料がセットされたときに、前記本体の内部に空間を形成するチャンバと、
前記チャンバと連通する供給口及び排出口と、
を有し、
前記チャンバから前記試料に気体または液体を供給しながら鏡面反射が起きる入射角で前記試料の界面に中性子線を入射し、臨界反射角の近傍で前記入射角または波長を変えながら前記試料の表面状態を測定する中性子散乱測定を可能にする測定装置。
With the main body
A sample installation unit that can support the sample in the neutron irradiation area on the front of the main body,
A chamber that forms a space inside the main body when the sample is set in the sample setting portion.
The supply port and the discharge port communicating with the chamber,
Have,
A neutron beam is incident on the interface of the sample at an incident angle where mirror reflection occurs while supplying gas or liquid from the chamber to the sample, and the surface state of the sample is changed while changing the incident angle or wavelength in the vicinity of the critical reflection angle. A measuring device that enables neutron scattering measurement.
JP2017133999A 2017-07-07 2017-07-07 Thin film measuring method and measuring device Active JP7061765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017133999A JP7061765B2 (en) 2017-07-07 2017-07-07 Thin film measuring method and measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017133999A JP7061765B2 (en) 2017-07-07 2017-07-07 Thin film measuring method and measuring device

Publications (2)

Publication Number Publication Date
JP2019015638A JP2019015638A (en) 2019-01-31
JP7061765B2 true JP7061765B2 (en) 2022-05-02

Family

ID=65357613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017133999A Active JP7061765B2 (en) 2017-07-07 2017-07-07 Thin film measuring method and measuring device

Country Status (1)

Country Link
JP (1) JP7061765B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4350336A4 (en) * 2022-08-12 2024-04-10 Contemporary Amperex Technology Co Ltd Battery infiltration state detection method and apparatus, device, system, and medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147207A (en) 1999-11-19 2001-05-29 Canon Inc Sample holder for obliquely incident x-ray diffraction and apparatus and method for measuring obliquely incident x-ray diffraction using the same
JP2001165851A (en) 1999-12-09 2001-06-22 Mitsubishi Heavy Ind Ltd Analytical method and apparatus for surface reaction process of diffusing material
JP2006078464A (en) 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
WO2006064819A1 (en) 2004-12-14 2006-06-22 High Energy Accelerator Research Organization Method of diagnosing disease caused by morphological change in protein by using the neutron scattering method
JP2013205077A (en) 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method
JP2014035325A (en) 2012-08-10 2014-02-24 National Institute For Materials Science X-ray imaging apparatus, application method thereof, neutron imaging apparatus, and application method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5084910A (en) * 1990-12-17 1992-01-28 Dow Corning Corporation X-ray diffractometer sample holder

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147207A (en) 1999-11-19 2001-05-29 Canon Inc Sample holder for obliquely incident x-ray diffraction and apparatus and method for measuring obliquely incident x-ray diffraction using the same
JP2001165851A (en) 1999-12-09 2001-06-22 Mitsubishi Heavy Ind Ltd Analytical method and apparatus for surface reaction process of diffusing material
JP2006078464A (en) 2004-08-11 2006-03-23 Fujitsu Ltd Apparatus and method for measuring small-angle scattering and sample analysis method
WO2006064819A1 (en) 2004-12-14 2006-06-22 High Energy Accelerator Research Organization Method of diagnosing disease caused by morphological change in protein by using the neutron scattering method
JP2013205077A (en) 2012-03-27 2013-10-07 Kwansei Gakuin Sample holding device, and sample analysis method
JP2014035325A (en) 2012-08-10 2014-02-24 National Institute For Materials Science X-ray imaging apparatus, application method thereof, neutron imaging apparatus, and application method thereof

Also Published As

Publication number Publication date
JP2019015638A (en) 2019-01-31

Similar Documents

Publication Publication Date Title
Mitamura et al. Novel neutron reflectometer SOFIA at J-PARC/MLF for in-situ soft-interface characterization
Bachmann et al. Absolute sensitivity of electron microscope radioautography
Kuai et al. Real-time measurement of the hygroscopic growth dynamics of single aerosol nanoparticles with bloch surface wave microscopy
Nouhi et al. Grazing-incidence small-angle neutron scattering from structures below an interface
JP7061765B2 (en) Thin film measuring method and measuring device
Zhang et al. Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path
Schneck et al. Structural characterization of soft interfaces by standing-wave fluorescence with X-rays and neutrons
Yoshimune et al. A simple method to measure through-plane effective gas diffusivity of a gas diffusion layer for polymer electrolyte fuel cells
US20120323093A1 (en) Article and Method for Applying a Coupling Agent for a Non-Invasive Optical Probe
Vaknin X-ray diffraction and spectroscopic techniques from liquid surfaces and interfaces
Das et al. Short pulse laser propagation through tissues for biomedical imaging
Zimnyakov et al. Anisotropy of light scattering by foamed liquids
JP4951869B2 (en) Sample analysis method and analysis system
TW562922B (en) Method and apparatus for analyzing a test material of uneven density, and system
Constantin et al. Electric field unbinding of solid-supported lipid multilayers
Csepregi et al. Possible modifications of parchment during ion beam analysis
CN109405774B (en) Method for measuring film thickness
GB2084314A (en) Determining concentration by x-ray fluorescence
RU2327976C2 (en) Research of nanoscopic flaws in material structure
Greve et al. Effects of the grazing incidence geometry on X-ray photon correlation spectroscopy measurements
JP5904835B2 (en) Sample holding device and sample analysis method
Witala et al. Relative adsorption excess of ions in binary solvents determined by grazing-incidence X-ray fluorescence
Nerella et al. Depth-resolved near-infrared spectroscopy
CN113520427B (en) Device, method, storage medium and processing apparatus for detecting skin state by using X-rays
Herringer et al. Quantification of water absorption and transport in parchment

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170726

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220407

R150 Certificate of patent or registration of utility model

Ref document number: 7061765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150