JPWO2006062030A1 - Apparatus and method for controlling internal pressure of airtight structure - Google Patents

Apparatus and method for controlling internal pressure of airtight structure Download PDF

Info

Publication number
JPWO2006062030A1
JPWO2006062030A1 JP2006546630A JP2006546630A JPWO2006062030A1 JP WO2006062030 A1 JPWO2006062030 A1 JP WO2006062030A1 JP 2006546630 A JP2006546630 A JP 2006546630A JP 2006546630 A JP2006546630 A JP 2006546630A JP WO2006062030 A1 JPWO2006062030 A1 JP WO2006062030A1
Authority
JP
Japan
Prior art keywords
pressure
internal pressure
airtight structure
internal
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006546630A
Other languages
Japanese (ja)
Inventor
信廣 関
信廣 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Co Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Publication of JPWO2006062030A1 publication Critical patent/JPWO2006062030A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/04Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
    • F17C2223/042Localisation of the removal point
    • F17C2223/043Localisation of the removal point in the gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/03Control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/043Pressure
    • F17C2250/0434Pressure difference
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/06Controlling or regulating of parameters as output values
    • F17C2250/0605Parameters
    • F17C2250/0626Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • F17C2265/031Treating the boil-off by discharge
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0134Applications for fluid transport or storage placed above the ground

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

気密式構造物の内圧の絶対圧をほぼ一定に保つことができ、しかも気密式構造物の内圧と外圧との差圧も所定の制限値内に保つことができる気密式構造物の内圧制御装置及び内圧制御方法を提供する。内圧制御装置は、通常時、気密式構造物の内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御手段(18)に出力し、内圧と外圧との差圧を検出する差圧検出器(14)で検出された差圧が許容範囲を逸脱したときは、差圧判定手段(17)が動作し、切換手段(19)により制御手段(18)に入力される信号を差圧に切り換えて、前記気密式構造物の内圧を調整するものであり、気密式構造物の内圧制御方法は、気密式構造物の内圧と外圧との差圧が許容範囲内にあるときは内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御し、差圧が許容範囲を逸脱したときは差圧が一定範囲内になるように気密式構造物の内圧を制御するものである。An internal pressure control device for an airtight structure that can keep the absolute pressure of the internal pressure of the airtight structure substantially constant, and can also maintain the differential pressure between the internal pressure and the external pressure of the airtight structure within a predetermined limit value. And an internal pressure control method. The internal pressure control device outputs the internal pressure of the airtight structure to the control means (18) so that the absolute pressure of the internal pressure of the airtight structure is in a certain range, and detects the differential pressure between the internal pressure and the external pressure. When the differential pressure detected by the differential pressure detector (14) deviates from the allowable range, the differential pressure determination means (17) operates, and the signal input to the control means (18) by the switching means (19) is sent. The internal pressure of the airtight structure is adjusted by switching to the differential pressure, and the internal pressure control method of the airtight structure is such that the differential pressure between the internal pressure and the external pressure of the airtight structure is within an allowable range. The internal pressure of the airtight structure is controlled so that the absolute pressure of the internal pressure is within a certain range, and the internal pressure of the airtight structure is controlled so that the differential pressure is within a certain range when the differential pressure deviates from the allowable range. Is.

Description

本発明は、気密式構造物の内圧を制御する気密式構造物の内圧制御装置及び方法に関する。   The present invention relates to an internal pressure control device and method for an airtight structure that controls the internal pressure of the airtight structure.

例えば、液化天然ガスや液化石油ガスの液化ガス貯槽のような気密式構造物においては、ボイルオフガス(BOG)の発生量に応じて内圧が変化するので、気密式構造物の内圧が上昇した場合にはBOGコンプレッサーによりボイルオフガスを外部に排出し、気密式構造物の内圧が設定値になるように一定に制御するようにしている。   For example, in an airtight structure such as a liquefied gas storage tank for liquefied natural gas or liquefied petroleum gas, the internal pressure changes depending on the amount of boil-off gas (BOG) generated, so the internal pressure of the airtight structure increases. In this case, the boil-off gas is discharged to the outside by a BOG compressor, and the internal pressure of the airtight structure is controlled to be a predetermined value.

液受入時等において、ボイルオフガスが多量に発生すると、圧縮機(BOGコンプレッサー)の負荷も上昇するので、この負荷の上昇を検出して、負荷と内圧設定値との予め設定している対応関係から、内圧設定値を導出して内圧設定値を変更し、その変更した内圧設定値と内圧測定値とに基づいて圧縮機の運転制御を行うようにしたものがある(例えば特許文献1参照)。   When a large amount of boil-off gas is generated at the time of liquid reception, the load on the compressor (BOG compressor) also rises. Therefore, when this load rise is detected, a preset correspondence between the load and the internal pressure set value is detected. The internal pressure set value is derived, the internal pressure set value is changed, and the compressor is controlled based on the changed internal pressure set value and the measured internal pressure (see, for example, Patent Document 1). .

また、低温液化ガス貯槽にレベル計及び圧力計を、往復動形圧縮機には容量調整機構をそれそれ設けると共に演算装置を設け、これらを有機的に結合し、レベル計の信号により低温液化ガス貯槽の気相部の内容積を演算し、圧力計の信号により圧力変化速度を演算し、これら両者によりボイルオフガス発生量を求め、その結果によりボイルオフガス圧縮機の圧送量を自動的に制御するようにしたものがある(例えば特許文献2参照)。   In addition, a level meter and a pressure gauge are provided in the cryogenic liquefied gas storage tank, and a capacity adjustment mechanism is provided for each of the reciprocating compressors, and an arithmetic unit is provided. Calculate the internal volume of the gas phase part of the storage tank, calculate the pressure change rate based on the pressure gauge signal, obtain the boil-off gas generation amount by both of them, and automatically control the pumping amount of the boil-off gas compressor based on the result There is what has been made (for example, see Patent Document 2).

このように、液化ガス貯槽から恒常的に発生するボイルオフガスにより液化ガス貯槽の内圧が上昇した場合には、BOGコンプレッサーを起動して液化ガス貯槽の内圧が一定の圧力範囲内になるように制御している。これは、液化ガス貯槽には、液化ガス貯槽の内圧の過剰上昇に伴う気密式構造物の膨張破壊を防止するために安全弁が設けられており、この安全弁が動作し気密式構造物からボイルオフガスが噴出するのを防止するためである。   In this way, when the internal pressure of the liquefied gas storage tank rises due to the boil-off gas constantly generated from the liquefied gas storage tank, the BOG compressor is activated to control the internal pressure of the liquefied gas storage tank to be within a certain pressure range. is doing. This is because the liquefied gas storage tank is provided with a safety valve to prevent expansion and destruction of the airtight structure due to excessive increase in the internal pressure of the liquefied gas storage tank, and this safety valve operates to boil off gas from the airtight structure. This is to prevent squirting.

気密式構造物の膨張破壊は、気密式構造物の内圧が大気よりかなり高くなった場合に発生するので、大気圧を基準にして気密式構造物の内圧を計測し、気密式構造物の大気圧を基準にした内圧が気密式構造物の強度から定まる噴出圧力値より大きくなったときに安全弁を動作させるようにしている。また、気密式構造物の内圧が一定の圧力範囲内を維持するようにBOGコンプレッサーを起動して液化ガス貯槽の内圧を制御している。このように、気密式構造物の内圧は大気圧を基準にしたゲージ圧により計測され、安全弁の動作やBOGコンプレッサーの制御に使用している。
特開平4−46300号公報 特開昭57−57999号公報
The expansion failure of an airtight structure occurs when the internal pressure of the airtight structure becomes considerably higher than the atmosphere. Therefore, the internal pressure of the airtight structure is measured based on the atmospheric pressure, and the The safety valve is operated when the internal pressure based on the atmospheric pressure becomes larger than the ejection pressure value determined from the strength of the airtight structure. In addition, the BOG compressor is activated to control the internal pressure of the liquefied gas storage tank so that the internal pressure of the airtight structure is maintained within a certain pressure range. As described above, the internal pressure of the airtight structure is measured by the gauge pressure based on the atmospheric pressure, and is used for the operation of the safety valve and the control of the BOG compressor.
JP-A-4-46300 JP-A-57-57999

ところが、低気圧下では基準となる大気圧が低下することから、液化ガス貯槽内の絶対圧が一定であっても、大気圧を基準にしたゲージ圧は上昇した圧力値となる。このことから、低気圧下では液化ガス貯槽内の絶対圧が変化していないにもかかわらず、圧力計はBOG発生量が増えたように高めの圧力値を示す。従って、BOGコンプレッサーは、液化ガス貯槽の内圧が一定の圧力範囲内になるようにボイルオフガスの排出量を増加させるように制御をするので、BOGコンプレッサーの負荷量が増える。   However, since the reference atmospheric pressure decreases at low pressure, the gauge pressure based on the atmospheric pressure becomes an increased pressure value even if the absolute pressure in the liquefied gas storage tank is constant. For this reason, the pressure gauge shows a high pressure value as the amount of BOG generation increases even though the absolute pressure in the liquefied gas storage tank does not change under low pressure. Therefore, the BOG compressor controls to increase the discharge amount of the boil-off gas so that the internal pressure of the liquefied gas storage tank is within a certain pressure range, so that the load amount of the BOG compressor increases.

ボイルオフガス発生量は、液化ガス貯槽の貯槽入熱(液温)と液化ガス貯槽の絶対圧とに支配されている。液化ガスの受入などが行われない通常時においては、ボイルオフガス発生量は恒常的にほぼ一定量発生しているが、低気圧下ではゲージ圧が高くなることから、液化ガス貯槽内の絶対圧がかなり下がるところまで、ボイルオフガスの排出処理を行わないと液化ガス貯槽のゲージ圧は一定の圧力範囲内に収まらない。   The amount of boil-off gas generation is governed by the storage heat input (liquid temperature) of the liquefied gas storage tank and the absolute pressure of the liquefied gas storage tank. During normal times when liquefied gas is not received, the amount of boil-off gas generated is constantly almost constant, but the gauge pressure increases under low pressure, so the absolute pressure in the liquefied gas storage tank Unless the boil-off gas is discharged until the pressure drops considerably, the gauge pressure of the liquefied gas storage tank cannot be within a certain pressure range.

このため、BOGコンプレッサーの追加起動によりボイルオフガスの排出量を増加しているが、結果として過剰なボイルオフガスの排出処理を行っていることになるので、BOGコンプレッサーの駆動のための動力を無駄に消費してしまっている。このように、低気圧下ではボイルオフガスの排出は過剰となり、動力の無駄な消費となってしまう。   For this reason, the amount of boil-off gas discharged has increased due to the additional activation of the BOG compressor, but as a result, excessive boil-off gas discharge processing has been carried out, so power for driving the BOG compressor wasted. Consumed. In this way, the boil-off gas is excessively discharged under a low pressure, resulting in wasted power consumption.

また、ボイルオフガスの排出処理が過剰処理になると、液化ガス貯槽内の絶対圧が低下する。絶対圧が低下すると、それに伴ってボイルオフガスの発生が促進される。そのため、液化ガス貯槽内の内圧がさらに下がりにくくなり、追加起動したBOGコンプレッサーを長時間運転しなければ、液化ガス貯槽内の内圧が一定の圧力範囲内に収まらないことになり、さらに、BOGコンプレッサーの無駄な動力消費に拍車をかける結果となっている。   In addition, when the boil-off gas discharge process becomes excessive, the absolute pressure in the liquefied gas storage tank decreases. When the absolute pressure decreases, the generation of boil-off gas is promoted accordingly. For this reason, the internal pressure in the liquefied gas storage tank becomes more difficult to decrease, and the internal pressure in the liquefied gas storage tank will not fall within a certain pressure range unless the additionally activated BOG compressor is operated for a long time. Furthermore, the BOG compressor This has spurred unnecessary power consumption.

このように、液化ガス貯槽内の絶対圧が大気圧の変動により変動するので、BOGコンプレッサーの無駄な動力消費が発生し、また、液化ガス貯槽内の液化ガスの安定した状態の管理上も好ましいものではない。   Thus, since the absolute pressure in the liquefied gas storage tank fluctuates due to fluctuations in atmospheric pressure, wasteful power consumption of the BOG compressor occurs, and it is also preferable for managing the stable state of the liquefied gas in the liquefied gas storage tank. It is not a thing.

本発明の目的は、気密式構造物の内圧の絶対圧をほぼ一定値に保つことができ、しかも気密式構造物の内圧と外圧との差圧も所定の制限値内に保つことができる気密式構造物の内圧制御装置及び方法を提供することである。   It is an object of the present invention to maintain an absolute pressure of an internal pressure of an airtight structure at a substantially constant value, and to maintain a differential pressure between an internal pressure and an external pressure of the airtight structure within a predetermined limit value. It is an object to provide an internal pressure control device and method for a formula structure.

請求項1の発明に係わる気密式構造物の内圧制御装置は、気密式構造物の内圧と外圧との差圧を検出する差圧検出器と、気密式構造物の内圧の絶対圧を検出する内圧検出器と、差圧検出器で検出された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、内圧検出器で検出された内圧の絶対圧または差圧検出器で検出された差圧が一定範囲になるように気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、差圧判定手段が不動作状態のときは内圧検出器で検出された内圧の絶対圧を制御手段に出力し差圧判定手段が動作状態のときは差圧検出器で検出された差圧を制御手段に出力する切換手段とを備えたことを特徴とする。   An internal pressure control device for an airtight structure according to the invention of claim 1 detects a differential pressure detector for detecting a differential pressure between an internal pressure and an external pressure of the airtight structure, and detects an absolute pressure of the internal pressure of the airtight structure. An internal pressure detector, a differential pressure determining means that operates when the differential pressure detected by the differential pressure detector deviates from an allowable range, and an absolute pressure of the internal pressure detected by the internal pressure detector or a differential pressure detector The control means for controlling the operation of the internal pressure adjusting device that adjusts the internal pressure of the hermetic structure so that the differential pressure is within a certain range, and the absolute value of the internal pressure detected by the internal pressure detector when the differential pressure judging means is inoperative. And switching means for outputting the differential pressure detected by the differential pressure detector to the control means when the differential pressure determination means is in an operating state.

請求項2の発明に係わる気密式構造物の内圧制御装置は、気密式構造物の内圧の絶対圧を検出する内圧検出器と、気密式構造物の外圧の絶対圧を検出する外圧検出器と、内圧検出器で検出された気密式構造物の内圧の絶対圧と外圧検出器で検出された気密式構造物の外圧の絶対圧との差圧を演算する差圧演算手段と、差圧演算手段で演算された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、内圧検出器で検出された内圧の絶対圧または差圧演算手段で演算された差圧が一定範囲になるように気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、差圧判定手段が不動作状態のときは内圧検出器で検出された内圧の絶対圧を制御手段に出力し差圧判定手段が動作状態のときは差圧演算手段で演算された差圧を制御手段に出力する切換手段とを備えたことを特徴とする。   An internal pressure control device for an airtight structure according to the invention of claim 2 includes an internal pressure detector for detecting an absolute pressure of the internal pressure of the airtight structure, an external pressure detector for detecting an absolute pressure of the external pressure of the airtight structure, Differential pressure calculation means for calculating a differential pressure between the absolute pressure of the internal pressure of the airtight structure detected by the internal pressure detector and the absolute pressure of the external pressure of the airtight structure detected by the external pressure detector; and differential pressure calculation Differential pressure determining means that operates when the differential pressure calculated by the means deviates from an allowable range, and the absolute pressure of the internal pressure detected by the internal pressure detector or the differential pressure calculated by the differential pressure calculating means is within a certain range. The control means for controlling the operation of the internal pressure adjusting device for adjusting the internal pressure of the airtight structure and the absolute pressure of the internal pressure detected by the internal pressure detector are output to the control means when the differential pressure judging means is inoperative. When the pressure determining means is in the operating state, the differential pressure calculated by the differential pressure calculating means is controlled. Characterized by comprising a switching means for outputting to.

請求項3の発明に係わる気密式構造物の内圧制御装置は、気密式構造物の内圧と外圧との差圧を検出する差圧検出器と、気密式構造物の外圧の絶対圧を検出する外圧検出器と、外圧検出器で検出された気密式構造物の外圧の絶対圧と差圧検出器で検出された気密式構造物の外圧と内圧との差圧とに基づいて気密式構造物の内圧の絶対圧を演算する内圧絶対圧演算手段と、差圧検出器で検出された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、内圧絶対圧演算手段で演算された内圧の絶対圧または差圧検出器で検出された差圧が一定範囲になるように気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、差圧判定手段が不動作状態のときは内圧絶対圧演算手段で演算された内圧の絶対圧を制御手段に出力し差圧判定手段が動作状態のときは差圧検出器で検出された差圧を制御手段に出力する切換手段とを備えたことを特徴とする。   An internal pressure control device for an airtight structure according to the invention of claim 3 detects a differential pressure detector for detecting a differential pressure between the internal pressure and the external pressure of the airtight structure, and detects an absolute pressure of the external pressure of the airtight structure. An airtight structure based on the external pressure detector, and the absolute pressure of the external pressure of the airtight structure detected by the external pressure detector and the differential pressure between the external pressure and the internal pressure of the airtight structure detected by the differential pressure detector. The internal pressure calculated by the absolute pressure calculating means, the differential pressure determining means that operates when the differential pressure detected by the differential pressure detector deviates from the allowable range, and the internal pressure calculated by the absolute absolute pressure calculating means The control means for controlling the operation of the internal pressure adjusting device for adjusting the internal pressure of the airtight structure so that the differential pressure detected by the absolute pressure or differential pressure detector is within a certain range, and the differential pressure determining means are in an inoperative state. When the absolute pressure of the internal pressure calculated by the internal pressure absolute pressure calculation means is output to the control means, Means, characterized in that it provided with a switching means for outputting a differential pressure detected by the differential pressure detector to the control means when the operating state.

請求項4の発明に係わる気密式構造物の内圧制御装置は、請求項1ないし3のいずれか一の発明において、制御手段は、内圧調整装置の運転制御に代えて、気密式構造物の内圧の過剰上昇に伴う気密式構造物の膨張破壊を防止するための圧力放出装置を開閉操作することを特徴とする。   According to a fourth aspect of the present invention, there is provided an internal pressure control device for an airtight structure according to any one of the first to third aspects, wherein the control means replaces the operation control of the internal pressure adjusting device with the internal pressure of the airtight structure. It is characterized by opening and closing a pressure release device for preventing expansion and destruction of an airtight structure due to excessive increase of the pressure.

請求項5の発明に係わる気密式構造物の内圧制御方法は、気密式構造物の内圧と外圧との差圧が許容範囲内にあるときは気密式構造物の内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御し、気密式構造物の内圧と外圧との差圧が許容範囲を逸脱したときは気密式構造物の内圧と外圧との差圧が一定範囲内になるように気密式構造物の内圧を制御することを特徴とする。   The internal pressure control method for an airtight structure according to the invention of claim 5 is such that when the differential pressure between the internal pressure and the external pressure of the airtight structure is within an allowable range, the absolute pressure of the internal pressure of the airtight structure is within a certain range. The internal pressure of the airtight structure is controlled so that the differential pressure between the internal pressure and the external pressure of the airtight structure deviates from the allowable range. Thus, the internal pressure of the airtight structure is controlled.

請求項6の発明に係わる気密式構造物の内圧制御方法は請求項4の発明において、気密式構造物の内圧と外圧との差圧の許容範囲は、気密式構造物が膨張破壊あるいは縮小破壊を起こさない設計圧力の範囲であり、気密式構造物の内圧の絶対圧の一定範囲、気密式構造物の内圧と外圧との差圧の一定範囲は、気密構造物内の液化ガスを管理する際の目標値に余裕値を見込んだ範囲であることを特徴とする。   The internal pressure control method for an airtight structure according to the invention of claim 6 is the invention of claim 4, wherein the allowable range of the pressure difference between the internal pressure and the external pressure of the airtight structure is that the airtight structure is expanded or contracted. The range of the design pressure that does not cause the internal pressure of the airtight structure, the constant range of the absolute pressure of the airtight structure, and the constant range of the differential pressure between the internal pressure and the external pressure of the airtight structure manage the liquefied gas in the airtight structure. It is a range in which a margin value is expected for the target value at the time.

本発明によれば、通常時は、気密式構造物の内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御するので、通常時においては、気密式構造物の内圧の絶対圧をほぼ一定値に保つことができ、気密式構造物内のガスの無駄な排出や吸入を防止できる。また、気密式構造物の内圧と外圧との差圧が許容範囲を逸脱したときは、気密式構造物の内圧と外圧との差圧が一定範囲内になるように気密式構造物の内圧を制御するので、気密式構造物の内圧と外圧との差圧を所定の制限値内に保つことができる。従って、気密式構造物を適正に管理できる。   According to the present invention, since the internal pressure of the airtight structure is controlled so that the absolute pressure of the internal pressure of the airtight structure is in a certain range during normal time, the absolute pressure of the internal pressure of the airtight structure is normal during normal time. The pressure can be maintained at a substantially constant value, and wasteful exhaust and inhalation of gas in the airtight structure can be prevented. In addition, when the differential pressure between the internal pressure and the external pressure of the airtight structure deviates from the allowable range, the internal pressure of the airtight structure is adjusted so that the differential pressure between the internal pressure and the external pressure of the airtight structure is within a certain range. Since the control is performed, the differential pressure between the internal pressure and the external pressure of the airtight structure can be maintained within a predetermined limit value. Therefore, the airtight structure can be properly managed.

本発明の実施の形態に係わる気密式構造物の内圧制御装置の構成図。The block diagram of the internal-pressure control apparatus of the airtight structure concerning embodiment of this invention. 本発明の実施の形態における差圧検出器で検出された差圧P1と内圧検出器で検出された内圧の絶対圧P2が共に目標値Pの一定範囲ΔP内にある場合の説明図。Illustration of when within a predetermined range [Delta] P R absolute pressure P2 are both the target value P R of the internal pressure detected by the differential pressure P1 and the internal pressure detector detected by the differential pressure detector in the embodiment of the present invention. 本発明の実施の形態における差圧検出器で検出された差圧P1が目標値Pの一定範囲ΔPを逸脱した場合の説明図。Explanatory diagram of the case where the differential pressure P1 detected by the differential pressure detector in the embodiment of the present invention deviates from the predetermined range [Delta] P R of the target value P R. 本発明の実施の形態における差圧検出器で検出された差圧P1がその許容範囲ΔPを逸脱した場合の説明図。Explanatory diagram of the case where the differential pressure P1 detected by the differential pressure detector in the embodiment of the present invention deviates the allowable range [Delta] P A. 本発明の実施の形態における内圧検出器で検出された内圧の絶対圧P2が目標値Pの一定範囲ΔPを逸脱した場合の説明図。Illustration of the absolute pressure P2 of the detected internal pressure in the pressure detector in the embodiment of the present invention deviates from the predetermined range [Delta] P R of the target value P R. 本発明の実施の形態における気密式構造物の内圧制御装置の他の一例を示す構成図。The block diagram which shows another example of the internal pressure control apparatus of the airtight structure in embodiment of this invention. 本発明の実施の形態における気密式構造物の内圧制御装置のさらに別の他の一例を示す構成図。The block diagram which shows another another example of the internal pressure control apparatus of the airtight structure in embodiment of this invention. 本発明の実施の形態に係わる気密式構造物の内圧制御方法の一例を示すフローチャート。The flowchart which shows an example of the internal pressure control method of the airtight structure concerning embodiment of this invention.

符号の説明Explanation of symbols

11…液化ガス貯槽、12…ボイルオフガス系統、13…BOGコンプレッサ、14…差圧検出器、15…内圧検出器、16…制御装置、17…差圧判定手段、18…制御手段、19…切換手段、20…圧力放出装置、21…外圧検出器、22…差圧検算手段、23…内圧絶対圧演算手段 DESCRIPTION OF SYMBOLS 11 ... Liquefied gas storage tank, 12 ... Boil-off gas system, 13 ... BOG compressor, 14 ... Differential pressure detector, 15 ... Internal pressure detector, 16 ... Control apparatus, 17 ... Differential pressure determination means, 18 ... Control means, 19 ... Switching Means 20 ... Pressure release device, 21 ... External pressure detector, 22 ... Differential pressure calculation means, 23 ... Internal pressure absolute pressure calculation means

以下、本発明の実施の形態を説明する。図1は本発明の実施の形態に係わる気密式構造物の内圧制御装置の構成図である。図1では気密式構造物としてLNG(Liquefied natural gas)を貯蔵する地下式の液化ガス貯槽に適用した場合を示しており、内圧調整装置として気密式構造物内のガスを外部に排出する2台のBOG(ボイルオフガス)コンプレッサを備えたものを示している。   Embodiments of the present invention will be described below. FIG. 1 is a configuration diagram of an internal pressure control device for an airtight structure according to an embodiment of the present invention. Fig. 1 shows the case where it is applied to an underground liquefied gas storage tank that stores LNG (Liquefied natural gas) as an airtight structure, and two units that discharge the gas in the airtight structure to the outside as internal pressure regulators 1 with a BOG (boil-off gas) compressor.

液化ガス貯槽11は大気を完全に遮断するとともに、液化ガス貯槽11の内層と外層との間には保冷材を充填のうえ窒素にて大気圧以上に加圧されている。このため、液化ガス貯槽11内は大気圧変化の影響を受けにくい構造となっており、液化ガス貯槽11内では大気圧の影響をさほど意識する必要がない。   The liquefied gas storage tank 11 completely shuts off the atmosphere, and is filled with a cold insulating material between the inner layer and the outer layer of the liquefied gas storage tank 11 and pressurized with nitrogen to an atmospheric pressure or higher. For this reason, the inside of the liquefied gas storage tank 11 has a structure that is not easily affected by changes in atmospheric pressure, and it is not necessary to be aware of the influence of atmospheric pressure in the liquefied gas storage tank 11.

液化ガス貯槽11にはボイルオフガス(BOG)系統12及び圧力放出装置20が設けられている。ボイルオフガス系統12は液化ガス貯槽11に発生するボイルオフガスをBOGコンプレッサ13a、13bにより図示省略の気化ガス系統に排出する。気化ガス系統は、液化ガス貯槽11に貯蔵されたLNGを気化器で気化して、その気化ガスを例えばボイラに供給する系統である。   The liquefied gas storage tank 11 is provided with a boil-off gas (BOG) system 12 and a pressure release device 20. The boil-off gas system 12 discharges the boil-off gas generated in the liquefied gas storage tank 11 to a vaporized gas system (not shown) by the BOG compressors 13a and 13b. The vaporized gas system is a system that vaporizes LNG stored in the liquefied gas storage tank 11 with a vaporizer and supplies the vaporized gas to, for example, a boiler.

圧力放出装置20は、液化ガス貯槽11の内圧と外圧との差圧が大きくなり、液化ガス貯槽11がその差圧により破壊することを防止するために設けられている。正圧方向に差圧が大きくなった場合には、圧力放出装置20を開いて液化ガス貯槽11内のボイルオフガスを排出する。圧力放出装置20は、例えば、安全弁や圧力調整弁であり、機械式及び電気式の双方を含む。   The pressure release device 20 is provided to prevent the liquefied gas storage tank 11 from being broken due to the differential pressure between the internal pressure and the external pressure of the liquefied gas storage tank 11 becoming large. When the differential pressure increases in the positive pressure direction, the pressure release device 20 is opened and the boil-off gas in the liquefied gas storage tank 11 is discharged. The pressure release device 20 is, for example, a safety valve or a pressure adjustment valve, and includes both a mechanical type and an electric type.

また、液化ガス貯槽11には、液化ガス貯槽11の内圧と外圧(大気圧)との差圧を検出する差圧検出器14を設け、また、液化ガス貯槽11の内圧の絶対圧(標準気圧との差分も含む)を検出する内圧検出器15をボイルオフガス系統12に設けている。図1では、内圧検出器15をボイルオフガス系統12に設けた場合を示しているが、液化ガス貯槽11に設けるようにしてもよい。   The liquefied gas storage tank 11 is provided with a differential pressure detector 14 for detecting a differential pressure between the internal pressure and the external pressure (atmospheric pressure) of the liquefied gas storage tank 11, and the absolute pressure (standard atmospheric pressure) of the internal pressure of the liquefied gas storage tank 11. The internal pressure detector 15 is detected in the boil-off gas system 12. Although FIG. 1 shows a case where the internal pressure detector 15 is provided in the boil-off gas system 12, it may be provided in the liquefied gas storage tank 11.

差圧検出器14で検出された液化ガス貯槽11の内圧と外圧との差圧P1及び内圧検出器15で検出された液化ガス貯槽11の内圧の絶対圧P2は制御装置16に入力される。制御装置16は、差圧判定手段17と制御手段18と切換手段19とを備えている。なお、制御装置16で扱う液化ガス貯槽11の内圧の絶対圧P2は、絶対の真空を基準とした圧力を用いてもよいし、標準気圧(1013.25hPa)を基準として換算した差圧を用いてもよい。以下の説明では、標準気圧を基準として換算した差圧を用いた場合で説明する。   The differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 detected by the differential pressure detector 14 and the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 detected by the internal pressure detector 15 are input to the controller 16. The control device 16 includes a differential pressure determination unit 17, a control unit 18, and a switching unit 19. The absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 handled by the control device 16 may be a pressure based on an absolute vacuum, or a differential pressure converted based on a standard atmospheric pressure (101.25 hPa). May be. In the following description, a case where a differential pressure converted with reference to the standard atmospheric pressure is used will be described.

差圧判定手段17は、差圧検出器14で検出された差圧が許容範囲を逸脱したとき動作し、必要に応じて警報出力をすると共に動作状態と不動作状態とにより切換手段19を切り換える。すなわち、差圧判定手段17が不動作状態のときは内圧検出器15で検出された内圧の絶対圧P2が制御手段18に出力されるように切換手段19を切り換え、差圧判定手段17が動作状態のときは差圧検出器14で検出された差圧P1が制御手段18に出力されるように切換手段19を切り換える。また、動作状態のときは必要に応じて警報を出力する。   The differential pressure determination means 17 operates when the differential pressure detected by the differential pressure detector 14 deviates from the allowable range, outputs an alarm as necessary, and switches the switching means 19 depending on the operating state and the non-operating state. . That is, when the differential pressure determination means 17 is not operating, the switching means 19 is switched so that the absolute pressure P2 of the internal pressure detected by the internal pressure detector 15 is output to the control means 18, and the differential pressure determination means 17 operates. In the state, the switching means 19 is switched so that the differential pressure P1 detected by the differential pressure detector 14 is output to the control means 18. In the operation state, an alarm is output as necessary.

制御手段18は、切換手段19の切り換えにより入力される内圧検出器15で検出された内圧の絶対圧P2または差圧検出器14で検出された差圧P1が一定範囲になるように、BOGコンプレッサ13a、13bを運転制御し、液化ガス貯槽11内のボイルオフガスを気化ガス系統に排出する。   The control means 18 controls the BOG compressor so that the absolute pressure P2 of the internal pressure detected by the internal pressure detector 15 input by switching of the switching means 19 or the differential pressure P1 detected by the differential pressure detector 14 falls within a certain range. Operation control of 13a, 13b is carried out, and the boil-off gas in the liquefied gas storage tank 11 is discharged | emitted to a vaporization gas system | strain.

図2は、差圧検出器14で検出された差圧P1及び内圧検出器15で検出された内圧の絶対圧P2が共に目標値Pの一定範囲ΔP内にある場合を示している。図2中のPは圧力放出装置の噴出圧力値、PAUは差圧P1の許容範囲の上限値、Pは目標値、PALは差圧P1の許容範囲の下限値、Pは圧力放出装置の吸込圧力値、ΔPは目標値Pの一定範囲、ΔPは差圧P1の許容範囲である。差圧P1の許容範囲ΔPは、液化ガス貯槽11(気密式構造物)が膨張破壊あるいは縮小破壊を起こさない設計圧力の範囲である。例えば、液化ガス貯槽11には、液化ガス貯槽11が膨張破壊あるいは縮小破壊をしないように圧力放出装置が設けられ、その噴出圧力値Pや吸込圧力値余裕値Pが設定されるが、液化ガス貯槽11の設計圧力は、圧力放出装置の噴出圧力値Pや吸込圧力値余裕値Pに余裕値を見込んで定められる。また、目標値Pの一定範囲ΔPは、液化ガス貯槽11内の液化ガスを管理する際の目標値Pに余裕値を見込んだ範囲である。Figure 2 illustrates the case where it is within a predetermined range [Delta] P R absolute pressure P2 are both the target value P R of the detected internal pressure in the differential pressure P1 and the internal pressure detector 15 detected by the differential pressure detector 14. Ejection pressure value P U pressure release device in FIG. 2, the upper limit of the allowable range of P AU differential pressure P1, P R is the target value, the lower limit of the allowable range of P AL differential pressure P1, P L is suction pressure value of the pressure release device, [Delta] P R is a range of target values P R, the [Delta] P a is the acceptable range of differential pressure P1. Tolerance [Delta] P A of the pressure difference P1 is liquefied gas storage tank 11 (airtight structure) is in the range of design pressure which does not cause swelling destruction or reduced breakdown. For example, the liquefied gas storage tank 11, the liquefied gas storage tank 11 is a pressure release device so as not to expansion destroyed or reduced breakdown is provided, although the ejection pressure value P U and the suction pressure value allowance P L is set, design pressure of the liquefied gas storage tank 11 is defined by an allowance value to the ejection pressure value P U and the suction pressure value allowance P L of the pressure release device. Also, a range [Delta] P R of the target value P R is the range that an allowance value to the target value P R in managing liquefied gas in the liquefied gas storage tank 11.

液化ガス貯槽11の内圧と外圧との差圧P1及び液化ガス貯槽11の内圧の絶対圧P2が共に目標値Pの一定範囲ΔP内にある場合には、差圧判定手段17は不動作状態であり、切換手段19は内圧検出器15側である。従って、制御手段18は内圧検出器15で検出された内圧の絶対圧P2を入力している。この状態では、液化ガス貯槽11の内圧の絶対圧P2は目標値Pの一定範囲ΔP内にあるので、BOGコンプレッサ13a、13bは、液化ガス貯槽11で通常状態で発生する一定量のボイルオフガスを排出し、余分なボイルオフガスを排出していない。If the absolute pressure P2 in the internal pressure of the differential pressure P1 and liquefied gas storage tank 11 of the internal pressure and the external pressure of the liquefied gas storage tank 11 are both in a range ΔP in R of the target value P R is the pressure difference determination means 17 inoperative The switching means 19 is on the internal pressure detector 15 side. Therefore, the control means 18 inputs the absolute pressure P2 of the internal pressure detected by the internal pressure detector 15. In this state, since the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 is within a certain range [Delta] P R of the target value P R, BOG compressor 13a, 13b is, a certain amount of boil-off that occurs in the normal state in the liquefied gas storage tank 11 The gas is exhausted and no excess boil-off gas is exhausted.

この状態で、大気圧が下がる方向に変動すると、液化ガス貯槽11の内圧の絶対圧P2はそのままで変動しないが、差圧検出器14で検出された差圧P1は見かけ上大きくなる。そして、図3に示すように、差圧検出器14で検出された差圧P1が目標値Pの一定範囲ΔPを逸脱したとする。In this state, if the atmospheric pressure changes in the decreasing direction, the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 does not change as it is, but the differential pressure P1 detected by the differential pressure detector 14 is apparently increased. Then, as shown in FIG. 3, the differential pressure P1 detected by the pressure difference detector 14 is assumed to deviate from the predetermined range [Delta] P R of the target value P R.

この場合、差圧検出器14で検出された差圧P1はその許容範囲ΔPを逸脱していないので、差圧判定手段17は不動作状態であり、切換手段19は内圧検出器15側のままである。従って、この場合も制御手段18は内圧検出器15で検出された内圧の絶対圧P2を入力しており、液化ガス貯槽11の内圧の絶対圧P2は目標値Pの一定範囲ΔP内にあるので、BOGコンプレッサ13a、13bは、液化ガス貯槽11で通常状態で発生する一定量のボイルオフガスを排出し、余分なボイルオフガスを排出しない。このことから、無駄なボイルオフガスの排出が防止できる。In this case, the differential pressure P1 detected by the differential pressure detector 14 does not deviate from the permissible range [Delta] P A, the differential pressure determining means 17 is inoperative, the switching means 19 of the pressure detector 15 side It remains. Therefore, this case also the control unit 18 is to input an absolute pressure P2 of the detected internal pressure in the pressure detector 15, an absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 is within a predetermined range [Delta] P R of the target value P R Therefore, the BOG compressors 13a and 13b discharge a certain amount of boil-off gas generated in the normal state in the liquefied gas storage tank 11, and do not discharge excess boil-off gas. Thus, wasteful boil-off gas can be prevented from being discharged.

次に、さらに、大気圧が下がる方向に変動すると、液化ガス貯槽11の内圧の絶対圧P2はそのままで変動しないが、差圧検出器14で検出された差圧P1は見かけ上さらに大きくなる。そして、図4に示すように、差圧検出器14で検出された差圧P1がその許容範囲ΔPを逸脱したとする。Next, when the atmospheric pressure further changes, the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 does not change as it is, but the differential pressure P1 detected by the differential pressure detector 14 appears to be further increased. Then, as shown in FIG. 4, the differential pressure P1 detected by the pressure difference detector 14 is assumed to deviate from the permissible range [Delta] P A.

この場合、差圧検出器14で検出された差圧P1はその許容範囲ΔPを逸脱しているので、差圧判定手段17は動作状態となり、切換手段19は差圧検出器14側に切り換える。従って、この場合は制御手段18は差圧検出器14で検出された液化ガス貯槽11の内圧と外圧との差圧P1を入力することになる。この場合、制御手段18は液化ガス貯槽11の内圧と外圧との差圧P1が目標値Pの一定範囲ΔP内になるようにBOGコンプレッサ13a、13bの運転制御を開始する。このBOGコンプレッサ13a、13bの運転制御により、液化ガス貯槽11で通常状態で発生する一定量のボイルオフガスより多めのボイルオフガスを排出することになる。In this case, since the differential pressure P1 detected by the pressure difference detector 14 is departing from the tolerance [Delta] P A, the differential pressure determining means 17 is in an operating state, the switching means 19 switches the pressure difference detector 14 side . Accordingly, in this case, the control means 18 inputs the differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 detected by the differential pressure detector 14. In this case, the control unit 18 starts the BOG compressor 13a, 13b operation control of such pressure difference P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 is within a predetermined range [Delta] P R of the target value P R. By controlling the operation of the BOG compressors 13a and 13b, more boil-off gas is discharged than a certain amount of boil-off gas generated in the normal state in the liquefied gas storage tank 11.

そして、液化ガス貯槽11の内圧と外圧との差圧P1がその許容範囲ΔP内(図3の状態)となると、差圧判定手段17は不動作状態となり、切換手段19は内圧検出器15側に切り換える。これにより、制御手段17は内圧検出器15で検出された内圧の絶対圧P2を入力し、液化ガス貯槽11の内圧の絶対圧P2は目標値Pの一定範囲ΔP内にあるので、BOGコンプレッサ13a、13bは、液化ガス貯槽11で通常状態で発生する一定量のボイルオフガスを排出し、余分なボイルオフガスを排出しない通常運転に戻る。When the pressure difference P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 is within the allowable range [Delta] P A (the state of FIG. 3), the differential pressure determining means 17 is inoperative, the switching means 19 pressure detector 15 Switch to the side. Thus, the control unit 17 inputs the absolute pressure P2 of the internal pressure detected by the pressure detector 15, the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 is within a certain range [Delta] P R of the target value P R, BOG The compressors 13a and 13b discharge a certain amount of boil-off gas generated in the normal state in the liquefied gas storage tank 11, and return to normal operation without discharging excess boil-off gas.

このように、差圧検出器14で検出された差圧P1がその許容範囲ΔPを逸脱したときに、液化ガス貯槽11で通常状態で発生する一定量のボイルオフガスより多めのボイルオフガスを排出するのは、液化ガス貯槽11の内圧と外圧との差圧P1が圧力放出装置20の噴出圧力値Pを越え、液化ガス貯槽11の圧力放出装置からボイルオフガスが噴出するのを防止するためである。Thus the discharge, when the differential pressure P1 detected by the differential pressure detector 14 departing from the permissible range [Delta] P A, a generous BOG than a certain amount of boil-off gas generated in the normal state in the liquefied gas storage tank 11 for, since the pressure difference P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 exceeds the ejection pressure value P U of the pressure relief device 20, the boil-off gas from the pressure relief device of the liquefied gas storage tank 11 is prevented from ejecting It is.

次に、図2に示したように差圧検出器14で検出された差圧P1及び内圧検出器15で検出された内圧の絶対圧P2が共に目標値Pの一定範囲ΔP内にある状態から、図5に示すように、差圧検出器14で検出された差圧P1及び内圧検出器15で検出された内圧の絶対圧P2が共に目標値Pの一定範囲ΔPを逸脱した場合には、差圧検出器14で検出された差圧P1はその許容範囲ΔPを逸脱していないので、差圧判定手段17は不動作状態であり、切換手段19は内圧検出器15側のままであるが、内圧検出器15で検出された内圧の絶対圧P2が目標値Pの一定範囲ΔPを逸脱しているので、制御手段18は液化ガス貯槽11の内圧の絶対圧P2が目標値Pの一定範囲ΔP内になるように、BOGコンプレッサ13a、13bを運転制御する。これにより、BOGコンプレッサ13a、13bからボイルオフガスが排出され、液化ガス貯槽11の内圧を目標値Pの一定範囲ΔP内に制御する。Next, are both within a predetermined range [Delta] P R of the target value P R absolute pressure P2 of the detected internal pressure in the differential pressure P1 and the internal pressure detector 15 detected by the pressure difference detector 14 as shown in FIG. 2 from the state, as shown in FIG. 5, deviates from the predetermined range [Delta] P R absolute pressure P2 are both the target value P R of the detected internal pressure in the differential pressure P1 and the internal pressure detector 15 detected by the differential pressure detector 14 in this case, since the differential pressure differential pressure P1 detected by the can 14 does not deviate from the permissible range [Delta] P a, the differential pressure determining means 17 is inoperative, the switching means 19 pressure detector 15 side but it remains, since the absolute pressure P2 of the detected internal pressure in the pressure detector 15 is out of the predetermined range [Delta] P R of the target value P R, the control means 18 absolute pressure of the internal pressure of the liquefied gas storage tank 11 P2 as but falls within a certain range [Delta] P R of the target value P R, BOG compressor 1 Operation control of 3a, 13b is performed. Thus, BOG compressor 13a, 13b boil off gas discharged from, for controlling the internal pressure of the liquefied gas storage tank 11 to a predetermined range ΔP in R of the target value P R.

以上の説明では、差圧判定手段17で液化ガス貯槽11の内圧と外圧との差圧P1が許容範囲を逸脱したか否かを判定し、差圧の許容範囲を逸脱したときは切換手段19で切り換えを行いBOGコンプレッサ13a、13bを運転制御するようにしたが、液化ガス貯槽11の内圧と外圧との差圧P1に代えて、液化ガス貯槽11の内圧の絶対圧と液化ガス貯槽11の外圧の絶対圧との差圧が許容範囲を逸脱したときは切換手段19で切り換えを行いBOGコンプレッサ13a、13bを運転制御するようにしてもよい。   In the above description, the differential pressure determination means 17 determines whether or not the differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 has deviated from the allowable range. The BOG compressors 13a and 13b are operated and controlled, but instead of the differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11, the absolute pressure of the internal pressure of the liquefied gas storage tank 11 and the liquefied gas storage tank 11 are controlled. When the differential pressure between the external pressure and the absolute pressure deviates from the allowable range, the switching means 19 may perform switching so as to control the BOG compressors 13a and 13b.

図6は、その場合の液化ガス貯槽11の内圧制御装置の一例を示す構成図である。図1と同一要素には同一符号を付し重複する説明は省略する。図6に示すように、液化ガス貯槽11の外圧の絶対圧P3を検出する外圧検出器21を設け、この外圧検出器21で検出された液化ガス貯槽11の外圧の絶対圧P3を内圧検出器15で検出された液化ガス貯槽11の内圧の絶対圧P2とともに、制御装置16の差圧演算手段22に入力する。差圧演算手段22は、内圧検出器15で検出された液化ガス貯槽11の内圧の絶対圧と外圧検出器21で検出された液化ガス貯槽11の外圧の絶対圧との差圧P1を演算し、その差圧を差圧判定手段17に出力する。また、切換手段19を介して制御手段18に出力する。   FIG. 6 is a configuration diagram showing an example of an internal pressure control device of the liquefied gas storage tank 11 in that case. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 6, an external pressure detector 21 for detecting the absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 is provided, and the absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 detected by the external pressure detector 21 is detected as an internal pressure detector. The absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 detected at 15 is input to the differential pressure calculation means 22 of the control device 16. The differential pressure calculation means 22 calculates a differential pressure P1 between the absolute pressure of the internal pressure of the liquefied gas storage tank 11 detected by the internal pressure detector 15 and the absolute pressure of the external pressure of the liquefied gas storage tank 11 detected by the external pressure detector 21. The differential pressure is output to the differential pressure determination means 17. Further, it is output to the control means 18 via the switching means 19.

また、以上の説明では、液化ガス貯槽11の内圧の絶対圧P2は内圧検出器15で検出するようにしたが、液化ガス貯槽11の外圧の絶対圧P3を検出する外圧検出器21を設け、差圧検出器14で検出した液化ガス貯槽11の内圧と外圧との差圧P1と、外圧検出器21で検出した液化ガス貯槽11の外圧の絶対圧P3とから液化ガス貯槽11の内圧の絶対圧P2を求めるようにしてもよい。   In the above description, the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 is detected by the internal pressure detector 15, but an external pressure detector 21 for detecting the absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 is provided, The absolute pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 detected by the differential pressure detector 14 and the absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 detected by the external pressure detector 21 are absolute of the internal pressure of the liquefied gas storage tank 11. The pressure P2 may be obtained.

図7は、その場合の液化ガス貯槽11の内圧制御装置の一例を示す構成図である。図1と同一要素には同一符号を付し重複する説明は省略する。図7に示すように、液化ガス貯槽11の外圧の絶対圧P3を検出する外圧検出器21を設け、この外圧検出器21で検出された液化ガス貯槽11の外圧の絶対圧P3は差圧検出器14で検出された液化ガス貯槽11の内圧と外圧との差圧P1とともに、制御装置16の内圧絶対圧演算手段23に入力される。   FIG. 7 is a configuration diagram showing an example of an internal pressure control device of the liquefied gas storage tank 11 in that case. The same elements as those in FIG. 1 are denoted by the same reference numerals, and redundant description is omitted. As shown in FIG. 7, an external pressure detector 21 that detects an absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 is provided, and the absolute pressure P3 of the external pressure of the liquefied gas storage tank 11 detected by the external pressure detector 21 is detected as a differential pressure. The differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 detected by the vessel 14 is input to the internal pressure absolute pressure calculating means 23 of the control device 16.

内圧絶対圧演算手段23は、外圧検出器21で検出された液化ガス貯槽11の外圧の絶対圧と、差圧検出器14で検出された液化ガス貯槽11の外圧と内圧との差圧P1とに基づいて、液化ガス貯槽11の内圧の絶対圧P2を演算し、切換手段19を介して制御手段18に出力する。   The internal pressure absolute pressure calculating means 23 includes a differential pressure P1 between the absolute pressure of the external pressure of the liquefied gas storage tank 11 detected by the external pressure detector 21 and the external pressure and the internal pressure of the liquefied gas storage tank 11 detected by the differential pressure detector 14. Based on the above, the absolute pressure P2 of the internal pressure of the liquefied gas storage tank 11 is calculated and output to the control means 18 via the switching means 19.

一方、液化ガス貯槽11の内圧と外圧との差圧P1は差圧判定手段17に入力され、液化ガス貯槽11の内圧と外圧との差圧P1が許容範囲を逸脱したか否かを判定する。そして、差圧P1が許容範囲を逸脱していないときは、切換手段19を内圧絶対圧演算手段23側とし、差圧P1が許容範囲を逸脱したときは、切換手段19を差圧検出器14側とする。   On the other hand, the differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 is input to the differential pressure determination means 17, and it is determined whether or not the differential pressure P1 between the internal pressure and the external pressure of the liquefied gas storage tank 11 deviates from the allowable range. . When the differential pressure P1 does not deviate from the allowable range, the switching means 19 is set to the internal pressure absolute pressure calculating means 23 side. When the differential pressure P1 deviates from the allowable range, the switching means 19 is set to the differential pressure detector 14. Let it be the side.

また、制御手段18は内圧調整装置を運転制御して液化ガス貯槽11の内圧を調整するようにしたが、内圧調整装置の運転制御に代えて、液化ガス貯槽11の圧力放出装置を開閉操作するようにしてもよい。液化ガス貯槽11の内圧が過剰に上昇し一定範囲を逸脱したときは圧力放出装置を開き大気中にボイルオフガスを放出し、一定範囲内となったときは圧力放出装置を閉じ、液化ガス貯槽11の内圧を調整する。   Further, the control means 18 controls the operation of the internal pressure adjusting device to adjust the internal pressure of the liquefied gas storage tank 11. However, instead of the operation control of the internal pressure adjusting device, the control means 18 opens and closes the pressure release device of the liquefied gas storage tank 11. You may do it. When the internal pressure of the liquefied gas storage tank 11 rises excessively and deviates from a certain range, the pressure release device is opened to release the boil-off gas into the atmosphere. Adjust the internal pressure.

また、大気圧が低下した場合について説明したが、大気圧が上昇した場合にも同様に、差圧判定手段17で液化ガス貯槽11の内圧と外圧との差圧P1が許容範囲を逸脱したか否かを判定し、差圧の許容範囲を逸脱したときは切換手段19で切り換えを行いBOGコンプレッサ13a、13bを運転制御し、気密式構造物の内圧を調整する。内圧調整装置としては、BOGコンプレッサ13a、13bに代えてファンやブロワーを用いてもよい。   Moreover, although the case where atmospheric pressure fell was demonstrated, when atmospheric pressure rose similarly, whether the pressure difference P1 of the internal pressure of the liquefied gas storage tank 11 and an external pressure deviated from the tolerance | permissible range by the differential pressure | voltage determination means 17 similarly. When the pressure difference deviates from the allowable range, the switching means 19 performs switching to control the operation of the BOG compressors 13a and 13b to adjust the internal pressure of the airtight structure. As the internal pressure adjusting device, a fan or a blower may be used instead of the BOG compressors 13a and 13b.

次に、図8は本発明の実施の形態に係わる気密式構造物の内圧制御方法の一例を示すフローチャートである。まず、気密式構造物の内圧と外圧との差圧を求める(S1)。気密式構造物の内圧と外圧との差圧は、気密式構造物の内圧と外圧との差圧を検出する差圧検出器から求めるようにしてもよいし、気密式構造物の内圧の絶対圧を検出する内圧検出器で検出された内圧の絶対圧と、気密式構造物の外圧の絶対圧を検出する外圧検出器で検出された外圧の絶対圧との差を演算して求めても良い。   Next, FIG. 8 is a flowchart showing an example of an internal pressure control method for an airtight structure according to an embodiment of the present invention. First, a differential pressure between the internal pressure and the external pressure of the airtight structure is obtained (S1). The differential pressure between the internal pressure and the external pressure of the airtight structure may be obtained from a differential pressure detector that detects the differential pressure between the internal pressure and the external pressure of the airtight structure, or the absolute pressure of the internal pressure of the airtight structure. The difference between the absolute pressure of the internal pressure detected by the internal pressure detector that detects the pressure and the absolute pressure of the external pressure detected by the external pressure detector that detects the absolute pressure of the external pressure of the airtight structure can be calculated. good.

次に、気密式構造物の内圧と外圧との差圧が許容範囲内にあるか否かを判定する(S2)。ここで気密式構造物の内圧と外圧との差圧の許容範囲は、前述したように、例えば、気密式構造物の設計圧力により決められ、気密式構造物の膨張破壊や縮小破壊を防止するための圧力放出装置の噴出圧力や吸込圧力に余裕値を見込んで定められる。   Next, it is determined whether or not the differential pressure between the internal pressure and the external pressure of the airtight structure is within an allowable range (S2). Here, as described above, the allowable range of the pressure difference between the internal pressure and the external pressure of the airtight structure is determined by, for example, the design pressure of the airtight structure, and prevents expansion failure and contraction failure of the airtight structure. Therefore, the ejection pressure and the suction pressure of the pressure release device are determined in consideration of a margin value.

そして、気密式構造物の内圧と外圧との差圧が許容範囲内にあるときは気密式構造物の内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御する(S3)。一方、気密式構造物の内圧と外圧との差圧が許容範囲を逸脱したときは、気密式構造物の内圧の絶対圧に代えて、気密式構造物の内圧と外圧との差圧が一定範囲内になるように気密式構造物の内圧を制御する(S4)。   Then, when the pressure difference between the internal pressure and the external pressure of the airtight structure is within the allowable range, the internal pressure of the airtight structure is controlled so that the absolute pressure of the internal pressure of the airtight structure is within a certain range (S3). . On the other hand, when the differential pressure between the internal pressure and the external pressure of the airtight structure deviates from the allowable range, the differential pressure between the internal pressure and the external pressure of the airtight structure is constant instead of the absolute pressure of the internal pressure of the airtight structure. The internal pressure of the airtight structure is controlled so as to be within the range (S4).

この場合の気密式構造物の内圧の一定の範囲や気密式構造物の内圧と外圧との差圧の一定範囲は、気密式構造物内のガスを管理する際の目標値に余裕値を見込んだ範囲として定められる。これにより、目標値の近傍値に制御されることになる。   In this case, a certain range of the internal pressure of the hermetic structure and a certain range of the differential pressure between the internal pressure and the external pressure of the hermetic structure allow for a margin for the target value when managing the gas in the hermetic structure. It is determined as a range. As a result, the value is controlled to be close to the target value.

本発明の実施の形態によれば、通常時は、気密式構造物の内圧の制御に使用する圧力として、実際の大気圧を基準としたゲージ圧(差圧P1)に代えて、大気圧の変動の影響を受けない絶対圧P2を用いるので、気密式構造物の内圧の絶対圧をほぼ一定値に保つことができる。従って、大気圧の変動によるガスの無駄な排出や吸入を防止でき、気密式容器内のガスを安定した状態に管理できる。   According to the embodiment of the present invention, in normal times, instead of the gauge pressure (differential pressure P1) based on the actual atmospheric pressure, the pressure used for controlling the internal pressure of the airtight structure is the atmospheric pressure. Since the absolute pressure P2 that is not affected by fluctuations is used, the absolute pressure of the internal pressure of the airtight structure can be maintained at a substantially constant value. Therefore, wasteful discharge and inhalation of gas due to fluctuations in atmospheric pressure can be prevented, and the gas in the hermetic container can be managed in a stable state.

また、気密式構造物の内圧と外圧との差圧が許容範囲を逸脱したときは、気密式構造物の内圧と外圧との差圧が一定範囲内になるように気密式構造物の内圧を制御するので、気密式構造物の内圧と外圧との差圧を所定の制限値内に保つことができる。従って、大型台風の通過などで異常に大気圧が低下した場合であっても、気密式構造物の内圧と外圧(大気圧)との差圧が圧力放出装置の噴出圧力値まで大きくなることを防止できる。   In addition, when the differential pressure between the internal pressure and the external pressure of the airtight structure deviates from the allowable range, the internal pressure of the airtight structure is adjusted so that the differential pressure between the internal pressure and the external pressure of the airtight structure is within a certain range. Since the control is performed, the differential pressure between the internal pressure and the external pressure of the airtight structure can be maintained within a predetermined limit value. Therefore, even if the atmospheric pressure drops abnormally due to the passage of a large typhoon, etc., the differential pressure between the internal pressure and the external pressure (atmospheric pressure) of the airtight structure increases to the jet pressure value of the pressure release device. Can be prevented.

産業上の利用分野Industrial application fields

本発明は、気密式構造物内のガスを外部に排出する内圧調整装置を備えた場合だけでなく、外部のガスを吸入して内部の圧力を調整する気密式構造物にも適用できる。例えば、東京ドームのようなドーム球場に適用し、内圧調整装置として気密式構造物内の空気(ガス)を外部から吸入する内圧調整装置を備えた場合も同様に適用できる。
The present invention can be applied not only to the case where an internal pressure adjusting device that discharges gas inside an airtight structure to the outside is provided, but also to an airtight structure that adjusts the internal pressure by sucking external gas. For example, the present invention can be applied to a dome stadium such as the Tokyo Dome, and an internal pressure adjusting device that sucks air (gas) in an airtight structure from the outside as an internal pressure adjusting device.

Claims (6)

気密式構造物の内圧と外圧との差圧を検出する差圧検出器と、気密式構造物の内圧の絶対圧を検出する内圧検出器と、前記差圧検出器で検出された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、前記内圧検出器で検出された内圧の絶対圧または前記差圧検出器で検出された差圧が一定範囲になるように前記気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、前記差圧判定手段が不動作状態のときは前記内圧検出器で検出された内圧の絶対圧を前記制御手段に出力し前記差圧判定手段が動作状態のときは前記差圧検出器で検出された差圧を前記制御手段に出力する切換手段とを備えたことを特徴とする気密式構造物の内圧制御装置。   A differential pressure detector for detecting the differential pressure between the internal pressure and the external pressure of the airtight structure, an internal pressure detector for detecting the absolute pressure of the internal pressure of the airtight structure, and the differential pressure detected by the differential pressure detector Differential pressure determination means that operates when the value deviates from an allowable range, and the airtight structure so that the absolute pressure of the internal pressure detected by the internal pressure detector or the differential pressure detected by the differential pressure detector falls within a certain range. Control means for controlling the operation of the internal pressure adjusting device for adjusting the internal pressure of the internal pressure, and when the differential pressure determination means is in an inoperative state, the absolute pressure of the internal pressure detected by the internal pressure detector is output to the control means to output the differential pressure An internal pressure control device for an airtight structure, comprising: switching means for outputting the differential pressure detected by the differential pressure detector to the control means when the determination means is in an operating state. 気密式構造物の内圧の絶対圧を検出する内圧検出器と、気密式構造物の外圧の絶対圧を検出する外圧検出器と、前記内圧検出器で検出された気密式構造物の内圧の絶対圧と前記外圧検出器で検出された気密式構造物の外圧の絶対圧との差圧を演算する差圧演算手段と、前記差圧演算手段で演算された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、前記内圧検出器で検出された内圧の絶対圧または前記差圧演算手段で演算された差圧が一定範囲になるように前記気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、前記差圧判定手段が不動作状態のときは前記内圧検出器で検出された内圧の絶対圧を前記制御手段に出力し前記差圧判定手段が動作状態のときは前記差圧演算手段で演算された差圧を前記制御手段に出力する切換手段とを備えたことを特徴とする気密式構造物の内圧制御装置。   An internal pressure detector for detecting the absolute pressure of the internal pressure of the airtight structure, an external pressure detector for detecting the absolute pressure of the external pressure of the airtight structure, and the absolute pressure of the internal pressure of the airtight structure detected by the internal pressure detector A differential pressure calculating means for calculating a differential pressure between the pressure and an absolute pressure of the external pressure of the airtight structure detected by the external pressure detector, and the differential pressure calculated by the differential pressure calculating means deviates from an allowable range. An internal pressure that adjusts the internal pressure of the hermetic structure so that the absolute pressure of the internal pressure detected by the internal pressure detector or the differential pressure calculated by the differential pressure calculation means falls within a certain range. When the control means for controlling the operation of the adjusting device and the differential pressure determination means are in an inoperative state, the absolute pressure of the internal pressure detected by the internal pressure detector is output to the control means, and the differential pressure determination means is in an operating state. When the differential pressure calculated by the differential pressure calculation means is transferred to the control means Pressure control apparatus for a gas-tight structure, characterized in that a switching means for force. 気密式構造物の内圧と外圧との差圧を検出する差圧検出器と、気密式構造物の外圧の絶対圧を検出する外圧検出器と、前記外圧検出器で検出された気密式構造物の外圧の絶対圧と前記差圧検出器で検出された気密式構造物の外圧と内圧との差圧とに基づいて気密式構造物の内圧の絶対圧を演算する内圧絶対圧演算手段と、前記差圧検出器で検出された差圧が許容範囲を逸脱したとき動作する差圧判定手段と、前記内圧絶対圧演算手段で演算された内圧の絶対圧または前記差圧検出器で検出された差圧が一定範囲になるように前記気密式構造物の内圧を調整する内圧調整装置を運転制御する制御手段と、前記差圧判定手段が不動作状態のときは前記内圧絶対圧演算手段で演算された内圧の絶対圧を前記制御手段に出力し前記差圧判定手段が動作状態のときは前記差圧検出器で検出された差圧を前記制御手段に出力する切換手段とを備えたことを特徴とする気密式構造物の内圧制御装置。   A differential pressure detector for detecting a differential pressure between an internal pressure and an external pressure of the airtight structure, an external pressure detector for detecting an absolute pressure of the external pressure of the airtight structure, and an airtight structure detected by the external pressure detector An internal pressure absolute pressure calculating means for calculating the absolute pressure of the internal pressure of the airtight structure based on the absolute pressure of the external pressure and the differential pressure between the external pressure and the internal pressure of the airtight structure detected by the differential pressure detector; A differential pressure determining means that operates when the differential pressure detected by the differential pressure detector deviates from an allowable range, and an absolute pressure of the internal pressure calculated by the internal pressure absolute pressure calculating means or detected by the differential pressure detector Calculated by the control means for controlling the operation of the internal pressure adjusting device for adjusting the internal pressure of the hermetic structure so that the differential pressure is within a certain range, and when the differential pressure determining means is in an inoperative state, the internal pressure absolute pressure calculating means The absolute pressure of the measured internal pressure is output to the control means, and the differential pressure determination means is operated. Pressure control apparatus for a gas-tight structure, characterized in that a switching means for outputting a differential pressure detected by the differential pressure detector to the control means when the status. 前記制御手段は、前記内圧調整装置の運転制御に代えて、前記気密式構造物の内圧の過剰上昇に伴う前記気密式構造物の膨張破壊を防止するための圧力放出装置を開閉操作することを特徴とする請求項1ないし3のいずれか一記載の内圧制御装置。   In place of controlling the operation of the internal pressure adjusting device, the control means opens and closes a pressure release device for preventing expansion and destruction of the airtight structure due to an excessive increase in internal pressure of the airtight structure. The internal pressure control device according to any one of claims 1 to 3, wherein 気密式構造物の内圧と外圧との差圧が許容範囲内にあるときは気密式構造物の内圧の絶対圧が一定範囲になるように気密式構造物の内圧を制御し、気密式構造物の内圧と外圧との差圧が許容範囲を逸脱したときは気密式構造物の内圧と外圧との差圧が一定範囲内になるように気密式構造物の内圧を制御することを特徴とする気密式構造物の内圧制御方法。   When the pressure difference between the internal pressure and the external pressure of the airtight structure is within the allowable range, the internal pressure of the airtight structure is controlled so that the absolute pressure of the internal pressure of the airtight structure is within a certain range. The internal pressure of the airtight structure is controlled so that the differential pressure between the internal pressure and the external pressure of the airtight structure is within a certain range when the differential pressure between the internal pressure and the external pressure deviates from the allowable range. An internal pressure control method for an airtight structure. 前記気密式構造物の内圧と外圧との差圧の許容範囲は、気密式構造物が膨張破壊あるいは縮小破壊を起こさない設計圧力の範囲であり、前記気密式構造物の内圧の絶対圧の一定範囲、前記気密式構造物の内圧と外圧との差圧の一定範囲は、前記気密構造物内の液化ガスを管理する際の目標値に余裕値を見込んだ範囲であることを特徴とする請求項4記載の気密式構造物の内圧制御方法。   The allowable range of the pressure difference between the internal pressure and the external pressure of the airtight structure is a design pressure range in which the airtight structure does not cause expansion failure or contraction failure, and the absolute pressure of the internal pressure of the airtight structure is constant. The range, the constant range of the differential pressure between the internal pressure and the external pressure of the hermetic structure is a range that allows for a margin value in the target value when managing the liquefied gas in the hermetic structure. Item 5. An internal pressure control method for an airtight structure according to Item 4.
JP2006546630A 2004-12-10 2005-12-02 Apparatus and method for controlling internal pressure of airtight structure Pending JPWO2006062030A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004357601 2004-12-10
JP2004357601 2004-12-10
PCT/JP2005/022152 WO2006062030A1 (en) 2004-12-10 2005-12-02 Device and method for controlling internal pressure of hermetic structure

Publications (1)

Publication Number Publication Date
JPWO2006062030A1 true JPWO2006062030A1 (en) 2008-06-05

Family

ID=36577859

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006546630A Pending JPWO2006062030A1 (en) 2004-12-10 2005-12-02 Apparatus and method for controlling internal pressure of airtight structure

Country Status (2)

Country Link
JP (1) JPWO2006062030A1 (en)
WO (1) WO2006062030A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4884301B2 (en) * 2007-05-28 2012-02-29 中国電力株式会社 Power plant and power generation method for power plant
JP5666551B2 (en) * 2009-03-18 2015-02-12 トレルボルグ・インダストリー・エスエーエスTrelleborg Industrie SAS Composite hose for low temperature fluid transfer
CN102338281A (en) * 2010-07-23 2012-02-01 马佳囡 Liquefied natural gas storing and transporting system
CN102705706B (en) * 2012-05-29 2014-03-19 际华三五三九制鞋有限公司 Safety interlocking device for gas cylinder
CN104061431B (en) * 2014-04-03 2016-09-14 查特深冷工程系统(常州)有限公司 The modular cryogenic liquid basin re-liquefied system of BOG gas
KR101613236B1 (en) * 2015-07-08 2016-04-18 대우조선해양 주식회사 Vessel Including Engines and Method of Reliquefying Boil-Off Gas for The Same
CN107672958A (en) * 2017-09-14 2018-02-09 江苏航天惠利特环保科技有限公司 A kind of BOG storage tanks of high insulating effect

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588900A (en) * 1981-07-09 1983-01-19 Ishikawajima Harima Heavy Ind Co Ltd Low temperature tank having double safety
JPH04191598A (en) * 1990-11-27 1992-07-09 Ishikawajima Harima Heavy Ind Co Ltd Low temperature tank

Also Published As

Publication number Publication date
WO2006062030A1 (en) 2006-06-15

Similar Documents

Publication Publication Date Title
JPWO2006062030A1 (en) Apparatus and method for controlling internal pressure of airtight structure
US7493778B2 (en) Boil-off gas condensing assembly for use with liquid storage tanks
JP2010144878A (en) Fuel storage device for lng vehicle
CN112154287A (en) Gas filling device
KR20210119911A (en) Installation and Method for Supplying a Fuel Cell with Hydrogen
KR100953418B1 (en) Fuel cell system
US7165408B2 (en) Method of operating a cryogenic liquid gas storage tank
KR101026402B1 (en) Method for supplying a feed gas to a gas chamber of a fuel cell and fuel cell
JP4588990B2 (en) Apparatus and method for boil-off gas reliquefaction of liquefied natural gas
JP5091787B2 (en) Compressed air production facility
JP2019138200A (en) Compressor system
JP2021188673A (en) Gas supply system
EP3044496B1 (en) Low-loss cryogenic fluid supply system and method
JP4962853B2 (en) BOG compression equipment and method
KR20080096398A (en) Multi-stage gas compressing apparatus
JP2008291836A (en) Multi-stage gas compressing apparatus
EP2392825B1 (en) Method for controlling the operation of a multistage boil-off gas (BOG) compressor
US11670784B2 (en) Gas supply system
US20190249829A1 (en) Liquefied gas regasification system and operation method therefor
WO2021048905A1 (en) Outdoor unit and refrigeration cycle device
JP2021153006A (en) Fuel supply device
EP4303428A1 (en) Liquid hydrogen storage system
JP2009047234A (en) Storage and delivery device for liquefied gas, and its operating method
JP2015140838A (en) gas holder
JPH09170592A (en) Gas flow rate control device in lng base