JPWO2005123629A1 - Manufacturing method of phosphoric acid fertilizer using incinerated ash and its manufacturing apparatus - Google Patents

Manufacturing method of phosphoric acid fertilizer using incinerated ash and its manufacturing apparatus Download PDF

Info

Publication number
JPWO2005123629A1
JPWO2005123629A1 JP2006514817A JP2006514817A JPWO2005123629A1 JP WO2005123629 A1 JPWO2005123629 A1 JP WO2005123629A1 JP 2006514817 A JP2006514817 A JP 2006514817A JP 2006514817 A JP2006514817 A JP 2006514817A JP WO2005123629 A1 JPWO2005123629 A1 JP WO2005123629A1
Authority
JP
Japan
Prior art keywords
phosphoric acid
raw material
incineration ash
concentration
acid concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006514817A
Other languages
Japanese (ja)
Inventor
誠二 本間
誠二 本間
良博 岩井
良博 岩井
定塚 徹治
徹治 定塚
貴司 小松
貴司 小松
禎史 高木
禎史 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Publication of JPWO2005123629A1 publication Critical patent/JPWO2005123629A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B13/00Fertilisers produced by pyrogenic processes from phosphatic materials
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05BPHOSPHATIC FERTILISERS
    • C05B3/00Fertilisers based essentially on di-calcium phosphate
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D1/00Fertilisers containing potassium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/06Treatment of sludge; Devices therefor by oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Fertilizers (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

【課題】 リン成分の含有量の変化を調整して安定したリン酸肥料を安価に製造する方法及び装置を提供する。【解決手段】 汚泥焼却灰を主原料としてマグネシウム、カルシウム、カリ等の副原料を添加し溶融炉内で加熱して、溶融金属と溶融スラグとに分離したのち、溶融スラグを出滓させ急冷してリン酸肥料を製造する。主原料の汚泥焼却灰の全リン酸濃度を分析して得た測定データに基づいて変動を求め、焼却灰中の全リン酸濃度を把握したうえ副原料中の高リン含有廃棄物の添加割合を求める演算装置と、原料の溶融処理前に演算装置の出力によって決定されたリン酸濃度に応じて主原料に対し高リン含有廃棄物等の副原料を添加する添加装置とを具備している。【選択図】 図1PROBLEM TO BE SOLVED: To provide a method and an apparatus for producing a stable phosphate fertilizer at low cost by adjusting a change in content of a phosphorus component. [Solution] Using sludge incineration ash as a main material, auxiliary materials such as magnesium, calcium and potash are added and heated in a melting furnace to separate into molten metal and molten slag. To produce phosphate fertilizer. Fluctuation is calculated based on the measurement data obtained by analyzing the total phosphoric acid concentration of the sludge incineration ash of the main raw material, and the ratio of addition of high phosphorus content waste in the auxiliary raw material after grasping the total phosphoric acid concentration in the incineration ash And an addition device for adding a secondary raw material such as a high phosphorus content waste to the main raw material in accordance with the phosphoric acid concentration determined by the output of the arithmetic device before the raw material is melted. . [Selection] Figure 1

Description

この発明は、汚泥焼却灰または下水、し尿、家畜ふん尿などを原料としてリン酸肥料を製造する方法と製造装置に関する。   The present invention relates to a method and an apparatus for producing phosphate fertilizer using sludge incineration ash or sewage, human waste, livestock manure, and the like as raw materials.

従来から、汚泥焼却灰を利用してリン肥料を製造する方法が提案されている。例えば、日本特開2001−80979号公報には、リン成分を多量に含む汚泥焼却灰を原料とし、該原料に酸化マグネシウム、酸化カルシウム、リン酸成分等の添加剤を添加して混合原料を作成し、該混合原料を溶融し、その後に急冷してスラグ化し、その後に粉砕するリン酸肥料の製造方法が提案されている。また、日本特開2003−112988号公報にも汚泥焼却灰からリン酸肥料を製造する方法が提案されている。該公報による方法は、リン成分の濃度が高い汚泥焼却灰に、コークス、酸化マグネシウム、酸化カルシウム、酸化カリウムを加えて溶融炉内で加熱し、溶融金属と溶融スラグを溶融炉内で二液分離状態にさせ、溶融スラグを水砕槽へ選択的に出滓させて急冷し、粒状にしてリン成分が高く且つ金属成分が取り除かれた粒状スラグを製造する方法が提案されている。   Conventionally, a method for producing phosphorus fertilizer using sludge incineration ash has been proposed. For example, Japanese Laid-Open Patent Publication No. 2001-80979 uses a sludge incineration ash containing a large amount of phosphorus component as a raw material, and additives such as magnesium oxide, calcium oxide, and phosphoric acid component are added to the raw material to create a mixed raw material And the manufacturing method of the phosphoric acid fertilizer which fuse | melts this mixed raw material, is rapidly cooled after that, slags, and grind | pulverizes after that is proposed. Japanese Patent Application Laid-Open No. 2003-112988 also proposes a method for producing phosphate fertilizer from sludge incineration ash. In the method according to the publication, coke, magnesium oxide, calcium oxide and potassium oxide are added to sludge incinerated ash having a high phosphorus component concentration and heated in a melting furnace, and the molten metal and molten slag are separated into two parts in the melting furnace. A method for producing a granular slag in which the molten slag is selectively discharged to a granulation tank and rapidly cooled to form a granular slag having a high phosphorus component and a metal component removed has been proposed.

上記特開公報の他にも汚泥焼却灰からリン酸肥料を製造する方法が提案されているが、ほぼ同様である。従来技術によるリン肥料製造方法は、リン成分が原料焼却灰に多く含まれていることを予定している。即ち、リン肥料を製造するのにリン成分の含有量が少ない焼却灰を利用するメリットは小さいからである。しかし、汚泥中に含まれるリン成分の含有量(全リン酸濃度)は一定ではなく、年間を通じても変化している。また、他の原因(例えば、降雨、地域性など)によっても変動する。従来のリン酸肥料の製造方法ではリン成分の含有量を一定と見なし、高リン添加剤を添加していたため、製品中のク溶性リン酸濃度にばらつきが生じる。高リン添加剤が高価であることを理由にしてリン成分の含有量が少ない焼却灰を捨てて、リン成分の含有量が多い焼却灰のみを利用しようとすれば、それらを分別する必要があり、リン成分の含有量が少ない焼却灰をどのように処理するかという問題を解決しなければならない。また、リン成分の含有量が少ない焼却灰に高価なリン鉱石等を添加するとリン酸肥料のコストが高くなるという課題が生じる。   In addition to the above-mentioned Japanese Laid-Open Patent Publication, a method for producing phosphate fertilizer from sludge incineration ash has been proposed, but the method is almost the same. The phosphorus fertilizer manufacturing method by a prior art is planning that many phosphorus components are contained in raw material incineration ash. That is, the merit of using incinerated ash with a low phosphorus component content to produce phosphorus fertilizer is small. However, the content (total phosphoric acid concentration) of the phosphorus component contained in the sludge is not constant and changes throughout the year. It also varies depending on other causes (for example, rainfall, regionality, etc.). In the conventional method for producing phosphate fertilizer, the content of the phosphorus component is regarded as constant and a high phosphorus additive is added, so that the concentration of soluble phosphate in the product varies. If the incineration ash with low phosphorus content is thrown away and only the incineration ash with high phosphorus content is to be used because of the high price of high phosphorus additives, it is necessary to separate them. The problem of how to treat incinerated ash with low phosphorus content must be solved. Moreover, when an expensive phosphorus ore etc. are added to incineration ash with little content of a phosphorus component, the subject that the cost of a phosphate fertilizer will become high arises.

以上説明したように、従来の汚泥焼却灰を利用したリン肥料製造方法には幾つかの難点があったが、本発明は、これらの課題を解決し、リン成分の含有量の変化を調整して安定したリン酸肥料を安価に製造するため、溶融炉への投入に先立ち、主原料焼却灰のリン分含有量を測定し、リン成分の含有量が少ない焼却灰に対しては高価なリン鉱石に限らず安価な高リン含有廃棄物を添加・混合して製品中のク溶性リン酸濃度を高めて略一定濃度にし、且つ安全なリン肥料を製造する方法、装置を提供することを目的とする。   As described above, the conventional method for producing phosphorus fertilizer using sludge incineration ash has some difficulties, but the present invention solves these problems and adjusts the change in the content of phosphorus components. In order to produce a stable and stable phosphate fertilizer at a low cost, the phosphorus content of the main raw material incineration ash is measured prior to charging into the melting furnace. An object is to provide a method and an apparatus for producing a safe phosphorus fertilizer by adding and mixing inexpensive high phosphorus-containing waste not only to ore to increase the concentration of soluble phosphoric acid in the product to a substantially constant concentration. And

すなわち、本発明は、リン成分を含有する汚泥焼却灰を主原料とし、マグネシウム、カルシウム及び/又はカリウム成分を含む副原料と還元剤とを添加して溶融炉内で1350〜1450℃で加熱溶融し、前記溶融炉で溶融金属と溶融スラグとの2層に分離して溶融スラグを流出させ、次いで前記溶融スラグに急冷してリン酸肥料を製造する方法において;前記副原料及び還元剤の添加に先立ち主原料焼却灰の全リン酸濃度を測定し、該全リン酸濃度が予め定めた目標製品の濃度よりも低い場合には、溶融処理前に高リン含有物の添加割合を求めて、骨粉、魚粉、鶏糞から選ばれたリン含有廃棄物またはリン鉱石の所要量を溶融炉内に添加することにより、製品中のク溶性リン酸を6〜25%とした製品を製造することを特徴とするリン酸肥料の製造方法である。   That is, the present invention uses a sludge incinerated ash containing a phosphorus component as a main raw material, adds a secondary material containing a magnesium, calcium and / or potassium component and a reducing agent, and heats and melts at 1350 to 1450 ° C. in a melting furnace. In the method of manufacturing phosphoric acid fertilizer by separating the molten metal and molten slag into two layers in the melting furnace and letting the molten slag flow out, and then rapidly cooling to the molten slag; adding the auxiliary material and the reducing agent Prior to measuring the total phosphoric acid concentration of the main raw material incineration ash, if the total phosphoric acid concentration is lower than the predetermined target product concentration, obtain the addition ratio of the high phosphorus content before the melting treatment, By adding the required amount of phosphorus-containing waste or phosphorus ore selected from bone meal, fish meal, and chicken manure into the melting furnace, a product with 6-25% soluble phosphoric acid in the product is produced. How to make phosphate fertilizer It is.

また、本発明は、汚泥焼却灰を主原料とし、マグネシウム、カルシウム及び/又はカリウム成分を含む副原料と還元剤を添加し電気抵抗式溶融炉内で加熱して、溶融金属と溶融スラグとに分離して、溶融スラグを出滓させて急冷してリン酸肥料を製造する装置において;前記副原料の添加に先立ち主原料焼却灰の全リン酸濃度を把握して目標製品の濃度を決定する手段と、高リン含有物の添加割合を演算する演算手段と、高リン含有物を貯蔵した容器と、溶融処理前に高リン含有物を前記原料中に添加する添加装置とを具備し;前記演算装置は前記主原料の全リン含有率が該入力手段によって入力された目標製品濃度よりも低い場合にはその差分を求めて、前記副原料の添加割合を決定するようにしたことを特徴とするリン酸肥料製造装置にかかるものである。   In addition, the present invention uses sludge incinerated ash as a main raw material, adds auxiliary materials containing magnesium, calcium and / or potassium components and a reducing agent, and heats them in an electric resistance melting furnace to form molten metal and molten slag. In an apparatus that separates and produces molten slag and rapidly cools it to produce phosphate fertilizer; prior to the addition of the auxiliary material, grasp the total phosphoric acid concentration of the main raw material incineration ash and determine the concentration of the target product Means for calculating the addition ratio of the high phosphorus content, a container storing the high phosphorus content, and an addition device for adding the high phosphorus content to the raw material before the melting treatment; The arithmetic unit is characterized in that when the total phosphorus content of the main raw material is lower than the target product concentration input by the input means, the difference is obtained to determine the addition ratio of the auxiliary raw material. To the phosphate fertilizer production equipment It is hunt thing.

上記した課題を解決するため、本発明者は以下の実験並びに検討を行った。
(1)焼却灰中の成分の年間変動調査
In order to solve the above-mentioned problems, the present inventor conducted the following experiments and examinations.
(1) Annual variation survey of components in incineration ash

下水汚泥焼却灰は、季節や処理場等によって組成が変動することが知られている。そこで、所定の処理場における原料焼却灰の組成、特に五酸化リン(以下、「リン酸」という)濃度の季節的変動について毎月2回の調査を行った結果、図3のグラフに示すように原料焼却灰の主成分が年間にわたって変動する傾向が認められた。図3によれば、全リン酸濃度(又は全リン酸含有量、T−Pで示す。)は冬場に高くなり、夏場に低くなる傾向が見られる。又、5月、9月には全酸化ケイ素濃度(T−SiO)が高くなっている。更に、全リン酸濃度と全酸化ケイ素濃度との間には逆相関の関係が見られる。これは、雨の多い5月、9月には、雨水と共に、酸化ケイ素(SiO)を主成分とする土砂が下水中に流れ込むためと考えられる。また、台風等による大雨の後も全リン酸含有量が低くなると考えられる。なお、図3の他に、東京都下水道局による調査データにも同様な結果が得られている。It is known that the composition of sewage sludge incineration ash varies depending on the season and treatment plant. Therefore, as a result of conducting an investigation twice a month on the seasonal variation of the composition of the raw material incineration ash in the predetermined treatment plant, particularly the phosphorus pentoxide (hereinafter referred to as “phosphoric acid”) concentration, as shown in the graph of FIG. The main component of the raw incineration ash tended to change over the years. According to FIG. 3, the total phosphoric acid concentration (or total phosphoric acid content, indicated by TP 2 O 5 ) tends to be higher in winter and lower in summer. In addition, in May, it has been high all silicon oxide concentration (T-SiO 2) in September. Furthermore, there is an inverse correlation between the total phosphoric acid concentration and the total silicon oxide concentration. This is considered to be because in May and September when there is a lot of rain, earth and sand mainly composed of silicon oxide (SiO 2 ) flows into the sewage along with rainwater. Moreover, it is considered that the total phosphoric acid content is lowered even after heavy rains such as typhoons. In addition to FIG. 3, similar results have been obtained in survey data by the Tokyo Sewerage Bureau.

(2)リン酸源添加によるク溶性リン酸濃度   (2) Soluble phosphoric acid concentration by adding phosphoric acid source

表1は焼却灰中の全リン酸濃度の最大、最小、平均の場合について各主成分の全濃度を示す。表2は製品中に想定されるリン成分の割合を示す。表1、2から理解できるように、全リン酸濃度が小さい場合にはク溶性のリン酸濃度(C−P)も低くなる。従って、全リン酸濃度が低い場合にはリン酸分の多い適切な添加剤を添加する必要がある。

Figure 2005123629
Figure 2005123629
Table 1 shows the total concentration of each main component for the maximum, minimum and average total phosphoric acid concentrations in the incinerated ash. Table 2 shows the proportion of the phosphorus component assumed in the product. As can be understood from Tables 1 and 2, when the total phosphoric acid concentration is small, the soluble phosphoric acid concentration (C—P 2 O 5 ) is also low. Therefore, when the total phosphoric acid concentration is low, it is necessary to add an appropriate additive having a high phosphoric acid content.
Figure 2005123629
Figure 2005123629

表3、4は全リン酸濃度最小値であった焼却灰組成に近い主成分の原料焼却灰を用いて、リン酸カルシウムを添加して製品を製造した場合の焼却灰組成(表3)と製品の肥効成分の分析結果(表4)を示す。表4は、リン酸濃度の低い焼却灰を原料とし、リン酸カルシウムを添加して製造した製品のク溶性リン酸濃度が19.8%であることを示す。なお、表2に示すように、全リン濃度が最大である焼却灰を原料とした場合の製品の想定されるク溶性リン酸濃度は19.3%である。この結果から、全リン酸濃度の低い焼却灰を原料として使用する場合でも、高リン酸源の添加剤を添加によって高い全リン酸濃度の焼却灰を原料とした場合と同様なク溶性リン酸濃度を有する製品が製造可能であることが明らかになった。なお、投入された原料を溶融炉内で1350〜1450℃で加熱溶融するが、1350℃以下の場合にはク溶度が不十分であり、1450℃以上であるとリンやその他有効成分の氣散損失が無視できなくなる。

Figure 2005123629
Figure 2005123629
Tables 3 and 4 show the incineration ash composition (Table 3) and the product when the product is manufactured by adding calcium phosphate using the raw material incineration ash whose main component is close to the incineration ash composition which was the minimum value of total phosphoric acid. The analysis result (Table 4) of a fertilizer component is shown. Table 4 shows that the insoluble phosphonic acid concentration of the product manufactured by using incinerated ash having a low phosphoric acid concentration and adding calcium phosphate is 19.8%. As shown in Table 2, the expected concentration of soluble phosphoric acid in the product when incinerated ash having the maximum total phosphorus concentration is used as a raw material is 19.3%. From this result, even when incineration ash with a low total phosphoric acid concentration is used as a raw material, the same soluble phosphoric acid as when a high total phosphoric acid concentration incinerated ash is used as a raw material by adding an additive of a high phosphoric acid source It has been found that products with concentrations can be produced. The charged raw material is heated and melted at 1350 to 1450 ° C. in a melting furnace. However, when the temperature is 1350 ° C. or lower, the solubility of the cake is insufficient. The scattering loss cannot be ignored.
Figure 2005123629
Figure 2005123629

(3)焼却灰と添加する高リン酸源の選択及び添加割合の決定 (3) Selection of incinerated ash and high phosphoric acid source to be added and determination of addition ratio

そこで、添加する高リン酸源の選択並びに添加割合を決定するために、全リン酸濃度含有量の異なる複数の下水汚泥焼却灰に対して高リン酸源としてリン酸カルシウム(Ca(PO)、リン鉱石、肉骨粉焼却灰の何れかを添加して製品を製造した場合の分析結果を以下に説明する。表5はサンプルに使用する焼却灰原料(A〜D)の主成分と高リン酸源として使用可能なリン酸カルシウム(Ca(PO)、リン鉱石、肉骨粉焼却灰の主成分を示す。焼却灰Aは全リン酸濃度が最小であった焼却灰であり(表2参照)、表5中の焼却灰B〜Dは、更にそれよりも全リン酸濃度が低い焼却灰である。

Figure 2005123629
Therefore, in order to select a high phosphate source to be added and to determine the addition ratio, calcium phosphate (Ca 3 (PO 4 ) 2 as a high phosphate source for a plurality of sewage sludge incineration ash having different total phosphate concentration contents. ), And the analysis results when a product is produced by adding either phosphate ore or meat-and-bone meal incineration ash will be described below. Table 5 shows the main components of the incinerated ash raw materials (A to D) used for the samples and the main components of calcium phosphate (Ca 3 (PO 4 ) 2 ), phosphorus ore, and meat-and-bone meal incinerated ash that can be used as a high phosphate source. . Incineration ash A is incineration ash having the lowest total phosphoric acid concentration (see Table 2), and incineration ash B to D in Table 5 are incineration ash having a lower total phosphoric acid concentration than that.
Figure 2005123629

表6は原料汚泥焼却灰に高リン酸源として、リン酸カルシウム、リン鉱石、肉骨粉焼却灰の何れか1つを添加し、更に酸化マグネシウム(MgO)、酸化カルシウム(CaO)を添加した混合原料のサンプル1〜6の混合比を示す。サンプル1〜3はリン酸カルシウムを添加した混合原料であり、サンプル4はリン鉱石を添加した混合原料で、サンプル5、6は肉骨粉焼却灰を添加した混合原料である。サンプル5は肉骨粉焼却灰の添加量を多くした場合で、サンプル6は肉骨粉焼却灰の添加量をやや少なくした場合である。また、何れのサンプルも焼却灰の混合割合は50%を超えている。

Figure 2005123629
Table 6 shows a mixed raw material in which any one of calcium phosphate, phosphate ore, and meat-and-bone meal incineration ash is added to the raw material sludge incineration ash as a high phosphoric acid source, and magnesium oxide (MgO) and calcium oxide (CaO) are further added. The mixing ratio of samples 1 to 6 is shown. Samples 1 to 3 are mixed raw materials to which calcium phosphate is added, sample 4 is a mixed raw material to which phosphate ore is added, and samples 5 and 6 are mixed raw materials to which meat and bone powder incinerated ash is added. Sample 5 is a case where the addition amount of meat-and-bone meal incineration ash is increased, and Sample 6 is a case where the addition amount of meat-and-bone meal incineration ash is slightly reduced. Moreover, the mixing ratio of incinerated ash is over 50% in any sample.
Figure 2005123629

表7は、表6のサンプル1〜6から製品を製造した場合のク溶性リン酸濃度(%)を示す。この製品の製造は混合原料を溶融炉内で加熱し、溶融金属と溶融スラグとを分離して、溶融スラグを出滓させ、その後に急冷してリン肥料を製造する従来方法による。表7から明らかなように、肉骨粉焼却灰を添加剤として使用した場合でも、リン酸カルシウム又はリン鉱石を添加剤として使用した場合と同様に高いク溶性リン酸濃度の製品が得られている。

Figure 2005123629
Table 7 shows the soluble phosphoric acid concentration (%) when products were produced from Samples 1 to 6 in Table 6. This product is manufactured by a conventional method in which the mixed raw material is heated in a melting furnace, the molten metal and molten slag are separated, the molten slag is extracted, and then rapidly cooled to produce phosphorus fertilizer. As apparent from Table 7, even when meat and bone powder incinerated ash is used as an additive, a product having a high soluble phosphate concentration is obtained as in the case of using calcium phosphate or phosphate ore as an additive.
Figure 2005123629

表7と表4を比較すれば明らかなように、全リン酸濃度が低い原料焼却灰を使用しても、高リン酸源を添加すれば、全リン酸濃度が高い原料焼却灰を使用した場合の高いク溶性リン酸濃度をもつ製品が得られることが判明した。また、これらの実験により、添加する高リン酸源として肉骨粉焼却灰が使用できること及び添加割合が明らかになった。
(4)安全性の確認
As is clear from comparison between Table 7 and Table 4, even if a raw incineration ash having a low total phosphoric acid concentration was used, if a high phosphoric acid source was added, a raw incineration ash having a high total phosphoric acid concentration was used. It has been found that a product with a high soluble phosphate concentration can be obtained. Moreover, these experiments revealed that meat-and-bone meal incinerated ash can be used as a high phosphoric acid source to be added and the ratio of addition.
(4) Confirmation of safety

下水汚泥焼却灰中には重金属が含まれていることがある。従って、焼却灰から肥料を製造した場合に製品中に重金属が含まれていないことが必要である。特許文献2にも安全である旨の記載はあるが、量的に安全の確認するために以下の実験を行った。表8は異なる2つの処理場から得られた焼却灰に添加剤として酸化マグネシウム及び酸化カルシウム(生石灰)を添加した混合原料の配合比を示し、図4は還元雰囲気にした溶融炉内で処理した場合の重金属の挙動(処理前と処理後の重金属成分の移行率)を示したものである。

Figure 2005123629
Sewage sludge incineration ash may contain heavy metals. Therefore, when fertilizer is produced from incinerated ash, it is necessary that the product does not contain heavy metals. Although Patent Document 2 also describes that it is safe, the following experiment was performed in order to confirm quantitative safety. Table 8 shows the mixing ratio of the mixed raw materials in which magnesium oxide and calcium oxide (quick lime) are added as additives to the incinerated ash obtained from two different treatment plants, and FIG. 4 is processed in a melting furnace in a reducing atmosphere. The heavy metal behavior (migration rate of heavy metal components before and after treatment) is shown.
Figure 2005123629

図4から、理解できるように、肥料成分であるリン(P)、マグネシウム(Mg)、カルシウム(Ca)、珪素(Si)、カリウム(K)は殆どの部分がスラグ中に移行している。鉄(Fe)、ニッケル(Ni)は大半がメタルとして除去されている。アルミニウム(Al)、クロム(Cr)は、収支上はスラグ中に残存する率が高いが、クロムは市販品肥料と同等以下の含有量であるうえ、植物への施肥試験においても害は認められず、良好な生育結果が得られている。また、植物体内への吸収・移行も少ない。人体に害を及ぼす重金属である亜鉛(Zn)、砒素(As)、カドミウム(Cd)、鉛(Pb)は大半が気相中に移行し、製品から除去されている。以上の検討から焼却灰を利用してリン肥料を製造した製品は安全であるといえる。   As can be understood from FIG. 4, most of the fertilizer components phosphorus (P), magnesium (Mg), calcium (Ca), silicon (Si), and potassium (K) are transferred into the slag. Most of iron (Fe) and nickel (Ni) are removed as metal. Aluminum (Al) and chromium (Cr) have a high rate of remaining in the slag in terms of balance, but chromium has a content equal to or less than that of commercial fertilizers, and harm is also observed in fertilization tests on plants. Therefore, good growth results are obtained. In addition, there is little absorption and transfer into the plant body. Most of the heavy metals that are harmful to the human body, zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb), are transferred to the gas phase and removed from the product. From the above examinations, it can be said that products made from phosphorus fertilizer using incinerated ash are safe.

本発明によれば、汚泥焼却灰中のリン成分の含有量を計測し、目標製品との濃度の差分に基づいて安価な高リン酸原を添加剤として添加しているので、安定したリン肥料を安価に製造することができるという効果が得られる。又、請求項4によれば、高リン含有添加剤として骨粉等の廃棄物を利用しているので、骨粉等の廃棄物の処理量を少なくすることでき、かつ、製造費を安くすることができるという効果が得られる。   According to the present invention, the phosphorus content in the sludge incineration ash is measured, and an inexpensive high phosphoric acid raw material is added as an additive based on the difference in concentration from the target product, so that a stable phosphorus fertilizer Can be produced at low cost. According to claim 4, since waste such as bone meal is used as a high phosphorus content additive, the amount of waste such as bone meal can be reduced, and the manufacturing cost can be reduced. The effect that it can be obtained.

図1は本発明リン酸肥料製造装置の概略を示す断面図である。図1において、原料汚泥焼却灰10は、一部が主成分の含有量(特に、全リン酸含有量(T−P))を測定するためのサンプル11として採取され、大半は添加剤12〜15と共に混合されて、電気抵抗式溶融炉20に投入される。添加剤としては酸化マグネシウム(MgO)12、酸化カルシウム(CaO)13及び肉骨粉焼却灰等の高リン含有廃棄物15並びに溶融炉20内を還元雰囲気にするためのコークス14が使用される。焼却灰中に含まれる酸化マグネシウム、酸化カルシウムは年間を通じて略一定の割合で含まれていることが多く(図3参照)、従って、添加剤としては酸化マグネシウム12、酸化カルシウム13、コークス14は一定の割合で添加される。添加は、例えば搬走経路途中に各添加剤ホッパからの配管を割り込ませて行わせるようにすればよい。FIG. 1 is a cross-sectional view showing an outline of the phosphate fertilizer production apparatus of the present invention. In FIG. 1, the raw material sludge incineration ash 10 is partly collected as a sample 11 for measuring the content of the main component (particularly, the total phosphoric acid content (TP 2 O 5 )), most of which is added. It is mixed with the agents 12 to 15 and put into the electric resistance melting furnace 20. As additives, magnesium oxide (MgO) 12, calcium oxide (CaO) 13 and high phosphorus content waste 15 such as meat-and-bone meal incinerated ash and coke 14 for making the inside of the melting furnace 20 into a reducing atmosphere are used. Magnesium oxide and calcium oxide contained in the incinerated ash are often contained at a substantially constant rate throughout the year (see FIG. 3). Accordingly, magnesium oxide 12, calcium oxide 13 and coke 14 are constant as additives. It is added at a ratio of For example, the addition may be performed by interrupting a pipe from each additive hopper in the middle of the carrying path.

一方、全リン酸量含有量は季節による含有量変動が大きく、しかも含有量の変化はク溶性リン酸量の変化に直接的に影響を及ぼすので、安定したリン肥料の製品を製造するためにリン成分の添加量を制御する必要がある。高リン含有廃棄物15として肉骨粉焼却灰等(以下、「肉骨粉」という)が容器18内に貯蔵されている。高リン含有廃棄物15としては、骨粉、魚粉、鶏糞、又は骨粉等を含む高リン含有廃棄物が利用される。容器18の底部には所定量を放出して添加するための放出機構19が設けられている。又、添加制御装置17はサンプル11を分析したデータから現時点の焼却灰に必要な肉骨粉の添加割合を決定して、放出機構19に制御信号16を出力して所定量の肉骨粉を放出させる。   On the other hand, the total phosphoric acid content varies greatly depending on the season, and the change in content directly affects the change in the amount of soluble phosphoric acid. It is necessary to control the amount of phosphorus component added. Meat-and-bone meal incinerated ash or the like (hereinafter referred to as “meat-and-bone meal”) is stored in the container 18 as the high phosphorus-containing waste 15. As the high phosphorus content waste 15, a high phosphorus content waste containing bone meal, fish meal, chicken manure, bone meal or the like is used. A discharge mechanism 19 is provided at the bottom of the container 18 for discharging and adding a predetermined amount. Further, the addition control device 17 determines the addition ratio of meat-and-bone meal necessary for the current incineration ash from the data obtained by analyzing the sample 11, and outputs a control signal 16 to the release mechanism 19 to release a predetermined amount of meat-and-bone meal. .

図2は添加制御装置17のブロック図を示す。図2において、添加制御装置17は目標製品濃度入力手段31、サンプル分析手段32、データ記憶装置33、全リン酸含有量決定手段34、添加率決定手段35、制御量出力手段36及び中央制御装置37から構成されている。   FIG. 2 shows a block diagram of the addition control device 17. In FIG. 2, the addition control device 17 includes a target product concentration input means 31, a sample analysis means 32, a data storage device 33, a total phosphoric acid content determination means 34, an addition rate determination means 35, a control amount output means 36, and a central control device. 37.

目標製品濃度入力手段31は年間の季節変動、市場の需要動向や法規制(肥料取締法)等に基づいて目標製品の最少ク溶性リン酸濃度(又は目標製品に必要な全リン酸濃度)を定めて、そのデータを入力する。例えば、目標製品の最少ク溶性リン酸濃度として、法規制を超える値であって、販売価格と昨年度の全原料の全リン酸濃度、肉骨粉の価格とを考慮して、収益が最大となるように決定するようにしてもよい。サンプル分析手段32はサンプル11の主成分(又は全リン酸濃度のみ)を分析する。データ記憶装置33はク溶リン酸濃度と全リン酸濃度の関係データ、その他の必要なデータを記憶する。全リン酸含有量決定手段34は、データ記憶装置33に記憶された関係データから目標製品の全リン酸含有量を決定し、サンプルの全リン酸濃度と差分を求める。添加率決定手段35は現在の焼却灰に対する肉骨粉の添加割合を求める。制御量出力手段36は求められた割合の制御量を決定し、放出機構19を制御し、所定量の肉骨粉を放出させる。   The target product concentration input means 31 calculates the minimum soluble phosphoric acid concentration of the target product (or the total phosphoric acid concentration necessary for the target product) based on annual seasonal fluctuations, market demand trends, laws and regulations (fertilizer control law), etc. Determine and input the data. For example, the minimum soluble phosphoric acid concentration of the target product is a value that exceeds legal regulations, and the profit is maximized considering the selling price, the total phosphoric acid concentration of all raw materials in the previous fiscal year, and the price of meat and bone meal It may be determined as follows. The sample analysis means 32 analyzes the main component (or only the total phosphoric acid concentration) of the sample 11. The data storage device 33 stores relational data between the dissolved phosphoric acid concentration and the total phosphoric acid concentration, and other necessary data. The total phosphoric acid content determining means 34 determines the total phosphoric acid content of the target product from the relational data stored in the data storage device 33, and obtains the total phosphoric acid concentration and the difference of the sample. The addition rate determination means 35 obtains the ratio of meat-and-bone meal added to the current incineration ash. The control amount output means 36 determines the control amount of the obtained ratio, controls the release mechanism 19 and releases a predetermined amount of meat-and-bone meal.

図1において、溶融炉20には、原料投入機21、原料投入口22が設けられており、ここから原料が炉内へ投入される。また、炉体23の中央内側は溶融空間を形成するライニング29が貼られており、炉内部が形成される。その上側及び下側に電極24、25が設けられている。投入された原料26が加熱、溶融される。溶融した原料は溶融スラグ27、溶融金属28に分離し、2液分離状態で炉内部に共存する。溶融した金属28は金属排出口30から排出される。一方溶融したスラグはスラグ排出口41から排出され、水流トラフ42によって水砕槽43内に流入される。水砕槽43内には水44が張られており、水中に流入したスラグは粒状45となって水砕槽43の底に溜まる。また、炉体23の頭部に設けられたガス排出口46から焼却灰中に含まれていた鉛、亜鉛、砒素、カドミウムなどの有害物質が気化して図示省略の処理装置に排出される。   In FIG. 1, a melting furnace 20 is provided with a raw material charging machine 21 and a raw material charging port 22, from which raw materials are charged into the furnace. Moreover, the lining 29 which forms a fusion | melting space is affixed on the center inner side of the furnace body 23, and the furnace interior is formed. Electrodes 24 and 25 are provided on the upper and lower sides. The charged raw material 26 is heated and melted. The molten raw material is separated into molten slag 27 and molten metal 28 and coexists in the furnace in a two-liquid separated state. The molten metal 28 is discharged from the metal discharge port 30. On the other hand, the molten slag is discharged from the slag discharge port 41 and flows into the granulation tank 43 by the water flow trough 42. Water 44 is stretched in the granulating tank 43, and the slag that flows into the water becomes granular 45 and accumulates at the bottom of the granulating tank 43. In addition, harmful substances such as lead, zinc, arsenic and cadmium contained in the incineration ash are vaporized and discharged to a processing apparatus (not shown) from a gas discharge port 46 provided at the head of the furnace body 23.

上記実施形態は以下のように作用する。まず、原料焼却灰10に対して、酸化マグネシウム12、酸化カルシウム13の添加剤とコークス14が一定の割合で添加される。同時に容器18に貯蔵されている肉骨粉等の高リン含有廃棄物、もしくはこれにリン酸カルシウムまたはリン鉱石を混合した高リン添加剤15が添加制御装置17で決定された割合で添加される。これらの添加剤12〜15が添加された混合原料は原料投入機21に投入され、投入口22から溶融炉20の炉内部に投入される。炉内部に投入された混合原料は電極24,25によって加熱され、溶融される。溶融されると混合原料は溶融スラグ27、溶融金属28に分離され、同時に溶融過程で図示省略のガスが発生する。溶融炉内には溶融スラグ27、溶融金属28が分離した状態で溜まる。ガスはガス排出口46から図示省略の処理装置に排出される。炉内に溜まった溶融金属28は金属排出口30から排出される。また、溶融スラグ27はスラグ排出口41から排出され、水流トラフ42によって水砕槽43内に流入され、粒状スラグ45となって水砕槽43の底に溜まる。粒状スラグ45を取り出し、細かく砕いて製品化を行う。破砕時には、通常コンベヤ(図示省略)で運ばれてくるスラグに水温20〜30℃の冷却水を散布することや、水砕槽の水による冷却によりスラグを粒状に破砕するが、雰囲気温度および水の節約などの理由により、図5に示すようなスラグ水砕装置を用いて40〜80℃で処理する。   The above embodiment operates as follows. First, additives of magnesium oxide 12 and calcium oxide 13 and coke 14 are added to the raw material incinerated ash 10 at a certain ratio. At the same time, a high phosphorus content waste such as meat-and-bone meal stored in the container 18 or a high phosphorus additive 15 mixed with calcium phosphate or phosphate ore is added at a rate determined by the addition controller 17. The mixed raw material to which these additives 12 to 15 are added is charged into the raw material charging machine 21 and is charged into the melting furnace 20 through the charging port 22. The mixed raw material charged into the furnace is heated and melted by the electrodes 24 and 25. When melted, the mixed raw material is separated into molten slag 27 and molten metal 28, and at the same time, a gas (not shown) is generated in the melting process. In the melting furnace, molten slag 27 and molten metal 28 accumulate in a separated state. The gas is discharged from the gas discharge port 46 to a processing apparatus (not shown). The molten metal 28 accumulated in the furnace is discharged from the metal discharge port 30. Further, the molten slag 27 is discharged from the slag discharge port 41, flows into the granulation tank 43 by the water flow trough 42, becomes granular slag 45, and accumulates at the bottom of the granulation tank 43. The granular slag 45 is taken out and finely crushed for commercialization. At the time of crushing, cooling water having a water temperature of 20 to 30 ° C. is sprayed on slag that is usually carried by a conveyor (not shown), or slag is crushed into particles by cooling with water in a granulating tank. For reasons such as savings, it is processed at 40-80 ° C. using a slag granulator as shown in FIG.

図5は、スラグ水砕装置の各部の配置関係を示す概略正面図である。水砕槽50には溶融炉のスラグ排出口46から流下する溶融スラグ27を水流トラフ47を経て投入される。溶融スラグは高温であるため水砕槽50内の冷却水(工業用水)51は常に温度が上昇するので、制御弁49を操作して注水パイプ48から低温の用水を水砕槽50に注入する。槽内を攪拌器53で攪拌する一方、熱を吸収し昇温した水を排水管54から排出している。排水管54にはポンプ55、制御弁56を有しており、ポンプ55のデリバリ側に分岐管57を設け、その途中に冷却コイル(又は熱交換機)58及びフィルタ59を介置して排水の一部を水砕槽50に環戻させる。冷却水51の温度は排水管54に取付けた温度計61によって測定され、温度測定値はコントローラ60に入力され、また、水砕槽50の液面レベルは水位計62によって計側され、そのデータもコントローラ60に入力される。コントローラ60は、水砕槽内の冷却水の温度及び水位が設定値になる演算して制御弁49、55を制御する。このようにすることによって冷却水を40〜80℃の範囲、例えば60℃近辺を維持させて水砕された粒状スラグ52を沈積させる。   FIG. 5 is a schematic front view showing the arrangement relationship of each part of the slag granulator. Molten slag 27 flowing down from the slag discharge port 46 of the melting furnace is introduced into the water granulating tank 50 through a water flow trough 47. Since the temperature of the cooling water (industrial water) 51 in the granulation tank 50 is always increased because the molten slag is high temperature, the control valve 49 is operated to inject low-temperature water into the granulation tank 50 from the water injection pipe 48. . While the inside of the tank is stirred by the stirrer 53, the water that has absorbed the heat and raised the temperature is discharged from the drain pipe 54. The drain pipe 54 has a pump 55 and a control valve 56. A branch pipe 57 is provided on the delivery side of the pump 55, and a cooling coil (or heat exchanger) 58 and a filter 59 are interposed in the middle of the branch pipe 57. A part is returned to the granulation tank 50. The temperature of the cooling water 51 is measured by a thermometer 61 attached to the drain pipe 54, the temperature measurement value is input to the controller 60, and the liquid level of the granulating tank 50 is measured by a water level meter 62, and the data Is also input to the controller 60. The controller 60 controls the control valves 49 and 55 by calculating the temperature and water level of the cooling water in the granulating tank to be set values. By doing so, the granular slag 52 crushed by keeping the cooling water in the range of 40 to 80 ° C., for example, around 60 ° C., is deposited.

上記のように、本実施形態によれば、汚泥焼却灰中の全リン酸濃度が少ない場合は高リン含有廃棄物を適量添加するので、年間を通じてク溶性リン酸濃度が目標製品の濃度以上の値に維持され、安定した製品の製造ができ、更に、添加する高リン添加剤として骨粉等の廃棄物を利用しているので製造コストが安価になる。   As described above, according to the present embodiment, when the total phosphoric acid concentration in the sludge incineration ash is low, an appropriate amount of high phosphorus-containing waste is added, so that the soluble phosphoric acid concentration exceeds the target product concentration throughout the year. The product is maintained at a stable value, and a stable product can be produced. Further, since waste such as bone meal is used as a high phosphorus additive to be added, the production cost is reduced.

次に、本発明製品の肥効試験について述べる。   Next, the fertilization effect test of the product of the present invention will be described.

ク溶性18.63%のリン酸肥料をヒロシマナ(つけな)に施用して、0.02mのワグネルポット(a/5000)による肥効試験を行った。試験区として、リン酸肥料を加えていない無リン酸区、製品の標準量区と2倍量区、対照肥料の標準量区と2倍量区の合計5試験区を設け、各試験区3連とした。供試土壌には、黒ボク土を用い、全ての試験区に硫酸アンモニウムと塩化カリウムをそれぞれ、成分量(NおよびKO)として0.7gずつ施用し、対照肥料区には市販熔成リン肥(ク溶性P:19.96%)、試験区には上記製品をリン酸(P)として0.7g施用して、ガラス温室内で27日間栽培したところ、無リン酸区よりも明らかに生育が良く、対照肥料(熔成リン肥)と比べてもほぼ同等であった。収量指数は収穫後の生体重で対照肥料を100とした値、Pの吸収指数は収穫した植物中のP量で対照肥料を100とした値である。製品は無リン酸区と比べ明らかに収量指数、Pの吸収指数が良く、対照肥料と比べても、収量指数、Pの吸収指数ともに熔成リン肥とほぼ同等の結果となった。A fertilizer with a solubility of 18.63% was applied to Hiroshima mana, and a fertilization effect test was conducted using a 0.02 m 2 Wagner pot (a / 5000). As test plots, a total of five test plots were set up, including a phosphate-free plot with no phosphate fertilizer added, a standard and double-volume plot of product, and a standard and double-volume plot of control fertilizer. Ream. Black soil is used as the test soil, and 0.7 g each of ammonium sulfate and potassium chloride are applied as component amounts (N and K 2 O) to all test sections, and commercially available molten phosphorus fertilizer is used for the control fertilizer section. (Cu-soluble P 2 O 5 : 19.96%) In the test plot, 0.7 g of the above product was applied as phosphoric acid (P 2 O 5 ) and cultivated in a glass greenhouse for 27 days. Obviously the growth was good and almost the same as the control fertilizer (molten phosphorus fertilizer). Yield index is a value control fertilizer value taken as 100, the absorption index of the P 2 O 5, which was 100 to control fertilizer P 2 O 5 content in the plants harvested in fresh weight after harvesting. The product clearly has a better yield index and absorption index of P 2 O 5 than the phosphate-free zone, and the yield index and absorption index of P 2 O 5 are almost the same as those of the molten phosphorus fertilizer compared to the control fertilizer. It became.

以上、この発明の実施形態を図面に基づいて詳述してきたが、具体的な構成は図示例に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があってもこの発明に含まれる。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to the illustrated example, and even if there is a design change or the like without departing from the gist of the present invention, Included in the invention.

本発明リン酸肥料製造装置の概略を示す断面図である。It is sectional drawing which shows the outline of this invention phosphate fertilizer manufacturing apparatus. 図1における副原料添加制御装置のブロック図を示す。The block diagram of the auxiliary material addition control apparatus in FIG. 1 is shown. 汚泥焼却灰中の主成分組成の変動状況を示すグラフである。It is a graph which shows the fluctuation | variation state of the main component composition in sludge incineration ash. 還元雰囲気にした溶融炉で原料焼却灰を処理した場合の重金属の挙動を示す図である。It is a figure which shows the behavior of the heavy metal at the time of processing raw material incineration ash with the melting furnace made into the reducing atmosphere. スラグ水砕装置の各部の配置関係を示す図である。It is a figure which shows the arrangement | positioning relationship of each part of a slag granulation apparatus.

符号の説明Explanation of symbols

10 汚泥焼却灰
11 サンプル 12〜14 添加剤
15 高リン添加剤 16 制御信号 17 添加制御装置
18 高リン含有物の貯蔵容器 19 放出機構
20 溶融炉 21 原料投入機 22 原料投入口
23 炉体 24、25 電極 26 投入された混合原料
27 溶融スラグ 28 溶融金属 29 ライニング
30 金属排出口 31 目標製品濃度設定器
32 サンプル分析器 33 データ記憶装置
34 全リン酸含有量決定手段
35 添加率決定手段 36 制御量出力器 37 中央制御装置
41 スラグ排出口 42 水流トラフ 43 水砕槽
44 貯水 45 粒状物 45 粒状スラグ
46 スラグ排出口 47 水流トラフ 48 注入パイプ
49 制御弁 50 水砕槽 51 冷却水
52 粒状スラグ 53 攪拌機 54 排水管
55 ポンプ 56 制御弁 57 分岐管
58 冷却コイル 59 フィルタ 60 コントローラ
61 温度計 62 水位計
DESCRIPTION OF SYMBOLS 10 Sludge incineration ash 11 Sample 12-14 Additive 15 High phosphorus additive 16 Control signal 17 Addition control apparatus 18 Storage container of high phosphorus containing material 19 Release mechanism 20 Melting furnace 21 Raw material input machine 22 Raw material input port 23 Furnace body 24, 25 Electrode 26 Charged mixed raw material 27 Molten slag 28 Molten metal 29 Lining 30 Metal outlet 31 Target product concentration setting device 32 Sample analyzer 33 Data storage device 34 Total phosphoric acid content determining means
35 Addition rate determining means 36 Control amount output device 37 Central control device 41 Slag discharge port 42 Water trough 43 Water granulation tank 44 Water storage 45 Granules 45 Granular slag 46 Slag discharge port 47 Water trough 48 Injection pipe 49 Control valve 50 Hydrocracking tank 51 Cooling water 52 Granular slag 53 Stirrer 54 Drain pipe
55 Pump 56 Control valve 57 Branch pipe
58 Cooling coil 59 Filter 60 Controller
61 Thermometer 62 Water Level Meter

Claims (7)

リン成分を含有する汚泥焼却灰を主原料とし、マグネシウム、カルシウム及び/又はカリウム成分を含む副原料と還元剤とを添加して溶融炉内で1350〜1450℃で加熱溶融し、前記溶融炉で溶融金属と溶融スラグとの2層に分離して溶融スラグを流出させ、次いで前記溶融スラグを急冷してリン酸肥料を製造する方法において;
前記副原料及び還元剤の添加に先立ち主原料焼却灰の全リン酸濃度を測定し、該全リン酸濃度が予め定めた目標製品の濃度よりも低い場合には溶融処理前に高リン含有物の添加割合を求めて、溶融炉内に添加することにより、製品中のク溶性リン酸を6〜25%とした製品を製造することを特徴とするリン酸肥料の製造方法。
Using sludge incineration ash containing phosphorus component as the main raw material, adding auxiliary material containing magnesium, calcium and / or potassium component and reducing agent, heating and melting at 1350-1450 ° C in a melting furnace, In a method for producing phosphoric acid fertilizer by separating molten metal and molten slag into two layers and letting molten slag flow out, and then rapidly cooling the molten slag;
Prior to the addition of the auxiliary material and the reducing agent, the total phosphoric acid concentration of the main raw material incineration ash is measured, and when the total phosphoric acid concentration is lower than the predetermined target product concentration, the high phosphorus content before melting treatment The manufacturing method of the phosphoric acid fertilizer characterized by manufacturing the product which made 6-25% of soluble phosphoric acid in a product by calculating | requiring the addition ratio of and adding in a melting furnace.
前記溶融炉より流出させた溶融スラグを水温20〜30℃で急冷しながら破砕する請求項1に記載のリン酸肥料製造方法。   The method for producing phosphate fertilizer according to claim 1, wherein the molten slag discharged from the melting furnace is crushed while being rapidly cooled at a water temperature of 20 to 30 ° C. 前記溶融炉より流出させた溶融スラグを水温40〜80℃で急冷しながら破砕する請求項1に記載のリン酸肥料製造方法。   The method for producing phosphate fertilizer according to claim 1, wherein the molten slag discharged from the melting furnace is crushed while rapidly cooling at a water temperature of 40 to 80 ° C. 前記高リン含有物は、骨粉、魚粉、鶏糞から選ばれたリン含有廃棄物またはリン鉱石である請求項1に記載のリン酸肥料製造方法。   The method for producing phosphate fertilizer according to claim 1, wherein the high phosphorus content is a phosphorus-containing waste or phosphorus ore selected from bone meal, fish meal, and chicken dung. 汚泥焼却灰を主原料とし、マグネシウム、カルシウム及び/又はカリウム成分を含む副原料と還元剤とを添加し電気抵抗式溶融炉内で加熱して、溶融金属と溶融スラグとに分離し、出滓させた溶融スラグを急冷してリン酸肥料を製造する装置において;
前記副原料の添加に先立ち主原料焼却灰の全リン酸濃度を分析して目標製品の濃度を決定する手段と、高リン含有物の添加割合を演算する演算手段と、高リン含有物を貯蔵した容器と、溶融処理前に予め用意した高リン含有物を含む副原料を前記主原料中に添加する添加装置とを具備し、
前記演算装置は前記主原料の全リン含有率が前記演算手段に入力された目標製品濃度よりも低い場合にはその差分を求めて、前記副原料の添加割合を決定するようにしたことを特徴とするリン酸肥料製造装置。
Using sludge incineration ash as the main raw material, adding auxiliary materials containing magnesium, calcium and / or potassium components and a reducing agent, heating in an electric resistance melting furnace, separating into molten metal and molten slag, In an apparatus for producing phosphate fertilizer by quenching molten slag;
Prior to the addition of the secondary material, means for determining the concentration of the target product by analyzing the total phosphoric acid concentration of the main raw material incineration ash, calculation means for calculating the addition ratio of the high phosphorus content, and storing the high phosphorus content And an addition device for adding a secondary raw material containing a high phosphorus content prepared in advance before the melting treatment into the main raw material,
When the total phosphorus content of the main raw material is lower than the target product concentration input to the calculating means, the arithmetic device obtains the difference and determines the addition ratio of the auxiliary raw material. Phosphate fertilizer manufacturing equipment.
前記高リン含有物は、骨粉、魚粉、鶏糞から選ばれたリン含有廃棄物またはリン鉱石である請求項5に記載のリン酸肥料製造装置。   The phosphate fertilizer manufacturing apparatus according to claim 5, wherein the high phosphorus content is a phosphorus-containing waste or phosphorus ore selected from bone meal, fish meal, and chicken manure. 前記目標製品のリン酸濃度は、年間の季節変動、市場の需要動向等に基づいて目標製品の最少ク溶性リン酸濃度を決定し、該目標製品に必要な全リン酸濃度を定めたことを特徴とする請求項5に記載のリン酸肥料製造装置。   The target product phosphoric acid concentration is determined by determining the minimum phosphoric acid concentration of the target product based on annual seasonal fluctuations, market demand trends, etc., and determining the total phosphate concentration required for the target product. The phosphate fertilizer manufacturing apparatus according to claim 5,
JP2006514817A 2004-06-21 2005-06-20 Manufacturing method of phosphoric acid fertilizer using incinerated ash and its manufacturing apparatus Pending JPWO2005123629A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004182793A JP2006001819A (en) 2004-06-21 2004-06-21 Method and apparatus for manufacturing phosphorus fertilizer using incineration ash
PCT/JP2005/011264 WO2005123629A1 (en) 2004-06-21 2005-06-20 Method and apparatus for producing phosphate fertilizer utilizing incineration ash

Publications (1)

Publication Number Publication Date
JPWO2005123629A1 true JPWO2005123629A1 (en) 2008-07-17

Family

ID=35509587

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2004182793A Pending JP2006001819A (en) 2004-06-21 2004-06-21 Method and apparatus for manufacturing phosphorus fertilizer using incineration ash
JP2006514817A Pending JPWO2005123629A1 (en) 2004-06-21 2005-06-20 Manufacturing method of phosphoric acid fertilizer using incinerated ash and its manufacturing apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2004182793A Pending JP2006001819A (en) 2004-06-21 2004-06-21 Method and apparatus for manufacturing phosphorus fertilizer using incineration ash

Country Status (3)

Country Link
EP (1) EP1767509A4 (en)
JP (2) JP2006001819A (en)
WO (1) WO2005123629A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4548835B2 (en) * 2005-04-21 2010-09-22 村樫石灰工業株式会社 New potassium phosphate compound fertilizer
JP5463507B2 (en) * 2008-05-08 2014-04-09 国立大学法人東京農工大学 PK compound fertilizer used as raw fertilizer for wheat cultivation
DE102011008008B4 (en) * 2011-01-06 2015-03-05 ingitec Engineering GmbH Low-metal, modifiable, phosphate-containing, fertilizer-active soil substrate
JP5888720B2 (en) * 2011-04-28 2016-03-22 株式会社クボタ Fertilizer manufacturing method and rotary surface melting furnace used in fertilizer manufacturing method
JP5188640B2 (en) * 2011-06-27 2013-04-24 太平洋セメント株式会社 Phosphate fertilizer and method for producing the same
JP5988684B2 (en) * 2012-05-15 2016-09-07 太平洋セメント株式会社 Method for producing phosphate fertilizer
CN103649016B (en) * 2011-06-27 2015-09-23 太平洋水泥株式会社 The manufacture method of phosphatic manure and phosphatic manure
JP5954777B2 (en) * 2012-06-07 2016-07-20 太平洋セメント株式会社 Method for producing phosphate fertilizer
JP6022226B2 (en) * 2012-06-18 2016-11-09 太平洋セメント株式会社 Method for producing silicate phosphate fertilizer
JP6326904B2 (en) * 2014-03-27 2018-05-23 新日鐵住金株式会社 Phosphate fertilizer raw material and method for producing the same
DE102014108199B3 (en) * 2014-06-11 2015-05-13 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Preparation of citrate-soluble phosphates by calcination of secondary phosphate sources with a sodium-sulfur compound
JP5793232B1 (en) * 2014-08-25 2015-10-14 日本重化学工業株式会社 Fertilizer production method
NL2023083B1 (en) * 2019-05-07 2020-11-30 Axpip Bv A process for recovering elemental phosphorus
CN110255845B (en) * 2019-07-09 2020-08-21 中国科学院城市环境研究所 Resource utilization method of sludge pyrolytic biochar

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2729277A1 (en) * 1977-06-29 1979-01-04 Saarberg Fernwaerme Gmbh METHODS FOR TREATMENT OF SLUDGE OR ASH, IN PARTICULAR OF SEWING SLUDGE OR SEWING SLUDGE ASH
JP3559856B2 (en) * 1994-09-21 2004-09-02 東ソー株式会社 Method for producing dry phosphate fertilizer from waste phosphate-containing material
JPH09328384A (en) * 1996-06-07 1997-12-22 N K K Plant Kensetsu Kk Production of sludge melt-solidified form
JP2000169269A (en) * 1998-12-04 2000-06-20 Nkk Plant Engineering Corp Production of molten and solidified material of sludge
JP4844941B2 (en) * 1999-07-07 2011-12-28 日本下水道事業団 Fertilizer production method using incinerated ash as raw material
JP2001161315A (en) * 1999-12-03 2001-06-19 Takatsugu Kakeida Calcium preparation
JP2003112989A (en) * 2001-10-01 2003-04-18 Sanki Eng Co Ltd Method for manufacturing fertilizer
JP2003112988A (en) * 2001-10-01 2003-04-18 Japan Sewage Works Agency Method for manufacturing phosphorus fertilizer
JP2003137539A (en) * 2001-10-30 2003-05-14 Masahiro Ogawa Method of manufacturing white lime nitrogen
JP2003176189A (en) * 2002-10-31 2003-06-24 Hikoya Matsumoto Method of stably manufacturing phosphate of bone ash and application to fertilizer
EP1849755A4 (en) * 2005-01-06 2011-05-11 Sanki Eng Co Ltd Process for producing phosphatic fertilizer and apparatus therefor

Also Published As

Publication number Publication date
EP1767509A1 (en) 2007-03-28
WO2005123629A1 (en) 2005-12-29
JP2006001819A (en) 2006-01-05
EP1767509A4 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JPWO2005123629A1 (en) Manufacturing method of phosphoric acid fertilizer using incinerated ash and its manufacturing apparatus
Vaneeckhaute et al. Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: A field experiment
Riding et al. Harmonising conflicts between science, regulation, perception and environmental impact: The case of soil conditioners from bioenergy
Poss et al. Rate of soil acidification under wheat in a semi-arid environment
Trimmer et al. Aligning product chemistry and soil context for agronomic reuse of human-derived resources
Matveeva et al. Application of steel-smelting slags as material for reclamation of degraded lands
WO2006072982A1 (en) Process for producing phosphatic fertilizer and apparatus therefor
JP7440192B2 (en) How to store fertilizer raw materials
JP4844941B2 (en) Fertilizer production method using incinerated ash as raw material
DE102007014906A1 (en) Method for producing pre-product for calcium phosphate fertilizers, involves using metallurgical process engineering of pig iron and cast iron, where granular material is added to phosphorous containing waste
KR102182277B1 (en) Steel making slag for fertilizer raw material, method for manufacturing steel slag for fertilizer raw material, fertilizer production method and fertilization method
RU2313509C1 (en) Method and apparatus for producing of complex fertilizer
Singh et al. Phosphorus fractionation and sorption in P-enriched soils of Norway
Shi et al. Mineral fertiliser equivalent value of dairy processing sludge and derived biochar using ryegrass (Lolium perenne L.) and spring wheat (Triticum aestivum)
JP4040542B2 (en) Silicic fertilizer
Lal et al. Release and uptake of potassium and sodium with fly ash application in rice on reclaimed alkali soil
TWI675814B (en) Steelmaking slag for fertilizer source material, method for producing steelmaking slag for fertilizer source material, method for producing fertilizer, and fertilizer application method
Davis et al. Soil fertility in organic farming systems
Izewska et al. Yields of grain and straw, their content and ionic proportions of macroelements in maize fertilized with ash from municipal sewage sludge combustion
JP6570253B2 (en) Seed coating material and method for producing seed coating material
KR20070023821A (en) Method and apparatus for producing phosphate fertilizer utilizing incineration ash
RU2313510C1 (en) Method for producing of complex fertilizer and apparatus for performing the same
Hucker Organic amendments for reducing the plant uptake of cadmium from New Zealand soils
Spiegel et al. Impact of mineral P fertilization on trace elements in cropland soils
Adjei Synergies of nutrient fractions for fertilization in agriculture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110719

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110809