JPWO2005082567A1 - Insulated coated wire joining method and apparatus - Google Patents

Insulated coated wire joining method and apparatus Download PDF

Info

Publication number
JPWO2005082567A1
JPWO2005082567A1 JP2006508072A JP2006508072A JPWO2005082567A1 JP WO2005082567 A1 JPWO2005082567 A1 JP WO2005082567A1 JP 2006508072 A JP2006508072 A JP 2006508072A JP 2006508072 A JP2006508072 A JP 2006508072A JP WO2005082567 A1 JPWO2005082567 A1 JP WO2005082567A1
Authority
JP
Japan
Prior art keywords
joining
wires
metal wires
friction stir
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006508072A
Other languages
Japanese (ja)
Other versions
JP4397395B2 (en
Inventor
文紀 石川
文紀 石川
伸 小野瀬
伸 小野瀬
酒井 毅
酒井  毅
植田 俊明
俊明 植田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2005082567A1 publication Critical patent/JPWO2005082567A1/en
Application granted granted Critical
Publication of JP4397395B2 publication Critical patent/JP4397395B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/12Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating the heat being generated by friction; Friction welding

Abstract

複数の被覆線の端部(1a,1b)を拘束、又は加圧成形して密着させた後、端部より摩擦撹拌接合する。被覆は、撹拌部に分散し、被覆線同士の無剥離での接合が可能となる。After the end portions (1a, 1b) of the plurality of covered wires are constrained or pressed and brought into close contact, friction stir welding is performed from the end portions. The coating is dispersed in the stirring section, and the coated wires can be joined without peeling.

Description

本発明は、絶縁被覆を有する複数の金属線どうし、またはこれらと板材を絶縁被覆を剥離することなく高品質、高効率に接合する絶縁被覆線の接合方法及び接合装置に関する。      The present invention relates to a bonding method and a bonding apparatus for insulating coated wires for bonding a plurality of metal wires having an insulating coating, or a plate material thereof with high quality and high efficiency without peeling the insulating coating.

従来、絶縁被覆を有する複数の金属線同士を接合する場合、種々の方法が提案されている。例えば、絶縁皮膜を化学的、機械的に剥離した後、はんだ付け、あるいはレーザ、TIG等で溶融する方法がとられている。又、抵抗溶接機を用いて絶縁被覆線を加熱、炭化、除去して接合する方法もとられている。無剥離で接合する方法の一つとして、摩擦攪拌を用いる方法が提示されている。摩擦攪拌接合による被覆金属線の利点の一つは金属線の種類によらず、ブローホール等の欠陥のない接合が得られることにある。銅系の絶縁被覆線の場合、酸素の含有量の多い銅線では、レーザ、TIGなどの溶融接合方法をとった場合にはブローホールが多く発生し、信頼性の高い接合は得られないことがある。また、被覆金属線を無剥離で溶融接合すると、被覆が有機物で酸素、水素を含有することから巨大なブローホールが多数発生し、実用に供することが不可能であった。摩擦攪拌接合は、塑性流動を用いた接合であり、ブローホールなどの材料欠陥を少なくすることが可能である。摩擦攪拌を用いた被覆線材の接合方法として、次の技術がある。特開2003−71576には被覆材を固定材の中に挿入し、被覆線に対して側面方向より摩擦攪拌接合してターミナルを形成する方法が開示されている。又、特開2003−126972には複数の金属線を接着剤等で一体化後、摩擦攪拌接合する方法が開示されている。これらの特徴は特に耐熱性の高い絶縁被覆を有する金属線を、絶縁被覆の剥離作業なしに接合できるところにある。又、摩擦攪拌接合するための固定、拘束を確実に実施するために金属線の側面より接合することが特徴となっている。
特開2003−71576 特開2003−126972
Conventionally, various methods have been proposed for joining a plurality of metal wires having an insulating coating. For example, after the insulating film is chemically and mechanically peeled off, soldering or melting with a laser, TIG or the like is employed. In addition, a method of heating, carbonizing and removing the insulation-coated wire using a resistance welding machine is employed. As one method of joining without peeling, a method using friction stirring is proposed. One of the advantages of the coated metal wire by friction stir welding is that a bond free of defects such as blow holes can be obtained regardless of the type of metal wire. In the case of copper-based insulation-coated wires, copper wires with a high oxygen content will generate many blow holes when a laser, TIG, or other fusion bonding method is used, and reliable bonding cannot be obtained. There is. Further, when the coated metal wire is melt-bonded without peeling, since the coating is an organic substance and contains oxygen and hydrogen, a large number of huge blow holes are generated and cannot be put to practical use. Friction stir welding is a joining using plastic flow, and it is possible to reduce material defects such as blow holes. As a method for joining coated wires using friction stirring, there is the following technique. Japanese Patent Application Laid-Open No. 2003-71576 discloses a method in which a terminal is formed by inserting a covering material into a fixing material and friction stir welding the coated wire from the side surface direction. Japanese Patent Application Laid-Open No. 2003-126972 discloses a method in which a plurality of metal wires are integrated with an adhesive and then friction stir welding is performed. These characteristics lie in that metal wires having an insulating coating having a particularly high heat resistance can be joined without stripping the insulating coating. Moreover, in order to carry out the fixation and restraint for the friction stir welding with certainty, it is characterized by joining from the side surface of the metal wire.
JP2003-71576 JP 2003-126972 A

側面方向からの接合においては、被覆金属線と摩擦攪拌接合のツールとの距離を相対的に一定に保つように整列させる必要があった。固定材に挿入固定する場合には整列が容易であるが挿入が困難なことが多く、接着材で固定する場合には固定後の形状の制御が困難であるという問題があった。又、整列させた金属線同士を側面から接合するにはツールを金属線と直角の方向に線移動させる必要があった。さらに側面方向からの接合においては接合部内に分散される絶縁被覆量の割合が大きくなり、接合部の抵抗が大きくなるという欠点を有していた。
複数の被覆金属線同士を無剥離で安定に接合するには、金属線同士を密着させて金属線の側面より金属線を固定拘束し、端面からツールを挿入して摩擦攪拌接合をする。
摩擦攪拌接合は、ピン部とこのピン部より太いショルダー部からなる回転ツールの回転作用により接合材を攪拌して接合する方法である。ピン部が材料を攪拌し、ショルダーは攪拌された材料をツール外にあふれ出させずにツール内に閉じ込める作用をする。複数の部材を摩擦攪拌接合する場合、部材間の隙間が大きいと接合部に巣状の欠陥が生じる。このため、密着性を上げることが信頼性の高い接合を得るための要件となる。又、摩擦攪拌接合は回転するピン部を接合材に挿入して攪拌するときに、攪拌された金属がツール外に押し出されないため、回転ツールを接合材に強固な力で押付ける必要がある。
複数の被覆金属線の端面からの接合は、側面から治具を用いて強固な力で固定し、金属線同士の隙間を小さくするとともに、回転ツールの押付け力を側面の拘束治具で受けて接合することにより達成される。側面からの金属線への押し圧力を大きくし、圧着成形をすればより隙間のない好ましい密着を得ることができる。また、圧着成形後、切断加工を施し、最も密着性の良い断面を端部とすることでより信頼性の高い接合を得ることができる。さらに圧着成形をする際に端面より押し圧力を加え、金属線端面の断面積を大きくするように成形加工すれば、信頼性はさらに大きく向上する。
成形加工においては被覆金属線を隙間無く密着させるよう成形することが好ましい。例えば端部を圧縮成形して複数の被覆金属線を略円、楕円、多角形状に成形して後に摩擦攪拌をすれば、信頼性の高い接合が得られる。また、摩擦攪拌される領域を大きくするために端部側よりの圧縮成形を加え端部を略釘状に成形すれば、摩擦攪拌する領域を増大することができ、接合強度が向上し、信頼性を向上することが可能となる。この成形工程は一回の工程でする必要はなく、摩擦攪拌に適する形状に成形するために複数の成形工程を設定しても良い。また、摩擦攪拌に好適な形状に成形するために、加圧成形後、切断工程を入れて最も密着性が良い断面を端部の摩擦攪拌面とするとより信頼性の高い接合が得られる。
上記のように、治具にて金属線の側面を拘束または成形して端面を摩擦攪拌接合すれば、信頼性の高い接合が得られるが、金属線の側面部周囲に固定材を設置して接合することも可能である。リング状の固定金属材に複数の金属線を挿入後、かしめするなどして隙間をなくしても良いし、板状の金属板で複数の金属線を巻いてかしめしても良い。リング又は板状の固定材を設置して金属線の端面を摩擦攪拌接合する場合には、固定材の回転ツールが挿入される反対側の端面に治具を設置して回転ツールの押し圧力の受けとすることができる。リング状、板状の固定材については、金属線と同類の材質であることが必要である。特に融点については金属線の融点より極端に高い融点の材料は選定しないほうが好ましい。
本発明の摩擦攪拌接合では回転ツールのショルダ径とピン径を適正化することにより回転ツールを隣接する金属線の方向へ移動させず、金属線の端面方向への移動だけで接合することが可能となる。金属線の治具等による拘束の仕方により隣接する金属線方向への移動を必要とする場合もあるが、移動距離は最小化できる。このため、本発明の摩擦攪拌接合を実施する装置においては、構造を簡略化することができる。接合装置は、複数の金属線を側面部より一工程又は多数工程により成形拘束する拘束装置と回転ツールに回転と金属線の端面方向への相対移動を付与する駆動部、及び制御部から構成されるが、駆動部については隣接する金属線方向への移動機能を付加しても良い。
被覆金属線同士を摩擦攪拌接合で接合する場合、被覆は機械的に破壊されて攪拌部に分散し、かつ熱的に分解されるため金属線同士の接合ができる。被覆金属線の被覆には、多種類の材料があり、それぞれに耐熱性が異なる。最も耐熱性の良い被覆はポリイミド系の被覆である。本発明の接合方法は被覆の種類によらずに無剥離での接合が可能であるが、特に耐熱性の高い銅被覆線の接合に好適である。被覆線の接合には一般に電気的導通を得るために実施されるので、接合部内に分散される被覆は量的に少ないほうが好ましい。本発明の接合は、被覆が存在しない端面を接合することで、分散される被覆を最小限にしたものである。特に接合部の導電率が小さいことを要求される場合の接合として好適である。
In joining from the side, it was necessary to align the distance between the coated metal wire and the friction stir welding tool so as to keep them relatively constant. When inserting and fixing to a fixing material, alignment is easy but insertion is often difficult, and when fixing with an adhesive, there is a problem that it is difficult to control the shape after fixing. Further, in order to join the aligned metal wires from the side surfaces, it is necessary to move the tool in a direction perpendicular to the metal wires. Further, in the joining from the side direction, there is a drawback that the ratio of the insulating coating amount dispersed in the joining portion is increased, and the resistance of the joining portion is increased.
In order to stably bond a plurality of coated metal wires without peeling, the metal wires are brought into close contact with each other, the metal wires are fixed and restrained from the side surfaces of the metal wires, and a tool is inserted from the end surface to perform friction stir welding.
Friction stir welding is a method in which a joining material is agitated and joined by the rotating action of a rotary tool comprising a pin portion and a shoulder portion thicker than the pin portion. The pin portion stirs the material, and the shoulder acts to confine the stir material in the tool without overflowing the tool. When a plurality of members are subjected to friction stir welding, if the gap between the members is large, a nest-like defect occurs in the joint. For this reason, raising the adhesiveness is a requirement for obtaining a highly reliable bond. Also, in friction stir welding, when the rotating pin portion is inserted into the joining material and agitated, the agitated metal is not pushed out of the tool, so the rotating tool must be pressed against the joining material with a strong force. .
Joining multiple coated metal wires from the end face is secured with a strong force from the side using a jig, reducing the gap between the metal wires and receiving the pressing force of the rotating tool with the side restraining jig. This is achieved by joining. If the pressing force to the metal wire from the side surface is increased and pressure forming is performed, a preferable close contact with no gap can be obtained. Moreover, after crimping | molding, cutting process is given and a more reliable joining can be obtained by making the cross section with the best adhesiveness into an edge part. Further, when pressure forming is applied from the end face during pressure forming and the forming process is performed so as to increase the cross-sectional area of the end face of the metal wire, the reliability is further greatly improved.
In the forming process, it is preferable to form the coated metal wire so as to adhere closely without a gap. For example, if the end portions are compression-molded to form a plurality of coated metal wires into a substantially circular, elliptical, or polygonal shape, and then subjected to frictional stirring, highly reliable joining can be obtained. In addition, if the end part is formed in a substantially nail shape by adding compression molding from the end side in order to increase the friction stir area, the friction stir area can be increased, the joint strength is improved, and the reliability is improved. It becomes possible to improve the property. This molding process does not have to be performed once, and a plurality of molding processes may be set in order to form a shape suitable for friction stirring. In addition, in order to form a shape suitable for friction stirring, a more reliable joining can be obtained by applying a cutting step after the pressure molding and setting the cross section with the best adhesion as the friction stirring surface at the end.
As mentioned above, if the side of the metal wire is constrained or shaped with a jig and the end faces are friction stir welded, a highly reliable bond can be obtained, but a fixing material is placed around the side of the metal wire. It is also possible to join. After inserting a plurality of metal wires into the ring-shaped fixed metal material, the gap may be eliminated by caulking or the like, or a plurality of metal wires may be wound and caulked with a plate-like metal plate. When a ring or plate-shaped fixing material is installed and the end faces of metal wires are friction stir welded, a jig is installed on the opposite end face where the rotating tool of the fixing material is inserted and the pressing force of the rotating tool is reduced. You can take it. About a ring-shaped and plate-shaped fixing material, it is necessary to be the same material as a metal wire. In particular, it is preferable not to select a material having a melting point extremely higher than the melting point of the metal wire.
In the friction stir welding of the present invention, it is possible to join only by moving the metal wire in the end face direction without optimizing the rotating tool in the direction of the adjacent metal wire by optimizing the shoulder diameter and pin diameter of the rotary tool. It becomes. Depending on how the metal wire is restrained by a jig or the like, movement in the direction of the adjacent metal wire may be required, but the movement distance can be minimized. For this reason, in the apparatus which implements friction stir welding of the present invention, the structure can be simplified. The joining apparatus is composed of a restraining device that restrains forming and constraining a plurality of metal wires from a side surface by one process or multiple processes, a drive unit that imparts rotation and relative movement in the end surface direction of the metal wire to a rotating tool, and a control unit. However, the drive unit may have a function of moving in the direction of the adjacent metal line.
When the coated metal wires are joined to each other by friction stir welding, the coating is mechanically broken, dispersed in the stirring portion, and thermally decomposed, so that the metal wires can be joined. There are many kinds of materials for coating the coated metal wire, and each has different heat resistance. The coating with the best heat resistance is a polyimide coating. The bonding method of the present invention can be bonded without peeling regardless of the type of coating, but is particularly suitable for bonding copper-coated wires with high heat resistance. Since the covering wire is generally joined to obtain electrical conduction, it is preferable that the amount of the coating dispersed in the joint is small. The joint of the present invention is obtained by joining the end faces having no coating to minimize the coating to be dispersed. In particular, it is suitable as a joint when the electrical conductivity of the joint is required to be small.

第1図は、本発明の実施例を示す斜視図である。
第2図は、本発明の実施例のプロセスを示す断面図と接合後の外観の斜視図である。
第3図は、本発明の実施例のプロセスを示す断面図と各プロセスにおける外観の斜視図である。
第4図は、本発明の実施例のプロセスを示す断面図と各プロセスにおける外観の斜視図である。
第5図は、本発明の実施例のプロセスを示す断面図と各プロセスにおける外観の斜視図である。
第6図は、本発明の実施例のプロセスを示す断面図と接合部の外観図である
第7図は、本発明の実施例のプロセスを示す断面図と接合部の外観図である
第8図は、本発明の接合方法を適用した車両用交流発電機の外観、断面図である。
FIG. 1 is a perspective view showing an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the process of the embodiment of the present invention and a perspective view of the appearance after joining.
FIG. 3 is a sectional view showing a process of the embodiment of the present invention and a perspective view of an appearance in each process.
FIG. 4 is a cross-sectional view showing a process of an embodiment of the present invention and a perspective view of an appearance in each process.
FIG. 5 is a sectional view showing a process of an embodiment of the present invention and a perspective view of an appearance in each process.
FIG. 6 is a cross-sectional view showing the process of the embodiment of the present invention and an external view of the joint portion. FIG. 7 is a cross-sectional view showing the process of the embodiment of the present invention and the external view of the joint portion. The drawings are an external view and a cross-sectional view of an automotive alternator to which the joining method of the present invention is applied.

以下、本発明の実施の形態を説明する。
第1図は複数の被覆金属線同士を摩擦攪拌接合によって接合する実施例を示す図である。φ1.6のポリアミド系エナメル被覆線(AIW線)2本(1a、1b)を一対の拘束治具5a、5bでクランプし、2本のAIW線の接触部を回転ツール4で摩擦攪拌接合した。回転ツール4はピン部2とピン部より大きな径を有するショルダ部3からなっている。回転ツール4は回転軸を通して回転駆動モータに連結されている。ピン部の直径を0.8mm、長さを1.2mmとし、ショルダ部の直径を1.6mmとした。回転ツール4を10000rpmで回転し、AIW線の端部方向よりショルダ部3がAIW線端部に食い込む位置になるまで移動した。移動完了後、1s摩擦攪拌をして接合を完了させた。
第2図は上記のプロセスを表した断面図と接合後の外観の斜視図である。エナメル被覆は摩擦攪拌により炭化して破砕され、接合部6内に分散する。接合部6の抵抗はほぼエナメル線の芯線の銅と同じ抵抗値となることが確認された。なお、芯線の銅はタフピッチ銅である。接合後、接合部の断面を切断研磨して観察した。ブローホール等の欠陥は認められず、良好な接合部が得られた。
拘束治具形状を第3図に示す7a、7bのものとし、2本のAIW線(1a、1b)の摩擦攪拌接合をした。第3図は拘束治具形状をAIW線の端面方向よりみた形状とAIW線の状態を示したものである。成形治具7a、7bによりAIW線の端部を略6角形状に塑性変形させて接合部をあらかじめ密着させている。これにより密着部の面積を増大させることができ、また、実質的に摩擦攪拌できる領域を増大することができる。ここで、2本のAIW線は実施例1と同様のφ1.6のものである。成形治具7a、7bとしては密着部の長さが約2.2mmとなる形状のものを用いた。摩擦攪拌に用いた回転ツールのピン径は1mm、ピン長さ1.5mm、ショルダ径は2mmである。ツールの回転数を8000rpmとして摩擦攪拌を実施し接合部9を得た。摩擦攪拌後の接合部9の断面を切断、研磨して観察した結果、欠陥のない良好な接合部が得られることを確認した。
φ1.6のポリアミド系エナメル被覆線(AIW線)2本(1a、1b)を摩擦攪拌接合した。第4図に接合プロセスとAIW線の外観の変化を示す。まず、2本のAIW線1a、1bの側面部を圧縮成形し、その後、最密着部が端面となるよう端部を切断した。密着部の長さが約2.2mmとなる圧縮成形型(10a、10b)を用いた。切断治具11を退避させた後、回転ツール12をAIW線の端部に挿入して摩擦攪拌接合を実施した。ツールの形状は実施例2と同様である。又、回転数も実施例2と同様とした。良好な接合部13が得られた。
φ1.6のポリアミド系エナメル被覆線(AIW線)2本(1a、1b)を摩擦攪拌接合した。第5図に接合プロセスとAIW線の外観の変化を示す。まず、2本のAIW線の側面部を成形治具14a、14bを用いて圧縮成形し、その後、成形治具15を用いて端部を断面積が大きくなるように成形した。成形後の端部の断面を約2.2mm×3mmの楕円状となるようにした。成形治具15を退避させた後、回転ツール16をAIW線の端部に挿入して摩擦攪拌接合を実施した。ツールの形状は実施例2と同様である。又、回転数も実施例2と同様とした。良好な接合部17が得られた。
φ1.6のポリアミド系エナメル被覆線(AIW線)1を8本、摩擦攪拌により接合した。第6図は接合プロセスを示した図である。8本のAIW線を銅製のリング18に挿入した。リング18の肉厚は1mm、内径は6mmである。その後、リング18を成形治具22a、22bにより加圧成形して長径約6mm、短径約3mmの略楕円状にした。このリング18の端部に回転ツール20を挿入して摩擦攪拌した。回転ツールのピン径、長さはそれぞれ1.3mm、2mmであり、ショルダ径は2.6mmである。回転数は6000rpmとした。端部の形状が略楕円状であるため、摩擦攪拌を2回実施してAIW線1a、1bとリング18との接合を完了した。接合部21a、21bの断面を観察した結果、リングと8本のAIW線が一体となっていることを確認した。各々のAIW線間、及びリングの導通も良好であることを確認した。
実施例4において、摩擦攪拌する際に回転ツール20を回転、挿入した後、楕円形状の長径方向に移動させた。移動速度は10mm/secであり、移動距離は6mmである。略楕円状の接合外観が得られた。接合状態及び導通状態は実施例4と同様であった。
実施例4のリングの加圧成形時の治具形状を第7図に示す形状(22a、22b)として、摩擦攪拌した。加圧成形後のAIW線同士がより密着し、成形後の各々のAIW線の形状がほぼ均一となるよう成形治具の形状を波型としたもので、各AIW線に成形時に負荷される力が均等となることにより、密着性が向上した。第7図に示す形状に加圧成形した端部を摩擦攪拌したところ、良好な接合部23a、23bが得られた。
第8図は車両用交流発電機24のステータコア27に本発明の摩擦攪拌接合を適用した例である。ステータコア27はスロットが形成された鉄製のコア26にAIW線で形成されたコイル25から構成されている。発電機の出力効率を上げるにはコアのスロットに挿入されているAIW線のスロット内での隙間をできるだけ少なくすることが良い。このため、本実施例においては、AIW線として平角線28を用いている。なお、AIW線の芯線の材料はタフピッチ銅である。コア26にはスロットが90箇所設けてある。通常のAIWの丸線を用いた場合には巻線をしてコイル25を形成することができるが、平角線では巻線が困難なため、折り曲げた平角線をスロットに挿入して他のスロットに挿入した平角線の端部と接合することにより、コイルを形成する必要がある。各スロットには2対の平角線を挿入し、他のスロットに挿入の平角線と接合した。平角線は1.6×2mmの断面形状を有するものである。平角線を挿入、整列後、接合する端部を加圧成形して約1.8mm角の形状にした。各々の接合部を摩擦攪拌接合した。回転ツールはピン径0.9mm、ピン長さ1.4mm、ショルダ径1.8mmである。回転数8000rpmにて端部に回転ツールを挿入して摩擦攪拌接合をした。接合箇所は180箇所である。その後、コイルのもう一方の端部において、AIW線7本を摩擦攪拌で接合した。この場合には、四角形のリング(内周側寸法4mm×7mm、板厚1mm、銅製)にAIW線を挿入して加締め、リングとAIW線同士の隙間をなくしてから摩擦攪拌した。回転ツールは、ピン径2.5mm、ピン長さ3.8mm、ショルダ径5mmであり、5000rpmで摩擦攪拌した。このようにして製造したステータコアを用い、車両用交流発電機を製作した。ステータコアの出力線のターミナルへの接合にも摩擦攪拌接合を用いた。ターミナルにて出力線をかしめ、加圧成形後ターミナルと出力線端部を摩擦攪拌接合した。所定の出力が得られることを確認した。
ハイブリッド電気自動車用モータのステータコアにおいて、コイルの製作に摩擦攪拌接合を用いた。コイルはφ0.8のタフピッチ銅を芯線とするAIW線よりなり、コアに巻線後、出力線同士を6箇所接合した。各々の接合部における接合本数は6本である。内径2.5mm、外径4.5mmのリングに6本のAIW線を挿入し、外周形状が約3.5mm×4mmになるよう加圧成形した。ピン径1.5mm、ピン長さ2.3mm、ショルダ径3mmの回転ツールを用いてAIW線の端部を摩擦攪拌接合した。接合時の回転ツールの回転数は6000rpmである。又、中性線の接合を同様の方法で実施した。AIW線の接合本数は21本である。内径5mm、外径7mmの銅製リングにAIW線を挿入して加圧成形し、外周形状が約4.5mm×6mmの形状にした。ビン径2.3mm、ピン長さ3.5mm、ショルダ径4.6mmの回転ツールを用いて加圧成形したリングとAIW線の端部を摩擦攪拌接合した。ツール回転数は4000rpmとし、リングの長手方向にツールを5mm/secで移動させて接合した。このようにして作製したコイルを用いて、モータを作製したところ、目的とした出力が得られた。
Embodiments of the present invention will be described below.
FIG. 1 is a view showing an embodiment in which a plurality of coated metal wires are joined together by friction stir welding. Two 1.6 mm polyamide enamel coated wires (AIW wires) (1a, 1b) are clamped with a pair of restraining jigs 5a, 5b, and the contact portions of the two AIW wires are friction stir welded with the rotary tool 4. . The rotary tool 4 includes a pin portion 2 and a shoulder portion 3 having a larger diameter than the pin portion. The rotary tool 4 is connected to a rotary drive motor through a rotary shaft. The diameter of the pin part was 0.8 mm, the length was 1.2 mm, and the diameter of the shoulder part was 1.6 mm. The rotary tool 4 was rotated at 10,000 rpm, and moved from the end of the AIW line until the shoulder 3 reached the end of the AIW line. After the movement was completed, 1 s frictional stirring was performed to complete the joining.
FIG. 2 is a sectional view showing the above process and a perspective view of the appearance after joining. The enamel coating is carbonized and crushed by friction stirring and dispersed in the joint 6. It was confirmed that the resistance of the joint 6 was almost the same as that of copper of the enameled wire core. The core wire copper is tough pitch copper. After bonding, the cross section of the bonded portion was cut and polished and observed. No defects such as blowholes were observed, and a good joint was obtained.
The shape of the restraining jig was 7a and 7b shown in FIG. 3, and two AIW lines (1a and 1b) were friction stir welded. FIG. 3 shows the shape of the restraining jig viewed from the end face direction of the AIW line and the state of the AIW line. The end portions of the AIW line are plastically deformed into a substantially hexagonal shape by the forming jigs 7a and 7b, and the joint portions are brought into close contact in advance. As a result, the area of the close contact portion can be increased, and the region in which frictional stirring can be performed substantially can be increased. Here, the two AIW lines are of φ1.6 as in the first embodiment. As the forming jigs 7a and 7b, those having a shape in which the length of the contact portion is about 2.2 mm were used. The pin diameter of the rotary tool used for friction stirring is 1 mm, the pin length is 1.5 mm, and the shoulder diameter is 2 mm. Friction stirring was carried out at a rotation speed of the tool of 8000 rpm to obtain a joint 9. As a result of observing by cutting, polishing and observing the cross section of the joint 9 after friction stirring, it was confirmed that a good joint having no defect was obtained.
Two polyamide enamel-coated wires (AIW wires) of φ1.6 (1a, 1b) were friction stir welded. FIG. 4 shows the joining process and changes in the appearance of the AIW line. First, the side portions of the two AIW lines 1a and 1b were compression-molded, and then the end portions were cut so that the closest contact portions became end surfaces. A compression mold (10a, 10b) in which the length of the contact portion was about 2.2 mm was used. After retracting the cutting jig 11, the rotary tool 12 was inserted into the end of the AIW line to perform friction stir welding. The shape of the tool is the same as in the second embodiment. The rotational speed was also the same as in Example 2. A good joint 13 was obtained.
Two polyamide enamel-coated wires (AIW wires) of φ1.6 (1a, 1b) were friction stir welded. FIG. 5 shows the joining process and changes in the appearance of the AIW line. First, the side portions of the two AIW lines were compression molded using the molding jigs 14a and 14b, and then the end portions were molded using the molding jig 15 so that the cross-sectional area was large. The cross section of the end portion after molding was made to be an ellipse of about 2.2 mm × 3 mm. After the forming jig 15 was retracted, the rotary tool 16 was inserted into the end of the AIW line to perform friction stir welding. The shape of the tool is the same as in the second embodiment. The rotational speed was also the same as in Example 2. A good joint 17 was obtained.
Eight polyamide enamel-coated wires (AIW wires) 1 of φ1.6 were joined by friction stirring. FIG. 6 shows the joining process. Eight AIW wires were inserted into the copper ring 18. The ring 18 has a wall thickness of 1 mm and an inner diameter of 6 mm. Thereafter, the ring 18 was pressure-formed by the forming jigs 22a and 22b to form a substantially oval shape having a major axis of about 6 mm and a minor axis of about 3 mm. The rotary tool 20 was inserted into the end of the ring 18 and frictionally stirred. The pin diameter and length of the rotary tool are 1.3 mm and 2 mm, respectively, and the shoulder diameter is 2.6 mm. The rotation speed was 6000 rpm. Since the end portion is substantially elliptical, the friction stir was performed twice to complete the joining of the AIW lines 1a, 1b and the ring 18. As a result of observing the cross sections of the joint portions 21a and 21b, it was confirmed that the ring and the eight AIW lines were integrated. It was confirmed that the conduction between the AIW lines and the ring was also good.
In Example 4, after rotating and inserting the rotary tool 20 during friction stirring, the rotary tool 20 was moved in the major axis direction of the elliptical shape. The moving speed is 10 mm / sec and the moving distance is 6 mm. A substantially elliptical bonded appearance was obtained. The joined state and conductive state were the same as in Example 4.
The jig shape at the time of pressure forming the ring of Example 4 was changed to the shape (22a, 22b) shown in FIG. The shape of the forming jig is corrugated so that the AIW lines after pressure forming are more closely adhered to each other and the shape of each AIW line after forming is substantially uniform. Adhesion was improved by equalizing the force. When the ends press-molded into the shape shown in FIG. 7 were friction-stirred, good joints 23a and 23b were obtained.
FIG. 8 shows an example in which the friction stir welding of the present invention is applied to the stator core 27 of the vehicle alternator 24. The stator core 27 is composed of a coil 25 formed of an AIW wire on an iron core 26 in which slots are formed. In order to increase the output efficiency of the generator, it is preferable to reduce the gap in the slot of the AIW line inserted in the slot of the core as much as possible. For this reason, in this embodiment, the rectangular wire 28 is used as the AIW line. The material of the AIW core wire is tough pitch copper. The core 26 has 90 slots. When a normal AIW round wire is used, the coil 25 can be formed by winding. However, since winding is difficult with a flat wire, a bent flat wire is inserted into the slot and another slot is inserted. It is necessary to form a coil by joining to the end portion of the flat wire inserted into. Two pairs of rectangular wires were inserted into each slot, and joined to the rectangular wires inserted into the other slots. The flat wire has a cross-sectional shape of 1.6 × 2 mm. After inserting and aligning the flat wire, the end part to be joined was pressure-molded into a shape of about 1.8 mm square. Each joint was friction stir welded. The rotary tool has a pin diameter of 0.9 mm, a pin length of 1.4 mm, and a shoulder diameter of 1.8 mm. A rotating tool was inserted into the end at a rotational speed of 8000 rpm, and friction stir welding was performed. There are 180 joints. Thereafter, seven AIW wires were joined by friction stirring at the other end of the coil. In this case, the AIW wire was inserted into a quadrangular ring (inner circumference side size 4 mm × 7 mm, plate thickness 1 mm, copper) and caulked, and the gap between the ring and the AIW wire was eliminated, followed by friction stirring. The rotating tool had a pin diameter of 2.5 mm, a pin length of 3.8 mm, and a shoulder diameter of 5 mm, and was friction-stirred at 5000 rpm. A vehicle AC generator was manufactured using the stator core thus manufactured. Friction stir welding was also used to join the stator core output wire to the terminal. The output line was caulked at the terminal, and after pressure forming, the terminal and the end of the output line were joined by friction stir welding. It was confirmed that a predetermined output was obtained.
Friction stir welding was used to manufacture coils in the stator core of a hybrid electric vehicle motor. The coil was made of AIW wire having φ0.8 tough pitch copper as the core wire, and after winding on the core, the output wires were joined to each other at six locations. The number of junctions at each junction is six. Six AIW wires were inserted into a ring having an inner diameter of 2.5 mm and an outer diameter of 4.5 mm, and pressure-molded so that the outer peripheral shape was about 3.5 mm × 4 mm. The ends of the AIW wire were friction stir welded using a rotating tool having a pin diameter of 1.5 mm, a pin length of 2.3 mm, and a shoulder diameter of 3 mm. The rotation speed of the rotating tool at the time of joining is 6000 rpm. Moreover, the neutral wire was joined by the same method. The number of bonded AIW lines is 21. An AIW wire was inserted into a copper ring having an inner diameter of 5 mm and an outer diameter of 7 mm and subjected to pressure molding, so that the outer peripheral shape was about 4.5 mm × 6 mm. The pressure-molded ring and the end of the AIW line were friction stir welded using a rotating tool having a bin diameter of 2.3 mm, a pin length of 3.5 mm, and a shoulder diameter of 4.6 mm. The rotation speed of the tool was 4000 rpm, and the tool was moved at 5 mm / sec in the longitudinal direction of the ring and joined. When a motor was manufactured using the coil thus manufactured, the intended output was obtained.

上述するように、本発明の摩擦攪拌接合を用いて絶縁被覆線を接合すれば絶縁被覆を剥離することなく被覆線同士の接合が可能となる。特に酸素含有量の多い銅材料を芯線に用いた場合には、信頼性の高い接合を得ることが可能となる。      As described above, when the insulated coated wires are joined using the friction stir welding of the present invention, the coated wires can be joined to each other without peeling off the insulated coating. In particular, when a copper material having a high oxygen content is used for the core wire, a highly reliable joint can be obtained.

Claims (6)

絶縁被覆を有する複数の金属線同士を接合する接合方法において、金属線同士を密着させた後、金属線の端面をピン部と前記ピン部より太いショルダ部からなる回転ツールの回転作用と金属線の相対移動によって摩擦攪拌接合することを特徴とする絶縁被覆線の接合方法。In a joining method for joining a plurality of metal wires having an insulating coating, after the metal wires are brought into close contact with each other, the end face of the metal wire has a pin portion and a rotating action of a rotating tool comprising a shoulder portion thicker than the pin portion and the metal wire. A method of joining insulation-coated wires, characterized by performing friction stir welding by relative movement of the wire. 絶縁被覆を有する複数の金属線同士を接合する接合方法において、金属線同士を束ね、端部を押圧成形して一体化し、その後金属線の端面をピン部と前記ピン部より太いショルダ部からなる回転ツールの回転作用と金属線の相対移動によって摩擦攪拌接合することを特徴とする絶縁被覆線の接合方法。In a joining method for joining a plurality of metal wires having an insulating coating, the metal wires are bundled together, the end portions are pressed and integrated, and then the end surfaces of the metal wires are composed of a pin portion and a shoulder portion thicker than the pin portion. A method for joining insulating coated wires, characterized in that friction stir welding is performed by a rotating action of a rotating tool and relative movement of a metal wire. 絶縁被覆を有する複数の金属線同士を接合する接合方法において、金属線同士を束ね、端部を端部断面積が大きくなるように押圧成形して一体化し、その後金属線の端面をピン部と前記ピン部より太いショルダ部からなる回転ツールの回転作用と金属線の相対移動によって摩擦攪拌接合することを特徴とする絶縁被覆線の接合方法。In a joining method for joining a plurality of metal wires having an insulating coating, the metal wires are bundled together, and the end portions are pressed and integrated so as to increase the end cross-sectional area, and then the end surfaces of the metal wires are connected to the pin portions. A method for joining an insulation-coated wire, characterized in that friction stir welding is performed by a rotating action of a rotary tool including a shoulder portion thicker than the pin portion and relative movement of a metal wire. 請求の範囲第1項〜3項において、被覆金属線同士を密着させるために電気的に導通し、融点が金属線とほぼ等しい固定材を金属線端部の周囲に配置したことを特徴とする絶縁被覆材の接合方法。In Claims 1 to 3, a fixing material that is electrically conductive and has a melting point substantially equal to that of the metal wire is disposed around the end portion of the metal wire in order to bring the coated metal wires into close contact with each other. Insulation coating material joining method. 絶縁被覆を有する複数の金属線の端部を押圧拘束し、略円状に密着させる拘束装置と、ピン部と前記ピン部より太いショルダ部からなる回転ツールを保持する装置と、回転ツールが該金属線の端面方向に相対的に移動する装置とを備えたことを特徴とする摩擦攪拌接合装置。A restraining device that presses and restrains ends of a plurality of metal wires having an insulating coating and adheres in a substantially circular shape, a device that holds a rotating tool composed of a pin portion and a shoulder portion that is thicker than the pin portion, and a rotating tool comprising: A friction stir welding apparatus comprising a device that moves relative to the end face direction of the metal wire. 請求の範囲第5項において端部拘束装置に加圧成形装置が付加されたことを特徴とする摩擦攪拌接合装置。6. A friction stir welding apparatus according to claim 5, wherein a pressure forming device is added to the end restraining device.
JP2006508072A 2004-02-27 2004-02-27 Insulated coated wire joining method and apparatus Expired - Fee Related JP4397395B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/002419 WO2005082567A1 (en) 2004-02-27 2004-02-27 Insulation coated wire joining method and device

Publications (2)

Publication Number Publication Date
JPWO2005082567A1 true JPWO2005082567A1 (en) 2007-08-30
JP4397395B2 JP4397395B2 (en) 2010-01-13

Family

ID=34897933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006508072A Expired - Fee Related JP4397395B2 (en) 2004-02-27 2004-02-27 Insulated coated wire joining method and apparatus

Country Status (2)

Country Link
JP (1) JP4397395B2 (en)
WO (1) WO2005082567A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4973592B2 (en) * 2008-05-14 2012-07-11 富士電機機器制御株式会社 Manufacturing method of electrical contact
JP5361622B2 (en) * 2009-09-08 2013-12-04 本田技研工業株式会社 Terminal manufacturing method, electric motor
JP2014057994A (en) * 2012-09-19 2014-04-03 Toshiba Corp Method for manufacturing coated conductive wire connection body, and method for connecting coated conductive wire
CN115287112B (en) * 2022-07-18 2023-08-22 湖州立华电工科技有限公司 Special surface lubricant for enameled wire and coating process thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828240B2 (en) * 1990-05-25 1996-03-21 矢崎総業株式会社 Crimping connection structure for electric wires and crimping connection method
JP3823780B2 (en) * 2001-08-31 2006-09-20 株式会社日立製作所 Friction stir welding method
JP2003126972A (en) * 2001-10-19 2003-05-08 Hitachi Ltd Friction agitation welding method

Also Published As

Publication number Publication date
WO2005082567A1 (en) 2005-09-09
JP4397395B2 (en) 2010-01-13

Similar Documents

Publication Publication Date Title
EP1429419B1 (en) Method for conductively connecting two electrical conductors
JP3578142B2 (en) Connection structure, connection method thereof, rotating electric machine and AC generator using the same
JP3303854B2 (en) Joint wire and joining method
JP5369637B2 (en) Electric wire with terminal fitting and method for manufacturing the same
US5104028A (en) Method for joining transformer coil conductors
CN113939957A (en) Electrical connection socket for electrical network wires of motor vehicle
EP1719216A2 (en) Armature with unitary coil and commutator
JP4397395B2 (en) Insulated coated wire joining method and apparatus
JP2019096516A (en) Terminal connection method
JPH104646A (en) Coupling structure between bundling terminal and lead-out coil and small sized rotary electric machine and ac generator for vehicle using it
JP2011090804A (en) Electric wire with terminal fitting and method of manufacturing the same
JP4553931B2 (en) Connection method of armature coil and commutator piece
JPH11511695A (en) Ultrasonic welding method, ultrasonic welding device, and welded joint formed by ultrasonic welding
JP5223798B2 (en) Electric wire connection structure and vehicle conductive path having the electric wire connection structure
JP2004311061A (en) Method of connecting electric wire conductor and terminal by friction pressure welding method
US6527161B2 (en) Method of connecting electric wires
JP2006331765A (en) Winding-terminal connection method
JP2537794B2 (en) Rotor connecting part of rotating electric machine and manufacturing method thereof
JPH11317118A (en) Joining method for superconducting wire
JP5184471B2 (en) Terminal, manufacturing method thereof, electric motor
WO1991009704A1 (en) Method for joining transformer coil conductors
JP2022015510A (en) Terminal-equipped wire, and manufacturing method and design method thereof
JP2002231407A (en) Method for joining metals together
JP2591623B2 (en) Coated wire joining method
JP5558292B2 (en) Manufacturing method of conductive junction terminal

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091020

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees