JPWO2005022198A1 - Earthquake prediction method and system - Google Patents

Earthquake prediction method and system Download PDF

Info

Publication number
JPWO2005022198A1
JPWO2005022198A1 JP2005513422A JP2005513422A JPWO2005022198A1 JP WO2005022198 A1 JPWO2005022198 A1 JP WO2005022198A1 JP 2005513422 A JP2005513422 A JP 2005513422A JP 2005513422 A JP2005513422 A JP 2005513422A JP WO2005022198 A1 JPWO2005022198 A1 JP WO2005022198A1
Authority
JP
Japan
Prior art keywords
magnetic field
data
earthquake
ground current
earthquake prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005513422A
Other languages
Japanese (ja)
Inventor
朋也 四方田
朋也 四方田
敏夫 吉田
敏夫 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MX Mobiling Ltd
Original Assignee
MX Mobiling Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MX Mobiling Ltd filed Critical MX Mobiling Ltd
Publication of JPWO2005022198A1 publication Critical patent/JPWO2005022198A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting
    • G01V1/01Measuring or predicting earthquakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting

Landscapes

  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Traffic Control Systems (AREA)

Abstract

車両1−1・船舶1−2は、磁力線センサ11およびGPS位置検出器12並びにデータ送信器13を搭載し、観測地域内を移動して各地点の磁界データおよび位置データを地震予知センタ4へ送信する。地震予知センタ4の地電流誘導磁界推定部43は、受信収集された観測データに基づき地電流誘導磁界を推定する。地電流推定部44は、地電流誘導磁界の推定結果に基づき地電流を推定する。地電流誘導磁界強度変動パターン生成部45は、地電流誘導磁界強度の経時変動を示すパターンを生成する。地震予知部46は、地電流の分布状態および地電流誘導磁界強度の変動パターンを分析して震源域、震度および地震発生時期を推定する。The vehicle 1-1 and the ship 1-2 are equipped with a magnetic field sensor 11, a GPS position detector 12, and a data transmitter 13, and move in the observation area to transfer the magnetic field data and position data of each point to the earthquake prediction center 4. Send. The earth current induced magnetic field estimation unit 43 of the earthquake prediction center 4 estimates the earth current induced magnetic field based on the received and collected observation data. The ground current estimation unit 44 estimates the ground current based on the estimation result of the ground current induced magnetic field. The ground current induced magnetic field strength fluctuation pattern generation unit 45 generates a pattern indicating the temporal variation of the ground current induced magnetic field strength. The earthquake prediction unit 46 analyzes the ground current distribution state and the variation pattern of the ground current induced magnetic field strength to estimate the epicenter region, seismic intensity, and earthquake occurrence time.

Description

本発明は地震予知方法およびそのシステムに関し、特に観測地域内の各地点の磁界を観測して地震予知を行う地震予知方法およびそのシステムに関する。  The present invention relates to an earthquake prediction method and system, and more particularly, to an earthquake prediction method and system for performing earthquake prediction by observing a magnetic field at each point in an observation area.

火山脈上に位置する日本列島は東海、東南海、南海はじめ全国各地で大規模な地震災害の発生が危惧されている。地震災害から国民の生命・財産を守るためには被災後の復旧システムとともに地震予知により適切な対策を講じることが必要であり、このためには、低コストでかつ精度の高い効果的な地震予知技術の確立が急務である。  The Japanese archipelago located on the Fire Mountains is feared for the occurrence of large-scale earthquake disasters throughout the country, including the Tokai, Tonankai and Nankai. In order to protect people's lives and property from earthquake disasters, it is necessary to take appropriate measures by earthquake prediction together with the recovery system after the disaster. To this end, effective earthquake prediction with low cost and high accuracy is required. There is an urgent need to establish technology.

昔から地震の前兆現象として「ナマズが暴れる」「ネズミが駆け回る」などの事例が数多く伝えられている。また、阪神淡路大震災(平成7年1月)の数日前から地元アマチュア無線家によって電波異常が観測されたり、いわゆる『地震雲』が多くの人々によって目撃されている。  Many cases have been reported since early times, such as "catfish rampage" and "mouse run around" as precursors of earthquakes. In addition, several days before the Great Hanshin-Awaji Earthquake (January 1995), radio anomalies were observed by local amateur radio operators, and so-called “earthquake clouds” were witnessed by many people.

このような電波異常や地震雲の発生は、プレートの衝突によってピエゾ効果により発生する地電流が何らかの影響を及ぼしていると考えられている。  Such radio wave anomalies and generation of seismic clouds are thought to have some influence from the earth current generated by the piezo effect due to the collision of the plates.

また、永久磁石を糸で吊るしてその回動量を観測することにより、地震を予知することが開示されている(例えば、特開平11−258353号公報参照。)。  Further, it is disclosed to predict an earthquake by suspending a permanent magnet with a thread and observing the amount of rotation (for example, see Japanese Patent Application Laid-Open No. 11-258353).

ところで、地電流の変化を観測して高精度の地震予知をするためには、観測地域の広範囲にわたり木目細かく多数の観測設備を設置しなければならない。例えば東海地区だけでも数百km四方をカバーする観測体制が必要になる。  By the way, in order to make a highly accurate earthquake prediction by observing changes in the geoelectric current, it is necessary to install a large number of detailed observation facilities over a wide area of the observation area. For example, an observation system that covers several hundred km square is required in the Tokai area alone.

しかし、国・自治体とも財政難の昨今、多数の観測設備を設置することは大きな負担となり、また、観測体制の維持運用コスト面からも実現が困難であるという問題点を有している。  However, both the national and local governments have been faced with financial difficulties in recent years, and it has become a heavy burden to install a large number of observation facilities, and it is also difficult to realize from the viewpoint of maintenance and operation costs of the observation system.

本発明の目的は、観測地域内の多数の地点における磁界データを低コストかつ短時間に収集して精度よく地震を予知できる地震予知方法およびそのシステムを提供することにある。  An object of the present invention is to provide an earthquake prediction method and system capable of accurately predicting an earthquake by collecting magnetic field data at a large number of points in an observation area at low cost and in a short time.

本発明の地震予知方法は、観測地域内の各地点の磁界を観測して地電流誘導磁界を推定すると共に地電流を推定し、前記観測地域内の地電流の状態および地電流の時間的変動を分析して震源域、地震発生時期および震度を推定することを特徴とする。  According to the earthquake prediction method of the present invention, the ground current induced magnetic field is estimated by observing the magnetic field at each point in the observation area and the ground current is estimated, and the state of the ground current in the observation area and the temporal variation of the ground current are estimated. It is characterized by estimating seismic source area, earthquake occurrence time and seismic intensity.

また、観測された磁界から観測地点での磁界ノイズ成分を除去し、前記磁界ノイズ成分が除去された観測地点での磁界方位と真の北の方位とのずれ量を求め、前記磁界ノイズ成分が除去された観測磁界と真の北に補正された地磁気ベクトルとのベクトル差により前記地電流誘導磁界を推定することを特徴とする。  In addition, the magnetic field noise component at the observation point is removed from the observed magnetic field, the amount of deviation between the magnetic field direction at the observation point from which the magnetic field noise component has been removed and the true north direction is obtained, and the magnetic field noise component is removed. The earth current induced magnetic field is estimated from a vector difference between the observed magnetic field and the geomagnetic vector corrected to true north.

更に、前記推定された地電流誘導磁界を地図上にプロットし、地磁気に対して異常が認められる地図上のポイントを繋ぎ合わせると共に右ねじの法則により前記地電流を推定し、前記推定された地電流が集中する領域を前記震源域として推定することを特徴とする。  Further, the estimated earth current induced magnetic field is plotted on a map, points on the map where anomalies are recognized with respect to the earth magnetism are connected, the earth current is estimated by the right-handed screw rule, and the estimated earth A region where current is concentrated is estimated as the source region.

また更に、特定の観測地点における地電流誘導磁界強度の過去のデータを集めて経時変動を示す地電流誘導磁界強度変動パターンを生成し、蓄積されている過去の地電流誘導磁界強度変動パターンと比較照合することにより、前記地震発生時期および震度を推定することを特徴とする。  Furthermore, by collecting the past data of the earth current induced magnetic field strength at a specific observation point and generating the earth current induced magnetic field strength fluctuation pattern showing the temporal variation, it is compared with the accumulated past earth current induced magnetic field strength fluctuation pattern. By collating, the earthquake occurrence time and the seismic intensity are estimated.

本発明の地震予知システムは、磁力線の方位および強さを示す磁界データを出力する磁力線センサとGPS衛星の電波を受信して位置を示す位置データを出力するGPS位置検出器と前記データを送信するデータ送信器とを搭載した車両や船舶等の移動体と、前記移動体が観測地域内を移動して送信する各地点の前記データを収集して地震予知する地震予知センタとを備えている。  The earthquake prediction system of the present invention transmits a magnetic field sensor that outputs magnetic field data indicating the direction and strength of magnetic field lines, a GPS position detector that receives radio waves from GPS satellites and outputs position data indicating the position, and transmits the data. A mobile object such as a vehicle or a ship equipped with a data transmitter, and an earthquake prediction center that collects the data of each point that the mobile object moves and transmits in the observation area and predicts an earthquake are provided.

また、前記地震予知センタは、通信網およびアンテナを介して前記移動体から送信されたデータを受信するデータ受信部と、このデータ受信部により受信されたデータや地図データ等の各種データを保持蓄積するデータ記憶部と、このデータ記憶部に保持蓄積されたデータおよび地図データに基づき地電流誘導磁界を推定する地電流誘導磁界推定部と、推定された前記地電流誘導磁界に基づき地電流を推定する地電流推定部と、前記地電流誘導磁界強度の時間的推移を集計して変動パターンを生成する地電流誘導磁界強度変動パターン生成部と、推定された前記地電流および前記地電流誘導磁界強度の変動パターンを分析して震源域、震度および地震発生時期を推定する地震予知部とを有している。  The earthquake prediction center also stores and stores various data such as data and map data received by the data receiving unit that receives data transmitted from the mobile body via a communication network and an antenna. Data storage unit, a ground current induction magnetic field estimation unit for estimating a ground current induction magnetic field based on the data stored and accumulated in the data storage unit and map data, and a ground current estimation based on the estimated ground current induction magnetic field A ground current estimator, a ground current induced magnetic field strength variation pattern generator that generates a variation pattern by counting temporal transitions of the ground current induced magnetic field strength, and the estimated ground current and the ground current induced magnetic field strength. It has an earthquake prediction part that analyzes the fluctuation pattern of the earthquake and estimates the epicenter area, seismic intensity, and earthquake occurrence time.

また、前記移動体がカーナビゲーションシステムを備えている場合は前記GPS位置検出器に代えて前記カーナビゲーションシステムの位置データを使用するようにしてもよい。  Further, when the moving body includes a car navigation system, the position data of the car navigation system may be used instead of the GPS position detector.

また、前記磁力線センサおよび通信機器を観測地域内の予め選定した既存の固定構造物に取付け、前記通信機器は前記磁力線センサの出力する磁界データおよび設置位置を示す情報を既存の通信網を介して前記地震予知センタへ送信するようにしてもよい。  In addition, the magnetic field sensor and the communication device are attached to an existing fixed structure selected in advance in the observation area, and the communication device transmits the magnetic field data output from the magnetic field sensor and information indicating the installation position via the existing communication network. You may make it transmit to the said earthquake prediction center.

更に、前記磁力線センサおよびGPS位置検出器を携帯電話機等に組込み、自らの通信機能を利用して観測データを前記地震予知センタへ送信するようにしてもよい。  Furthermore, the magnetic field line sensor and the GPS position detector may be incorporated in a mobile phone or the like, and the observation data may be transmitted to the earthquake prediction center using its own communication function.

また更に、前記既存の固定構造物に加速度センサを具備させ、前記加速度センサが地震動を検知したときに磁界データを送信させるようにしてもよいし、あるいは、前記移動体や携帯電話機に加速度センサを具備させ、一定時間以上停止状態であることを前記加速度センサにより検出したときに磁界データを送信させるようにしてもよい。  Still further, the existing fixed structure may be provided with an acceleration sensor, and magnetic field data may be transmitted when the acceleration sensor detects earthquake motion, or an acceleration sensor may be provided to the mobile body or the mobile phone. The magnetic field data may be transmitted when the acceleration sensor detects that the vehicle is stopped for a certain time or longer.

本発明によれば、観測地域内を走行する車両や船舶等に磁力線センサ、GPS位置検出器およびデータ送信器を搭載し、地震予知センタにおいて観測地域内の各地点での磁界データを収集し、磁界データに基づき地電流誘導磁界および地電流を推定し分析することにより、観測機器を多数の地点に観測機器を設置しなくても、安価な設備コストで精度よく地震を予知できる。  According to the present invention, a magnetic field sensor, a GPS position detector, and a data transmitter are mounted on a vehicle or ship traveling in the observation area, and magnetic field data at each point in the observation area is collected at the earthquake prediction center. By estimating and analyzing the earth current induced magnetic field and earth current based on the magnetic field data, it is possible to accurately predict earthquakes at low cost without installing observation equipment at many points.

また、観測地域内の予め選定した既存の構造物に磁力線センサを設け既存の通信網を介して磁気データを地震予知センタへ送信させることにより、あるいは携帯電話機等に磁力線センサを設けて磁気データを地震予知センタへ送信させることにより、安価な設備コストで観測地域内の多数の地点の観測データを収集でき、精度よく地震を予知できる。  In addition, magnetic field sensors are installed in pre-existing structures in the observation area to transmit magnetic data to the earthquake prediction center via an existing communication network, or magnetic field sensors are installed in mobile phones or the like to transmit magnetic data. By transmitting to the earthquake prediction center, observation data at a large number of points in the observation area can be collected at a low equipment cost, and earthquakes can be accurately predicted.

更に、磁力線センサと共に加速度センサも取付けておき、加速度センサが地震動を検知したときに観測データを自動的に送信することにより、本震の前の前震発生時において磁界データを収集できるので、地震予知に有効な観測データを得ることができる。  In addition, an accelerometer is installed along with the magnetic field sensor, and when the accelerometer detects earthquake motion, the observation data is automatically transmitted, so that magnetic field data can be collected at the time of the foreshock before the mainshock. Effective observation data can be obtained.

[図1]本発明の一実施形態を示すブロック図である。FIG. 1 is a block diagram showing an embodiment of the present invention.

[図2]地震発生前における震源域近辺の地電流モデルを示す図である。[FIG. 2] A diagram showing a ground current model in the vicinity of the hypocenter region before the occurrence of the earthquake.

[図3]図1に示した地震予知センタ4の地震予知動作を示す図である。FIG. 3 is a diagram showing an earthquake prediction operation of the earthquake prediction center 4 shown in FIG.

[図4]地電流誘導磁界の推定を示す図である。FIG. 4 is a diagram showing estimation of a ground current induction magnetic field.

[図5]地電流の推定例を示す図である。FIG. 5 is a diagram showing an example of estimating a ground current.

[図6]観測された地電流誘導磁界および地電流の一例を示す図である。FIG. 6 is a diagram showing an example of the observed ground current induced magnetic field and ground current.

[図7]観測された地電流誘導磁界および地電流の一例を示す図である。FIG. 7 is a diagram showing an example of the observed ground current induced magnetic field and ground current.

[図8]観測された地電流誘導磁界および地電流の一例を示す図である。FIG. 8 is a diagram showing an example of the observed ground current induced magnetic field and ground current.

[図9]地電流誘導磁界強度の変動パターンの一例を示す図である。FIG. 9 is a diagram showing an example of a fluctuation pattern of the ground current induction magnetic field intensity.

次に本発明について図面を参照して説明する。  Next, the present invention will be described with reference to the drawings.

図1は本発明の一実施形態を示すブロック図であり、陸上または海上を移動可能な車両や船舶等の移動体1や、観測地域内の予め選定した既存の固定構造物2を利用して、観測地域内の多数の地点での観測データを収集して震源域や発生時期等を推定する地震予知システムを示している。  FIG. 1 is a block diagram showing an embodiment of the present invention, using a moving body 1 such as a vehicle or a ship that can move on land or sea, or an existing fixed structure 2 selected in advance in an observation area. This shows an earthquake prediction system that collects observation data at many points in the observation area and estimates the epicenter and the time of occurrence.

ここでは、磁力線センサ11およびGPS位置検出器12等を搭載して観測データを地震予知センタ4へ送信する移動体1と、磁力線センサ11および通信機器14が取付けられた既存の固定構造物2と、観測データを地震予知センタ4へ伝送する通信網3と、観測地域内の多数の地点での観測データに基づいて地震予知する地震予知センタ4とを備えている。  Here, a moving body 1 that includes a magnetic field sensor 11 and a GPS position detector 12 and transmits observation data to the earthquake prediction center 4, an existing fixed structure 2 to which the magnetic field sensor 11 and the communication device 14 are attached, and A communication network 3 for transmitting observation data to the earthquake prediction center 4 and an earthquake prediction center 4 for predicting earthquakes based on observation data at a number of points in the observation area.

移動体1は、観測地域内を移動する車両1−1や船舶1−2であり、磁力線の方位および強さを示す磁界データを出力する磁力線センサ11、およびGPS衛星の電波を受信して位置データを出力するGPS位置検出器12、並びに観測データを地震予知センタ4へ送信するデータ送信器13を搭載している。  The moving body 1 is a vehicle 1-1 or a ship 1-2 that moves within an observation area, and receives a magnetic field line sensor 11 that outputs magnetic field data indicating the direction and strength of magnetic field lines, and a radio wave of a GPS satellite. A GPS position detector 12 for outputting data and a data transmitter 13 for transmitting observation data to the earthquake prediction center 4 are mounted.

なお、移動体がカーナビゲーションシステムを搭載している場合は、カーナビゲーションシステムの位置データを利用できるので、GPS位置検出器12を削除することができる。  In addition, since the position data of a car navigation system can be utilized when the mobile body carries the car navigation system, the GPS position detector 12 can be deleted.

また、観測データはリアルタイムで送信してもよいし、データ記憶機器を設けてそれに記録させるようにしてもよい。なお、観測データには、磁界データおよび位置データの他に観測時刻を示すデータが含まれることは言うまでもない。  Moreover, observation data may be transmitted in real time, or a data storage device may be provided and recorded therein. Needless to say, the observation data includes data indicating the observation time in addition to the magnetic field data and the position data.

また、予め定めた観測位置や時刻になったときに自動的に観測データを送信するようにしておけば、人的負担を軽減できる。  Further, if the observation data is automatically transmitted when the predetermined observation position and time are reached, the human burden can be reduced.

また、観測地域一帯をメッシュ走行して観測するようにすれば、効果的に観測データを取ることができる。メッシュ走行とは、携帯電話の電波調査などで頻繁に利用される走行方法であり、予め走行する地域の地図を用意して網目状に線を描き、その線に沿ってメッシュ状に走行することである。  In addition, observation data can be obtained effectively if the observation area is meshed and observed. Mesh traveling is a traveling method that is frequently used in radio wave surveys of mobile phones, etc. Prepare a map of the area you are traveling in advance, draw a line in a mesh, and travel along the line in a mesh It is.

既存の固定構造物2としては、例えば、各家庭や会社に設置されている電気・ガス・水道メーターや、道路に沿って設けられている自動販売機、電力・通信線用柱や交通信号用柱、およびバス停に設置されている運行表示機器、その他、携帯電話基地局やPHS基地局の局舎等が考えられる。  Examples of the existing fixed structure 2 include, for example, electricity / gas / water meters installed at homes and companies, vending machines provided along roads, power / communication line pillars and traffic signals. The operation display devices installed at the pillars and bus stops, and other mobile phone base stations and PHS base station buildings are also conceivable.

そして、通信機器14は、有線または無線により磁力線センサ11の出力する磁界データを、設置位置を示す情報と共に地震予知センタ4へ送信する。  And the communication apparatus 14 transmits the magnetic field data which the magnetic force line sensor 11 outputs by wire or radio | wireless to the earthquake prediction center 4 with the information which shows an installation position.

この場合、リアルタイムで送信してもよいし、予め定めた観測時刻になったときに自動的に送信するようにしてよい。  In this case, it may be transmitted in real time or automatically when a predetermined observation time is reached.

なお、既存の固定構造物2が、電力・通信線用柱や交通信号用柱および携帯電話基地局やPHS基地局の局舎等の場合、データ伝送路を容易に確保できる。また防災無線システムのような既存の無線通信手段を利用すれば、低コスト化をはかることができる。  If the existing fixed structure 2 is a power / communication line pillar, a traffic signal pillar, a mobile phone base station, a PHS base station, or the like, a data transmission path can be easily secured. In addition, the cost can be reduced by using an existing wireless communication means such as a disaster prevention wireless system.

電気・ガス・水道メーター等の場合、自動検針システムを利用して伝送してもよい。また、バス停に設置されている運行表示機器の場合、車両運行管理システムを利用して伝送するようにしてもよい。更に、自動販売機の場合、磁界データと共に自動販売機の売上・在庫情報等を伝送するシステムを構築してもよい。  In the case of an electricity / gas / water meter, etc., the automatic meter reading system may be used for transmission. Moreover, in the case of the operation display apparatus installed in the bus stop, you may make it transmit using a vehicle operation management system. Further, in the case of a vending machine, a system for transmitting sales / inventory information of the vending machine together with magnetic field data may be constructed.

通信網3は、基地局を含む移動通信網や通信衛星を介する衛星通信網等の既設の通信網である。  The communication network 3 is an existing communication network such as a mobile communication network including a base station or a satellite communication network via a communication satellite.

地震予知センタ4は、通信網3およびアンテナを介して観測データを受信するデータ受信部41と、観測データや地図データ等の各種データを保持蓄積するデータ記憶部42と、データ記憶部42に保持蓄積された観測データや地図データに基づき地電流誘導磁界を推定する地電流誘導磁界推定部43と、地電流誘導磁界の推定結果に基づき地電流を推定する地電流推定部44と、地電流誘導磁界強度の時間的推移を集計して変動パターンを生成する地電流誘導磁界強度変動パターン生成部45と、地電流の推定結果および地電流誘導磁界強度の変動パターンを分析して震源域、震度および地震発生時期を推定する地震予知部46とを有している。  The earthquake prediction center 4 includes a data reception unit 41 that receives observation data via the communication network 3 and an antenna, a data storage unit 42 that stores and stores various data such as observation data and map data, and a data storage unit 42 that holds the data. A ground current induction magnetic field estimation unit 43 that estimates a ground current induction magnetic field based on the accumulated observation data and map data, a ground current estimation unit 44 that estimates a ground current based on the estimation result of the ground current induction magnetic field, and a ground current induction A ground current induced magnetic field strength fluctuation pattern generation unit 45 that aggregates temporal changes in magnetic field strength to generate a fluctuation pattern, and analyzes the ground current estimation result and the ground current induced magnetic field strength fluctuation pattern to analyze the source region, seismic intensity, and And an earthquake prediction unit 46 for estimating an earthquake occurrence time.

図2は、地震発生前における震源域近辺の地電流モデルを示す図である。  FIG. 2 is a diagram showing a ground current model in the vicinity of the hypocenter region before the occurrence of the earthquake.

ここでは、プレートAとプレートBとが互いぶつかり合う方向に移動して圧迫し合っている。プレートAとプレートBとの境界面の中の局所的に圧力の増大している箇所Cを震源域とする。  Here, the plate A and the plate B are moved and pressed in a direction in which they collide with each other. A point C where the pressure is locally increased in the boundary surface between the plate A and the plate B is defined as an epicenter region.

この震源域Cでは、強大な圧迫力が集中し極めて高圧の状態であり、その圧力はプレートの動きによって次第に高くなっていく。この状態のとき、震源域Cではピエゾ効果による電圧が発生し、岩盤内の電荷が震源域Cに流れ込むことが想定される。  In this epicenter C, a strong pressure force is concentrated and it is in an extremely high pressure state, and the pressure gradually increases as the plate moves. In this state, a voltage due to the piezo effect is generated in the hypocenter region C, and it is assumed that charges in the rock mass flow into the hypocenter region C.

岩盤内の電荷の流れ(地電流)は、岩盤中の導電性の良い箇所を辿って各方面から川の様に流れ込むことが想定される。通常、震源域の大部分は地中にあるため、多くの電荷は地中を流れ、地表を流れるケースは少ないものと想定される。  It is assumed that the flow of electric charge (geoelectric current) in the rock mass flows like a river from each direction following a place with good conductivity in the rock mass. Usually, most of the epicenter area is in the ground, so it is assumed that a lot of electric charge flows in the ground and rarely flows on the ground surface.

震源域Cの岩盤が崩壊する直前では加速度的に地電流が増大し、岩盤崩壊と同時に圧力開放に伴いピエゾ電圧は消失して地電流も瞬時に消失するものと想定される。  Immediately before the collapse of the rock mass in hypocenter area C, it is assumed that the earth current increases at an accelerated rate, and at the same time as the rock mass collapse, the piezoelectric voltage disappears and the earth current also disappears instantaneously as the pressure is released.

このように、地震の前兆現象として地電流が発生し変化するので、地電流の向きおよび強さをそれぞれ観測することにより、地震を予知することができる。  As described above, since the earth current is generated and changed as a precursor of the earthquake, the earthquake can be predicted by observing the direction and intensity of the earth current.

ところで、地電流は地表を流れないので直接検出することは難しいが、地電流に起因して地上に誘導磁界(地電流誘導磁界)が発生するので、地上の磁界の方位および強さを検出することにより地電流誘導磁界の方位および強さを推定できる。  By the way, it is difficult to detect ground current directly because it does not flow on the ground surface. However, since an induced magnetic field (ground current induced magnetic field) is generated on the ground due to the ground current, the direction and strength of the ground magnetic field are detected. This makes it possible to estimate the direction and strength of the earth current induced magnetic field.

地電流誘導磁界の観測方法として最も簡単な方法は、磁針の示す方位の観測である。磁針が地電流誘導磁界の影響を受けることにより、通常の地磁気による方位とは異なる方位を示すので、地磁気および地電流誘導磁界以外の磁界が存在しない環境であれば、最もコストがかからず簡単に観測できる。  The simplest method for observing the earth current induced magnetic field is observing the direction indicated by the magnetic needle. Because the magnetic needle is affected by the earth current induced magnetic field, it shows an orientation different from the normal earth magnetism direction, so it is the least expensive and simple in an environment where there is no magnetic field other than the earth magnetic field and the earth current induced magnetic field. Observable.

第2の方法は、磁力線センサを使用することにより、磁針よりも高精度の観測が可能である。  The second method enables observation with higher accuracy than a magnetic needle by using a magnetic field line sensor.

第3の方法は、磁力線センサとGPS位置検出器とを組み合わせることにより、更に高精度化を図ることができる。  The third method can achieve higher accuracy by combining a magnetic field sensor and a GPS position detector.

また、磁針とGPS位置検出とを組み合わせることにより、地震予知に有効なデータが得られる。すなわち、磁針が示す北は真の北とは一致せず、しかも毎年少しずつズレていることはよく知られている。よって、GPS衛星によって真の北を求め、磁針が示す北との差異を常時観測することにより地震予知に有効なデータが得られる。  In addition, data effective for earthquake prediction can be obtained by combining a magnetic needle and GPS position detection. In other words, it is well known that the north indicated by the magnetic needle does not coincide with the true north, and is shifted little by little every year. Therefore, true north is obtained by a GPS satellite, and data effective for earthquake prediction can be obtained by constantly observing the difference from the north indicated by the magnetic needle.

ところで、地電流誘導磁界の観測データの精度を高めるためには、地電流以外の原因で発生する磁界ノイズ成分を観測データから除去しなければならない。  By the way, in order to improve the accuracy of the observation data of the earth current induced magnetic field, the magnetic field noise component generated due to a cause other than the earth current must be removed from the observation data.

地電流以外の原因で発生する主な磁界ノイズとしては、次のようなものがある。
(1)電車の線路に近い観測地点における架線を流れる直流に起因して発生する磁界。この磁界の変化は、電車が近づくにつれて強くなり、離れるに離れるにつれて弱くなる短期的な微変動であるという特徴がある。
(2)太陽活動に伴うデリンジャー現象による地磁気擾乱。短期間に発生消滅する特徴がある。
(3)地下の金属鉱脈により発生する磁界。常に一定レベルであるという特徴がある。
The main magnetic field noise generated due to causes other than the ground current is as follows.
(1) A magnetic field generated due to a direct current flowing through an overhead line at an observation point close to a train line. This change in magnetic field is characterized by short-term slight fluctuations that become stronger as the train approaches and weaken as it moves away.
(2) Geomagnetic disturbance due to the Dellinger phenomenon associated with solar activity. It has the characteristic of occurring and disappearing in a short time.
(3) Magnetic field generated by underground metal veins. It is characterized by a constant level at all times.

このような地電流以外の原因で発生する磁界ノイズ成分を除去するには、一定の観測地点で一定期間磁界を観測し、その変動パターンの特徴を分析して磁界ノイズ成分を抽出することにより、ソフトウエアにより除去できる。  In order to remove the magnetic field noise component generated due to causes other than the earth current, the magnetic field noise component is extracted by observing the magnetic field for a certain period at a certain observation point, analyzing the characteristics of the fluctuation pattern, Can be removed by software.

図3は地震予知センタ4の地震予知動作を示す図である。  FIG. 3 is a diagram showing an earthquake prediction operation of the earthquake prediction center 4.

まず、地電流誘導磁界推定部43は、観測された磁界データから観測地点での磁界ノイズ成分を除去した後(ステップ101)、図4に示したように、磁界ノイズ成分を除去した観測地点での磁界方位と真の北の方位とのずれ量を求め(ステップ102)、磁界ノイズ成分を除去した観測磁界N1と真の北に補正された地磁気ベクトルNとのベクトル差により地電流誘導磁界N2を推定する(ステップ103)。そして、図5に示すように地図上にプロットする(ステップ104)。  First, the ground current induced magnetic field estimation unit 43 removes the magnetic field noise component at the observation point from the observed magnetic field data (step 101), and then at the observation point from which the magnetic field noise component has been removed as shown in FIG. (Step 102), the earth current induced magnetic field N2 is determined by the vector difference between the observed magnetic field N1 from which the magnetic field noise component has been removed and the geomagnetic vector N corrected to the true north. Estimate (step 103). And it plots on a map as shown in FIG. 5 (step 104).

次に地電流推定部44は、図5に示したように、地磁気に対して異常が認められる地図上のポイントを繋ぎ合わせると共に、右ねじの法則により地電流を推定する(ステップ105)。  Next, as shown in FIG. 5, the ground current estimation unit 44 connects the points on the map where anomaly is recognized with respect to the geomagnetism and estimates the ground current by the right-handed screw law (step 105).

地電流誘導磁界強度変動パターン生成部45は、特定の観測地点における地電流誘導磁界強度の過去のデータを集めて経時変動を示す地電流誘導磁界強度変動パターンを生成する(ステップ106)。  The ground current induced magnetic field strength fluctuation pattern generation unit 45 collects the past data of the ground current induced magnetic field strength at a specific observation point and generates a ground current induced magnetic field strength fluctuation pattern indicating temporal variation (step 106).

地震予知部46は、地電流誘導磁界強度変動パターンおよび地電流推定部44により推定された地電流の分布を分析し、地電流が集中する等の不自然な領域を探して震源域を推定する。また、生成された地電流誘導磁界強度変動パターンを過去の地電流誘導磁界強度変動パターンと比較照合することにより地震発生時期および震度を推定する(ステップ107)。  The earthquake prediction unit 46 analyzes the ground current induced magnetic field intensity fluctuation pattern and the distribution of the ground current estimated by the ground current estimation unit 44, and searches for an unnatural region such as a concentration of the ground current to estimate the source region. . In addition, the earthquake occurrence time and the seismic intensity are estimated by comparing and comparing the generated ground current induced magnetic field strength fluctuation pattern with the past ground current induced magnetic field strength fluctuation pattern (step 107).

例えば図6に示すように、地電流誘導磁界および地電流が観測地域の地図上にプロットされた場合、震源域は観測地域内の地電流が集中する箇所と推定され、観測領域の浅層直下でマグニチュード大の地震が推定できる。  For example, as shown in FIG. 6, when the ground current induced magnetic field and the ground current are plotted on the map of the observation area, the epicenter is estimated to be a place where the ground current is concentrated in the observation area, and the shallow area directly below the observation area. Can estimate magnitude-scale earthquakes.

また、図7に示すように、地電流誘導磁界および地電流が観測地域の地図上にプロットされた場合、震源域は観測地域外の近傍の浅層と推定できる。  In addition, as shown in FIG. 7, when the ground current induced magnetic field and the ground current are plotted on the map of the observation area, the hypocenter area can be estimated as a shallow layer near the outside of the observation area.

また、図8に示すように、地電流誘導磁界および地電流が観測地域の地図上にプロットされた場合、震源域は観測領域外の遠方の浅層、または近傍の複数の浅層箇所と推定できる。  In addition, as shown in FIG. 8, when the ground current induced magnetic field and the ground current are plotted on the map of the observation area, the epicenter is estimated as a distant shallow layer outside the observation area or a plurality of nearby shallow layers. it can.

図9は地電流誘導磁界強度の変動パターンの一例を示す図である。ここで、電流誘導磁界強度は相対値である。  FIG. 9 is a diagram showing an example of a fluctuation pattern of the ground current induction magnetic field strength. Here, the current-induced magnetic field strength is a relative value.

一般に震源域の岩盤が崩壊する直前の弾性限界点近傍では、ピエゾ電圧の急速な上昇に伴い地電流は急上昇する。そして、塑性変形直前のピエゾ電圧飽和に伴う地電流の停滞が観測された後、岩盤崩壊と同時に圧力開放に伴いピエゾ電圧は消失して地電流も瞬時に消失する。  Generally, in the vicinity of the elastic limit point just before the collapse of the rock in the epicenter, the ground current rises rapidly with the rapid increase in piezo voltage. Then, after stagnation of the ground current due to saturation of the piezo voltage just before plastic deformation is observed, the piezo voltage disappears with the pressure release at the same time as the rock collapse, and the ground current also disappears instantaneously.

また、地電流の時間的推移は、岩盤塑性とプレート同士の相対ベクトル速度によって一義的に特定され、観測地点から震源域までの距離に無関係であり、地電流誘導磁界は地電流に起因して発生するので、定点観測による地電流誘導磁界強度の時間的推移を観測すれば地電流の時間的推移を推定できる。  In addition, the temporal transition of the geoelectric current is uniquely specified by the rock mass plasticity and the relative vector velocity between the plates, and is independent of the distance from the observation point to the hypocenter region. Therefore, the temporal transition of the ground current can be estimated by observing the temporal transition of the earth current induced magnetic field intensity by the fixed point observation.

この場合、特定の同一プレート境界面に発生する震源域周辺の過去の地電流誘導磁界強度変動パターンを蓄積しておけば、震源域の塑性変形(地震発生)直前迄の地電流誘導磁界強度変動パターンを抽出することが可能である。従って、観測中の推定震源域のプレートを特定できれば、過去の地電流誘導磁界強度変動パターンと比較照合することにより、岩盤塑性変形(地震発生)迄の推定時期および震度を推定できる。  In this case, if the past earth current induced magnetic field intensity fluctuation pattern around the source area that occurs on the specific same plate boundary surface is accumulated, the earth current induced magnetic field intensity change until immediately before the plastic deformation (earthquake occurrence) of the source area. It is possible to extract a pattern. Therefore, if the plate of the estimated seismic source region under observation can be identified, the estimated time and seismic intensity until the rock mass plastic deformation (earthquake occurrence) can be estimated by comparing with the past geocurrent-induced magnetic field strength fluctuation pattern.

また、地電流誘導磁界強度の変動を示す曲線関数の遷移ポイントを設定し、岩盤の弾性限界点近傍での地電流誘導磁界強度に基づき岩盤塑性変形(地震発生)迄の時間を推定できる。また、地電流誘導磁界強度が到達する最大値を推定し、この最大値に応じて等価的に震度を推定できる。  In addition, the transition point of the curve function indicating the fluctuation of the earth current induced magnetic field strength can be set, and the time to the rock mass plastic deformation (earthquake occurrence) can be estimated based on the earth current induced magnetic field strength near the elastic limit point of the rock mass. In addition, the maximum value that the earth current induced magnetic field strength reaches can be estimated, and the seismic intensity can be equivalently estimated according to the maximum value.

以上の説明では、車両や船舶や既存の固定構造物に磁力線センサを設け、観測地域内の各地点の磁界データを収集するようにしているが、他の実施例として、携帯電話機や携帯端末等に磁力線センサおよびGPS位置検出器を組込んでおき、自らの通信機能を利用して観測データを送信させるようにしてもよい。この場合、定期的に自動的に観測データを送信するようにし、且つ通信料金を無料にすれば、ユーザに負担をかけずに広範囲の多くの地点の観測データを収集できる。  In the above description, a magnetic field sensor is provided in a vehicle, a ship, or an existing fixed structure so as to collect magnetic field data at each point in the observation area. However, as another embodiment, a mobile phone, a mobile terminal, etc. In addition, a magnetic field sensor and a GPS position detector may be incorporated in the sensor, and observation data may be transmitted using its own communication function. In this case, if the observation data is automatically transmitted periodically and the communication fee is free, observation data of a wide range of points can be collected without placing a burden on the user.

また、既存の固定構造物に磁力線センサと共に加速度センサを取付け、加速度センサが地震動を検知したときに、観測データを自動的に送信するようにしておけば、本震の前の前震発生時において磁界データを収集できるので、地震予知に有効なデータを得ることが可能となる。  In addition, if an accelerometer is installed together with a magnetic field sensor on an existing fixed structure and the acceleration sensor detects earthquake motion, the observation data is automatically transmitted. Therefore, it is possible to obtain effective data for earthquake prediction.

更に、車両や船舶等の移動体、および携帯電話機や携帯端末等にも磁力線センサと共に加速度センサを組込み、一定時間以上停止状態であることを加速度センサにより検出したときに、観測データを自動的に送信するようにしておいてもよい。  In addition, an acceleration sensor is incorporated in a moving body such as a vehicle or a ship, a mobile phone, a portable terminal, etc. together with a magnetic field sensor. You may make it transmit.

上述したように、観測地域内の多数の地点での磁界データを収集し、地電流誘導磁界を推定すると共に、推定した地電流誘導磁界に基づき地電流を推定し、これら推定結果を分析することにより、精度よく地震を予知することが可能である。  As described above, collect magnetic field data at many points in the observation area, estimate the ground current induced magnetic field, estimate the ground current based on the estimated ground current induced magnetic field, and analyze these estimation results Therefore, it is possible to predict earthquakes with high accuracy.

Claims (12)

観測地域内の各地点の磁界を観測して地電流誘導磁界を推定すると共に地電流を推定し、前記観測地域内の地電流の状態および地電流の時間的変動を分析して震源域、地震発生時期および震度を推定することを特徴とする地震予知方法。Observe the magnetic field at each point in the observation area to estimate the earth current induced magnetic field, estimate the earth current, analyze the state of the earth current in the observation area and the temporal variation of the earth current, and An earthquake prediction method characterized by estimating occurrence time and seismic intensity. 観測された磁界から観測地点での磁界ノイズ成分を除去し、前記磁界ノイズ成分が除去された観測地点での磁界方位と真の北の方位とのずれ量を求め、前記磁界ノイズ成分が除去された観測磁界と真の北に補正された地磁気ベクトルとのベクトル差により前記地電流誘導磁界を推定することを特徴とする請求項1記載の地震予知方法。The magnetic field noise component at the observation point was removed from the observed magnetic field, the amount of deviation between the magnetic field direction at the observation point from which the magnetic field noise component was removed and the true north direction was obtained, and the magnetic field noise component was removed 2. The earthquake prediction method according to claim 1, wherein the earth current induced magnetic field is estimated from a vector difference between an observed magnetic field and a true north corrected geomagnetic vector. 前記推定された地電流誘導磁界を地図上にプロットし、地磁気に対して異常が認められる地図上のポイントを繋ぎ合わせると共に右ねじの法則により前記地電流を推定することを特徴とする請求項1または2記載の地震予知方法。2. The estimated earth current induced magnetic field is plotted on a map, points on the map where anomalies are recognized with respect to the earth magnetism are connected, and the earth current is estimated by the right-handed screw law. Or the earthquake prediction method of 2 description. 前記推定された地電流が集中する領域を前記震源域として推定することを特徴とする請求項1,2または3記載の地震予知方法。The earthquake prediction method according to claim 1, 2 or 3, wherein an area where the estimated geocurrent is concentrated is estimated as the epicenter area. 特定の観測地点における地電流誘導磁界強度の過去のデータを集めて経時変動を示す地電流誘導磁界強度変動パターンを生成し、蓄積されている過去の地電流誘導磁界強度変動パターンと比較照合することにより、前記地震発生時期および震度を推定することを特徴とする請求項1または2記載の地震予知方法。Collecting past data of the earth current induced magnetic field strength at a specific observation point, generating a ground current induced magnetic field strength fluctuation pattern showing temporal variation, and comparing it with the accumulated past earth current induced magnetic field strength fluctuation pattern. The earthquake prediction method according to claim 1 or 2, wherein the earthquake occurrence time and seismic intensity are estimated by the following. 磁力線の方位および強さを示す磁界データを出力する磁力線センサとGPS衛星の電波を受信して位置を示す位置データを出力するGPS位置検出器と前記データを送信するデータ送信器とを搭載した車両や船舶等の移動体と、前記移動体が観測地域内を移動して送信する各地点の前記データを収集して地震予知する地震予知センタとを備えていることを特徴とする地震予知システム。A vehicle equipped with a magnetic field sensor that outputs magnetic field data indicating the direction and intensity of magnetic field lines, a GPS position detector that receives radio waves from a GPS satellite and outputs position data indicating the position, and a data transmitter that transmits the data A seismic prediction system comprising: a moving body such as a ship or a ship; and an earthquake prediction center that collects the data of each point that the moving body moves and transmits in an observation area to predict an earthquake. 前記地震予知センタは、通信網およびアンテナを介して前記移動体から送信されたデータを受信するデータ受信部と、このデータ受信部により受信されたデータや地図データ等の各種データを保持蓄積するデータ記憶部と、このデータ記憶部に保持蓄積されたデータおよび地図データに基づき地電流誘導磁界を推定する地電流誘導磁界推定部と、推定された前記地電流誘導磁界に基づき地電流を推定する地電流推定部と、前記地電流誘導磁界強度の時間的推移を集計して変動パターンを生成する地電流誘導磁界強度変動パターン生成部と、推定された前記地電流および前記地電流誘導磁界強度の変動パターンを分析して震源域、震度および地震発生時期を推定する地震予知部とを有していることを特徴とする請求項6記載の地震予知システム。The earthquake prediction center includes a data receiving unit that receives data transmitted from the mobile body via a communication network and an antenna, and data that holds and stores various data such as data and map data received by the data receiving unit. A storage unit, a ground current induction magnetic field estimation unit for estimating a ground current induction magnetic field based on the data stored and accumulated in the data storage unit and map data, and a ground for estimating a ground current based on the estimated ground current induction magnetic field. A current estimator, a ground current induced magnetic field strength variation pattern generating unit that aggregates temporal transitions of the ground current induced magnetic field strength to generate a variation pattern, and the estimated ground current and variation of the ground current induced magnetic field strength The earthquake prediction system according to claim 6, further comprising an earthquake prediction unit that analyzes a pattern to estimate a source region, a seismic intensity, and an earthquake occurrence time. 前記移動体がカーナビゲーションシステムを備えている場合は前記GPS位置検出器に代えて前記カーナビゲーションシステムの位置データを使用することを特徴とする請求項6記載の地震予知システム。The earthquake prediction system according to claim 6, wherein, when the moving body includes a car navigation system, the position data of the car navigation system is used instead of the GPS position detector. 前記磁力線センサおよび通信機器を観測地域内の予め選定した既存の固定構造物に取付け、前記通信機器は前記磁力線センサの出力する磁界データおよび設置位置を示す情報を既存の通信網を介して前記地震予知センタへ送信することを特徴とする請求項6記載の地震予知システム。The magnetic field sensor and the communication device are attached to an existing fixed structure selected in advance in the observation area, and the communication device transmits the magnetic field data output from the magnetic field sensor and information indicating the installation position via the existing communication network to the earthquake. The earthquake prediction system according to claim 6, wherein the earthquake prediction system is transmitted to a prediction center. 前記磁力線センサおよびGPS位置検出器を携帯電話機等に組込み、自らの通信機能を利用して観測データを前記地震予知センタへ送信することを特徴とする請求項6記載の地震予知システム。The earthquake prediction system according to claim 6, wherein the magnetic field sensor and the GPS position detector are incorporated in a mobile phone or the like, and observation data is transmitted to the earthquake prediction center using its own communication function. 加速度センサを具備し、この加速度センサが地震動を検知したときに、前記磁界データを送信することを特徴とする請求項9記載の地震予知システム。The earthquake prediction system according to claim 9, further comprising an acceleration sensor, wherein the magnetic field data is transmitted when the acceleration sensor detects earthquake motion. 加速度センサを具備し、一定時間以上停止状態であることを前記加速度センサにより検出したときに、前記磁界データを送信することを特徴とする請求項6または10記載の地震予知システム。The earthquake prediction system according to claim 6 or 10, further comprising an acceleration sensor, wherein the magnetic field data is transmitted when the acceleration sensor detects that the vehicle has been stopped for a certain period of time.
JP2005513422A 2003-08-27 2004-08-18 Earthquake prediction method and system Pending JPWO2005022198A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003302633 2003-08-27
JP2003302633 2003-08-27
PCT/JP2004/011818 WO2005022198A1 (en) 2003-08-27 2004-08-18 Earthquake prediction method and system thereof

Publications (1)

Publication Number Publication Date
JPWO2005022198A1 true JPWO2005022198A1 (en) 2006-10-26

Family

ID=34269182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005513422A Pending JPWO2005022198A1 (en) 2003-08-27 2004-08-18 Earthquake prediction method and system

Country Status (7)

Country Link
US (1) US7280919B2 (en)
EP (1) EP1659420A1 (en)
JP (1) JPWO2005022198A1 (en)
KR (1) KR100640705B1 (en)
CN (1) CN1701243A (en)
TW (1) TWI297782B (en)
WO (1) WO2005022198A1 (en)

Families Citing this family (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7623028B2 (en) 2004-05-27 2009-11-24 Lawrence Kates System and method for high-sensitivity sensor
US8033479B2 (en) 2004-10-06 2011-10-11 Lawrence Kates Electronically-controlled register vent for zone heating and cooling
US9195397B2 (en) 2005-04-20 2015-11-24 Axxana (Israel) Ltd. Disaster-proof data recovery
EP2328089B1 (en) * 2005-04-20 2014-07-09 Axxana (Israel) Ltd. Remote data mirroring system
WO2007031997A2 (en) * 2005-09-12 2007-03-22 Ezra Mizrahi Earthquakes and sun disturbances
US20070233390A1 (en) * 2006-02-24 2007-10-04 Freund Friedemann T Current generation and earthquake prediction
US20070286022A1 (en) * 2006-06-09 2007-12-13 Input/Output, Inc. Operating State Management for Seismic Data Acquisition
US7849041B2 (en) * 2006-09-18 2010-12-07 Microsoft Corporation Intent prediction and response employing sensing, networking, and communication among distributed devices
JP4527738B2 (en) * 2007-01-30 2010-08-18 Necモバイリング株式会社 Magnetic fluctuation abnormality occurrence information providing system, portable terminal, magnetic fluctuation abnormality occurrence information provision method
US7784704B2 (en) 2007-02-09 2010-08-31 Harter Robert J Self-programmable thermostat
US8160752B2 (en) 2008-09-30 2012-04-17 Zome Networks, Inc. Managing energy usage
EP2201456A4 (en) * 2007-10-08 2012-02-15 Axxana Israel Ltd Fast data recovery system
KR100842887B1 (en) * 2008-02-29 2008-07-02 한국유지관리 주식회사 System for evaluating quickly seismic damge using structure monitering
KR20090112352A (en) * 2008-04-24 2009-10-28 이근호 System for measuring structure displacement
EP2286343A4 (en) * 2008-05-19 2012-02-15 Axxana Israel Ltd Resilient data storage in the presence of replication faults and rolling disasters
WO2010076755A2 (en) * 2009-01-05 2010-07-08 Axxana (Israel) Ltd Disaster-proof storage unit having transmission capabilities
US8754775B2 (en) 2009-03-20 2014-06-17 Nest Labs, Inc. Use of optical reflectance proximity detector for nuisance mitigation in smoke alarms
CN101877821A (en) * 2009-04-29 2010-11-03 深圳富泰宏精密工业有限公司 Earthquake field positioning system and method applied to communication device
ITRM20090438A1 (en) * 2009-08-18 2011-02-19 Enea Ente Nuove Tec METHOD FOR MONITORING IN REAL TIME THE GROUND SHAKING THROUGH A GEOGRAPHICALLY DISTRIBUTED NETWORK OF MOBILE ACCELEROMETRIC TERMINALS AND MEANS OF ITS IMPLEMENTATION.
WO2011067702A1 (en) 2009-12-02 2011-06-09 Axxana (Israel) Ltd. Distributed intelligent network
US8351293B2 (en) * 2010-02-16 2013-01-08 Westerngeco L.L.C. Multi-vessel communication system
CN101958965A (en) * 2010-05-31 2011-01-26 宇龙计算机通信科技(深圳)有限公司 Method and system for earthquake early warning
US8510255B2 (en) 2010-09-14 2013-08-13 Nest Labs, Inc. Occupancy pattern detection, estimation and prediction
US8950686B2 (en) 2010-11-19 2015-02-10 Google Inc. Control unit with automatic setback capability
US9104211B2 (en) 2010-11-19 2015-08-11 Google Inc. Temperature controller with model-based time to target calculation and display
US8918219B2 (en) 2010-11-19 2014-12-23 Google Inc. User friendly interface for control unit
US8727611B2 (en) 2010-11-19 2014-05-20 Nest Labs, Inc. System and method for integrating sensors in thermostats
US8606374B2 (en) 2010-09-14 2013-12-10 Nest Labs, Inc. Thermodynamic modeling for enclosures
US10346275B2 (en) 2010-11-19 2019-07-09 Google Llc Attributing causation for energy usage and setpoint changes with a network-connected thermostat
US9459018B2 (en) 2010-11-19 2016-10-04 Google Inc. Systems and methods for energy-efficient control of an energy-consuming system
US11334034B2 (en) 2010-11-19 2022-05-17 Google Llc Energy efficiency promoting schedule learning algorithms for intelligent thermostat
US9046898B2 (en) 2011-02-24 2015-06-02 Google Inc. Power-preserving communications architecture with long-polling persistent cloud channel for wireless network-connected thermostat
US9448567B2 (en) 2010-11-19 2016-09-20 Google Inc. Power management in single circuit HVAC systems and in multiple circuit HVAC systems
US8195313B1 (en) 2010-11-19 2012-06-05 Nest Labs, Inc. Thermostat user interface
US9256230B2 (en) 2010-11-19 2016-02-09 Google Inc. HVAC schedule establishment in an intelligent, network-connected thermostat
US9075419B2 (en) 2010-11-19 2015-07-07 Google Inc. Systems and methods for a graphical user interface of a controller for an energy-consuming system having spatially related discrete display elements
US9714772B2 (en) 2010-11-19 2017-07-25 Google Inc. HVAC controller configurations that compensate for heating caused by direct sunlight
WO2012092627A1 (en) 2010-12-31 2012-07-05 Nest Labs, Inc. Auto-configuring time-of-day for building control unit
US9268344B2 (en) 2010-11-19 2016-02-23 Google Inc. Installation of thermostat powered by rechargeable battery
US8850348B2 (en) 2010-12-31 2014-09-30 Google Inc. Dynamic device-associated feedback indicative of responsible device usage
US9453655B2 (en) 2011-10-07 2016-09-27 Google Inc. Methods and graphical user interfaces for reporting performance information for an HVAC system controlled by a self-programming network-connected thermostat
AU2011343454B2 (en) 2010-12-17 2015-07-30 Seismic Warning Systems, Inc. Earthquake warning system
US9342082B2 (en) 2010-12-31 2016-05-17 Google Inc. Methods for encouraging energy-efficient behaviors based on a network connected thermostat-centric energy efficiency platform
US9417637B2 (en) 2010-12-31 2016-08-16 Google Inc. Background schedule simulations in an intelligent, network-connected thermostat
US8068985B1 (en) 2011-02-03 2011-11-29 Zhonghao Shou Method of precise earthquake prediction and prevention of mysterious air and sea accidents
US8511577B2 (en) 2011-02-24 2013-08-20 Nest Labs, Inc. Thermostat with power stealing delay interval at transitions between power stealing states
US8944338B2 (en) 2011-02-24 2015-02-03 Google Inc. Thermostat with self-configuring connections to facilitate do-it-yourself installation
WO2012116367A2 (en) 2011-02-26 2012-08-30 Seismic Warning Systems, Inc. Customizable policy engine
CN102787677B (en) * 2011-05-20 2014-09-17 青岛理工大学 Forecast method for aseismic intensity of engineering structure
US9115908B2 (en) 2011-07-27 2015-08-25 Honeywell International Inc. Systems and methods for managing a programmable thermostat
US8893032B2 (en) 2012-03-29 2014-11-18 Google Inc. User interfaces for HVAC schedule display and modification on smartphone or other space-limited touchscreen device
CA3044757C (en) 2011-10-21 2021-11-09 Google Llc User-friendly, network connected learning thermostat and related systems and methods
US8622314B2 (en) 2011-10-21 2014-01-07 Nest Labs, Inc. Smart-home device that self-qualifies for away-state functionality
CA2852944C (en) 2011-10-21 2023-03-14 Nest Labs, Inc. Energy efficiency promoting schedule learning algorithms for intelligent thermostat
CN104335129B (en) 2012-03-29 2016-09-14 谷歌公司 A kind of method generating energy use report for the HVAC system for being controlled by programmable thermostats
US9091453B2 (en) 2012-03-29 2015-07-28 Google Inc. Enclosure cooling using early compressor turn-off with extended fan operation
WO2014035432A2 (en) * 2012-08-31 2014-03-06 Nest Labs, Inc. Dynamic distributed-sensor network for forecasting external events
US8620841B1 (en) 2012-08-31 2013-12-31 Nest Labs, Inc. Dynamic distributed-sensor thermostat network for forecasting external events
DE102012017867A1 (en) * 2012-09-05 2014-03-06 Martin Härtel Method for early detection of earthquakes in e.g. tectonic plates, through navigation system, involves determining a change in level of water or height of ice over the plates, by weight transfer caused by desired displacement of plates
US8994540B2 (en) 2012-09-21 2015-03-31 Google Inc. Cover plate for a hazard detector having improved air flow and other characteristics
US8630741B1 (en) 2012-09-30 2014-01-14 Nest Labs, Inc. Automated presence detection and presence-related control within an intelligent controller
US8600561B1 (en) 2012-09-30 2013-12-03 Nest Labs, Inc. Radiant heating controls and methods for an environmental control system
US9423522B2 (en) 2012-12-11 2016-08-23 Westerngeco L.L.C. Communication systems for water vehicles
US9807099B2 (en) 2013-03-15 2017-10-31 Google Inc. Utility portals for managing demand-response events
US9595070B2 (en) 2013-03-15 2017-03-14 Google Inc. Systems, apparatus and methods for managing demand-response programs and events
US9810442B2 (en) 2013-03-15 2017-11-07 Google Inc. Controlling an HVAC system in association with a demand-response event with an intelligent network-connected thermostat
CN104965220A (en) * 2013-03-15 2015-10-07 英洛瓦(天津)物探装备有限责任公司 Movable vehicle used with frame for serving earthquake-related data acquiring unit
US10775814B2 (en) 2013-04-17 2020-09-15 Google Llc Selective carrying out of scheduled control operations by an intelligent controller
US9298197B2 (en) 2013-04-19 2016-03-29 Google Inc. Automated adjustment of an HVAC schedule for resource conservation
US9910449B2 (en) 2013-04-19 2018-03-06 Google Llc Generating and implementing thermodynamic models of a structure
US9696735B2 (en) 2013-04-26 2017-07-04 Google Inc. Context adaptive cool-to-dry feature for HVAC controller
US9360229B2 (en) 2013-04-26 2016-06-07 Google Inc. Facilitating ambient temperature measurement accuracy in an HVAC controller having internal heat-generating components
CN103293556A (en) * 2013-05-13 2013-09-11 胡建斌 System and method for monitoring geomagnetic abnormal movement
WO2015025340A1 (en) * 2013-08-20 2015-02-26 株式会社環太平洋地殻変動解析 Earthquake prediction information provision method, earthquake prediction information provision system, earthquake prediction information provision program, and computer-readable medium having earthquake prediction information provision program recorded therein
US10769028B2 (en) 2013-10-16 2020-09-08 Axxana (Israel) Ltd. Zero-transaction-loss recovery for database systems
CN103559774A (en) * 2013-11-08 2014-02-05 成都博格科技有限公司 Earthquake alarm system based on internet of things
US9857238B2 (en) 2014-04-18 2018-01-02 Google Inc. Thermodynamic model generation and implementation using observed HVAC and/or enclosure characteristics
US10379958B2 (en) 2015-06-03 2019-08-13 Axxana (Israel) Ltd. Fast archiving for database systems
CN105015563B (en) * 2015-07-23 2018-11-16 北京中铁科轨道交通安全技术有限公司 The reminding method and terminal of high speed railway vehicle mounted seismic emergency handling device information
US9702582B2 (en) 2015-10-12 2017-07-11 Ikorongo Technology, LLC Connected thermostat for controlling a climate system based on a desired usage profile in comparison to other connected thermostats controlling other climate systems
US10101050B2 (en) 2015-12-09 2018-10-16 Google Llc Dispatch engine for optimizing demand-response thermostat events
KR101809471B1 (en) 2016-01-26 2017-12-15 전남대학교 산학협력단 Method for measuring the reliability of the location estimate for earthquake early warning
US10592326B2 (en) 2017-03-08 2020-03-17 Axxana (Israel) Ltd. Method and apparatus for data loss assessment
KR102022957B1 (en) * 2017-11-17 2019-09-20 (주)지오룩스 Telluric current monitoring system for earthquake prediction and method thereof
KR102092855B1 (en) * 2018-02-14 2020-03-24 숭실대학교 산학협력단 System for object position estimation based on magnetic field signal using underwater sensor network and method thereof
CN110045413B (en) * 2019-04-22 2020-09-01 中国地质大学(北京) Short-term earthquake prediction method and device
JP7136741B2 (en) * 2019-04-22 2022-09-13 株式会社コンポン研究所 Earthquake occurrence prediction method and earthquake occurrence prediction system
US11726507B2 (en) 2020-08-28 2023-08-15 Google Llc Compensation for internal power dissipation in ambient room temperature estimation
US11885838B2 (en) 2020-08-28 2024-01-30 Google Llc Measuring dissipated electrical power on a power rail
US11761823B2 (en) * 2020-08-28 2023-09-19 Google Llc Temperature sensor isolation in smart-home devices
CN112684494A (en) * 2020-12-22 2021-04-20 丁亮 Earthquake early warning method
EP4024090A1 (en) * 2020-12-29 2022-07-06 Kamstrup A/S Method for detecting seismic events
US11808467B2 (en) 2022-01-19 2023-11-07 Google Llc Customized instantiation of provider-defined energy saving setpoint adjustments

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612506A (en) * 1982-01-18 1986-09-16 Varotsos Panayiotis A Method of forecasting seismic activity responsive to earth currents
JPH0194286A (en) * 1987-10-07 1989-04-12 Yuuseishiyou Tsushin Sogo Kenkyusho Method for foretelling earthquake by tomography or generation region of long wave earth current being premonitory symptoms of earthquake
US5148110A (en) * 1990-03-02 1992-09-15 Helms Ronald L Method and apparatus for passively detecting the depth and location of a spatial or temporal anomaly by monitoring a time varying signal emanating from the earths surface
IL105991A (en) * 1993-06-11 1996-09-12 Israel State Method and apparatus for predicting the occurrence of an earthquake
JPH0926478A (en) * 1995-07-13 1997-01-28 Harushige Kuratomi Earthquake sign electric phenomena observation device
US5694129A (en) 1995-08-29 1997-12-02 Science And Technology Agency National Research Institute For Earth Science And Disaster Prevention Method of imminent earthquake prediction by observation of electromagnetic field and system for carrying out the same
JP3213688B2 (en) * 1995-09-13 2001-10-02 雅恭 畑 Crust activity monitoring device and method
JPH11258353A (en) 1998-03-10 1999-09-24 Tomoo Matsuo Earth storm display device and earth fluctuation prediction device using the same
US5742166A (en) * 1996-11-04 1998-04-21 Park; Larry Seismic activity predictor including a dielectric for receiving precursor seismic electromagnetic waveforms
JPH10319128A (en) * 1997-05-21 1998-12-04 Hiroshi Okada Passive-type underground structure probing device
JP3341040B2 (en) * 1999-09-28 2002-11-05 独立行政法人産業技術総合研究所 Method and apparatus for predicting rapid movement in the crust based on electromagnetic field observation
JP2001344285A (en) 2000-05-30 2001-12-14 Matsushita Electric Ind Co Ltd Damage information collection and management device
JP2002122674A (en) 2000-10-12 2002-04-26 Shimizu Corp Earthquake information transmission system and method, and portable terminal
WO2002048742A1 (en) * 2000-12-12 2002-06-20 Hiroyuki Inubushi Device and method for analyzing correlation between natural-world data and earthquake data, device and method for moniting natural-world data, and method ofmonitoring earthquake
JP2002250775A (en) 2001-02-23 2002-09-06 Tokyo Gas Co Ltd Information communication system, server computer, and recording medium
JP3598309B2 (en) 2001-03-08 2004-12-08 独立行政法人防災科学技術研究所 Electromagnetic field observation method and observation system related to precursory phenomenon
JP2003043153A (en) * 2001-07-26 2003-02-13 Nec Eng Ltd Just before occurrence of earthquake predicting system
JP2003042834A (en) * 2001-08-03 2003-02-13 Naigai Rubber Kk Earthquake detector
JP3797228B2 (en) 2002-01-22 2006-07-12 ヤマハ株式会社 Information collection system

Also Published As

Publication number Publication date
CN1701243A (en) 2005-11-23
KR100640705B1 (en) 2006-11-01
TW200515000A (en) 2005-05-01
US20050280421A1 (en) 2005-12-22
WO2005022198A1 (en) 2005-03-10
US7280919B2 (en) 2007-10-09
KR20050067167A (en) 2005-06-30
EP1659420A1 (en) 2006-05-24
TWI297782B (en) 2008-06-11

Similar Documents

Publication Publication Date Title
JPWO2005022198A1 (en) Earthquake prediction method and system
US20100139372A1 (en) Method for detecting leakage from a pipe
CN102741653A (en) Installation of magnetic signal sources for positioning
JP2020052055A (en) User device of earthquake alert system
WO2022046949A1 (en) City-scale acoustic impulse detection and localization
CN103456178A (en) Road vehicle speed measuring system
CN104183092A (en) Destructive near-earthquake early warning system and method
KR20140042087A (en) System for detection and notification of earthquake
WO2009022286A2 (en) Monitoring system and method
Ganas et al. Displacements recorded on continuous GPS stations following the 2014 M6 Cephalonia (Greece) earthquakes: Dynamic characteristics and kinematic implications
JP2008145351A (en) Crustal activity detection reception system and device
JP2008096203A (en) Information receiver, non-seismograph information receiver using the same, or information receiving system using the information receiver
JP2014174128A (en) Predictive information transmitting system and predictive information transmitting method for subduction-zone earthquakes
JP2023550091A (en) Vertical distance prediction of vibrations using distributed fiber optic sensing
CN114694351A (en) Method for detecting seismic events
US20060193207A1 (en) Large area tightly coupled attitude, position, velocity, and acceleration mapping system
CN203325155U (en) Destructive near-earthquake early warning system
JP6483743B2 (en) Impersonation signal determination device
WO2022221212A1 (en) Dynamic anomaly localization of utility pole wires
Neagoe et al. Toward a dense realtime seismic network in Romania
CN110646762B (en) System, method and computer readable storage medium for monitoring position of person in tunnel
CN203480691U (en) Velocity measuring system for road vehicles
CN210982750U (en) Earthquake measurement station and system based on GNSS and simple intensity meter
Verkholantsev et al. Seismic recorder" Ermak-5" as the part of the system of seismological monitoring of Verkhnekamskoe potash deposit
Partheniu et al. Monitoring the black sea natural hazards using new technology and equipment

Legal Events

Date Code Title Description
A524 Written submission of copy of amendment under article 19 pct

Free format text: JAPANESE INTERMEDIATE CODE: A527

Effective date: 20050128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050128

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080618

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080725