JPWO2004094306A1 - Hydrogen generator and hydrogen generation method - Google Patents

Hydrogen generator and hydrogen generation method Download PDF

Info

Publication number
JPWO2004094306A1
JPWO2004094306A1 JP2005505772A JP2005505772A JPWO2004094306A1 JP WO2004094306 A1 JPWO2004094306 A1 JP WO2004094306A1 JP 2005505772 A JP2005505772 A JP 2005505772A JP 2005505772 A JP2005505772 A JP 2005505772A JP WO2004094306 A1 JPWO2004094306 A1 JP WO2004094306A1
Authority
JP
Japan
Prior art keywords
hydrogen
liquid
container
carbon
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005505772A
Other languages
Japanese (ja)
Other versions
JP4710048B2 (en
Inventor
信福 野村
信福 野村
洋通 豊田
洋通 豊田
賢哉 松本
賢哉 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Electric Power Co Inc
Techno Network Shikoku Co Ltd
Original Assignee
Shikoku Electric Power Co Inc
Techno Network Shikoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Electric Power Co Inc, Techno Network Shikoku Co Ltd filed Critical Shikoku Electric Power Co Inc
Priority to JP2005505772A priority Critical patent/JP4710048B2/en
Publication of JPWO2004094306A1 publication Critical patent/JPWO2004094306A1/en
Application granted granted Critical
Publication of JP4710048B2 publication Critical patent/JP4710048B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • B01J10/002Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor carried out in foam, aerosol or bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0881Two or more materials
    • B01J2219/0884Gas-liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0861Methods of heating the process for making hydrogen or synthesis gas by plasma
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

水素化合物を含む液体を入れる容器と、前記液体中に気泡を発生させる気泡発生手段と、前記液体に電磁波を照射する電磁波発生装置と、水素回収手段を備え、液中にプラズマを発生させて水素化合物を分解し、発生した水素を回収する水素発生装置によって、液中で高エネルギーのプラズマを発生させて、反応速度とエネルギー効率が高い水素発生を行うことができる。A container containing a liquid containing a hydrogen compound; a bubble generating means for generating bubbles in the liquid; an electromagnetic wave generating device for irradiating the liquid with electromagnetic waves; and a hydrogen recovery means for generating plasma in the liquid to generate hydrogen A hydrogen generator that decomposes the compound and collects the generated hydrogen can generate high-energy plasma in the liquid to generate hydrogen with high reaction rate and energy efficiency.

Description

本発明は、水素化合物を分解して水素発生させる装置および方法に関するものである。  The present invention relates to an apparatus and method for generating hydrogen by decomposing a hydrogen compound.

水素は還元剤として化学工業で使用される需要の多い物質である。また、クリーンエネルギーとして燃料電池にも便用される。従来の水素発生方法として水の電気分解法があるが、コストが高く実用的ではない。また、最も実用的な実用的な水素発生方法として水蒸気改質法がある。これは、メタン等の化石燃料ガスに水蒸気を混合し、高温で化学反応させて水素と一酸化炭素を得る方法である。この水蒸気改質法はコストが低いという利点がある反面、一酸化炭素や二酸化炭素を大量に発生する。また、特許第2711368号公報、特許第2867182号公報等にはメタンや天然ガスをプラズマで分解して水素とカーボンブラックを製造することが記載されている。
水の電気分解法はコストが高く実用的でないことは述べた。一方、水蒸気改質法ではコストは低いが、一酸化炭素や二酸化炭素を大量に発生する。これらのガスは地球温暖化の原因となるものである。特許第2711368号公報、特許第2867182号公報等の発明による方法は炭化水素のほとんど100%の炭素及び水素の収量を与えること、また、反応工程におけるそれらの生成物のいずれもその工程によってほとんど汚染されていないことが見出されたと記載されている(たとえば、特許第2711368号公報第3頁右欄10行)。特許第2711368号公報、特許第2867182号公報等の発明は、メタンガス等の気体中の電極間でプラズマを発生させる気相プラズマによるものであり、プラズマのエネルギー密度を上げることは困難であり、反応速度に限界がある。また、プラズマは高温状態で発生するために取り扱いが不便であり、メタンガス等を高温で反応させるために安全を維持することは困難である。この発明は、局所的には高エネルギーでありながらも巨視的には低温かつ低圧であり、安全かつ取り扱いやすい液中プラズマによる効果的な水素発生装置および水素発生方法を提供することを目的とする。
Hydrogen is a demanding substance used in the chemical industry as a reducing agent. It is also used for fuel cells as clean energy. As a conventional hydrogen generation method, there is a water electrolysis method, which is expensive and impractical. The most practical and practical hydrogen generation method is a steam reforming method. This is a method of obtaining hydrogen and carbon monoxide by mixing water vapor with fossil fuel gas such as methane and chemically reacting at high temperature. While this steam reforming method has an advantage of low cost, it generates a large amount of carbon monoxide and carbon dioxide. Japanese Patent Nos. 2711368 and 2867182 describe that methane and natural gas are decomposed with plasma to produce hydrogen and carbon black.
He stated that water electrolysis is expensive and impractical. On the other hand, the steam reforming method is low in cost, but generates a large amount of carbon monoxide and carbon dioxide. These gases cause global warming. The methods according to the inventions of Patent Nos. 2,711,368, 2,867,182, etc. give almost 100% carbon and hydrogen yield of hydrocarbons, and any of their products in the reaction process are almost contaminated by the process. It is described that it has been found out (for example, Japanese Patent No. 2711368, page 3, right column, line 10). The inventions of Japanese Patent Nos. 2711368 and 2867182 are based on gas phase plasma that generates plasma between electrodes in a gas such as methane gas, and it is difficult to increase the energy density of the plasma. Speed is limited. Moreover, since plasma is generated at a high temperature, it is inconvenient to handle, and it is difficult to maintain safety because methane gas or the like is reacted at a high temperature. An object of the present invention is to provide an effective hydrogen generating apparatus and method for generating hydrogen by using plasma in liquid that is locally high in energy but low in temperature and low in pressure, and safe and easy to handle. .

前述の課題を解決するため、この発明の水素発生装置は、水素化合物を含む液体を入れる容器と、前記液体中に気泡を発生させる気泡発生手段と、前記液体に電磁波を照射する電磁波発生装置と、水素回収手段を備え、液中にプラズマを発生させて水素化合物を分解し、発生した水素を回収するものである。さらに、炭素回収手段を備えてもよい。あるいは、前記容器に連続的に液体を供給する供給手段と、容器から連続的に液体を排出する排出手段を有するものでもよい。気泡発生手段を、前記液体中に超音波を照射して気泡を発生させる超音波発生装置とすることもできる。
さらに、前述の課題を解決するため水素発生方法は、水素と炭素を含む化合物を含む液体を容器に入れ、容器内の液体に気泡を発生させるとともに電磁波を照射して液中でプラズマを発生させ、前記化合物を分解して水素を発生させるとともに炭素化合物を合成し、発生した水素および炭素化合物を回収することを特徴とするものである。液体中に分解反応を促進させる触媒を混合してもよい。また、液体中でカーボンナノチューブを合成し、発生した水素をカーボンナノチューブに吸着させて回収するものであってもよい。なお、本発明において炭素化合物の合成とは、炭素と他の元素よりなる物質を合成することのほかに、ダイヤモンドやフラーレン、カーボンナノチューブ等炭素のみからなる物質を合成することも含む。
In order to solve the above-described problems, a hydrogen generator of the present invention includes a container for storing a liquid containing a hydrogen compound, bubble generating means for generating bubbles in the liquid, and an electromagnetic wave generator for irradiating the liquid with electromagnetic waves. And a hydrogen recovery means for generating plasma in the liquid to decompose the hydrogen compound and recovering the generated hydrogen. Furthermore, a carbon recovery means may be provided. Or you may have a supply means to supply a liquid continuously to the said container, and a discharge means to discharge | emit a liquid continuously from a container. The bubble generating means may be an ultrasonic generator that generates bubbles by irradiating the liquid with ultrasonic waves.
Furthermore, in order to solve the above-mentioned problems, a hydrogen generation method is a method in which a liquid containing a compound containing hydrogen and carbon is put in a container, bubbles are generated in the liquid in the container, and electromagnetic waves are irradiated to generate plasma in the liquid. The compound is decomposed to generate hydrogen, a carbon compound is synthesized, and the generated hydrogen and carbon compound are recovered. A catalyst for promoting the decomposition reaction may be mixed in the liquid. Alternatively, carbon nanotubes may be synthesized in a liquid, and the generated hydrogen may be adsorbed on the carbon nanotubes and recovered. In the present invention, the synthesis of the carbon compound includes not only synthesizing a substance composed of carbon and other elements but also synthesizing a substance composed only of carbon such as diamond, fullerene, and carbon nanotube.

発明の効果The invention's effect

この発明の水素発生装置および水素発生方法は、液中でプラズマを発生させることにより、効率的に水素を発生させることができるという効果を有する。このプラズマは高温・高圧であるが液中で発生するために巨視的には低温かつ低圧であり、取り扱いやすく安全なものである。また、地球温暖化の原因となる一酸化炭素や二酸化炭素を大量に発生することもなく、クリーンエネルギーとしての要請にも合致するものである。原料液として炭化水素を使用し、水素を発生させるとともにフラーレンやカーボンナノチューブ等のニューカーボンなど炭素化合物を同時に合成すると、コスト的にもさらに有利になる。原料液の炭化水素として使用済みの食用油やエンジンオイルなどの廃棄物も使用でき、廃棄物を有価なものに変換再利用できるので、水素製造と同時に廃棄物処理を行うという面からもコスト的に有利である。また、本発明を用いれば二次廃棄物も少ないという利点がある。The hydrogen generation apparatus and the hydrogen generation method of the present invention have an effect that hydrogen can be generated efficiently by generating plasma in a liquid. This plasma is high temperature and high pressure, but since it is generated in the liquid, it is macroscopically low temperature and low pressure, and is easy to handle and safe. Moreover, it does not generate a large amount of carbon monoxide and carbon dioxide, which cause global warming, and it meets the requirements for clean energy. When hydrocarbon is used as a raw material liquid to generate hydrogen and simultaneously synthesize carbon compounds such as new carbon such as fullerene and carbon nanotubes, it becomes more advantageous in terms of cost. Wastes such as used cooking oil and engine oil can be used as hydrocarbons in the raw material liquid, and the waste can be converted and reused as valuable, so it is also costly in terms of waste treatment at the same time as hydrogen production Is advantageous. Moreover, if this invention is used, there exists an advantage that there are few secondary wastes.

図1はこの発明の水素発生装置を示す説明図である。図2はプラズマの発光スペクトルを示すグラフである。図3はこの発明の水素発生装置の実施例を示す説明図である。図4はこの発明の別の水素発生装置の実施例を示す説明図である。  FIG. 1 is an explanatory view showing a hydrogen generator of the present invention. FIG. 2 is a graph showing an emission spectrum of plasma. FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator of the present invention. FIG. 4 is an explanatory view showing an embodiment of another hydrogen generator of the present invention.

この発明をより詳細に示すために、以下、この発明を実施するための最良の形態について説明する。図1は水素発生装置を示す説明図である。水素発生装置1は、液体3を入れる容器2を有する。この液体3は水素を含む化合物を含むものである。そして、液体中に気泡を発生させる気泡発生手段を有するが、図1の例では超音波発生装置4が気泡発生手段である。さらに、液体3に電磁波を照射する電磁波発生装置5を備えている。容器としては、処理すべき対象物質の種類や処理量にあわせて適宜選択でき、少量を処理するためのフラスコ程度の大きさのものであってもよく、大量に処理するための大型処理槽であってもよく、あるいは高速で連続的に処理するために液体が処理に必要な時間だけの通過時間を有する配管であってもよい。
この超音波照射により液中では微小な気泡6が多数発生する。そして、この気泡6が発生している箇所に電磁波を照射するように、電磁波発生装置5が設けられている。気泡発生手段としては、超音波発生装置以外に、真空ポンプなどの減圧手段によって容器内を減圧して気泡を発生させる手段や、液体中に加熱手段を設けて気泡を発生させる手段を用いることもできる。
超音波発生装置4は、この容器2内の液体3に超音波を照射するものであるが、この超音波によって液体中に多数の気泡6が雲状に発生する。気泡6の中には容器2中の液体3に起因する物質が気相で入っているが、気泡6内部の気体は超音波によって急速に拡大収縮を繰り返す。収縮時にはほぼ断熱圧縮となり、気泡6内では超高圧高温となりプラズマが発生しやすい状態となる。本発明に係る水素発生装置には電磁波発生装置5が設けられており、液体の中の気泡6が発生する位置に電磁波を照射するようになっている。電磁波としては、発生させようとするプラズマの種類や強度等によって周波数や出力を選択すればよいが、主に2GHz程度かそれ以上のマイクロ波が用いられる。超音波により高温高圧になっているところに電磁波を重畳することによって気泡中に高エネルギーのプラズマが発生する。
以上のようにして、液体中で高密度の高エネルギープラズマを発生させることができる。プラズマは既に気泡中に封じ込まれており、プラズマ技術における大きな課題である発生したプラズマの封じ込めは本発明においては問題にならない。局所的には高温高圧のプラズマが発生しているが、熱容量の大きな液体中に閉じ込められており巨視的にみれば低温である。したがって装置の外部や装置に接触するものを加熱することがない。このようにして発生したプラズマは高温高圧であってエネルギー密度が高く、しかも取り扱いが容易である。音響キャビテーションによる気泡として単気泡(シングルバブル)と多気泡(マルチバブル)があり、本発明は両者に適用できる。単気泡では全体のエネルギーは小さくなるが、気泡内において超音波照射だけでも5000K〜100000Kという高エネルギー状態が得られる。一方、多気泡ではやや低温になり超音波照射のみで5000K程度であるが、全体のエネルギー量は大きく、工業的利用に有利である。本発明に係る水素発生装置は簡易であるとともに小型であり、机上に置けるほどの大きさに作ることができる一方、超音波発生装置や電磁波発生装置に高出力のものを用いて大規模なものとすることもできる。
図1に示す水素発生装置1による水素発生の例について説明する。液体としては、炭化水素の一種であるドデカン(C1226)を使用した。電磁波は2.45GHzのマイクロ波であり、50Wを液体中に照射した(入力200W、反射150W)。超音波は45KHzを50Wの出力で照射した。
容器2の上部には排気管7が設けられており、ロータリーポンプ8により容器2内の気体を吸引する。ロータリーポンプ8を通過した気体は排気管端部9より回収される。また、水素発生装置1には不活性ガス供給手段10が設けられており、ここではアルゴンガス供給手段10aと窒素ガス供給手段10bが設けられている。不活性ガス供給手段10から不活性ガス供給管11により不活性ガスは容器2内へ供給される。不活性ガス供給管11には流量計12と制御弁13a,bが設けられており、流量計12により流量を確認しながら制御弁13a,bを調整して、適量の不活性ガスを容器2内に供給する。
初めにロータリーポンプ8を作動させて容器2内を500Paまで減圧し、超音波と電磁波を液中に照射して液中でプラズマを発生させた。減圧することにより、大気圧下よりもプラズマが発生しやすくなる。
図2はこのプラズマの発光スペクトルを示すグラフである。Cが大量に発生していることを示しているピークが観察されることより、フラーレン、カーボンナノチューブなどのニューカーボンが発生していることがわかる。また、水素が発生していることを示すピークも存在しており、本例の水素発生装置および水素発生方法により水素が発生していることが確認できる。
液中プラズマによりドデカンを分解して水素を発生させることにより、容器2の中の圧力は5KPaまで上昇した。容器2に設けられた気体採集口14より注射器で容器2内に溜まった気体を100ml採集した(大気圧下では5ml)。採集した気体を24時間後にガスクロマトグラフィー分析した結果、40%以上の高濃度の水素が検出された。分析を行うまでに相当量の水素が流失したことを考慮すると、高純度の水素が発生していることがわかる。液体中に水素を発生させる反応を促進するための触媒を混ぜて水素を発生させたが、触媒なしでもやはり水素を発生させることができた。
以上、この発明の水素発生装置は液中で発生した高エネルギーのプラズマにより水素化合物の分解を行う。水素の原料材料は液体であるためにメタン等の気体に比べて物質の密度がはるかに高く、反応効率が高い。また、プラズマは局所的には高エネルギーであっても液中で発生しているため巨視的には低温かつ低圧であり、極めて取り扱いやすく、安全である。水素と炭素を含む化合物を含む液体を用いることにより、水素を発生させるとともにニューカーボン等の炭素化合物を同時に得ることができるので、水素のみを発生させるよりもさらにコスト上も有利である。
プラズマを発生させるための電磁波発生装置および気泡発生装置は制御器により電気的に自由に制御することができ、電磁波の周波数や電磁波・超音波の出力・照射時間等を選択できるので汎用性が高く、各種の原料液や使用目的に対応できる。水素とともに発生させるニューカーボンの種類を選択する場合にも広く対応できるものである。
図1に示す水素発生装置を使用して水素を発生させる別の例について説明する。原料液としてドデカンの他に、ベンゼン(C12)、市販されている食用油及びエンジンオイル(表1ではそれぞれ「原油」と表示)、さらに食用油及びエンジンオイルをそれぞれの一般的な用途で使用した後に回収した廃油を用いた。各液体とも100mlを容器2へ入れた。電磁波は2.45GHzのマイクロ波であり、30Wを液体中に照射した(入力300W、反射270W)。超音波を照射した場合と照射しない場合の両方の条件で実施した。使用した超音波は58KHzを5Wの出力で照射したものである。ロータリーポンプ8を作動させて容器2内を減圧した。
水素発生装置1によって水素発生を行った結果を表1に示す。各液体より得られた気体中の水素濃度が表されている。この例においては、どの原料液においても、60%以上の高純度の水素が得られており、条件によっては80%程度の純度も得られた。また、食用油及びエンジンオイルの廃油を使用しても高純度の水素が得られているが、この場合、水素発生とともにこれら廃油の処理が同時に行われるという利点がある。食用油は石油を原料とせず、農業的に生産できるものであり、これを水素の原料として使用できるということは、バイオマスの活用という意義も有する。

Figure 2004094306
さらに、この例による水素発生方法のエネルギー効率を、従来の水素発生方法と比較したデータを表2に示す。表2の数値は、それぞれの従来技術のエネルギー消費に対するこの発明の水素発生方法の例のエネルギー消費の比を示している。例えば、ドデカンの場合のデータで見るとと、従来技術の中で最もエネルギー効率がよいとされる化石燃料燃焼システムと比較して1.10倍のエネルギーを消費していることを示していて、ほぼ同等である。それ以外でもこの発明の水素発生方法のエネルギー効率は、従来技術うち多くのものと同等又は上回る結果となっている。化石燃料燃焼システムを使用すれば二酸化炭素等の炭酸ガスを大量に発生することを考慮すると、炭酸ガスを発生させない本発明の水素発生方法が優れていることが明らかになる。
Figure 2004094306
次に、実施例により本発明をさらに詳細に説明する。図3は水素発生装置の実施例を示す説明図である。この実施例では液体3を入れる容器の上流に予混合室15が設けられている。予混合室15は原料液供給口16と触媒供給口17を有し、外部より原料液および触媒を予混合室15へ供給できるようになっている。原料としては水素化合物と含む液体、特に、炭化水素等の炭素と水素を含む液体を使用する。触媒は原材料を分解して水素を発生させる反応を促進するためのもので、たとえばパラジウムなどを用いる。予混合室15へ供給された原料液と触媒は、撹拌手段18によって撹拌され、十分に混合される。また、容器2内においても超音波の照射によりさらに撹拌されて、原料液と触媒はより良好に混合される。
予混合室15と容器2は配管19によって接続されている。配管19には制御弁20が設けられており、配管19中の液体の流れを調整するようになっている。一定の流量の液体が連続的に供給されるように制御弁20を制御して、水素発生処理を連続的に行うことができる。また、容器2に一定量の液体を供給した後に制御弁20を閉じて供給を中断し、水素発生処理を行い、処理後の液体を容器2から排出した後に、再度制御弁20を開いて液体を供給する、という手順を繰り返して逐次処理を行うこともできる。
容器2の上部には排気管7が設けられており、容器2の内部で発生した気体を容器2の外へ排出する。一方、容器2の下部には液体排出管21が設けられており、容器2内の液体を外部へ排出するようになっている。
排気管7には気体中から水素のみを選択して透過させる分離膜22が接続されている。分離幕を透過した水素は水素ガスとして回収される。分離膜22を透過しない気体はそのまま排気される。
液体排出管21には沈殿槽23が接続されている。容器2から排出された液体中に含まれるカーボンナノチューブ等のニューカーボンや触媒が沈殿物として回収される。それ以外の液体は廃棄される。回収された触媒は再度予混合室15に投入されて再利用される。すなわち、本実施例においては沈殿槽23は炭素回収手段として機能する。
本発明の別の実施例について説明する。図4は水素発生装置の別の実施例を示す説明図である。この実施例においても予混合室15が設けられており、原料液と触媒が予め十分に混合されてから容器2へ供給されるようになっている。そしてこの実施例においては、排気管は設けられておらず、液体排出管21のみが設けられている。
この実施例の水素発生装置による水素発生方法として、2種類の方法がある。第一の方法は、触媒として水素を吸着する物質を使用するものである。容器2の液中で発生したプラズマにより水素化合物が分解されて水素が発生するが、この水素を触媒に吸着させる。水素を吸着した触媒は液体に含まれた状態で液体排出管21より容器2の外に排出され、加熱槽24へ運ばれる。
第二の方法は、原料液として炭化水素を含む液体を使用するものであり、容器2の液中で発生したプラズマにより炭化水素させて水素を発生させるとともにカーボンナノチューブ等のニューカーボンを合成するものである。そして発生した水素をこのニューカーボンに吸着させる。水素を吸着したニューカーボンは液体排出管21を通って加熱槽24へ運ばれる。
加熱槽24には加熱槽内を加熱するためのヒーター25が設けられている。ヒーター25により加熱槽24へ運ばれた液体は加熱され、触媒またはニューカーボンに吸着されていた水素は分離し気体として回収される。加熱槽24内に残ったニューカーボンも回収される。すなわち、本実施例においては加熱槽24は炭素回収手段として機能する。In order to show the present invention in more detail, the best mode for carrying out the present invention will be described below. FIG. 1 is an explanatory view showing a hydrogen generator. The hydrogen generator 1 has a container 2 for storing a liquid 3. This liquid 3 contains a compound containing hydrogen. And it has the bubble generation means which generates a bubble in a liquid, but in the example of FIG. 1, the ultrasonic generator 4 is a bubble generation means. Furthermore, the electromagnetic wave generator 5 which irradiates the liquid 3 with an electromagnetic wave is provided. The container can be appropriately selected according to the type and amount of the target substance to be processed, and may be as large as a flask for processing a small amount, or a large processing tank for processing a large amount. It may be a pipe having a transit time of a time required for the treatment for the liquid to be continuously treated at a high speed.
This ultrasonic irradiation generates a large number of minute bubbles 6 in the liquid. And the electromagnetic wave generator 5 is provided so that an electromagnetic wave may be irradiated to the location where this bubble 6 has generate | occur | produced. As the bubble generating means, in addition to the ultrasonic generator, a means for generating bubbles by reducing the pressure inside the container with a pressure reducing means such as a vacuum pump, or a means for generating bubbles by providing a heating means in the liquid may be used. it can.
The ultrasonic generator 4 irradiates the liquid 3 in the container 2 with ultrasonic waves, and the ultrasonic waves generate a large number of bubbles 6 in the cloud in the liquid. In the bubbles 6, a substance derived from the liquid 3 in the container 2 is contained in a gas phase, but the gas inside the bubbles 6 repeatedly expands and contracts rapidly by ultrasonic waves. At the time of contraction, the compression is almost adiabatic, and the inside of the bubble 6 is in an extremely high pressure and high temperature state, so that plasma is easily generated. The hydrogen generator according to the present invention is provided with an electromagnetic wave generator 5 so as to irradiate an electromagnetic wave to a position where bubbles 6 in the liquid are generated. As the electromagnetic wave, the frequency and output may be selected depending on the type and intensity of the plasma to be generated, but a microwave of about 2 GHz or more is mainly used. High-energy plasma is generated in the bubbles by superimposing electromagnetic waves at high temperature and high pressure by ultrasonic waves.
As described above, high-density plasma with high density can be generated in the liquid. Since the plasma is already contained in the bubbles, the confinement of the generated plasma, which is a major problem in the plasma technology, is not a problem in the present invention. Although high-temperature and high-pressure plasma is locally generated, it is confined in a liquid having a large heat capacity and is low in temperature when viewed macroscopically. Therefore, there is no need to heat the outside of the apparatus or the thing in contact with the apparatus. The plasma generated in this way is high temperature and pressure, has a high energy density, and is easy to handle. There are single bubbles (single bubbles) and multiple bubbles (multi bubbles) as bubbles by acoustic cavitation, and the present invention can be applied to both. Although the total energy is small in a single bubble, a high energy state of 5000K to 100,000K can be obtained even by ultrasonic irradiation alone in the bubble. On the other hand, in the case of multi-bubbles, the temperature is slightly low and it is about 5000 K only by ultrasonic irradiation, but the total energy amount is large and is advantageous for industrial use. The hydrogen generator according to the present invention is simple and small, and can be made large enough to be placed on a desk. On the other hand, a large-scale one using a high-power ultrasonic generator or electromagnetic wave generator is used. It can also be.
An example of hydrogen generation by the hydrogen generator 1 shown in FIG. 1 will be described. As the liquid, dodecane (C 12 H 26 ), which is a kind of hydrocarbon, was used. The electromagnetic wave was a microwave of 2.45 GHz, and 50 W was irradiated into the liquid (input 200 W, reflection 150 W). The ultrasonic wave was irradiated at 45 KHz with an output of 50 W.
An exhaust pipe 7 is provided in the upper part of the container 2, and the gas in the container 2 is sucked by the rotary pump 8. The gas that has passed through the rotary pump 8 is recovered from the exhaust pipe end 9. Moreover, the inert gas supply means 10 is provided in the hydrogen generator 1, and here, the argon gas supply means 10a and the nitrogen gas supply means 10b are provided. The inert gas is supplied from the inert gas supply means 10 into the container 2 through the inert gas supply pipe 11. The inert gas supply pipe 11 is provided with a flow meter 12 and control valves 13a and 13b. While the flow rate is confirmed by the flow meter 12, the control valves 13a and 13b are adjusted, and an appropriate amount of inert gas is supplied to the container 2. Supply in.
First, the rotary pump 8 was operated to depressurize the inside of the container 2 to 500 Pa, and ultrasonic waves and electromagnetic waves were irradiated into the liquid to generate plasma in the liquid. By reducing the pressure, plasma is more easily generated than under atmospheric pressure.
FIG. 2 is a graph showing the emission spectrum of this plasma. From the observation of a peak indicating that a large amount of C 2 is generated, it can be seen that new carbon such as fullerene and carbon nanotube is generated. Further, there is a peak indicating that hydrogen is generated, and it can be confirmed that hydrogen is generated by the hydrogen generation apparatus and the hydrogen generation method of this example.
By decomposing dodecane with in-liquid plasma and generating hydrogen, the pressure in the container 2 rose to 5 KPa. 100 ml of gas accumulated in the container 2 was collected from the gas collection port 14 provided in the container 2 with a syringe (5 ml under atmospheric pressure). As a result of gas chromatography analysis of the collected gas after 24 hours, a high concentration of hydrogen of 40% or more was detected. Considering that a considerable amount of hydrogen was lost before analysis, it can be seen that high-purity hydrogen was generated. Hydrogen was generated by mixing a catalyst for promoting the reaction for generating hydrogen in the liquid, but hydrogen could also be generated without a catalyst.
As described above, the hydrogen generator of the present invention decomposes the hydrogen compound by the high energy plasma generated in the liquid. Since the raw material of hydrogen is a liquid, the density of the substance is much higher than that of a gas such as methane, and the reaction efficiency is high. Further, since plasma is locally generated in liquid even at high energy, it is macroscopically low temperature and low pressure, and is extremely easy to handle and safe. By using a liquid containing a compound containing hydrogen and carbon, hydrogen can be generated and a carbon compound such as new carbon can be obtained at the same time, which is more advantageous in terms of cost than generating only hydrogen.
Electromagnetic wave generators and bubble generators for generating plasma can be controlled electrically and freely by a controller, and the frequency of electromagnetic waves and the output / irradiation time of electromagnetic waves / ultrasounds can be selected. It can be used for various raw material liquids and usage purposes. It can be widely used when selecting the type of new carbon to be generated together with hydrogen.
Another example in which hydrogen is generated using the hydrogen generator shown in FIG. 1 will be described. In addition to dodecane as a raw material liquid, benzene (C 6 H 12 ), commercially available edible oil and engine oil (represented as “crude oil” in Table 1), edible oil and engine oil, respectively, The waste oil recovered after use in was used. 100 ml of each liquid was put into the container 2. The electromagnetic wave was a microwave of 2.45 GHz, and 30 W was irradiated into the liquid (input 300 W, reflection 270 W). The test was carried out under both conditions of ultrasonic wave irradiation and non-irradiation. The used ultrasonic wave was irradiated with 58 KHz at an output of 5 W. The rotary pump 8 was operated to depressurize the container 2.
The results of hydrogen generation by the hydrogen generator 1 are shown in Table 1. The hydrogen concentration in the gas obtained from each liquid is shown. In this example, high purity hydrogen of 60% or more was obtained in any raw material liquid, and a purity of about 80% was obtained depending on the conditions. Moreover, even if waste oil of edible oil and engine oil is used, high-purity hydrogen is obtained. In this case, there is an advantage that these waste oils are processed simultaneously with generation of hydrogen. Edible oil can be produced agriculturally without using petroleum as a raw material, and the fact that it can be used as a raw material for hydrogen also has the significance of utilizing biomass.
Figure 2004094306
Furthermore, the data which compared the energy efficiency of the hydrogen generation method by this example with the conventional hydrogen generation method are shown in Table 2. The numbers in Table 2 show the ratio of the energy consumption of the example hydrogen generation method of the present invention to the energy consumption of each prior art. For example, the data for Dodecane shows that it consumes 1.10 times more energy than the fossil fuel combustion system, which is considered to be the most energy efficient in the prior art. It is almost equivalent. Other than that, the energy efficiency of the hydrogen generation method of the present invention is equal to or exceeds that of many of the prior arts. Considering that a large amount of carbon dioxide gas such as carbon dioxide is generated if a fossil fuel combustion system is used, it becomes clear that the hydrogen generation method of the present invention that does not generate carbon dioxide gas is excellent.
Figure 2004094306
Next, the present invention will be described in more detail with reference to examples. FIG. 3 is an explanatory view showing an embodiment of the hydrogen generator. In this embodiment, a premixing chamber 15 is provided upstream of the container in which the liquid 3 is placed. The premixing chamber 15 has a raw material liquid supply port 16 and a catalyst supply port 17 so that the raw material liquid and the catalyst can be supplied to the premixing chamber 15 from the outside. As a raw material, a liquid containing a hydrogen compound, particularly a liquid containing carbon and hydrogen such as hydrocarbons is used. The catalyst is for accelerating the reaction of decomposing raw materials to generate hydrogen, and for example, palladium is used. The raw material liquid and catalyst supplied to the premixing chamber 15 are stirred by the stirring means 18 and sufficiently mixed. Further, the container 2 is further stirred by irradiation with ultrasonic waves, so that the raw material liquid and the catalyst are mixed better.
The premixing chamber 15 and the container 2 are connected by a pipe 19. The piping 19 is provided with a control valve 20 so as to adjust the flow of liquid in the piping 19. The hydrogen generation process can be performed continuously by controlling the control valve 20 so that a constant flow rate of liquid is continuously supplied. In addition, after supplying a certain amount of liquid to the container 2, the control valve 20 is closed to interrupt the supply, hydrogen generation processing is performed, and after the processed liquid is discharged from the container 2, the control valve 20 is opened again to liquid. It is also possible to perform sequential processing by repeating the procedure of supplying.
An exhaust pipe 7 is provided above the container 2, and gas generated inside the container 2 is discharged out of the container 2. On the other hand, a liquid discharge pipe 21 is provided in the lower part of the container 2 so as to discharge the liquid in the container 2 to the outside.
The exhaust pipe 7 is connected to a separation membrane 22 that allows only hydrogen from gas to pass through. Hydrogen that has passed through the separation curtain is recovered as hydrogen gas. The gas that does not pass through the separation membrane 22 is exhausted as it is.
A precipitation tank 23 is connected to the liquid discharge pipe 21. New carbon such as carbon nanotubes and catalyst contained in the liquid discharged from the container 2 are collected as precipitates. Other liquids are discarded. The recovered catalyst is put into the premixing chamber 15 again and reused. That is, in this embodiment, the precipitation tank 23 functions as a carbon recovery means.
Another embodiment of the present invention will be described. FIG. 4 is an explanatory view showing another embodiment of the hydrogen generator. Also in this embodiment, the premixing chamber 15 is provided, and the raw material liquid and the catalyst are sufficiently mixed in advance and then supplied to the container 2. In this embodiment, no exhaust pipe is provided, and only the liquid discharge pipe 21 is provided.
There are two types of hydrogen generation methods by the hydrogen generator of this embodiment. The first method uses a substance that adsorbs hydrogen as a catalyst. The hydrogen compound is decomposed by the plasma generated in the liquid in the container 2 to generate hydrogen, which is adsorbed by the catalyst. The catalyst that has adsorbed hydrogen is discharged from the liquid discharge pipe 21 to the outside of the container 2 while being contained in the liquid, and is carried to the heating tank 24.
The second method uses a liquid containing hydrocarbon as a raw material liquid, and generates hydrogen by plasma generated in the liquid in the container 2 to generate hydrogen and synthesize new carbon such as carbon nanotubes. It is. The generated hydrogen is adsorbed on the new carbon. The new carbon adsorbed with hydrogen passes through the liquid discharge pipe 21 and is carried to the heating tank 24.
The heating tank 24 is provided with a heater 25 for heating the inside of the heating tank. The liquid carried to the heating tank 24 by the heater 25 is heated, and the hydrogen adsorbed on the catalyst or the new carbon is separated and recovered as a gas. New carbon remaining in the heating tank 24 is also recovered. That is, in this embodiment, the heating tank 24 functions as a carbon recovery means.

本発明によれば、液中でプラズマを発生させて水素を発生させるので、反応速度とエネルギー効率が高い水素発生技術として利用できる。水素製造と同時に炭素化合物も生成できるので、水素製造と炭素化合物製造を兼ねた装置としても利用できる。炭酸ガスを発生させることなく水素が得られるので、無公害のエネルギー技術として利用できるものである。  According to the present invention, since hydrogen is generated by generating plasma in a liquid, it can be used as a hydrogen generation technique with high reaction rate and energy efficiency. Since a carbon compound can be produced simultaneously with hydrogen production, it can also be used as an apparatus that combines hydrogen production and carbon compound production. Since hydrogen can be obtained without generating carbon dioxide, it can be used as a pollution-free energy technology.

Claims (7)

水素化合物を含む液体を入れる容器と、前記液体中に気泡を発生させる気泡発生手段と、前記液体に電磁波を照射する電磁波発生装置と、水素回収手段を備え、液中にプラズマを発生させて水素化合物を分解し、発生した水素を回収する水素発生装置。A container containing a liquid containing a hydrogen compound; a bubble generating means for generating bubbles in the liquid; an electromagnetic wave generating device for irradiating the liquid with electromagnetic waves; and a hydrogen recovery means for generating plasma in the liquid to generate hydrogen A hydrogen generator that decomposes compounds and recovers the generated hydrogen. 炭素回収手段を有する請求項1に記載の水素発生装置。The hydrogen generator according to claim 1, further comprising carbon recovery means. 前記容器に連続的に液体を供給する供給手段と、容器から連続的に液体を排出する排出手段を有する請求項1または請求項2に記載の水素発生装置。The hydrogen generator according to claim 1, further comprising a supply unit that continuously supplies the liquid to the container and a discharge unit that continuously discharges the liquid from the container. 気泡発生手段が前記液体中に超音波を照射して気泡を発生させる超音波発生装置である請求項1ないし請求項3のいずれかに記載の水素発生装置。The hydrogen generator according to any one of claims 1 to 3, wherein the bubble generating means is an ultrasonic generator that generates bubbles by irradiating the liquid with ultrasonic waves. 水素と炭素を含む化合物を含む液体を容器に入れ、容器内の液体に気泡を発生させるとともに電磁波を照射して液中でプラズマを発生させ、前記化合物を分解して水素を発生させるとともに炭素化合物を合成し、発生した水素および炭素化合物を回収することを特徴とする水素発生方法。A liquid containing a compound containing hydrogen and carbon is put into a container, and bubbles are generated in the liquid in the container, and an electromagnetic wave is irradiated to generate plasma in the liquid. The compound is decomposed to generate hydrogen and a carbon compound. And a generated hydrogen and carbon compound are recovered. 液体中に触媒を混合する請求項5に記載の水素発生方法。The method for generating hydrogen according to claim 5, wherein a catalyst is mixed in the liquid. 液体中でカーボンナノチューブを合成し、発生した水素をカーボンナノチューブに吸着させて回収する請求項5または請求項6に記載の水素発生方法。The method for generating hydrogen according to claim 5 or 6, wherein the carbon nanotubes are synthesized in a liquid, and the generated hydrogen is adsorbed and recovered by the carbon nanotubes.
JP2005505772A 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generation method Expired - Lifetime JP4710048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005505772A JP4710048B2 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generation method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2003115199 2003-04-21
JP2003115199 2003-04-21
PCT/JP2004/005748 WO2004094306A1 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generating method
JP2005505772A JP4710048B2 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generation method

Publications (2)

Publication Number Publication Date
JPWO2004094306A1 true JPWO2004094306A1 (en) 2006-07-13
JP4710048B2 JP4710048B2 (en) 2011-06-29

Family

ID=33307947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005505772A Expired - Lifetime JP4710048B2 (en) 2003-04-21 2004-04-21 Hydrogen generator and hydrogen generation method

Country Status (2)

Country Link
JP (1) JP4710048B2 (en)
WO (1) WO2004094306A1 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899045B2 (en) * 2005-03-01 2012-03-21 国立大学法人東北大学 Nanocarbon material generation method, generation apparatus, and nanocarbon material
EP2297377B1 (en) 2008-05-30 2017-12-27 Colorado State University Research Foundation Plasma-based chemical source device and method of use thereof
US8994270B2 (en) 2008-05-30 2015-03-31 Colorado State University Research Foundation System and methods for plasma application
JP4517098B2 (en) * 2009-05-11 2010-08-04 国立大学法人愛媛大学 Method for generating plasma in liquid
JP2011126742A (en) * 2009-12-17 2011-06-30 Sekisui Chem Co Ltd Method for preparing flaked graphite dispersion, method for producing flaked graphite, and method for producing composite material
KR101152275B1 (en) * 2010-03-19 2012-06-08 이동훈 A fuel generation equipment having a carbon separation device
AU2010349784B2 (en) * 2010-03-31 2015-01-15 Colorado State University Research Foundation Liquid-gas interface plasma device
JP2012011313A (en) * 2010-06-30 2012-01-19 Nagoya Univ Apparatus and method for treating liquid
DE102011053109B4 (en) * 2011-08-30 2016-10-13 Robert Stöcklinger System for the production of energy and / or energy sources
US9532826B2 (en) 2013-03-06 2017-01-03 Covidien Lp System and method for sinus surgery
US9555145B2 (en) 2013-03-13 2017-01-31 Covidien Lp System and method for biofilm remediation
JP6202715B2 (en) * 2013-03-15 2017-09-27 国立大学法人愛媛大学 Hydrogen compound decomposition hydrogen recovery apparatus and method
JP6497698B2 (en) * 2015-02-20 2019-04-10 東京電力ホールディングス株式会社 Hydrogen plasma generation method and hydrogen reduction method using the same
KR101698958B1 (en) * 2015-04-24 2017-01-23 한국기계연구원 Plasma generating device and plasmas treatment method
WO2017025880A1 (en) * 2015-08-07 2017-02-16 King Abdullah University Of Science And Technology Methods for reformation of gaseous hydrocarbons using electrical discharge
US10368939B2 (en) 2015-10-29 2019-08-06 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10441349B2 (en) 2015-10-29 2019-10-15 Covidien Lp Non-stick coated electrosurgical instruments and method for manufacturing the same
US10709497B2 (en) 2017-09-22 2020-07-14 Covidien Lp Electrosurgical tissue sealing device with non-stick coating
US11432869B2 (en) 2017-09-22 2022-09-06 Covidien Lp Method for coating electrosurgical tissue sealing device with non-stick coating
US11207124B2 (en) 2019-07-08 2021-12-28 Covidien Lp Electrosurgical system for use with non-stick coated electrodes
JP7411952B2 (en) * 2019-10-02 2024-01-12 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
JP7414233B2 (en) * 2019-10-02 2024-01-16 株式会社クラレ Manufacturing method of carbonaceous material for power storage device and carbonaceous material for power storage device
US11369427B2 (en) 2019-12-17 2022-06-28 Covidien Lp System and method of manufacturing non-stick coated electrodes
KR102410241B1 (en) * 2022-04-27 2022-06-16 순천대학교 산학협력단 solid acid catalyst of metal oxide for hydrogen production using liquid-phase plasma reaction and solid acid catalyst of metal oxide manufactured thereby

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617902A (en) * 1979-07-20 1981-02-20 Akiyama Morio Water dissociating method utilizing microwave plasma phenomenon
JPH08109002A (en) * 1994-02-28 1996-04-30 Hokushin Ind Inc Hydrogen generator
JP2000515107A (en) * 1996-05-13 2000-11-14 ハイドロ―ケベック How to cause hydrogen desorption from metal hydrides
JP2001302223A (en) * 2000-04-24 2001-10-31 Sony Corp Carbonaceous material for hydrogen storage and its manufacturing method, hydrogen storing carbonaceous material and its manufacturing method, battery using the hydrogen storing carbonaceous material and fuel cell using the hydrogen storing carbonaceous material
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2002234702A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2002308603A (en) * 2001-04-10 2002-10-23 Shikoku Res Inst Inc Method and apparatus for reforming liquid fuel
JP2003095601A (en) * 2001-09-25 2003-04-03 Ulvac Japan Ltd Method for hydrogen occlusion in carbon material
JP2004055520A (en) * 2002-05-17 2004-02-19 Seiko Epson Corp Device and method for manufacturing display
JP2004168644A (en) * 2002-10-30 2004-06-17 Tokyo Electric Power Co Inc:The Method for storing and transporting hydrogen
JP2004175583A (en) * 2002-11-25 2004-06-24 Jfe Engineering Kk Method for generating hydrogen
JP3624238B2 (en) * 2002-04-01 2005-03-02 株式会社テクノネットワーク四国 Method and apparatus for generating plasma
JP2005139052A (en) * 2003-11-10 2005-06-02 National Institute Of Advanced Industrial & Technology Gas phase-liquid phase mixing apparatus and gas phase-liquid phase reaction method using liquid surface plasma reaction, production of ammonia and hydrogen, and method and apparatus for fixing nitrogen to organic solvent

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161056B2 (en) * 2004-02-27 2008-10-08 独立行政法人産業技術総合研究所 Organic or inorganic compound synthesis apparatus and method

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617902A (en) * 1979-07-20 1981-02-20 Akiyama Morio Water dissociating method utilizing microwave plasma phenomenon
JPH08109002A (en) * 1994-02-28 1996-04-30 Hokushin Ind Inc Hydrogen generator
JP2000515107A (en) * 1996-05-13 2000-11-14 ハイドロ―ケベック How to cause hydrogen desorption from metal hydrides
JP2001302223A (en) * 2000-04-24 2001-10-31 Sony Corp Carbonaceous material for hydrogen storage and its manufacturing method, hydrogen storing carbonaceous material and its manufacturing method, battery using the hydrogen storing carbonaceous material and fuel cell using the hydrogen storing carbonaceous material
JP2002220201A (en) * 2001-01-19 2002-08-09 Tsutomu Sakurai Method of manufacturing hydrogen from steam by microwave discharge
JP2002234702A (en) * 2001-02-07 2002-08-23 Toyota Central Res & Dev Lab Inc Method and apparatus for generating hydrogen
JP2002308603A (en) * 2001-04-10 2002-10-23 Shikoku Res Inst Inc Method and apparatus for reforming liquid fuel
JP2003095601A (en) * 2001-09-25 2003-04-03 Ulvac Japan Ltd Method for hydrogen occlusion in carbon material
JP3624238B2 (en) * 2002-04-01 2005-03-02 株式会社テクノネットワーク四国 Method and apparatus for generating plasma
JP2004055520A (en) * 2002-05-17 2004-02-19 Seiko Epson Corp Device and method for manufacturing display
JP2004168644A (en) * 2002-10-30 2004-06-17 Tokyo Electric Power Co Inc:The Method for storing and transporting hydrogen
JP2004175583A (en) * 2002-11-25 2004-06-24 Jfe Engineering Kk Method for generating hydrogen
JP2005139052A (en) * 2003-11-10 2005-06-02 National Institute Of Advanced Industrial & Technology Gas phase-liquid phase mixing apparatus and gas phase-liquid phase reaction method using liquid surface plasma reaction, production of ammonia and hydrogen, and method and apparatus for fixing nitrogen to organic solvent

Also Published As

Publication number Publication date
WO2004094306A1 (en) 2004-11-04
JP4710048B2 (en) 2011-06-29

Similar Documents

Publication Publication Date Title
JP4710048B2 (en) Hydrogen generator and hydrogen generation method
TWI511782B (en) Methods and apparatuses for converting carbon dioxide and treating waste material
CN109200970B (en) Device and application for synthesizing compound by low-temperature plasma double-electric-field auxiliary gas-phase reaction
RU2530110C2 (en) Plasma reactor for conversion of gas to liquid fuel
JP5205693B2 (en) Method for immobilizing CO2 using microwaves
US11148116B2 (en) Methods and apparatus for synthesizing compounds by a low temperature plasma dual-electric field aided gas phase reaction
KR100709923B1 (en) Submerged plasma generator, method of generating plasma in liquid and method of decomposing toxic substance with plasma in liquid
JP4581721B2 (en) Microwave heating apparatus and carbon dioxide decomposition method using the same
JP2004306029A (en) Chemical reactor and decomposing method of toxic substance
RU2646607C1 (en) Method and mobile device for disposing methane from non-controlled sources
KR101634675B1 (en) Dielectric barrier discharge plasma system with catalyst and method for removing carbon dioxide and methane using the same
US20230227330A1 (en) System for and method of affecting molecules and atoms with electromagnetic radiation
JP4560606B2 (en) Submerged plasma reactor and crystal synthesis method
CN112689610B (en) By treatment of CO-containing 2 And a process for producing synthesis gas from a gas stream of one or more hydrocarbons
Suslick Sonochemistry of organometallic compounds
Merabet et al. The sonochemical and ultrasound-assisted production of hydrogen: energy efficiency for the generation of an energy carrier
JP2004175583A (en) Method for generating hydrogen
JP2001190926A (en) Fluid treatment method
CN114733327B (en) CO (carbon monoxide) 2 Integrated device for coupling decomposition and hydrogenation reaction
JP3626319B2 (en) Reaction method and apparatus using high-temperature and high-pressure fluid
JP2005104758A (en) Method of producing hydrogen by using super critical water
JPH09110731A (en) Production of methane
Sharifishourabi et al. Implementation of experimental techniques in ultrasound-driven hydrogen production: A comprehensive review
Dimig et al. A Review of Pure Oxygen Generation and Alternative Oxidants for Wet Oxidation of Fecal Sludge for Novel Sanitation Technologies
JP2000246061A (en) Method and apparatus for plasma catalytic reaction

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070208

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070416

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100720

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100913

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110228

R150 Certificate of patent or registration of utility model

Ref document number: 4710048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250