JPWO2004007420A1 - Process for producing α-methyl-β-ketoester - Google Patents

Process for producing α-methyl-β-ketoester Download PDF

Info

Publication number
JPWO2004007420A1
JPWO2004007420A1 JP2004521195A JP2004521195A JPWO2004007420A1 JP WO2004007420 A1 JPWO2004007420 A1 JP WO2004007420A1 JP 2004521195 A JP2004521195 A JP 2004521195A JP 2004521195 A JP2004521195 A JP 2004521195A JP WO2004007420 A1 JPWO2004007420 A1 JP WO2004007420A1
Authority
JP
Japan
Prior art keywords
formula
ketoester
methyl
compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004521195A
Other languages
Japanese (ja)
Other versions
JP4316499B2 (en
Inventor
俊雄 西塚
俊雄 西塚
寛 栗原
寛 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Seika Kaisha Ltd
Original Assignee
Meiji Seika Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Seika Kaisha Ltd filed Critical Meiji Seika Kaisha Ltd
Publication of JPWO2004007420A1 publication Critical patent/JPWO2004007420A1/en
Application granted granted Critical
Publication of JP4316499B2 publication Critical patent/JP4316499B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/317Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by splitting-off hydrogen or functional groups; by hydrogenolysis of functional groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

β−ケトエステルを原料に、毒性を有する試薬や特別に苛烈な条件を使わず、効率よくα−メチル−β−ケトエステルが製造できる方法が開示されている。この方法は、β−ケトエステルと無水酢酸との混合液にペレット状のパラホルムアルデヒドを溶解させ、含水低級アルコールを加え、水素雰囲気下、パラジウム−炭素触媒で加水素分解して効率よくα−メチル−β−ケトエステルを製造する。A method is disclosed in which α-methyl-β-ketoester can be efficiently produced from β-ketoester as a raw material without using toxic reagents or specially harsh conditions. In this method, pellet-form paraformaldehyde is dissolved in a mixed solution of β-ketoester and acetic anhydride, a hydrous lower alcohol is added, and hydrogenolysis is performed with a palladium-carbon catalyst in a hydrogen atmosphere to efficiently produce α-methyl- A β-keto ester is produced.

Description

[発明の背景]
発明の分野
本発明は、医薬、農薬などの製造原料として有用な、α−メチル−β−ケトエステルの製造法に関する。
背景の技術
アセト酢酸エチルに代表されるβ−ケトエステルは、ピリン系解熱剤やスルホンアミド系の農薬などを製造する原料として有用な化合物であり、広く使用されている。
これらの中でα位にメチル基を導入したα−メチル−β−ケトエステルを製造する方法は数多く知られている。例えばアセト酢酸エチルを塩基存在下、臭化メチルまたはヨウ化メチルと反応させることにより製造する方法、あるいは2−ブロモプロピオン酸エチルと亜鉛存在下、無水酢酸と反応させる方法が知られている。しかし、前者の方法は臭化物またはヨウ化物の毒性およびコストの点で利用が限定され、また、後者の方法は金属亜鉛を化学量論的に使用するため、その産業廃棄物としての処理に配慮が必要となる。
また、特公昭49−34661号公報には、アセト酢酸エチルなどのβ−ケトエステルをホルムアルデヒドと縮合させ、生成するアルキリデン化合物をパラジウム触媒存在下、水素添加して目的のα−メチル−β−ケトエステルとする製造法が開示されている。しかしながら、この製造法では、目的化合物の収率は通常40%程度であり、しかも触媒として塩化亜鉛を使用するため産業廃棄物の問題があり、工業的製造法としては改良の余地がある。また、スイス特許CH560176にはアセト酢酸エチルを無水酢酸存在下にホルムアルデヒドと縮合させ、生成する2−アセトキシメチル−アセト酢酸エチルをパラジウム触媒存在下、加水素分解して目的の2−メチル−アセト酢酸エチルとする製造法が開示されている。この方法では50気圧の圧力を加える上、固形のパラホルムアルデヒドを一旦80℃以上に加熱して熱分解し、ガス状のホルムアルデヒドとし、反応液中にガス状態で導入する方法が採用されている。このように、発ガン性が強く刺激性を有する化合物を気体状態で扱うことは、工業的スケールの製造法としては避けるべきである。
従って、α−メチル−β−ケトエステルを収率良くかつ安全に得ることができる製造法が依然として希求されている。
[発明の概要]
本発明者らは、今般、安価なβ−ケトエステルを出発原料とし、パラホルムアルデヒドを熱分解することなく、固体のパラホルムアルデヒドをβ−ケトエステルと無水酢酸に溶解させ、低級アルコールの存在下反応させ、続いて加水素分解することでα−メチル−β−ケトエステルを良好な収率で得ることが出来るとの知見を得た。
従って、本発明は、α−メチル−β−ケトエステルを収率よくかつ安全に得ることができる製造方法の提供をその目的としている。
そして、本発明による製造法は、下記一般式(I)α−メチル−β−ケトエステルの製造法であって:

Figure 2004007420
[式中、
は、置換基を有していてもよい、直鎖または分岐鎖C1−6アルキル基、またはシクロアルキル基を表し、
は、直鎖または分岐鎖C1−4アルキル基を表す。]、
下記の一般式(II):
Figure 2004007420
[式中、RおよびRは上記と同義である。]
で表されるβ−ケトエステルと無水酢酸の混合物にパラホルムアルデヒドを溶解させた後、含水低級アルコールの存在下反応させて、下記の一般式(III):
Figure 2004007420
[式中、RおよびRは上記と同義である。]
で表されるα−アセトキシメチル−β−ケトエステルを生成させ、これを加水素分解することを少なくとも含んでなるものである。
[発明の具体的説明]
式(I)の化合物
本発明による製造方法の目的物は、上記式(I)で表されるα−メチル−β−ケトエステルである。この式(I)において、Rは、C1−6アルキル基またはシクロアルキル基を表し、このアルキル基は直鎖であっても分岐鎖であってもよい。また、このアルキル基は一または二以上の置換基で置換されていてもよく、置換基としてはハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子)、水酸基、および直鎖または分岐鎖状のC1−4アルキル基が挙げられる。また、Rが表すシクロアルキル基は好ましくはC シクロアルキル基である。また、式(I)において、Rは、直鎖または分岐鎖状のC1−4アルキル基を表す。
式(I)で表される化合物は、種々の有用化合物の合成中間体として有用である。例えば、WO01/92231公報に開示される6−t−ブチル−8−フルオロキノリン誘導体は農園芸用病害に対して優れた防除活性を有する化合物であり、この化合物の合成に式(I)の化合物は用いられる。すなわち、4−t−ブチル−2−フルオロアニリンまたはその塩を、WO01/92231公報、J.Chem.Soc.,(C).2426(1970)またはTetrahedron Lett.,4945(1968)に記載の方法に準じて、α−メチル−β−ケトエステルと脱水縮合反応させ、ついでフェニルエーテル中250℃に加熱して6−t−ブチル−3,4−ジメチル−8−フルオロキノロンを得て、これをアセチル体に変換して、4−アセトキシ−6−t−ブチル−3,4−ジメチル−8−フルオロキノリンを得ることができる。
式(I)の化合物の製造法
本発明による方法にあっては、まず、式(II):
Figure 2004007420
[式中、RおよびRは上記と同義である]
で表されるβ−ケトエステルと無水酢酸との混合物を用意する。式(II)の化合物と無水酢酸の比は、次に添加されるパラホルムアルデヒドを溶解できる限り限定されないが、1:10〜10:1程度(重量比)が好ましく、より好ましくは1:5〜5:1程度(重量比)である。
次に、この式(II)の化合物と無水酢酸の混合液にパラホルムアルデヒドを加え、溶解させる。前述の通り、ホルムアルデヒドを気体として反応に利用することは工業的製造法においては不利または避けることが望まれる。本発明にあっては、パラホルムアルデヒドを式(II)の化合物と無水酢酸の混合液に溶解させるため、その取扱いが極めて容易となる点で有利である。本発明の好ましい態様によれば、パラホルムアルデヒドは式(II)に対して1〜10当量が好ましく、より好ましくは1〜3当量程度である。また、その取扱いの容易さから、パラホルムアルデヒドは、ペレット状のものの利用が好ましい。
本発明による方法にあっては、式(II)の化合物と、無水酢酸と、パラホルムアルデヒドとの反応を、含水低級アルコールの存在下において行う。
本発明において、低級アルコールは好ましくはC1−6一価アルコールであり、より好ましくはエチルアルコールである。本発明にあっては、この低級アルコールは水を含む。その量は、アルコールに対して0.1〜1.5重量%程度でよく、好ましくは0.3〜0.8重量%であり、最も好ましくは0.5重量%である。このような微量の水を含む低級アルコールの存在により、副生成物が極めて抑制され、かつ大幅な収率の改善を図ることができる。本発明者らは、脱水低級アルコールによってはこのような利点が得られないことを、実験的に確認している。この含水低級アルコールの存在下に反応を進めることによって得られるこれら利点は、従来知られたα−メチル−β−ケトエステルの製造方法に比較して、極めて有利な点であるといえる。含水低級アルコールの反応系における存在量は適宜決定されてよいが、式(II)の化合物と、無水酢酸と、パラホルムアルデヒドの合計量に対して、2〜50重量%程度が好ましく、より好ましくは3〜30重量%程度である。
含水低級アルコールの存在下における、式(II)の化合物と、無水酢酸と、パラホルムアルデヒドとの反応は、加熱下行われる。その温度および反応時間は、副生成物の生成、収率等を勘業しながら適宜決定されていよいが、室温〜100℃程度が一般的であり、好ましくは35〜50℃の範囲であり、最も好ましくは40℃程度であり、反応時間は5〜100時間程度が一般的であり、好ましくは7〜80時間である。
上記反応により、式(III):
Figure 2004007420
[式中、RおよびRは上記と同義である。]
で表されるα−アセトキシメチル−β−ケトエステルが生成される。本発明にあっては、式(III)の化合物を加水素分解に付し、式(I)で表されるα−メチル−β−ケトエステルを得る。この加水素分解は式(I)の化合物が得られる限り適宜決定されてよいが、本発明の好ましい態様によれば、パラジウム−炭素触媒下での水素との接触(例えば、水素を反応混合物に直接通すか、反応混合物を水素雰囲気に置く)が好ましい、反応条件も適宜決定されてよいが、水素圧力は1〜50気圧程度が好ましく、より好ましくは1〜20気圧程度であり、温度は室温〜100℃程度が好ましく、より好ましくは35〜50℃程度であり、反応時間は5〜100時間程度が好ましく、より好ましくは7〜80時間程度である。パラジウム−炭素の存在量も適宜決定されていよいが、式(III)の化合物に対して、0.01〜0.2重量%程度が好ましく、より好ましくは0.02〜0.1重量%程度である。
本発明の好ましい態様によれば、上記した式(II)の化合物と無水酢酸とパラホルムアルデヒドとの反応による式(III)の化合物を生成する工程と、式(III)の化合物の加水素分解反応とを、一つの反応系で連続して行うことが出来る。この際の反応条件は、水素圧力1〜50気圧程度が好ましく、より好ましくは1〜20気圧程度であり、温度は室温〜100℃程度が好ましく、より好ましくは35〜50℃程度であり、反応時間は5〜100時間程度が好ましく、より好ましくは7〜80時間程度である。
得られた式(I)の化合物は、その後反応系から単離され、例えばのような工程に付して、精製されるのが好ましい。[Background of the invention]
The present invention relates to a process for producing α-methyl-β-ketoesters useful as raw materials for producing pharmaceuticals, agricultural chemicals and the like.
Background Art β-ketoesters typified by ethyl acetoacetate are compounds that are useful as raw materials for producing pyrin-based antipyretic agents, sulfonamide-based agricultural chemicals, and the like, and are widely used.
Among these, many methods for producing an α-methyl-β-ketoester having a methyl group introduced at the α-position are known. For example, a method of producing ethyl acetoacetate by reacting with methyl bromide or methyl iodide in the presence of a base, or a method of reacting with acetic anhydride in the presence of ethyl 2-bromopropionate and zinc is known. However, the former method is limited in terms of the toxicity and cost of bromide or iodide, and the latter method uses metal zinc in a stoichiometric manner, so that it is considered to be treated as industrial waste. Necessary.
In Japanese Patent Publication No. 49-34661, a β-ketoester such as ethyl acetoacetate is condensed with formaldehyde, and the resulting alkylidene compound is hydrogenated in the presence of a palladium catalyst to obtain the desired α-methyl-β-ketoester. A manufacturing method is disclosed. However, in this production method, the yield of the target compound is usually about 40%, and since zinc chloride is used as a catalyst, there is a problem of industrial waste, and there is room for improvement as an industrial production method. Further, Swiss patent CH560176 condenses ethyl acetoacetate with formaldehyde in the presence of acetic anhydride, and hydrogenates the resulting 2-acetoxymethyl-ethyl acetoacetate in the presence of a palladium catalyst to give the desired 2-methyl-acetoacetic acid. A process for producing ethyl is disclosed. In this method, in addition to applying a pressure of 50 atm, solid paraformaldehyde is once heated to 80 ° C. or higher and thermally decomposed to form gaseous formaldehyde and introduced into the reaction solution in a gas state. Thus, handling a compound having strong carcinogenicity and irritation in a gaseous state should be avoided as a manufacturing method on an industrial scale.
Therefore, there is still a need for a production method capable of obtaining the α-methyl-β-ketoester with good yield and safety.
[Summary of Invention]
The present inventors have recently used an inexpensive β-ketoester as a starting material, and without dissolving paraformaldehyde, solid paraformaldehyde is dissolved in β-ketoester and acetic anhydride and reacted in the presence of a lower alcohol. Subsequently, it was found that α-methyl-β-ketoester can be obtained in good yield by hydrogenolysis.
Accordingly, an object of the present invention is to provide a production method capable of obtaining α-methyl-β-ketoester with good yield and safety.
The production method according to the present invention is a production method of the following general formula (I) α-methyl-β-ketoester:
Figure 2004007420
[Where:
R 1 represents a linear or branched C 1-6 alkyl group or cycloalkyl group which may have a substituent,
R 2 represents a linear or branched C 1-4 alkyl group. ],
The following general formula (II):
Figure 2004007420
[Wherein, R 1 and R 2 have the same meanings as described above. ]
Paraformaldehyde is dissolved in a mixture of β-ketoester and acetic anhydride represented by the following formula, and reacted in the presence of a hydrous lower alcohol to give the following general formula (III):
Figure 2004007420
[Wherein, R 1 and R 2 have the same meanings as described above. ]
At least comprising hydrogenating the α-acetoxymethyl-β-ketoester represented by the following formula.
[Detailed Description of the Invention]
Compound of Formula (I) The object of the production method according to the present invention is α-methyl-β-ketoester represented by the above formula (I). In the formula (I), R 1 represents a C 1-6 alkyl group or a cycloalkyl group, and the alkyl group may be linear or branched. The alkyl group may be substituted with one or more substituents. Examples of the substituent include a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom), a hydroxyl group, and a linear or branched group. A chain C 1-4 alkyl group may be mentioned. The cycloalkyl group represented by R 1 is preferably a C - cycloalkyl group. In the formula (I), R 2 represents a linear or branched C 1-4 alkyl group.
The compound represented by the formula (I) is useful as an intermediate for the synthesis of various useful compounds. For example, a 6-t-butyl-8-fluoroquinoline derivative disclosed in WO01 / 92231 is a compound having excellent control activity against agricultural and horticultural diseases, and the compound of formula (I) is synthesized in the synthesis of this compound. Is used. That is, 4-t-butyl-2-fluoroaniline or a salt thereof is disclosed in WO 01/92231, J. Org. Chem. Soc. , (C). 2426 (1970) or Tetrahedron Lett. 4945 (1968), a dehydration condensation reaction with α-methyl-β-ketoester, followed by heating to 250 ° C. in phenyl ether to give 6-tert-butyl-3,4-dimethyl-8-. Fluoroquinolone can be obtained and converted to the acetyl form to give 4-acetoxy-6-tert-butyl-3,4-dimethyl-8-fluoroquinoline.
Process for the preparation of the compound of formula (I) In the process according to the invention, first of all the formula (II):
Figure 2004007420
[Wherein, R 1 and R 2 are as defined above]
The mixture of (beta) -ketoester represented by these and acetic anhydride is prepared. The ratio of the compound of the formula (II) and acetic anhydride is not limited as long as the paraformaldehyde added next can be dissolved, but is preferably about 1:10 to 10: 1 (weight ratio), more preferably 1: 5 to 5. It is about 5: 1 (weight ratio).
Next, paraformaldehyde is added to and dissolved in the mixture of the compound of formula (II) and acetic anhydride. As described above, the use of formaldehyde as a gas for the reaction is disadvantageous or desired to be avoided in industrial production methods. In the present invention, since paraformaldehyde is dissolved in a mixed solution of the compound of formula (II) and acetic anhydride, it is advantageous in that handling becomes extremely easy. According to a preferred embodiment of the present invention, paraformaldehyde is preferably 1 to 10 equivalents, more preferably about 1 to 3 equivalents, relative to formula (II). Also, in view of ease of handling, it is preferable to use paraformaldehyde in the form of pellets.
In the method according to the present invention, the reaction of the compound of formula (II), acetic anhydride and paraformaldehyde is carried out in the presence of a hydrous lower alcohol.
In the present invention, the lower alcohol is preferably a C 1-6 monohydric alcohol, and more preferably ethyl alcohol. In the present invention, the lower alcohol contains water. The amount may be about 0.1 to 1.5% by weight with respect to the alcohol, preferably 0.3 to 0.8% by weight, and most preferably 0.5% by weight. By the presence of such a lower alcohol containing a small amount of water, by-products are extremely suppressed, and a significant improvement in yield can be achieved. The present inventors have experimentally confirmed that such advantages cannot be obtained with dehydrated lower alcohol. These advantages obtained by proceeding the reaction in the presence of the water-containing lower alcohol can be said to be extremely advantageous as compared with the conventionally known methods for producing α-methyl-β-ketoesters. The abundance of the hydrous lower alcohol in the reaction system may be appropriately determined, but is preferably about 2 to 50% by weight, more preferably, based on the total amount of the compound of formula (II), acetic anhydride and paraformaldehyde. About 3 to 30% by weight.
The reaction of the compound of formula (II), acetic anhydride and paraformaldehyde in the presence of a hydrous lower alcohol is carried out under heating. The temperature and reaction time may be appropriately determined while taking into consideration the production of by-products, the yield, etc., but generally room temperature to about 100 ° C., preferably in the range of 35 to 50 ° C., Most preferably, it is about 40 ° C., and the reaction time is generally about 5 to 100 hours, preferably 7 to 80 hours.
By the above reaction, the formula (III):
Figure 2004007420
[Wherein, R 1 and R 2 have the same meanings as described above. ]
The α-acetoxymethyl-β-ketoester represented by In the present invention, the compound of formula (III) is subjected to hydrogenolysis to obtain α-methyl-β-ketoester represented by formula (I). This hydrogenolysis may be appropriately determined as long as the compound of formula (I) is obtained, but according to a preferred embodiment of the present invention, contact with hydrogen under a palladium-carbon catalyst (for example, hydrogen into the reaction mixture). The reaction conditions may be appropriately determined. The hydrogen pressure is preferably about 1 to 50 atm, more preferably about 1 to 20 atm, and the temperature is room temperature. About 100-100 degreeC is preferable, More preferably, it is about 35-50 degreeC, Reaction time has preferable about 5-100 hours, More preferably, it is about 7-80 hours. Although the abundance of palladium-carbon may be appropriately determined, it is preferably about 0.01 to 0.2% by weight, more preferably about 0.02 to 0.1% by weight with respect to the compound of formula (III). It is.
According to a preferred embodiment of the present invention, a step of producing a compound of formula (III) by reaction of a compound of formula (II) with acetic anhydride and paraformaldehyde, and a hydrogenolysis reaction of the compound of formula (III) Can be carried out continuously in one reaction system. The reaction conditions in this case are preferably a hydrogen pressure of about 1 to 50 atmospheres, more preferably about 1 to 20 atmospheres, and the temperature is preferably room temperature to about 100 ° C., more preferably about 35 to 50 ° C. The time is preferably about 5 to 100 hours, more preferably about 7 to 80 hours.
The resulting compound of formula (I) is then preferably isolated from the reaction system and purified by subjecting it to the following steps, for example.

以下実施例を挙げて本発明を具体的に説明する。
実施例1 2−メチルアセト酢酸エチルの合成(水素圧1気圧)
アセト酢酸エチル(100g,0.768mol)と無水酢酸(86.0g,0.845mol)との混合液にペレット状のパラホルムアルデヒド(46.0g,1.54mol)を溶解させた。この溶液と99.5%エタノール(含水率0.5重量%)450mLを加え、基質重量に対し5%にあたる5.00gの10%パラジウム−炭素触媒(川研ファインケミカル製AD10%Pd/C)とを反応器に加え、脱気を行った。その後、水素を導入し、反応器内を1気圧の水素雰囲気に保ちながら、40℃に加温し、反応液を激しく撹拌しながら22時間反応を行った。反応液を冷却した後、固形物を濾過して除き、ろ液を減圧濃縮して残渣を得た。これをヘリパックカラムを用いて蒸留して、2−メチルアセト酢酸エチル111gを無色油状物として得た。収率74.8%。
実施例2 2−メチルアセト酢酸エチルの合成(水素圧10気圧)
アセト酢酸エチル(100g,0.768mol)と無水酢酸(86.0g,0.845mol)との混合液にペレット状のパラホルムアルデヒド(46.0g,1.54mol)を溶解させた。この溶液に99.5%エタノール(含水率0.5重量%)450mLを加え、基質重量に対し0.5%にあたる500mgの10%パラジウム−炭素触媒(川研ファインケミカル製AD10%Pd/C)とをオートクレーブに加えた。オートクレーブ中を水素雰囲気下に置換した後、水素圧力を10気圧まで加圧し、40℃に加温して撹拌した。時々水素を補充して10気圧を保ちながら48時間反応を行った。反応液を冷却した後、固形物を濾過して除き、ろ液を減圧濃縮して残渣を得た。これをヘリパックカラムを用いて蒸留して、2−メチルアセト酢酸エチル84.6gを無色油状物として得た。収率57.0%。
実施例3 2−メチルアセト酢酸エチルの合成(水素圧10気圧)
アセト酢酸エチル(100g,0.768mol)と無水酢酸(86.0g,0.845mol)との混合液にペレット状のパラホルムアルデヒド(46.0g,1.54mol)を溶解させた。この溶液に99.5%エタノール(含水量0.5重量%)450mLを加え、基質重量に対し0.5%にあたる500mgの5%パラジウム−炭素触媒(川研ファインケミカル製AD5%Pd/C)とをオートクレーブに加えた。オートクレーブ中を水素雰囲気下に置換した後、水素圧力を10気圧まで加圧し、40℃に加温して撹拌した。時々水素を補充して10気圧を保ちながら72時間反応を行った。反応液を冷却した後、固形物を濾過して除き、ろ液を減圧濃縮して残渣を得た。これをヘリパックカラムを用いて蒸留して、2−メチルアセト酢酸エチル92.0gを無色油状物として得た。収率65.0%。
比較例1 2−メチルアセト酢酸エチルの合成(水素圧1気圧)
アセト酢酸エチル(100g,0.768mol)と無水酢酸(86.0g,0.845mol)との混合液の中に、ペレット状のパラホルムアルデヒド(46.0g,1.54mol)を溶解させた。この溶液と、塩基性触媒としての酢酸ナトリウム(63.0g,0.768mol)と、5.00gのパラジウム−炭素触媒(川研ファインケミカル製AD10%Pd/C)とを反応器に加え、脱気を行った。その後、水素を導入し、反応器内を1気圧の水素雰囲気に保ちながら、40℃に加温し、反応液を激しく撹拌しながら6時間反応を行った。反応液を冷却した後、固形物を濾過して除き、ろ液を減圧濃縮して残渣を得た。これを20cmのヘリパックカラムを用いて蒸留して、2−メチルアセト酢酸エチル23.7gを無色油状物として得た。収率16.0%
EI−MS;m/z145(M+H)HNMR(CDCl)δ1.28(3H,t,J=7.1Hz),1.35(3H,d,J=7.3Hz),2.25(3H,s),3.51(1H,q,J=7.3Hz),4.20(1H,qd,J=7.3,1.0Hz).
Hereinafter, the present invention will be specifically described with reference to examples.
Example 1 Synthesis of ethyl 2-methylacetoacetate (hydrogen pressure 1 atm)
Pellet formaldehyde (46.0 g, 1.54 mol) was dissolved in a mixture of ethyl acetoacetate (100 g, 0.768 mol) and acetic anhydride (86.0 g, 0.845 mol). 450 mL of this solution and 99.5% ethanol (water content 0.5 wt%) were added, and 5.00 g of 10% palladium-carbon catalyst (AD10% Pd / C manufactured by Kawaken Fine Chemical Co., Ltd.) corresponding to 5% of the substrate weight was added. Was added to the reactor and degassed. Thereafter, hydrogen was introduced, and the reactor was heated to 40 ° C. while maintaining a 1 atmosphere of hydrogen atmosphere, and the reaction was carried out for 22 hours while vigorously stirring the reaction solution. After cooling the reaction solution, the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a residue. This was distilled using a Helipak column to obtain 111 g of ethyl 2-methylacetoacetate as a colorless oil. Yield 74.8%.
Example 2 Synthesis of ethyl 2 -methylacetoacetate (hydrogen pressure 10 atm)
Pellet formaldehyde (46.0 g, 1.54 mol) was dissolved in a mixture of ethyl acetoacetate (100 g, 0.768 mol) and acetic anhydride (86.0 g, 0.845 mol). To this solution, 450 mL of 99.5% ethanol (water content: 0.5% by weight) was added, and 500 mg of 10% palladium-carbon catalyst (AD10% Pd / C manufactured by Kawaken Fine Chemical Co., Ltd.) corresponding to 0.5% of the substrate weight. Was added to the autoclave. After replacing the inside of the autoclave with a hydrogen atmosphere, the hydrogen pressure was increased to 10 atm, heated to 40 ° C. and stirred. The reaction was carried out for 48 hours while replenishing hydrogen from time to time and maintaining 10 atm. After cooling the reaction solution, the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a residue. This was distilled using a Helipak column to obtain 84.6 g of ethyl 2-methylacetoacetate as a colorless oil. Yield 57.0%.
Example 3 Synthesis of ethyl 2-methylacetoacetate (hydrogen pressure 10 atm)
Pellet formaldehyde (46.0 g, 1.54 mol) was dissolved in a mixture of ethyl acetoacetate (100 g, 0.768 mol) and acetic anhydride (86.0 g, 0.845 mol). To this solution was added 450 mL of 99.5% ethanol (water content: 0.5% by weight), and 500 mg of 5% palladium-carbon catalyst (AD5% Pd / C manufactured by Kawaken Fine Chemical Co., Ltd.) corresponding to 0.5% of the substrate weight. Was added to the autoclave. After replacing the inside of the autoclave with a hydrogen atmosphere, the hydrogen pressure was increased to 10 atm, heated to 40 ° C. and stirred. The reaction was carried out for 72 hours while maintaining 10 atm. After cooling the reaction solution, the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a residue. This was distilled using a Helipac column to obtain 92.0 g of ethyl 2-methylacetoacetate as a colorless oil. Yield 65.0%.
Comparative Example 1 Synthesis of ethyl 2-methylacetoacetate (hydrogen pressure 1 atm)
Pellet formaldehyde (46.0 g, 1.54 mol) was dissolved in a mixture of ethyl acetoacetate (100 g, 0.768 mol) and acetic anhydride (86.0 g, 0.845 mol). This solution, sodium acetate (63.0 g, 0.768 mol) as a basic catalyst, and 5.00 g of palladium-carbon catalyst (AD10% Pd / C manufactured by Kawaken Fine Chemical) were added to the reactor, and degassed. Went. Thereafter, hydrogen was introduced and the reactor was heated to 40 ° C. while maintaining a 1 atmosphere hydrogen atmosphere, and the reaction was carried out for 6 hours while vigorously stirring the reaction solution. After cooling the reaction solution, the solid matter was removed by filtration, and the filtrate was concentrated under reduced pressure to obtain a residue. This was distilled using a 20 cm Helipak column to obtain 23.7 g of ethyl 2-methylacetoacetate as a colorless oil. Yield 16.0%
EI-MS; m / z 145 (M + H) + ; 1 HNMR (CDCl 3 ) δ 1.28 (3H, t, J = 7.1 Hz), 1.35 (3H, d, J = 7.3 Hz), 2. 25 (3H, s), 3.51 (1H, q, J = 7.3 Hz), 4.20 (1H, qd, J = 7.3, 1.0 Hz).

Claims (5)

下記の一般式(I)で表されるα−メチル−β−ケトエステルの製造法であって:
Figure 2004007420
[式中、
は、置換基を有していてもよい、直鎖または分岐鎖C1−6アルキル基、またはシクロアルキル基を表し、
は、直鎖または分岐鎖C1−4アルキル基を表す。]、
下記の一般式(II):
Figure 2004007420
[式中、RおよびRは上記と同義である。]
で表されるβ−ケトエステルと無水酢酸の混合物にパラホルムアルデヒドを溶解させた後、含水低級アルコールの存在下反応させて、下記の一般式(III):
Figure 2004007420
[式中、RおよびRは上記と同義である。]
で表されるα−アセトキシメチル−β−ケトエステルを生成させ、これを加水素分解することを少なくとも含んでなる、製造方法。
A process for producing an α-methyl-β-ketoester represented by the following general formula (I):
Figure 2004007420
[Where:
R 1 represents a linear or branched C 1-6 alkyl group or cycloalkyl group which may have a substituent,
R 2 represents a linear or branched C 1-4 alkyl group. ],
The following general formula (II):
Figure 2004007420
[Wherein, R 1 and R 2 have the same meanings as described above. ]
Paraformaldehyde is dissolved in a mixture of β-ketoester and acetic anhydride represented by the following formula, and reacted in the presence of a hydrous lower alcohol to give the following general formula (III):
Figure 2004007420
[Wherein, R 1 and R 2 have the same meanings as described above. ]
A production method comprising at least the production of α-acetoxymethyl-β-ketoester represented by the formula (1) and hydrogenolysis thereof.
前記式(II)で表されるβ−ケトエステルがアセト酢酸メチルまたはアセト酢酸エチルである、請求項1記載の製造法。The production method according to claim 1, wherein the β-ketoester represented by the formula (II) is methyl acetoacetate or ethyl acetoacetate. 低級アルコールがC1−6一価アルコールである、請求項1または2に記載の製造法。The manufacturing method of Claim 1 or 2 whose lower alcohol is C1-6 monohydric alcohol. 1−6一価アルコールがエチルアルコールである、請求項1〜3のいずれか一項に記載の製造法。The manufacturing method as described in any one of Claims 1-3 whose C1-6 monohydric alcohol is ethyl alcohol. 加水素分解が、パラジウム−炭素触媒の存在下、前記式(III)の化合物を水素と接触させることにより行なわれる、請求項1〜4のいずれか一項に記載の方法。The process according to any one of claims 1 to 4, wherein the hydrogenolysis is carried out by contacting the compound of formula (III) with hydrogen in the presence of a palladium-carbon catalyst.
JP2004521195A 2002-07-11 2003-07-11 Process for producing α-methyl-β-ketoester Expired - Fee Related JP4316499B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002202214 2002-07-11
JP2002202214 2002-07-11
PCT/JP2003/008847 WO2004007420A1 (en) 2002-07-11 2003-07-11 PROCESS FOR PRODUCING α-METHYL-ß-KETO ESTER

Publications (2)

Publication Number Publication Date
JPWO2004007420A1 true JPWO2004007420A1 (en) 2005-11-10
JP4316499B2 JP4316499B2 (en) 2009-08-19

Family

ID=30112611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004521195A Expired - Fee Related JP4316499B2 (en) 2002-07-11 2003-07-11 Process for producing α-methyl-β-ketoester

Country Status (5)

Country Link
JP (1) JP4316499B2 (en)
CN (1) CN1318379C (en)
AU (1) AU2003280975A1 (en)
TW (1) TW200403221A (en)
WO (1) WO2004007420A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200925147A (en) * 2007-08-08 2009-06-16 Meiji Seika Kaisha Novel method for producing ?-methyl-?-ketoester
CN107188807A (en) * 2017-07-10 2017-09-22 济南大学 The method that arabinose prepares ethyl levulinate
CN110483290B (en) * 2019-08-09 2022-05-31 上海应用技术大学 Method for synthesizing beta-keto ester by copper catalysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH560176A5 (en) * 1972-04-24 1975-03-27 Lonza Ag Ethyl alpha-methyl-aceto-acetate prodn. - from formaldehyde gas and acetoacetic ester contg. acetic anhydride and hydrogenation
DE3326635A1 (en) * 1983-07-23 1985-01-31 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING MONOMETHYL-SUBSTITUTED METHYLENE COMPOUNDS

Also Published As

Publication number Publication date
CN1318379C (en) 2007-05-30
CN1735586A (en) 2006-02-15
TWI310031B (en) 2009-05-21
AU2003280975A1 (en) 2004-02-02
JP4316499B2 (en) 2009-08-19
TW200403221A (en) 2004-03-01
WO2004007420A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
US4262152A (en) Preparation of trifluoromethylphenyl nitrophenylethers
JP4316499B2 (en) Process for producing α-methyl-β-ketoester
JPH04244041A (en) Process for producing halogenomethyl ketone especially 1,1,1-trifluoroacetone
JPH03184938A (en) Preparation of ethylenic ketone
WO1996028405A1 (en) Process for producing 1,2-ethanediol derivatives
HU213315B (en) Process for producing arylacetic acids and their alkali metal salts
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
KR100589966B1 (en) A process for preparing beta- ketoester compound
JPH0662488B2 (en) Method for producing valproic acid
JP5275235B2 (en) Novel production method of α-methyl-β-ketoester
JP4066630B2 (en) Preparation of 2-substituted thiopyrimidine-4-carboxylic acid esters
JP4831897B2 (en) Method for producing (2,6-dichloropyridin-4-yl) methanol
JP2943944B2 (en) 3-Substituted-2,4,5-trifluorobenzoic acid and method for producing the same
KR100322237B1 (en) Process for preparing α-ketocarboxylic acid derivatives
JPS62126164A (en) 4-alkoxy-2-oxo-pyrrolidine-1 acetic acid alkyl ester and manufacture
JP2986003B2 (en) 2-Alkyl-3-styryloxiranecarboxylic acid ester and method for producing the same
JP4487674B2 (en) Method for producing tetrahydropyranyl-4-carboxylate compound
FR2644783A1 (en) PROCESS FOR THE PREPARATION OF BIS (TRIFLUOROMETHYLPHENYL) -METHANOL
JPH1171325A (en) Production of 4-aryl butanoic alkyl ester
JP2734646B2 (en) Novel synthetic method of 2,2-difluorocarboxylic acid derivatives
JP2642680B2 (en) Reduction of β-ketoester
JP3201062B2 (en) Process for producing aliphatic β-ketoester
JPH03127780A (en) Anilinopyrimidine derivative
JPH03109355A (en) Production of 2,2,5,5-tetramethylcyclopentane carboxylic acid derivative and intermediate thereof
JPS6119618B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090421

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090520

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees