JPWO2003082305A1 - Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells - Google Patents

Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells Download PDF

Info

Publication number
JPWO2003082305A1
JPWO2003082305A1 JP2003579842A JP2003579842A JPWO2003082305A1 JP WO2003082305 A1 JPWO2003082305 A1 JP WO2003082305A1 JP 2003579842 A JP2003579842 A JP 2003579842A JP 2003579842 A JP2003579842 A JP 2003579842A JP WO2003082305 A1 JPWO2003082305 A1 JP WO2003082305A1
Authority
JP
Japan
Prior art keywords
cells
human
growth factor
mesenchymal cells
derived
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003579842A
Other languages
Japanese (ja)
Other versions
JP4554940B2 (en
Inventor
直秀 山下
直秀 山下
隆志 中岡
隆志 中岡
聡英 西下
聡英 西下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2003082305A1 publication Critical patent/JPWO2003082305A1/en
Application granted granted Critical
Publication of JP4554940B2 publication Critical patent/JP4554940B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0605Cells from extra-embryonic tissues, e.g. placenta, amnion, yolk sac, Wharton's jelly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells

Abstract

ヒト胎盤由来の間葉系細胞を含む医薬、ヒト血清アルブミンおよび細胞増殖因子を添加した、非ヒト動物由来の蛋白質成分を含まない培地で培養することを特徴とする、ヒト胎盤由来の間葉系細胞を培養する方法。A mesenchymal system derived from human placenta, characterized by culturing in a medium containing no protein component derived from a non-human animal, to which a medicinal cell derived from human placenta is added, human serum albumin and cell growth factor are added. A method of culturing cells.

Description

技術分野
本発明は、ヒト胎盤由来の間葉系細胞の利用、特に該細胞を含む虚血性疾患の治療用医薬組成物、該細胞を用いた血管細胞増殖因子の製造方法、該細胞を培養する方法に関する。
技術背景
虚血性疾患、例えば心筋梗塞、脳梗塞などはヒトの死亡原因の高位を占めており、外科・薬学両面からの予防、治療方法が盛んに研究されている。外科的方法の代表例は血管バイパス手術であり、経皮的冠動脈形成術(PTCA)や冠動脈バイパス術(CABG)などが行われる。また、薬学的方法は、t−PAやトロンビン等をはじめとする血栓溶解剤の他に、生体に対して血管新生を促進する因子であるVEGF(Vascular Endothelial Growth Factor;血管内皮細胞増殖因子)や、FGF(Fibloblast Groeth Factor:塩基性線維芽細胞増殖因子)などを投与する方法が試みられている。
近年、虚血部位に新たに血管を新生させて血流の再現をもたらすことで虚血状態を解消する方法として、上記の増殖因子ではなく特定の細胞を利用して行う、細胞移植による血管新生治療が注目されている。長時間の虚血に暴露された生体は、血流確保のため自らの力で新しい血管を作り出す機能を有しているが、その際に血管新生に関与する細胞を外来的に導入することで、より効果的に血管新生を促して虚血性疾患の治療に利用しようとするものである。
この方法への応用が期待される細胞に、血管新生に大きく貢献することが知られている血管内皮細胞、あるいはこれに分化する機能を有する骨髄の幹細胞や単核球がある。血管内皮細胞は、血管の内腔を覆う単層を形成する細胞であり、創傷治癒や腫瘍の増生の際の血管新生と密接に関係しており、その存在が重要視されている。これまでは、血管内皮細胞の増殖が腫瘍の増生、網膜症あるいは慢性関節リウマチといった病状の進行または乾癬の拡大といった血管新生を伴う疾病に対して関与していることから、かかる血管内皮細胞の増殖を抑制する点を中心に研究が行われてきている。
これとは逆に、血管新生を促すことによって治療、障害の回復が期待できる疾患への利用も検討されつつある。特に細胞内皮細胞は、自身の増殖性に加えて血管新生を促す働きのあるタンパク質を分泌する機能も有している点で、有利な細胞として注目されている。これまでに、動物モデル(心筋梗塞モデル、狭心症モデル、閉塞性動脈硬化症モデル)実験では、血管内皮細胞を該モデル動物に加えることで血管新生が誘導され、虚血により低下した臓器の機能が改善されることも報告されている。
さらに、成人の末梢血に存在する血管内皮前駆細胞を体内に移植することで、血管新生を誘導する試みも研究されている。
血管内皮前駆細胞はCD34陽性細胞として単離されるが、生体内で内皮細胞に分化していることが確認されている。特に、このCD34陽性細胞は、成人末梢血中に比べて臍帯血では約10倍の密度で存在していることが報告されていることから、臍帯血から得られる未分化の血管内皮前駆細胞を体内に移植して血管の新生を誘導する試みも行われている。臍帯血単核球培養7日目に得られた血管内皮前駆細胞30万個/匹を、分離後下肢虚血のヌードラットに移植したところ、血管内皮前駆細胞移植群で有意な血流の増加と毛細血管密度の改善が認められたと報告されている。
本発明は、これまでに報告された血管内皮細胞、あるいは血管内皮前駆細胞とは異なる、血管新生治療に有効な新たな細胞を提供するものである。
発明の開示
胎盤は胎児と母体との栄養交換の場であり、そこには豊富な血管が存在する。本発明者は、通常はヒトの出産の際に臍帯とともに廃棄される胎盤に存在する間質細胞(血管内皮細胞以外の細胞)群に着目し、そこに含まれる間葉系細胞を生体に移植投与することで、生体に血管新生作用を促すことができることを見出し、本発明を完成した。すなわち本発明は、ヒト胎盤由来の間葉系細胞を含む、虚血性疾患治療用医薬である。また、本発明は当該医薬を調製する上で有利である間葉系細胞の培養方法、ならびに間葉系細胞を利用したVEGFの製造方法に関する。
発明を実施するための最良の形態
間葉系細胞は、組織学的には結合組織を構成する、血管内皮細胞や血管内皮前駆細胞などの血管系細胞とは異なり一般的に複数の分化能を有する多能細胞である。特に、間葉系幹細胞は、骨、軟骨、脂肪、心臓、神経、肝臓の細胞などになることが知られており、分化した線維芽細胞、毛乳頭細胞、脂肪細胞、歯髄細胞なども、間葉系細胞に属するものである。
幾つかの間葉系細胞が各種疾患に関与しているとの報告もなされている。例えば、滑膜に存在する間葉系細胞は、慢性関節リウマチ、膠原病などの関節破壊に関与しているとの報告がある。この場合、滑膜間葉系細胞の活動を抑制することが、関節障害の治療等において試みられている。
しかし、ヒト胎盤由来の間葉系細胞がインビボで血管新生を促す作用を有しており、これを積極的に虚血性疾患治療に利用しようとする試みはなされていない。
本発明で用いるヒト胎盤由来の間葉系細胞は、ヒト胎盤を適当な大きさの切片とした後に、トリプシン等の酵素を用いた通常の細胞分離操作によって処理することで、簡便に単離することができ、特別な操作は必要としない。なお、ヒト胎盤それ自体は一般に出産の際の廃棄物として扱われており、医療現場において日常的に入手可能な分離材料である。
また、単離した間葉系細胞は、適当な培地で増殖させることが出来る。培養は、一般的には33〜39℃、好ましくは37℃で、ウシ胎児血清、好ましくは非働化ウシ胎児血清(熱処理することにより、補体を不活化したウシ胎児血清)を3〜10%(好ましくは10%)含む基礎培地、例えばα−MEM培地などを用いればよい。また通気は、5%COを含む空気を用い、湿度は80〜120%(好ましくは100%)に保って培養を行うことができる。
間葉系細胞は、従来公知の方法により保存することができる。例えば、10%グリセリンもしくは10%ジメチルスルホキシドと、10%血清とを含む栄養培地中に10〜10個/ml、好ましくは10〜10個/ml、さらに好ましくは5×10個/mlの細胞濃度で浮遊させた状態で、−80℃あるいは液体窒素中で凍結保存することができる。保存された細胞株は、急速溶解(例えば、37℃の水浴に浸す)後、10倍量の同培地を添加して攪拌し、遠心分離して回収された細胞を所望の培地に加えることで、再び増殖させることができる。
一般に、細胞自体を生体に移植する際には、好ましくない免疫反応を誘起しないために、移植細胞と移植を受ける生体との間のHLAタイプの一致に留意する必要がある。そのため、本発明でも、移植を受ける患者のHLAタイプに適合する移植用間葉系細胞を選択して、これを本発明の医薬として投与することが好ましい。本発明であるヒト胎盤由来の間葉系細胞を含む医薬の場合には、臍帯血を用いて白血球治療等を行ういわゆる臍帯血移植のために蓄積されている臍帯血のHLAハプロタイプが、そのまま間葉系細胞のハプロタイプを表すことになるので、臍帯血バンクのHLAタイプ情報をそのまま用いることが出来るという利点がある。
(間葉系細胞の培養方法)
胎盤から分離された間葉系細胞は、適当な緩衝液で洗浄後、そのままあるいは緩衝液に懸濁して直ちに利用することも可能であるが、適当な培地中で分離した細胞を増殖させることが好ましい。ヒト胎盤由来の間葉系細胞は、一般に用いられる栄養培地で増殖することもできる。しかし、当該培養細胞を最終的にヒトに投与することを考慮すれば、ヒトに対して免疫反応をもたらす異物を含まない条件下で、間葉系細胞の培養を行うことが好ましい。本発明は、かかる課題を解決するための培養方法を提供する。
本発明の培養方法は、ヒト血清アルブミンおよび細胞増殖因子を添加した、非ヒト動物由来の蛋白質成分を含まない培地で培養することを特徴とする、ヒト胎盤由来の間葉系細胞を培養する方法である。
一般に、MEM培地、RPMI 1640、RITC80−7、MCDB系列、HamF−12・DME1:1混合培地等のような、アミノ酸類にビタミン類等を添加した基礎培地のみでは、分離された細胞の増殖は進行しないために、ウシ胎児、子ウシ等の非ヒト動物由来の血清が基礎培地に添加される。しかし、この培養方法では、細胞の増殖自体は良好に行われるものの、培養後の細胞をヒト体内に投与すると、混在する非ヒト蛋白質が投与された生体に対して好ましくない免疫応答を惹起する場合が多い。また、血清中に多く含まれる種々の生理活性物質の作用は複雑多岐にわたり、さらには血清のロット差が激しいなど、安定した性質を有する培養細胞あるいはこれを含む医薬の供給には不都合な点が多い。
本発明は、ヒト以外の動物に由来する要素を含まない上述のごとき基礎培地に、ヒト血清アルブミン及び細胞増殖因子を添加することで、非ヒト動物由来の物質を含まない環境で間葉系細胞を培養するものである。本発明で用いる増殖因子としては、血小板由来増殖因子(PDGF、Platelet−Derived Growth Factor)、線維芽細胞増殖因子(bFGF、basic Fibroblast Growth Factor)、上皮細胞増殖因子(EGF、Epidermal Growth Factor)およびインスリンからなる群より選ばれる1種以上である。これらの増殖因子は、例えばR&D社またはSigma社から研究用試薬として市販されているものでもよく、生体から分離精製したものや遺伝子組み換え手法により生産したものであってもよい。その添加量は0.01〜1000ng/ml、好ましくは0.1〜100ng/ml、最も好ましくは1〜10ng/mlである。
また、ヒト血清は、献血された血液等から遠心分離などによって用意することができる。ヒト血清の添加量は、培養培地の約1〜20%、好ましくは2〜15%、最も好ましくは5〜10%である。製剤化されたヒトアルブミンを用いる場合には、0.01〜10%、好ましくは0.05〜1%、最も好ましくは0.1〜0.5%である。
さらに、酸化防止剤、特に2−メルカプトエタノール、アスコルビン酸およびビタミンEよりなる群から選ばれる酸化防止剤を培地に添加することにより、細胞増殖を更に増強させることができる。酸化防止剤の添加量は2−メルカプトエタノールの場合で0.01〜100μM、好ましくは0.1〜50μM、最も好ましくは1〜10μMである。アスコルビン酸又はビタミンEについては、上記2−メルカプトエタノールと等価の量を用いることができる。
なお、本発明に係る培地及び培養方法は、線維芽細胞の初代培養、継代培養のいずれにおいても用いることができ、良好な結果が得られる。
(間葉系細胞を含む医薬)
本発明の間葉系細胞を含む医薬は、ヒト胎盤から分離した間葉系細胞、あるいは上述の方法により培養した間葉系細胞を用い、これに適当な医薬担体または賦形剤を加えて調製することができる。本発明の間葉系細胞を含む医薬をヌードマウスの大腿部に注入することで、注入部位に血管の新生が観察されることから、虚血部位に局所的にこの医薬を注入することにより、当該部位において血管新生を促して血流経路を獲得させ、虚血部位への血液供給を再開させることができる。従って、本発明の血管新生促進剤は、心筋梗塞、狭心症、脳梗塞、血管性痴呆、閉塞性動脈硬化症、足壊疽、褥創などの虚血性疾患の治療剤として有用である。その投与は、血管内投与、筋肉内投与あるいは局所投与するのが好ましく、更には心筋内投与、心膜腔内投与、脳硬膜下投与、クモ膜下投与、脳実質内投与、四肢骨格筋内投与等の虚血部への局所投与が特に好ましい。
好ましい医薬の形態は、点滴剤または注射剤である。これら点滴または注射剤は、生理食塩水、緩衝液、リン酸緩衝生理食塩水(PBS)等に間葉系細胞を混合することにより調製するのが好ましい。また目的により安定化剤、保存剤、又は賦形剤等を加えることもできる。
また、本発明の医薬に、血管新生を促進させる細胞成長因子を添加してもよい。これらの細胞成長因子としては、酸性および塩基性線維芽細胞増殖因子(FGF)、血管内皮増殖因子(VEGF)、上皮細胞増殖因子(EGF)、トランスフォーミング増殖因子(TFGαおよびβ)、血小板由来内皮増殖因子(PDEGF)、血小板由来増殖因子(PDGF)、腫瘍壊死因子(TNFα)、肝細胞増殖因子(HGF)、インスリン様増殖因子(IGF)、エリスロポエチン、コロニー刺激因子(CSF)、マクロファージ−CSF、顆粒球/マクロファージCSFおよび酸化窒素シンターゼ、アンギオボイエチン、アンギオスタチンなどが挙げられる。
本発明の医薬の投与量は、移植を受ける患者の病状、年齢又は体重等により異なるが、例えば投与一回あたり細胞数で10〜10個の範囲で適用することができる。また、本発明の間葉系細胞は生体由来の細胞であるため、該細胞の毒性を心配することなく、医薬品として使用することができる。
(VEGFの製造方法)
本発明は、ヒト胎盤由来の間葉系細胞を用いたVEGFの製造方法に関する。
先に述べたように、血管内皮細胞が自ら血管内皮細胞増殖因子を発現、分泌することは報告されていたが、血管性細胞とは異質の間葉系細胞がVEGFを発現し、かつこれを細胞外に分泌することは全く意外なことであった。
本発明の間葉系細胞を用いたVEGFの産生は、分離した間葉系細胞が増殖可能な培地で該細胞を培養すれば足り、かかる培養によってVEGFを培地中に分泌させることができる。間葉系細胞が産生、分泌するVEGFは生物学的活性を有しており、ヌードマウスのインビボ実験でも、該ヌードマウスにおいて血管新生を生じさせた。
VEGFを産生させるための培地としては、MEM培地、RPMI 1640、RITC80−7、MCDB系列、HamF−12・DME1:1混合培地等のような、アミノ酸類にビタミン類等を添加した基礎培地に、5〜10%の哺乳動物血清(例、牛胎仔血清、仔牛血清、ヒト血清、馬血清)を加えた培地が好ましいが、先に述べた非ヒト由来の成分を含まずに細胞増殖因子を加えた培地であっても良い。
培養は、最初から該細胞を無血清培地で培養してもよく、非ヒト動物由来血清を含む培地でサブコンフルエントまで培養し、その後、培地を除き、リン酸緩衝塩類溶掖で細胞層を洗浄して無血清培地に交換して培養してもよい。またその他の培養条件は特殊なものではなく、常圧、37±0.5℃、気相として二酸化炭素5%、酸素10〜20%、窒素85〜75%であればよい。
この様にして間葉系細胞を培養して得た培養上清から、一般的な方法に従ってVEGFを回収することができる。また、蛋白質の精製に通常使用されている方法の中から適切な方法を適宜選択して行うことができる。すなわち、塩析法、限外濾過法、等電点沈澱法、ゲル濾過法、電気泳動法、イオン交換クロマトグラフィー、疎水性クロマトグラフィーや抗体クロマトグラフィー等の各種アフィニティークロマトグラフィー、クロマトフォーカシング法、吸着クロマトグラフィーおよび逆相クロマトグラフィー等、通常使用され得る方法の中から適切な方法を適宜選択し、必要によりHPLCシステム等を使用して適当な順序で精製を行えば良い。
(組換え間葉系細胞)
本発明で使用する間葉系細胞は、適当なベクター、特にウイルスベクターを利用して形質転換させることができる。その際、虚血性疾患の改善に有効な蛋白性因子、酸性および塩基性線維芽細胞増殖因子(FGF)、血管内皮増殖因子(VEGF)、上皮細胞増殖因子(EGF)、トランスフォーミング増殖因子(TFGαおよびβ)、血小板由来内皮増殖因子(PDEGF)、血小板由来増殖因子(PDGF)、腫瘍壊死因子(TNFα)、肝細胞増殖因子(HGF)、インスリン様増殖因子(IGF)、エリスロポエチン、コロニー刺激因子(CSF)、マクロファージ−CSF、顆粒球/マクロファージCSFおよび酸化窒素シンターゼ、アンギオボイエチン、アンギオスタチンなどをコードする遺伝子をベクターに組み込み、当該遺伝子を間葉系細胞の中で発現させることができる。この遺伝子を導入した細胞を患者に投与して疾患の治療を行う方法としては、インビボ遺伝子治療とエクスビボ遺伝子治療がある。後者は、外科的処置に対する患者の負担が大きい事や、体外操作による感染症の危険性ゆえ、インビボ遺伝子治療の方が好適である。
臨床応用されている主なウイルスベクターは、レトロウイルスベクター、アデノウイルスベクターがあり、最近注目されているものにアデノ随伴ウイルスベクターなどがある。
レトロウイルスベクターでは、導入遺伝子が染色体に組み込まれる為、長期間安定な遺伝子の発現が期待できる。また、パッケージング細胞を使って容易に大量かつ多種類のウイルスベクターを作る事が出来る点で有利である。
アデノウイルスベクターは、全長36kbの直鎖状2本鎖DNAをゲノムとして持ち、物理化学的に安定であり、超遠心により容易に濃縮出来るので、非常に高い効率で遺伝子を導入する事が出来る。ただし、導入遺伝子が染色体に組み込まれないため、長長期間に渡る組換え遺伝子の保持は難しく、長期の遺伝子の発現は期待出来ないため、治療効果を上げる為には、アデノウイルスベクターを繰り返して投与する必要があり、中和抗体による不活化が大きな問題となる。
アデノ随伴ウイルスベクターは、4.7kbの1本鎖DNAを持つウイルスで自分自身は複製能力を持たない欠陥ウイルスであり、増殖にはヘルパーとしてアデノウイルスやヘルペスウイルスの重感染が必要となる。すなわち、アデノ随伴ウイルス自体には全く病原性や細胞傷害性がないので、最も安全性の高いウイルスベクターであり、組換え遺伝子は宿主の染色体に組み込まれるので、長期間の遺伝子発現が可能である。
これらのベクターに所望のDNAを導入する方法は公知である(例えば、J.Sambrook等、Molecular Cloning,a Laboratory Manual 2nd ed.,Cold Spring Harbor Laboratory,ニューヨーク(New York),1989年、参照)。すなわち、DNAとベクターをそれぞれ適当な制限酵素で消化し、得られたそれぞれの断片を、DNAリガーゼを用いてライゲーションさせればよい。また、これらのウイルスベクターを用いた間葉系細胞の形質転換方法は、当業者により周知の方法、例えばSaitoらの方法で行うことができる。
以下、実施例により本発明を詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。
実施例
実施例1 ヒト胎盤由来間葉系細胞の分離
正期産の胎盤を氷上に回収した後、胎盤の母体側からハサミで組織を採取した胎盤切片200gをビーカーに移し、0.5%トリプシン、5.3mM EDTA100mlを加えたDMEM培地1Lを加え、室温で細胞を単離する。Ficoll−Hypaque(Pharmacia Biotech AB)を用いて単核球を分離した。この単核球を1×10個/mlとなるように10%FBS−DMEM液に懸濁し、37℃、5%CO下で5〜7日間培養することにより、所望の細胞を調製することができる。この様にして得た培養細胞は、これに続く下記の操作に用いることが出来る。以下、本発明者らが実際に分離した4系統の細胞をPL5、PL24、PL26およびPL37と表記して、以下の実施例を詳細に述べることにする。
実施例2 間葉系細胞の無血清培地を用いた培養方法
実施例1に準じてコラーゲンコート済み10cmディッシュでコンフルエントに培養した間葉系細胞PL37を0.25%トリプシンを用いて剥がした。5%FCSを含むPBS10mlを添加してトリプシン反応を止めたのち、MCDB104培地で2回細胞を洗った。MCDB104培地には、最終濃度として2mMのグルタミン、10μMの2−メルカプトエタノール、0.01mg/mlのインスリン、5mg/mlのヒト血清アルブミンを添加した。細胞数を計測した後、1×10個/50μlの細胞液を調製した。
増殖因子であるPDGF−AB、bFGF、EGFならびにFCSを表1に示す最終濃度の2倍/50μlを96穴プレートへ予め入れておき、さらに先の細胞液50μl加え、37℃で72時間培養後、細胞増殖の状態をXTTアッセイ(Cell Proliferation KitII、ロシュダイアグノスティック社)で調べた。コントロールとしては、細胞増殖因子を全く添加しない培地と、10%FCSを含む培地とを用意した。結果を図1に示す。

Figure 2003082305
PL37細胞は、PDGF−AB、bFGF、EGFを添加した無血清MCDB104培地で増殖が可能であり、その増殖は10%FCSを添加したMCDB培地の場合以上に促進された。また、2−メルカプトエタノールとインスリンを加えることにより、その増殖促進作用はさらに顕著となった。また、PL37細胞の無血清培地での増殖に関しては、増殖因子の濃度に至適濃度が認められ、至適濃度の前後で細胞増殖は若干鈍化する結果を得た。また、アルブミンを添加しない状態では、増殖因子の作用は10%FCSに比べて低いことが判明した。
実施例3 ヒト胎盤由来細胞からの血管新生因子(VEGF)の産生
本発明の間葉系細胞であるPL5、PL24の2〜5×10個を、それぞれ10mlのDMEM+10%FCS中で、37℃、5%CO2下で10継代以下に培養した。PL26については、同条件で5継代以下に培養した。
経時的に培養上清を採取し、培地中のVEGFをQuantikine VEGF測定キット(R&D社)で測定した。また、Connらの方法(Pro.Natl.Acad.Sci.USA、87巻、1323頁、1990年)に従って、VEGFの生理活性であるHUVEC細胞に対する増殖活性を、サイミジン取り込み実験によって測定した。また、5週齢の雄のヌードマウス(balb/c、nu/nu)の大腿筋肉中にPL26細胞を約5×10個注入した。14日後に屠殺して大腿筋肉をパラフォルムアルデヒドで固定、切片を調製後、HE染色して観察した。
PL5細胞を2日間培養した上清中にVEGFが検出され、特にFCSの存在下で産生量が高まった。VEGFと同じく血管新生作用を持つ肝実質細胞増殖因子(HGF、hepatocyte growth Factor)は検出されなかった。また、培養上清を用いたサイミジン取込み実験の結果(図2)から、これらの間葉系細胞が産生するVEGFはHUVEC細胞の増殖を刺激する活性を有していた。
また、10cmディッシュ中のDMEM無血清培地で24時間培養してコンフルエントな状態としたときの細胞数を計測し、上清中のVEGFを測定した。本発明におけるヒト胎盤由来間葉系細胞であるPL26、PL5細胞は、HeLa細胞を超える高い濃度のVEGFを産生していた。また、PL26細胞を注入したヌードマウス大腿の筋肉内では、顕微鏡観察下に血管新生が認められ(図3)、間葉系細胞が産生するVEGFが、生体内においても活性であることが明らかとなった。
実施例4 蛍光免疫染色
抗VEGF抗体(Santa Cruz Biotechnology Inc.Santa Cruz、CA)を一次抗体として使用し、蛍光免疫染色を行った。陽性対照としてHeLa細胞を用い、陰性対照としてヒト正常線維芽細胞を用いた。12穴プレート内に12mmI型コラーゲンコートカバーグラスを入れ、細胞を接種した。24−48時間COインキュベーターで培養した後、カバーグラスをPBSで2回洗浄し、4%パラホルムアルデヒドで室温1分間固定を行った。その後、0.3%過酸化水素で室温5分間前処理を行い内因性ペルオキシダーゼ活性の不活化を行った。以後の工程では洗浄に0.1%Tween20・PBS(PBST)を用い、抗体の希釈には2%BSAを加えたPBSTを使用した。一次抗体を室温2時間湿潤箱内で反応させた後、3回PBSTで洗浄し、ビオチン化抗ラビットIgG抗体を室温30分反応させ、3回PBST洗浄後FITC標識ストレプトアビジンを遮光し室温で15分反応させた。遮光のまま軽くPBSTで洗浄し、VECTASHIELD Mounting Medium with DAPI(Vector Laboratories、Inc.、Burlingame、USA)を用いて封入し、蛍光顕微鏡下で観察を行った。この結果を図4に示す。
図中、a、bはHeLa細胞、c、dはヒト繊維芽細胞、e、fはヒト胎盤細胞であり、左側は全てDAPIによる角の観察を、右側は同視野のFITC発色をしている細胞である。本発明の間葉系細胞にも、陽性細胞であるHeLa細胞と同様にVEGF抗体による染色が確認された。この状態において、陰性細胞である繊維芽細胞ではVEGFは確認されなかった。
実施例4 マウス後肢虚血モデルと細胞移植
NOD/scidマウス(日本クレア)を用いて片側後肢虚血モデルを作製した。
キシラジン15mg/kg筋肉内投与とケタミン90mg/kg腹腔内投与を行って全身麻酔を行ったマウスの左大腿動脈、静脈を4−0絹糸で結紮した。血管の結紮は実体顕微鏡下で行い、神経は結紮せずに温存した。術後7日目に全身に放射線3Gyを照射したのち胎盤細胞を移植した。移植細胞はPL26、PL37を用いた。細胞はI型コラーゲン溶液であるCellgen(Koken、Japan)0.5%溶液に1×10個/mlの濃度に浮遊させ、26G注射針で300μlずつ内転筋内および皮下に接種した。コントロールは虚血状態を作製したのち、細胞ではなく0.5%コラーゲン溶液を接種した。
1)レーザードップラー血流計による後肢血流測定
レーザードップラー血流計(Moor LDI v3.08;Moor Instruments、UK)による腹臥位マウスの後肢の血流を測定することで、移植細胞による血流改善作用を確認した。その代表的な結果を図5に示す。
図の上段は細胞移植をしていないコントロールマウスのレーザードップラー血流計による後肢血流測定結果であるが、虚血にしていない左肢に比べて虚血状態にある右肢は、6日間の観察期間中に虚血の改善を認めない。しかし下段に示すヒト胎盤細胞移植マウスでは、移植後2日目より血流の回復が認められ、6日目にはその改善は顕著である。このようにヒト胎盤細胞はインビボにおいても血管新生作用を示した。
2)リアルタイムRT−PCR
移植された細胞がVEGF産生をどの程度の期間行っているかを、移植組織のVEGFmRNA量をリアルタイムRT−PCR法を用いて確認した。
プライマーはヒトVEGFのcDNA配列(GenBank:AF022375)をもとに、3’非翻訳領域上に作成した。その配列は、hVL1:GGTCCCTCTTGGAATTGGAT、及びhVR1:TGTATGTGGGTGGGTGTGTCであり、PCR断片長は115bpである。培養PL細胞より、Tri−zol(Invitrogen社)を用いて説明書に従って、全RNAを抽出した。RTは1μlオリゴ(dT)12−18(0.5μg/μl)、2μlの10mMdNTP、5μg全RNAにDEPC水を加え 全量12μlとし、65℃で5分間インキュベートし、氷上においた。さらに、4μlの5×cDNAsynthesis buffer(Invitrogen社)、1μlの0.1M DTT(Invitrogen社)、1μlのRNAse inhibitor(40U/μl)(Invitrogen社)、1μlのDEPC水、1μlのThermoScript RNase H−Reverse Transcriptase(Invitrogen社)を加え、全量20μlとし、50℃で1時間反応させ、その後、85℃で5分間インキュベートした。PCRに用いた反応液組成と反応時間は以下のとおりである。
反応液組成;10μlの2×SYBR Green PCR master mix(Qiagen社)、1μlの10μM hVL1、1μlの10μM hVR1、1μlのtemplate(上記RTの反応液)、7μlの水。
反応条件;95℃、15分、94℃30秒、56℃30秒、72℃30秒:34サイクル、72℃7分
一部を2%アガロースゲルに電気泳動し、エチジウムブロマイドで染色した。
hVEGF mRNAの経時的変化は以下のように検討した。PL37細胞をSCIDマウス(日本クレア)筋肉内に注射した後、3時間後、1日目、3日目、7日目に屠殺後接種部位である内転筋を摘出し、−80℃で保存した。組織よりの全RNAの抽出はホモジナイズ後Tri−zolを用いて行い、RTは上記と同様に施行した。PCRは、iCycler(BIO−RAD)を用いて、リアルタイム定量PCRを施行した。反応液組成と、反応時間は以下のとおりである。
反応液組成;25μl2×SYBR Green PCR master mix(Qiagen社)、2.5μl 10μM hVL1、2.5μl 10μM hVR1、1μl template(上記RTの反応液)、19μl水。
反応条件;95℃15分、94℃30秒、56℃30秒、72℃30秒を45サイクル、95℃3分
55℃より温度を0.5℃ずつ上昇させながら、各10秒、80サイクル。
スタンダードはPL37細胞のRT反応液を用いて、希釈系列を作成した。この結果を図6に示す。
ヒトVEGFmRNA量は、0日(移植3時間後)を1として、1日目で0.20、3日目で0.22、7日目0.06、移植を行わないコントロールは0であった。
この結果から、移植された細胞は、少なくとも5日間はヒトVEGFの産生能を有していると考えられる。
【図面の簡単な説明】
第1図は、本発明の培養方法における間葉系細胞の増殖を示す。
第2図は、培地中に産生されるVEGFの活性測定結果を示す。
第3図は、ヌードマウス大腿の筋肉内での血管新生の様子を表す顕微鏡写真である。図中の矢印部分に血管新生が認められる。
第4図は、間葉系細胞と比較細胞との抗VEGF抗体を用いた蛍光免疫染色の結果を示す。
第5図は、レーザードップラー血流計を用いて、マウス後肢虚血モデルに間葉系細胞を移植した後に見られる血流改善効果をを示す。
第6図は、移植された細胞におけるVEGF産生を、移植組織のVEGFmRNA量をリアルタイムRT−PCR法を用いて確認した結果を示す。Technical field
The present invention relates to the use of mesenchymal cells derived from human placenta, particularly a pharmaceutical composition for the treatment of ischemic disease containing the cells, a method for producing vascular cell growth factor using the cells, and a method for culturing the cells. .
Technical background
Ischemic diseases such as myocardial infarction and cerebral infarction occupy a high cause of human death, and methods for prevention and treatment from both surgical and pharmaceutical aspects are actively studied. A typical example of the surgical method is vascular bypass surgery, and percutaneous coronary angioplasty (PTCA) or coronary artery bypass surgery (CABG) is performed. In addition to thrombolytic agents such as t-PA and thrombin, pharmacological methods include VEGF (Vascular Endothelial Growth Factor), which is a factor that promotes angiogenesis in the living body, , A method of administering FGF (Fibroblast Grote Factor: basic fibroblast growth factor) or the like has been attempted.
In recent years, angiogenesis by cell transplantation, which uses specific cells instead of the above growth factors, as a method of relieving ischemic conditions by renewing blood vessels at the ischemic site and causing blood flow reproduction. Treatment is drawing attention. Living organisms exposed to prolonged ischemia have the ability to create new blood vessels with their own power to secure blood flow, but at that time by introducing cells involved in angiogenesis exogenously It is intended to promote angiogenesis more effectively and to use it for the treatment of ischemic diseases.
Examples of cells expected to be applied to this method include vascular endothelial cells that are known to greatly contribute to angiogenesis, or bone marrow stem cells and mononuclear cells that have a function of differentiating into them. Vascular endothelial cells are cells that form a monolayer that covers the lumen of blood vessels and are closely related to angiogenesis during wound healing and tumor growth, and their presence is regarded as important. Until now, the proliferation of vascular endothelial cells has been implicated in diseases with angiogenesis such as tumor growth, progression of retinopathy or rheumatoid arthritis, or the expansion of psoriasis. Research has been conducted with a focus on suppressing the above.
On the other hand, the use for the treatment and the disease which can expect recovery of a disorder | damage | failure by promoting angiogenesis is also being examined. In particular, cell endothelial cells are attracting attention as advantageous cells in that they have a function of secreting a protein having a function of promoting angiogenesis in addition to their own proliferative properties. Until now, in animal model experiments (myocardial infarction model, angina pectoris model, obstructive arteriosclerosis model), angiogenesis was induced by adding vascular endothelial cells to the model animal, and Improvements in functionality have also been reported.
Furthermore, an attempt to induce angiogenesis by transplanting vascular endothelial progenitor cells present in adult peripheral blood into the body has also been studied.
Vascular endothelial progenitor cells are isolated as CD34 positive cells, but have been confirmed to be differentiated into endothelial cells in vivo. In particular, it has been reported that CD34-positive cells are present in umbilical cord blood at a density about 10 times that in adult peripheral blood, so that undifferentiated vascular endothelial progenitor cells obtained from umbilical cord blood Attempts have also been made to induce neovascularization by transplanting into the body. When 300,000 vascular endothelial progenitor cells / mouse obtained on the 7th day of umbilical cord blood mononuclear cell culture were transplanted into nude rats with lower limb ischemia after isolation, a significant increase in blood flow was observed in the vascular endothelial progenitor cell transplant group It has been reported that improvements in capillary density were observed.
The present invention provides new cells effective for angiogenesis treatment, which are different from previously reported vascular endothelial cells or vascular endothelial precursor cells.
Disclosure of the invention
The placenta is a place for nutrient exchange between the fetus and the mother, where there are abundant blood vessels. The present inventor pays attention to a group of stromal cells (cells other than vascular endothelial cells) present in the placenta that are usually discarded together with the umbilical cord at the time of human birth, and transplants mesenchymal cells contained therein into the living body It has been found that administration can promote an angiogenic action in a living body, and the present invention has been completed. That is, the present invention is a medicament for the treatment of ischemic disease comprising mesenchymal cells derived from human placenta. The present invention also relates to a method for culturing mesenchymal cells, which is advantageous in preparing the medicament, and a method for producing VEGF using mesenchymal cells.
BEST MODE FOR CARRYING OUT THE INVENTION
Unlike vascular cells such as vascular endothelial cells and vascular endothelial progenitor cells, which are histologically constituting connective tissue, mesenchymal cells are generally pluripotent cells having a plurality of differentiation potentials. In particular, mesenchymal stem cells are known to be bone, cartilage, fat, heart, nerve, liver cells, and differentiated fibroblasts, hair papilla cells, adipocytes, dental pulp cells, etc. It belongs to the leaf cell.
It has also been reported that some mesenchymal cells are involved in various diseases. For example, it has been reported that mesenchymal cells present in the synovium are involved in joint destruction such as rheumatoid arthritis and collagen disease. In this case, suppression of the activity of synovial mesenchymal cells has been attempted in the treatment of joint disorders and the like.
However, mesenchymal cells derived from human placenta have an action of promoting angiogenesis in vivo, and no attempt has been made to actively utilize this for the treatment of ischemic diseases.
The human placenta-derived mesenchymal cells used in the present invention can be easily isolated by treating the human placenta with a suitable size section and then treating it with a normal cell separation procedure using an enzyme such as trypsin. It does not require any special operation. The human placenta itself is generally treated as a waste product during childbirth and is a separation material that can be obtained on a daily basis in the medical field.
In addition, isolated mesenchymal cells can be grown in an appropriate medium. The culture is generally performed at 33-39 ° C., preferably 37 ° C., and fetal bovine serum, preferably inactivated fetal bovine serum (fetal bovine serum in which complement has been inactivated by heat treatment), 3-10% A basal medium containing (preferably 10%) such as an α-MEM medium may be used. Ventilation is 5% CO 2 Incubation can be carried out using air containing water and keeping the humidity at 80 to 120% (preferably 100%).
Mesenchymal cells can be preserved by a conventionally known method. For example, 10% in a nutrient medium containing 10% glycerin or 10% dimethyl sulfoxide and 10% serum. 5 -10 8 Pieces / ml, preferably 10 6 -10 7 Pieces / ml, more preferably 5 × 10 6 The cells can be stored frozen at −80 ° C. or in liquid nitrogen while suspended at a cell concentration of 1 cell / ml. The stored cell line can be rapidly lysed (eg, immersed in a 37 ° C. water bath), 10 volumes of the same medium is added and stirred, and the cells recovered by centrifugation are added to the desired medium. Can be grown again.
In general, when transplanting cells themselves into a living body, it is necessary to pay attention to the HLA type match between the transplanted cells and the living body to be transplanted so as not to induce an undesirable immune response. Therefore, also in the present invention, it is preferable to select mesenchymal cells for transplantation that are compatible with the HLA type of the patient undergoing transplantation and to administer them as the medicament of the present invention. In the case of the medicament containing mesenchymal cells derived from human placenta according to the present invention, the HLA haplotype of umbilical cord blood accumulated for so-called umbilical cord blood transplantation using leukemia treatment using umbilical cord blood is directly used. Since the haplotype of the leaf cell is expressed, there is an advantage that the HLA type information of the cord blood bank can be used as it is.
(Method for culturing mesenchymal cells)
Mesenchymal cells isolated from the placenta can be used immediately after washing with a suitable buffer solution or after being suspended in a buffer solution. However, it is possible to proliferate the separated cells in a suitable medium. preferable. Human placenta-derived mesenchymal cells can also be grown on commonly used nutrient media. However, considering that the cultured cells are finally administered to humans, it is preferable to cultivate mesenchymal cells under conditions that do not include foreign substances that cause an immune response to humans. The present invention provides a culture method for solving this problem.
The culture method of the present invention is a method for culturing mesenchymal cells derived from human placenta, characterized by culturing in a medium not containing protein components derived from non-human animals, to which human serum albumin and cell growth factor are added. It is.
In general, the growth of isolated cells can be achieved only with a basal medium in which vitamins are added to amino acids such as MEM medium, RPMI 1640, RITC80-7, MCDB series, HamF-12 / DME 1: 1 mixed medium, etc. In order not to progress, serum derived from non-human animals such as bovine fetuses and calves is added to the basal medium. However, in this culturing method, cell growth itself is performed well, but when the cultured cells are administered into the human body, an undesirable immune response is induced to the living body to which the mixed non-human protein is administered. There are many. In addition, the effects of various physiologically active substances contained in serum are complex and diverse, and there are inconveniences in the supply of cultured cells with stable properties or pharmaceuticals containing them, such as severe lot differences in serum. Many.
The present invention provides a mesenchymal cell in an environment that does not contain a substance derived from a non-human animal by adding human serum albumin and a cell growth factor to the basal medium as described above that does not contain an element derived from a non-human animal. Is cultured. Examples of the growth factor used in the present invention include platelet-derived growth factor (PDGF), fibroblast growth factor (bFGF), basic fibroblast growth factor, epidermal growth factor (EGF), and epidermal growth factor. It is 1 or more types chosen from the group which consists of. These growth factors may be, for example, commercially available as research reagents from R & D or Sigma, or may be separated and purified from living organisms or produced by genetic recombination techniques. The addition amount is 0.01 to 1000 ng / ml, preferably 0.1 to 100 ng / ml, and most preferably 1 to 10 ng / ml.
Further, human serum can be prepared by centrifugation from donated blood or the like. The amount of human serum added is about 1-20%, preferably 2-15%, most preferably 5-10% of the culture medium. When using formulated human albumin, it is 0.01 to 10%, preferably 0.05 to 1%, and most preferably 0.1 to 0.5%.
Furthermore, cell growth can be further enhanced by adding an antioxidant, particularly an antioxidant selected from the group consisting of 2-mercaptoethanol, ascorbic acid and vitamin E, to the medium. In the case of 2-mercaptoethanol, the addition amount of the antioxidant is 0.01 to 100 μM, preferably 0.1 to 50 μM, and most preferably 1 to 10 μM. For ascorbic acid or vitamin E, an amount equivalent to the 2-mercaptoethanol can be used.
The medium and the culture method according to the present invention can be used in both primary culture and subculture of fibroblasts, and good results are obtained.
(Medicine containing mesenchymal cells)
The medicinal cells containing mesenchymal cells of the present invention are prepared by using mesenchymal cells isolated from human placenta or mesenchymal cells cultured by the method described above, and adding an appropriate pharmaceutical carrier or excipient thereto. can do. By injecting a medicinal cell-containing drug of the present invention into the thigh of a nude mouse, a new blood vessel is observed at the injection site. In this region, angiogenesis is promoted to acquire a blood flow path, and blood supply to the ischemic region can be resumed. Therefore, the angiogenesis promoter of the present invention is useful as a therapeutic agent for ischemic diseases such as myocardial infarction, angina pectoris, cerebral infarction, vascular dementia, obstructive arteriosclerosis, foot gangrene, and wound wound. The administration is preferably intravascular administration, intramuscular administration or local administration, and further intramyocardial administration, intrapericardial administration, subdural administration, subarachnoid administration, intracerebral administration, limb skeletal muscle Local administration to the ischemic region such as internal administration is particularly preferred.
A preferred pharmaceutical form is a drip or injection. These infusions or injections are preferably prepared by mixing mesenchymal cells in physiological saline, buffer solution, phosphate buffered saline (PBS) or the like. Moreover, a stabilizer, a preservative, or an excipient can be added depending on the purpose.
In addition, a cell growth factor that promotes angiogenesis may be added to the medicament of the present invention. These cell growth factors include acidic and basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), transforming growth factor (TFGα and β), platelet derived endothelium. Growth factor (PDEGF), platelet derived growth factor (PDGF), tumor necrosis factor (TNFα), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), erythropoietin, colony stimulating factor (CSF), macrophage-CSF, Granulocyte / macrophage CSF and nitric oxide synthase, angioboytin, angiostatin and the like.
The dose of the pharmaceutical agent of the present invention varies depending on the disease state, age, weight, etc. of the patient receiving the transplantation, for example, 10 cells per administration. 5 -10 8 It can be applied in a range of pieces. In addition, since the mesenchymal cells of the present invention are cells derived from a living body, they can be used as pharmaceuticals without worrying about toxicity of the cells.
(Method for producing VEGF)
The present invention relates to a method for producing VEGF using mesenchymal cells derived from human placenta.
As described above, it has been reported that vascular endothelial cells themselves express and secrete vascular endothelial growth factor, but mesenchymal cells that are different from vascular cells express VEGF. It was quite surprising to secrete it out of the cell.
The production of VEGF using the mesenchymal cells of the present invention suffices if the cells are cultured in a medium in which the isolated mesenchymal cells can grow, and VEGF can be secreted into the medium by such culture. VEGF produced and secreted by mesenchymal cells has biological activity, and in vivo experiments with nude mice also caused angiogenesis in the nude mice.
As a medium for producing VEGF, MEM medium, RPMI 1640, RITC80-7, MCDB series, HamF-12 / DME 1: 1 mixed medium and the like, a basic medium in which vitamins are added to amino acids, A medium supplemented with 5-10% mammalian serum (eg, fetal calf serum, calf serum, human serum, horse serum) is preferred, but cell growth factors are added without the non-human-derived components described above. It may be a fresh medium.
For the culture, the cells may be cultured from the beginning in a serum-free medium, cultured to a subconfluent state in a medium containing serum derived from a non-human animal, and then the medium is removed and the cell layer is washed with phosphate buffered saline. Then, the serum-free medium may be exchanged and cultured. Other culture conditions are not special, and may be normal pressure, 37 ± 0.5 ° C., 5% carbon dioxide, 10-20% oxygen, and 85-75% nitrogen.
VEGF can be recovered from the culture supernatant obtained by culturing mesenchymal cells in this manner according to a general method. In addition, an appropriate method can be appropriately selected from methods usually used for protein purification. That is, salting-out method, ultrafiltration method, isoelectric point precipitation method, gel filtration method, electrophoresis method, various affinity chromatography such as ion exchange chromatography, hydrophobic chromatography and antibody chromatography, chromatofocusing method, adsorption An appropriate method may be appropriately selected from commonly used methods such as chromatography and reverse phase chromatography, and purification may be performed in an appropriate order using an HPLC system if necessary.
(Recombinant mesenchymal cells)
The mesenchymal cells used in the present invention can be transformed using an appropriate vector, particularly a viral vector. In that case, protein factors, acidic and basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), transforming growth factor (TFGα) effective for improving ischemic disease And β), platelet-derived endothelial growth factor (PDEGF), platelet-derived growth factor (PDGF), tumor necrosis factor (TNFα), hepatocyte growth factor (HGF), insulin-like growth factor (IGF), erythropoietin, colony stimulating factor ( CSF), macrophage-CSF, granulocyte / macrophage CSF and nitric oxide synthase, angiovoietin, angiostatin and the like can be incorporated into a vector, and the gene can be expressed in mesenchymal cells. There are in vivo gene therapy and ex vivo gene therapy as a method for treating a disease by administering cells into which this gene has been introduced to a patient. The latter is more suitable for in vivo gene therapy because of the heavy burden on the patient for surgical procedures and the risk of infection due to extracorporeal manipulation.
The main viral vectors that have been clinically applied include retrovirus vectors and adenovirus vectors, and recently attracted attention include adeno-associated virus vectors.
In retroviral vectors, since the transgene is integrated into the chromosome, stable gene expression can be expected for a long period of time. In addition, it is advantageous in that a large number and types of viral vectors can be easily produced using packaging cells.
The adenovirus vector has a linear double-stranded DNA having a total length of 36 kb as a genome, is physicochemically stable, and can be easily concentrated by ultracentrifugation, so that a gene can be introduced with very high efficiency. However, since the transgene is not integrated into the chromosome, it is difficult to retain the recombinant gene for a long period of time, and long-term gene expression cannot be expected. To increase the therapeutic effect, repeat the adenovirus vector. Inactivation by neutralizing antibodies is a major problem.
Adeno-associated virus vector is a defective virus that has a 4.7 kb single-stranded DNA and does not have replication ability itself, and requires superinfection with adenovirus or herpes virus as a helper for propagation. In other words, the adeno-associated virus itself has no pathogenicity or cytotoxicity, so it is the safest virus vector, and the recombinant gene is integrated into the host chromosome, allowing long-term gene expression. .
Methods for introducing desired DNA into these vectors are known (see, for example, J. Sambrook et al., Molecular Cloning, a Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory, New York, 1989). That is, DNA and a vector are each digested with an appropriate restriction enzyme, and the resulting fragments may be ligated using DNA ligase. In addition, a method for transforming mesenchymal cells using these viral vectors can be performed by methods well known by those skilled in the art, for example, the method of Saito et al.
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited only to these Examples.
Example
Example 1 Isolation of human placenta-derived mesenchymal cells
After collecting the placenta produced at full term on ice, 200 g of a placenta section obtained by collecting tissue with scissors from the mother side of the placenta was transferred to a beaker, and 1 L of DMEM medium added with 100 ml of 0.5% trypsin and 5.3 mM EDTA was added. Isolate cells at room temperature. Mononuclear cells were separated using Ficoll-Hypaque (Pharmacia Biotech AB). This mononuclear sphere is 1 × 10 6 Suspended in 10% FBS-DMEM solution at 37 ° C., 5% CO 2 The desired cells can be prepared by culturing under 5-7 days. The cultured cells thus obtained can be used for the following operations. Hereinafter, the four lines of cells actually separated by the present inventors will be denoted as PL5, PL24, PL26 and PL37, and the following examples will be described in detail.
Example 2 Method for culturing mesenchymal cells using a serum-free medium
The mesenchymal cells PL37 cultured confluently in a collagen-coated 10 cm dish according to Example 1 were detached using 0.25% trypsin. After stopping the trypsin reaction by adding 10 ml of PBS containing 5% FCS, the cells were washed twice with MCDB104 medium. The final concentration of 2 mM glutamine, 10 μM 2-mercaptoethanol, 0.01 mg / ml insulin, 5 mg / ml human serum albumin was added to the MCDB104 medium. After measuring the number of cells, 1 × 10 4 Cells / 50 μl of cell solution was prepared.
Growth factors PDGF-AB, bFGF, EGF and FCS were added to a 96-well plate in advance at 2 times the final concentration shown in Table 1, and 50 μl of the previous cell solution was added, and cultured at 37 ° C. for 72 hours. The state of cell proliferation was examined by XTT assay (Cell Proliferation Kit II, Roche Diagnostics). As controls, a medium containing no cell growth factor and a medium containing 10% FCS were prepared. The results are shown in FIG.
Figure 2003082305
PL37 cells were able to grow in serum-free MCDB104 medium supplemented with PDGF-AB, bFGF, and EGF, and the proliferation was promoted more than in MCDB medium supplemented with 10% FCS. Further, by adding 2-mercaptoethanol and insulin, the growth promoting action became more remarkable. In addition, regarding the growth of PL37 cells in a serum-free medium, an optimal concentration was observed in the growth factor concentration, and the cell growth was slightly decreased before and after the optimal concentration. Further, it was found that in the state where albumin was not added, the action of the growth factor was lower than that of 10% FCS.
Example 3 Production of angiogenic factor (VEGF) from human placenta-derived cells
2 to 5 × 10 of PL5 and PL24 which are mesenchymal cells of the present invention 6 The cells were cultured in 10 ml of DMEM + 10% FCS for 10 passages or less at 37 ° C. and 5% CO 2. About PL26, it culture | cultivated to 5 passages or less on the same conditions.
The culture supernatant was collected over time, and VEGF in the medium was measured with a Quantikine VEGF measurement kit (R & D). Further, according to the method of Conn et al. (Pro. Natl. Acad. Sci. USA, Vol. 87, p. 1323, 1990), the proliferation activity against HUVEC cells, which is the physiological activity of VEGF, was measured by thymidine incorporation experiment. In addition, about 5 × 10 5 PL26 cells were placed in the thigh muscle of a 5-week-old male nude mouse (balb / c, nu / nu). 6 A piece was injected. Fourteen days later, the mice were sacrificed and the thigh muscles were fixed with paraformaldehyde. After sections were prepared, they were stained with HE and observed.
VEGF was detected in the supernatant obtained by culturing PL5 cells for 2 days, and the production amount was increased particularly in the presence of FCS. As with VEGF, hepatocyte growth factor (HGF) having angiogenic activity was not detected. Further, from the results of the thymidine uptake experiment using the culture supernatant (FIG. 2), VEGF produced by these mesenchymal cells had an activity of stimulating the proliferation of HUVEC cells.
In addition, the number of cells was measured when cultured in a DMEM serum-free medium in a 10 cm dish for 24 hours to obtain a confluent state, and VEGF in the supernatant was measured. PL26 and PL5 cells, which are human placenta-derived mesenchymal cells in the present invention, produced VEGF at a higher concentration than HeLa cells. In addition, angiogenesis was observed under the microscope observation in the muscles of nude mice injected with PL26 cells (FIG. 3), and it is clear that VEGF produced by mesenchymal cells is also active in vivo. became.
Example 4 Immunofluorescence staining
Fluorescent immunostaining was performed using an anti-VEGF antibody (Santa Cruz Biotechnology Inc. Santa Cruz, CA) as the primary antibody. HeLa cells were used as positive controls and human normal fibroblasts were used as negative controls. A 12 mm type I collagen-coated cover glass was placed in a 12-well plate and seeded with cells. 24-48 hours CO 2 After culturing in an incubator, the cover glass was washed twice with PBS and fixed with 4% paraformaldehyde for 1 minute at room temperature. Thereafter, pretreatment with 0.3% hydrogen peroxide for 5 minutes at room temperature was performed to inactivate endogenous peroxidase activity. In subsequent steps, 0.1% Tween20 · PBS (PBST) was used for washing, and PBST supplemented with 2% BSA was used for antibody dilution. The primary antibody was reacted in a humid box for 2 hours at room temperature, then washed 3 times with PBST, biotinylated anti-rabbit IgG antibody was reacted at room temperature for 30 minutes, washed 3 times with PBST, and FITC-labeled streptavidin was shielded from light at room temperature for 15 minutes. It was made to react for minutes. The sample was lightly washed with PBST while being shielded from light, sealed using VECTASHIELD Mounting Medium with DAPI (Vector Laboratories, Inc., Burlingame, USA), and observed under a fluorescence microscope. The result is shown in FIG.
In the figure, a and b are HeLa cells, c and d are human fibroblasts, e and f are human placental cells, the left side shows all corners by DAPI, and the right side shows FITC color development of the same field of view. It is a cell. The mesenchymal cells of the present invention were also stained with VEGF antibody in the same manner as the positive cells HeLa cells. In this state, VEGF was not confirmed in fibroblasts, which are negative cells.
Example 4 Mouse hindlimb ischemia model and cell transplantation
A unilateral hindlimb ischemia model was prepared using NOD / scid mice (CLEA Japan).
The left femoral artery and vein of a mouse subjected to general anesthesia by intramuscular administration of xylazine 15 mg / kg and ketamine 90 mg / kg were ligated with 4-0 silk thread. Blood vessel ligation was performed under a stereomicroscope, and nerves were preserved without ligation. Seven days after the surgery, the whole body was irradiated with radiation 3 Gy, and then placental cells were transplanted. PL26 and PL37 were used as transplanted cells. Cells are 1 × 10 in Cellgen (Kogen, Japan) 0.5% solution, which is a type I collagen solution. 6 The suspension was suspended at a concentration of 1 piece / ml, and 300 μl was inoculated into the adductor muscle and subcutaneously with a 26 G needle. The control was inoculated with 0.5% collagen solution instead of cells after creating an ischemic state.
1) Measurement of hindlimb blood flow by laser Doppler blood flow meter
The blood flow improvement effect by the transplanted cells was confirmed by measuring the blood flow of the hind limbs of the prone mouse with a laser Doppler blood flow meter (Moor LDI v3.08; Moor Instruments, UK). A typical result is shown in FIG.
The upper part of the figure shows the results of hind limb blood flow measurement using a laser Doppler blood flow meter of a control mouse that has not undergone cell transplantation. There is no improvement in ischemia during the observation period. However, in the human placental cell transplanted mice shown in the lower part, the blood flow is recovered from the second day after transplantation, and the improvement is remarkable on the sixth day. Thus, human placental cells showed angiogenic action even in vivo.
2) Real-time RT-PCR
The amount of VEGF mRNA in the transplanted tissue was confirmed using a real-time RT-PCR method to determine how long the transplanted cells had been producing VEGF.
Primers were prepared on the 3 ′ untranslated region based on the human VEGF cDNA sequence (GenBank: AF022375). The sequences are hVL1: GGTCCCCTCTTGGAATTGGAT and hVR1: TGTATGTGGGTGGGTGTGTC, and the PCR fragment length is 115 bp. Total RNA was extracted from cultured PL cells using Tri-zol (Invitrogen) according to the instructions. RT is 1 μl oligo (dT) 12-18 (0.5 μg / μl) 2 μl of 10 mM dNTP, 5 μg total RNA was added with DEPC water to make a total volume of 12 μl, incubated at 65 ° C. for 5 minutes, and placed on ice. In addition, 4 μl of 5 × cDNA synthesis buffer (Invitrogen), 1 μl of 0.1M DTT (Invitrogen), 1 μl of RNAse inhibitor (40 U / μl) (Invitrogen), 1 μl of DEPC water, 1 μl of ThermoRcSraseRescript Transscriptase (Invitrogen) was added to make a total volume of 20 μl, reacted at 50 ° C. for 1 hour, and then incubated at 85 ° C. for 5 minutes. The composition of the reaction solution used for PCR and the reaction time are as follows.
Reaction solution composition: 10 μl of 2 × SYBR Green PCR master mix (Qiagen), 1 μl of 10 μM hVL1, 1 μl of 10 μM hVR1, 1 μl template (the above RT reaction solution), 7 μl of water.
Reaction conditions: 95 ° C, 15 minutes, 94 ° C 30 seconds, 56 ° C 30 seconds, 72 ° C 30 seconds: 34 cycles, 72 ° C 7 minutes
A portion was electrophoresed on a 2% agarose gel and stained with ethidium bromide.
Changes in hVEGF mRNA over time were examined as follows. PL37 cells were injected into SCID mice (CLEA Japan) intramuscularly, 3 hours later, on day 1, day 3 and day 7, the adductor muscle that was the inoculation site after slaughter was removed and stored at -80 ° C. did. Extraction of total RNA from the tissue was performed using Tri-zol after homogenization, and RT was performed as described above. For PCR, real-time quantitative PCR was performed using iCycler (BIO-RAD). The reaction solution composition and reaction time are as follows.
Reaction solution composition: 25 μl 2 × SYBR Green PCR master mix (Qiagen), 2.5 μl 10 μM hVL1, 2.5 μl 10 μM hVR1, 1 μl template (the above RT reaction solution), 19 μl water.
Reaction conditions: 95 ° C 15 minutes, 94 ° C 30 seconds, 56 ° C 30 seconds, 72 ° C 30 seconds 45 cycles, 95 ° C 3 minutes
80 cycles for 10 seconds each while increasing the temperature by 0.5 ° C from 55 ° C.
As a standard, a dilution series was prepared using an RT reaction solution of PL37 cells. The result is shown in FIG.
The amount of human VEGF mRNA was 1 on day 0 (3 hours after transplantation), 0.20 on day 1, 0.22 on day 3, 0.06 on day 7, and 0 for no transplantation control. .
From this result, it is considered that the transplanted cells have the ability to produce human VEGF for at least 5 days.
[Brief description of the drawings]
FIG. 1 shows the proliferation of mesenchymal cells in the culture method of the present invention.
FIG. 2 shows the results of measuring the activity of VEGF produced in the medium.
FIG. 3 is a photomicrograph showing angiogenesis in the muscles of nude mice. Angiogenesis is observed in the arrow part in the figure.
FIG. 4 shows the results of fluorescent immunostaining of mesenchymal cells and comparative cells using anti-VEGF antibodies.
FIG. 5 shows the blood flow improvement effect observed after transplanting mesenchymal cells into a mouse hindlimb ischemia model using a laser Doppler blood flow meter.
FIG. 6 shows the results of confirming the production of VEGF in the transplanted cells and the amount of VEGF mRNA in the transplanted tissue using a real-time RT-PCR method.

Claims (13)

ヒト胎盤由来の間葉系細胞を含む、虚血性疾患治療用医薬。A medicament for treating ischemic diseases, comprising mesenchymal cells derived from human placenta. 虚血性疾患が心筋梗塞、狭心症、脳梗塞、血管性痴呆、閉塞性動脈硬化症、足壊疽または褥創である、請求項1に記載の医薬。The medicament according to claim 1, wherein the ischemic disease is myocardial infarction, angina pectoris, cerebral infarction, vascular dementia, obstructive arteriosclerosis, foot gangrene or wound. 注射もしくは点滴可能な医薬的に許容し得るキャリヤーもしくは希釈剤を共に含んでいる請求項1または2に記載の医薬。3. A medicament according to claim 1 or 2 comprising a pharmaceutically acceptable carrier or diluent which can be injected or instilled. 1×10〜1×10個の間葉系細胞を含む単位投与形態の請求項1〜3に記載の医薬。The medicine according to claims 1 to 3, in a unit dosage form comprising 1 x 10 4 to 1 x 10 8 mesenchymal cells. ヒト血清および細胞増殖因子を添加した、非ヒト動物由来の血清成分を含まない培地で培養することを特徴とする、ヒト胎盤由来の間葉系細胞を培養する方法。A method for culturing mesenchymal cells derived from human placenta, comprising culturing in a medium containing no serum component derived from non-human animals to which human serum and cell growth factor are added. ヒト血清がヒトアルブミンである、請求項5に記載の培養方法。The culture method according to claim 5, wherein the human serum is human albumin. 細胞増殖因子が、血小板由来増殖因子(PDGF)、線維芽細胞増殖因子(FGF)、上皮細胞増殖因子(EGF)およびインスリンからなる群より選ばれる1種以上である、請求項5または6に記載の培養方法。The cell growth factor is one or more selected from the group consisting of platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), epidermal growth factor (EGF), and insulin. Culture method. さらに酸化防止剤を添加することを特徴とする、請求項5〜7に記載の培養方法。Furthermore, antioxidant is added, The culture method of Claims 5-7 characterized by the above-mentioned. 酸化防止剤が2−メルカプトエタノール、アスコルビン酸およびビタミンEよりなる群から選ばれる、請求項8に記載の培養方法。The culture method according to claim 8, wherein the antioxidant is selected from the group consisting of 2-mercaptoethanol, ascorbic acid and vitamin E. ヒト胎盤由来の間葉系細胞を培養し、培養上清を回収することを特徴とする、VEGFの製造方法。A method for producing VEGF, comprising culturing mesenchymal cells derived from human placenta and collecting a culture supernatant. 血清アルブミンおよび細胞増殖因子を添加した、非ヒト動物由来の蛋白質成分を含まない培地で培養することを特徴とする、請求項10に記載のVEGFの製造方法。The method for producing VEGF according to claim 10, wherein the culture is carried out in a medium not containing a protein component derived from a non-human animal, to which serum albumin and a cell growth factor are added. さらに酸化防止剤を添加することを特徴とする、請求項10または11に記載の製造方法。Furthermore, antioxidant is added, The manufacturing method of Claim 10 or 11 characterized by the above-mentioned. 酸化防止剤が2−メルカプトエタノール、アスコルビン酸およびビタミンEよりなる群から選ばれる、請求項12に記載の製造方法。The production method according to claim 12, wherein the antioxidant is selected from the group consisting of 2-mercaptoethanol, ascorbic acid and vitamin E.
JP2003579842A 2002-04-03 2003-03-28 Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells Expired - Lifetime JP4554940B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002101792 2002-04-03
JP2002101792 2002-04-03
PCT/JP2003/004006 WO2003082305A1 (en) 2002-04-03 2003-03-28 Drug containing human placenta-origin mesenchymal cells and process for producing vegf using the cells

Publications (2)

Publication Number Publication Date
JPWO2003082305A1 true JPWO2003082305A1 (en) 2005-07-28
JP4554940B2 JP4554940B2 (en) 2010-09-29

Family

ID=28672131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003579842A Expired - Lifetime JP4554940B2 (en) 2002-04-03 2003-03-28 Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells

Country Status (3)

Country Link
JP (1) JP4554940B2 (en)
AU (1) AU2003220966A1 (en)
WO (1) WO2003082305A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1770976A (en) * 2003-02-13 2006-05-10 人类起源公司 Use of umbilical cord blood to treat individuals having a disease, disorder or condition
EP2298862B1 (en) * 2004-03-22 2017-08-30 Mesoblast International Sàrl Mesenchymal stem cells and uses therefor
JP5073224B2 (en) * 2006-04-24 2012-11-14 浜松ホトニクス株式会社 Method for preparing differentiated cells and composition of undifferentiated cells for differentiation induction
KR20140107677A (en) 2007-09-19 2014-09-04 플루리스템 리미티드 Adherent cells from adipose or placenta tissues and use thereof in therapy
KR20150139569A (en) * 2013-04-02 2015-12-11 유니버시티 오브 플로리다 리서치 파운데이션, 인크. Compositions and methods for induction and modulation of angiogenesis and methods and assays for identifying angiogenesis modulators

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027996A1 (en) * 1998-11-09 2000-05-18 Consorzio Per La Gestione Del Centro Di Biotecnologie Avanzate Serum free medium for chondrocyte-like cells

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000027996A1 (en) * 1998-11-09 2000-05-18 Consorzio Per La Gestione Del Centro Di Biotecnologie Avanzate Serum free medium for chondrocyte-like cells

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
JPN5004011688, HARTY,J.R., J.CLIN.ENDOCRINOL.METAB., 1992, V73 N3, P947−950 *
JPN5004011689, OHYAMA,M., PATHOL.INT., 200009, V50 N9, P759−764 *
JPN5004011690, KAUFMANN,P., 産婦人科の世界, 1991, V43 N1, P39−47, JP *
JPN5004011691, 福田 恵一, 医学のあゆみ, 20010203, V196 N5, P321−326, JP *
JPN5004011693, CLARK,D.E., J.ENDOCRINOL., 1998, V159 N3, P459−467 *
JPN7009003396, DATABASE CAPLUS ON STN, ACC.NO. 1997:86387 *

Also Published As

Publication number Publication date
JP4554940B2 (en) 2010-09-29
AU2003220966A1 (en) 2003-10-13
WO2003082305A1 (en) 2003-10-09

Similar Documents

Publication Publication Date Title
KR102146815B1 (en) Novel method for treating cardiac infarction using HMGB1 fragment
RU2756561C2 (en) Colony formation medium and its application
Harrell et al. Therapeutic potential of amniotic fluid derived mesenchymal stem cells based on their differentiation capacity and immunomodulatory properties
US20040131601A1 (en) Injection of bone marrow-derived cells and medium for angiogenesis
JP6351799B2 (en) Method for producing pharmaceutical composition for cancer treatment and pharmaceutical composition for cancer treatment produced by the method
CN107354127B (en) Effect of the LncRNA-TUG1 in regulation PDLSCs Osteoblast Differentiation and regeneration
Yin et al. Genetically modified human placenta‑derived mesenchymal stem cells with FGF‑2 and PDGF‑BB enhance neovascularization in a model of hindlimb ischemia
Eun et al. Overexpression of phosphoinositide-3-kinase class II alpha enhances mesenchymal stem cell survival in infarcted myocardium
Sasine et al. Concise review: paracrine functions of vascular niche cells in regulating hematopoietic stem cell fate
Chen et al. Directional homing of glycosylation-modified bone marrow mesenchymal stem cells for bone defect repair
WO2005104766A2 (en) Injection of bone marrow-derived conditioned medium for angiogenesis
JP4554940B2 (en) Medicament containing mesenchymal cells derived from human placenta and method for producing VEGF using the cells
KR20100089927A (en) Adult stem cell population of cell spheroid form for transplantation and method for producing the same
US20060057722A1 (en) Conditioned medium of autologous or allogenic progenitor cells for angiogenesis treatment
CN107320726A (en) Applications of the LncRNA TUG1 in the dryness for preparing regulation and control periodontal ligament stem cell maintains the medicine of ability
KR102132416B1 (en) Use of mesenchymal stem cell having enhanced efficacy using NADPH oxidase inhibitors
US20060051334A1 (en) Injection of bone marrow-derived conditioned medium for angiogenesis
ES2366701T3 (en) IN VITRO TECHNIQUES FOR USE WITH MOTHER CELLS.
Gimble et al. Adipose tissue–derived stem cells and their regeneration potential
AU2005282384B2 (en) Conditioned medium of autologous or allogenic progenitor cells for angiogenesis treatment
JP7144829B2 (en) Mesenchymal stem cells with enhanced safety and anti-inflammatory effects
JP2005527228A (en) Intramyocardial injection of autologous bone marrow
Fariha et al. Endogenous and induced angiogenic characteristics of human chorion‐derived stem cells
Chen et al. Effect of bone marrow mesenchymal stem cells transfected with rAAV2-bFGF on early angiogenesis of calvarial defects in rats
US20190382728A1 (en) Menstrual Blood Derived Angiogenesis Stimulatory Cells

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090721

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100715

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130723

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4554940

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160723

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term