JPWO2003069020A1 - Substrate processing apparatus and substrate processing method - Google Patents

Substrate processing apparatus and substrate processing method Download PDF

Info

Publication number
JPWO2003069020A1
JPWO2003069020A1 JP2003568125A JP2003568125A JPWO2003069020A1 JP WO2003069020 A1 JPWO2003069020 A1 JP WO2003069020A1 JP 2003568125 A JP2003568125 A JP 2003568125A JP 2003568125 A JP2003568125 A JP 2003568125A JP WO2003069020 A1 JPWO2003069020 A1 JP WO2003069020A1
Authority
JP
Japan
Prior art keywords
substrate
susceptor
gas
pin
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003568125A
Other languages
Japanese (ja)
Inventor
光弘 丸山
光弘 丸山
敬三 藤森
敬三 藤森
治夫 佐々木
治夫 佐々木
脩 岡庭
脩 岡庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Publication of JPWO2003069020A1 publication Critical patent/JPWO2003069020A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68742Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a lifting arrangement, e.g. lift pins
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68785Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

サセプタ(31)に設けられた3つの段付きの貫通孔(41)に、頭付きのピン(42)が頂面を基板載置面から突出させないようにかつ下端部をサセプタ(31)から突出させて上下移動可能にそれぞれ嵌め入れられている。搬送ロボット(10)による基板(S)の搬入出時にサセプタ(31)が下降させられることによって、各ピン(42)の下方の待機位置に位置するピン受け(43)によってピン(42)下端が受けられてピン(42)が上昇し、ピン(42)の頂面によって基板(S)が持ち上げられるようになされている。反応炉(1)に、被処理基板(S)に気相反応をせしめる反応部(1a)と、反応部(1a)の下方にあって搬送ロボット(10)による基板搬入出時にサセプタ(31)が位置する搬入出部(1b)とが形成されている。少なくとも1つのピン受け(43)が上下移動可能とされて、冷却時に前記待機位置以外で基板(S)をサセプタ(31)から持ち上げ可能とされている。In the three stepped through holes (41) provided in the susceptor (31), the pin (42) with a head projects the top surface from the substrate mounting surface and the lower end projects from the susceptor (31). It is inserted into each so that it can move up and down. When the substrate (S) is carried in / out by the transfer robot (10), the susceptor (31) is lowered so that the lower end of the pin (42) is moved by the pin receiver (43) positioned at the standby position below each pin (42). In response, the pin (42) rises and the substrate (S) is lifted by the top surface of the pin (42). In the reaction furnace (1), a reaction section (1a) that causes a substrate to be processed (S) to undergo a gas phase reaction, and a susceptor (31) that is below the reaction section (1a) and is loaded and unloaded by the transfer robot (10). The carrying-in / out part (1b) in which is located is formed. At least one pin receiver (43) can be moved up and down, and the substrate (S) can be lifted from the susceptor (31) outside the standby position during cooling.

Description

技術分野
この発明は、気相反応を用いて結晶膜あるいはその他の薄膜の生成を行う基板処理(CVD:Chemical Vapor Deposition)装置および基板処理方法に関し、特に、反応炉への被処理基板の受け渡しと処理後の基板の反応炉外への取り出しとを搬送ロボットにより行う基板処理装置および基板処理方法に関する。
背景技術
気相反応を用いて結晶膜あるいはその他の薄膜の生成を行うとともに、反応炉への被処理基板の受け渡しと処理後の基板の反応炉外への取り出しとを搬送ロボットにより行う基板処理装置は、従来より知られている。この装置による処理後の基板は、非常に高温であるため一旦冷却されるが、反応炉内で冷却されるか、または、反応炉から基板を搬出し、別途設けられた冷却室において冷却されていた。反応炉内で冷却する場合には、自然冷却とするか、反応後に、パージガス(水素または不活性ガス等)を供給することで行われており、いずれにしろ、基板は、反応処理時と同じ位置に保持されて冷却されていた。
例えば、特開平8−239295号には、サセプタに支持された基板の上下両側に配置された誘導加熱用コイル表面に設けられているガス吹き出し口から冷却ガスを吹き出す冷却手段を備えた基板処理装置が開示されている。この装置によると、基板処理後に高周波出力を停止した後で、上下から冷却ガスを吹き付けることにより、専用の冷却炉を別途設けることなく、素早く基板の冷却を行うことができ、これによって処理能力を高めることができるという利点を有している。
ところで、気相反応を行うためには、被処理対象を900度以上に加熱することが必要となるが、この加熱は、被処理対象である基板以外にその周囲も加熱してしまい、この結果、不要な部分で結晶や薄膜の成長が起こり、これがガスの流れ等により剥がれ落ちて基板の処理面上に付着し、基板の品質低下を来すという問題があった。そのため、気相反応を用いた薄膜生成装置の中には反応炉内の反応をさせる部分(反応部)の周囲壁面等を冷却する構造のものも考えられている。
また、誘導加熱の場合、例えば、シリコン基板とカーボンサセプタについては、サセプタは400度程度までは基板より早く温度が上昇するという特性がある。
また、一般的に、サセプタの熱容量は基板よりはるかに大きいという特性もある。
上記従来の反応部の周囲壁面等を冷却する構造の基板処理装置によると、搬送ロボットによる反応部との直接の基板の搬入出時に反応部が開放されるため、反応炉外からパーティクル等ゴミを巻き込む恐れがあるとともに、基板搬入出口を設け、その都度開閉する必要上、水冷等の冷却構造をとれず、開閉口に不要な結晶等の成長が生じる恐れがあった。
また、基板1枚ずつに反応処理を施す枚葉式の基板処理装置では、その作業効率を上げるために、基板の搬入、基板の加熱、加熱した基板の表面への結晶膜あるいはその他の薄膜の生成、基板の冷却、基板の搬出、さらに言えば次の被処理基板を処理するための環境を整える等の一連の作業に要する時間を低下させなければならない。ところが、冷却にはサセプタが大きく関わっており、基板の早期加熱のために利用されるサセプタが、その熱容量の大きさゆえ冷却時には早く冷やされるべき基板に熱を供給する熱源の役目を果たしてしまうという問題があった。このサセプタの影響を避けるために反応炉外に冷却専用のチャンバを設けて基板をそちらへ搬送し冷却する方法があるが、専用のチャンバに要するコストやスペース上の問題および熱い基板の搬送上の問題がある。
この発明の目的は、前記問題の解消を図るとともに、冷却専用のチャンバを設けずに、基板を冷却する時間を短縮し作業効率向上させることができる基板処理装置および基板処理方法を提供することにある。
発明の開示
この発明による基板処理装置は、反応炉と、基板を載置するサセプタと、基板を加熱する加熱手段と、基板表面に原料ガスを供給する原料ガス供給手段と、基板を反応炉内に搬入出する搬送ロボットと、冷却用ガスを吹き出すガス供給手段と、サセプタを上下移動させる上下移動手段とを備え、サセプタの所定位置に設けられた少なくとも3つの段付きの貫通孔に、頭付きのピンが頂面を基板載置面から突出させないようにかつ下端部をサセプタから突出させて上下移動可能にそれぞれ嵌め入れられており、搬送ロボットによる基板の搬入出時にサセプタが下降させられることによって、各ピンの下方の待機位置に位置するピン受けによってピン下端が受けられてピンが上昇し、ピンの頂面によって基板が持ち上げられるようになされている基板処理装置において、反応炉に、被処理基板に気相反応をせしめる反応部と、反応部の下方にあって搬送ロボットによる基板搬入出時にサセプタが位置する搬入出部とが形成されており、少なくとも1つのピン受けが上下移動可能とされて、冷却時に前記待機位置以外で基板をサセプタから持ち上げ可能とされていることを特徴とするものである。
加熱手段としては、ヒータ、ランプ、誘導加熱用コイルなどが適宜使用される。
原料ガス供給手段は、基板表面側側方または上方に供給口を専用に設けるか、あるいは、例えば、誘導加熱用コイル内に設けられたガス流路およびガス吹き出し口によって構成される。
サセプタは、例えば、カーボン、石英等で製作され、支柱の上端部に設けられたサセプタ支持腕によって支持される。この支柱の下部には、これを回転させるモータ(ステッピングモータまたはサーボモータなど)が設けられており、サセプタがモータによって回転させられることにより、原料ガス流や加熱手段の位置等による原料ガスの分布および熱の分布の影響が緩和される。
ガス供給手段は、例えば、上側ガス供給手段と下側ガス供給手段とから構成され、上側ガス供給手段は、例えば、基板表面上方に供給口を専用に設けるか、または、原料ガス供給手段に原料ガスに代えて冷却ガス(水素ならびに不活性ガス等)を供給することによって構成される。また、下側ガス供給手段は、例えば、冷却ガス供給管を専用に設けるか、あるいは、下側加熱手段の誘導加熱用コイルまたは熱反射板内に設けられたガス流路およびガス吹き出し口によって構成される。この場合の熱反射板は、サセプタに対向し、加熱処理中には、主に、加熱した基板やサセプタの幅射熱を反射する、もしくは、サセプタと熱反射板との間に位置する加熱手段がある場合に、その手段から放出される熱線を反射することで、熱線の反射によりサセプタ下面を加熱する手段となっている。
基板に吹き付けられた冷却ガスは、基板の上方に移動しないように、基板面より上の気圧とサセプタの下方に位置する排ガス排出手段とによって、サセプタの下方から排出される。
基板は、反応部において処理された後、この位置またはこの位置より下方で、上昇移動してきた1以上のピン受けによりサセプタから持ち上げられて、ガス供給手段からの冷却ガスによって冷却される。その後、この位置関係を保ったままで、基板、サセプタおよびピン受けが下降させられて、搬送ロボットによる基板搬入出が可能な搬入出部に位置させられる。冷却ガスは、この下降中に供給されてもよい。そして、下降してきたピン受けが待機位置まで下がることで、冷却後の基板は、搬送ロボットによって所要の方向(例えば水平方向)に搬出される。下側ガス供給手段は、サセプタの下降に伴って、これに干渉しないように一定の距離を保って下降する。下側ガス供給手段は、サセプタの上下移動とは別に移動することもできる。
なお、上昇移動するピン受けの数は、1でもよいが、基板を安定に支持可能な位置に配された3以上のピン受けを移動(同期移動)させることが望ましい。
この発明の基板処理装置によると、反応炉内を反応部と搬入出部とに分けることにより、反応部周辺壁面の冷却能力を落とさずに済むため、不要な場所に結晶や薄膜の生成が生じることを抑えることができる。また、冷却時に反応部位置にある基板をサセプタから持ち上げることにより、基板とサセプタの接触面積を大幅に小さくした状態あるいは非接触にした状態で、基板の処理面に冷却ガスを供給することができ、冷却速度を向上することができる。
上記基板処理装置において、ガス供給手段は、サセプタの下部に冷却ガスを供給し得るとともに、ピン受けと干渉しないようになされた下側ガス供給手段と、基板の上部に冷却ガスを供給し得る上側ガス供給手段とを有しており、サセプタに、下側ガス供給手段により供給された冷却ガスが通過可能な複数の通気孔が設けられていることが好ましい。
上側ガス供給手段については、基板の上方空間の気圧を基板の下方空間の気圧よりも高めるためのガス供給手段とされ、例えば、基板の上方空間にガスを供給する手段と、原料ガスを供給する手段のうちのいずれか、もしくは双方に冷却ガス(不活性ガスもしくは水素等で、基板等を冷却可能なガス)を供給することで構成される。
このようにすると、サセプタの下方から通気孔を介して基板下面に冷却ガスを供給することができ、一層冷却効果が高まる。
上側および下側のガス供給手段のガス供給圧力をそれぞれ別個に調整する圧力調整手段と、基板をサセプタから持ち上げた状態でサセプタおよびサセプタを持ち上げているピン受けを移動させる移動量調整手段とをさらに備えていることが好ましい。
このようにすると、基板をサセプタから持ち上げた状態で反応部から搬入出部へ処理後の基板を移動する際にも冷却ガスを吹き続けることも可能となり、冷却作業と移動作業とを別々に行う装置に比べて、反応炉への基板搬入から反応処理後の基板搬出までの時間を短くすることができ、よって、基板処理能力をより高めることができる。特に、上側および下側のガス供給手段のガス供給圧力を認識するとともに、基板(サセプタ)の移動量を移動量検出手段等により認識すれば、基板の移動量に応じて、気圧のバランスを保って冷却しながら基板を搬入出部へ垂直移動することもできる。
この発明による基板処理方法は、サセプタに載置された基板を加熱しながらこれに原料ガスを吹き付けることにより、気相反応を用いた結晶膜あるいはその他の薄膜を基板上に成長させる基板処理方法において、基板処理後に、基板をサセプタから持ち上げた状態で冷却することを特徴とするものである。
この発明の基板処理方法によると、基板とサセプタの接触面積を大幅に小さくした状態で、基板の処理面に冷却ガスを供給することができ、冷却速度を向上することができる。
サセプタに複数の通気孔を例えばランダムにもしくは放射状等規則的に設け、基板の上下両側から冷却ガスを吹き付けることが好ましい。
このようにすると、サセプタの下方から通気孔を介して基板下面に冷却ガスを供給することができ、一層冷却効果が高まる。
冷却ガスを吹き付けながら基板を反応部から搬出位置に垂直移動させ、さらに、下方移動中の基板位置における上側冷却ガスの下向き圧力が下側冷却ガスの上向き圧力以上に保たれるように、上側および下側のガス供給圧力の少なくとも一方を調整することが好ましい。
このようにすると、反応部から搬出位置へ処理後の基板を移動する際にも冷却が進み、冷却作業と移動作業とを別々に行う方法に比べて、反応炉への基板搬入から反応処理後の基板搬出までの時間を短くすることができ、よって、基板処理能力を高めることができる。さらに、基板が下降した際には、基板付近における冷却ガスの上向き圧力と下向き圧力とのバランスを、下向き圧力が上向き圧力以上に保たれるように調整することができ、したがって、基板に吹き付けられて下方に移動した排ガスが再び基板に当たることによって生じる基板の汚染を防止することもできる。
発明を実施するための最良の形態
この発明の実施の形態を、以下図面を参照して説明する。
図1は、図示しない水冷の容器に納められたこの発明による基板処理装置の主要部の概略を示すもので、基板処理装置は、円筒状外断熱壁(2)、円筒状内断熱壁(3)および基板搬入出用開閉扉(4)を有する反応炉(1)と、外断熱壁(2)の頂部に設けられた第1加熱手段(5)と、内断熱壁(3)の頂部に位置する基板支持手段(6)と、基板(S)表面に原料ガスおよび冷却ガスを供給する上側ガス供給手段(7)と、内断熱壁(3)内の基板支持手段(6)下方に設けられた第2加熱手段(8)と、基板支持手段(6)を支持してこれを所要の方向に移動させる駆動手段(9)と、基板(S)を反応炉(1)内に搬入しかつ処理後の基板(S)を搬出する搬送ロボット(10)と、冷却ガスを基板支持手段(6)の下方から吹き出す下側ガス供給手段(11)と、基板(S)を基板支持手段から持ち上げる基板持ち上げ手段(12)とを備えている。
この基板処理装置は、気相反応を用いて結晶膜あるいはその他の薄膜の生成を行うもので、気相反応を生じさせる部分を反応部(1a)と呼び、反応部(1a)とは別な場所である下方に、基板(S)を反応炉(1)外と受け渡しする搬入出部(1b)を備えている。
外断熱壁(2)および内断熱壁(3)内には、冷却水流路(2a)(3a)がそれぞれ設けられている。
第1加熱手段(5)は、誘導加熱用コイル(高周波コイルともいう)(21)を有している。誘導加熱用コイル(21)は、図2および図3に詳しく示すように、導電体が平面状の渦巻き形状になされたもので、それぞれ上方に開口したガス流路(23)および冷却水流路(24)が渦巻き状に形成されたコイル本体(22)と、コイル本体(22)に上から被せられて各流路(23)(24)の開口を塞ぐ蓋(25)とからなる。図2(a)では、蓋(25)を省略して、コイル本体(22)だけを示している。図中、(26)は絶縁用の間隙であり、この間隙(26)は、渦巻き形状を形成している各導電体部分の径方向の幅が端部等特殊な部分を除いて一定になるように設けられている。
コイル本体(22)のコイル面の基板(S)に対向する側(対向面)には、図3に示すように、ガス流路に通じる複数のガス吹き出し口(29)(30)が設けられている。図4(a)に詳しく示すように、コイル本体(22)の中心空間部周縁に設けられている複数のガス吹き出し口(29)は、真下ではなく、中心に向かって傾斜するように形成されている。これらのガス吹き出し口(29)の傾斜角(K1)(k2)は、設けられる位置に応じて変更されている。また、図4(b)(c)に詳しく示すように、コイル本体(22)の中心空間部周縁以外の対向面に設けられているガス吹き出し口(30)は、真下ではなく、周方向に向かって傾斜するように形成されている。この結果、誘導加熱用コイル(21)対向面におけるガス吹き出し方向は、図3に矢印で示すように、コイル(21)の内周部では、中心に向かい、その他の部分では、渦巻きの旋回方向に向かって吹き出されるようになされている。
誘導加熱用コイル(21)のガス流路(23)およびガス吹き出し口(29)(30)は、気相反応処理時の原料ガスの吹き出し用として使用されるとともに、気相反応処理後の冷却ガスの吹き出し用としても使用されている。すなわち、このガス流路(23)およびガス吹き出し口(29)(30)と、ガス流路に接続される外部の配管、その配管に接続された複数のガス配管およびそれらガス配管に接続された原料ガスと冷却ガスそれぞれのガス供給源と、それぞれのガス供給圧力調整部と、ガス切り替え手段とが組み合わされることにより、誘導加熱用コイル(21)に一部内蔵されたガス供給手段(7)は、基板(S)表面に原料ガスを供給する原料ガス供給手段と、冷却ガスを基板支持手段の上方から吹き出す上側ガス供給手段とを兼ねる構成とされている。
基板支持手段(6)は、基板(S)を載せる円形の凹所を上面に有している円形板状のサセプタ(31)と、支柱(33)の上端部からそれぞれ等間隔で略水平方向の3方にのびるサセプタ支持腕(32)とを備えている。各支持腕(32)の上面の先端部に、サセプタ(31)を3点支持する突起(32a)がそれぞれ1つ設けられている。
第2加熱手段(8)は、表面が金、銀、アルミニウムなどの金属製メッキが施されかつ鏡面である熱反射板(35)とされている。熱反射板(35)は、中央に貫通孔を有する円盤状に形成されている。図1に示すように、熱反射板(35)の上部には、冷却ガスを垂直上方に向けて吹き出す冷却ガス流路(36)が設けられており、この冷却ガス流路(36)が下側のガス供給手段(11)とされている。また、熱反射板(35)の下部には、熱反射板(35)を冷却するための冷却水流路(37)が設けられている。
なお、図示省略したが、第2加熱手段として、ピン受け(43)と干渉しないように配置された第1加熱手段と同様の誘導加熱用コイルを用いてもよい。
駆動手段(9)は、熱反射板(35)の中央の貫通孔に挿通されてその上端部がサセプタ支持腕(32)の中央部に一体化されている支柱(33)と、支柱(33)を垂直軸回りに回転させるステッピングモータあるいはサーボモータからなるモータ(38)と、支柱(33)を上下方向に移動させる昇降装置(39)と、昇降装置(39)を駆動するための制御部とを備えている。
搬送ロボット(10)は、枚葉式のものであり、内断熱壁(3)内に出入りするための水平方向移動と、サセプタ(31)との間で基板(S)を移し替えるための上下方向移動を行うことができる。
基板持ち上げ手段(12)は、サセプタ(31)の中心から等距離で周方向に120°間隔をおいた基板載置面の計3個所に設けられた段付きの貫通孔(41)と、この貫通孔(41)に上下移動可能にかつ頂部が基板載置面を越えないように収められた頭付きのピン(42)と、サセプタ(31)の下方に設けられかつサセプタ(31)のピン(42)の配置と同心でかつ同径の120°間隔で設けられたピン受け(43)とを備えている。
サセプタ(31)は、上述のように、気相反応処理を行っている間、モータ(38)によって回転させられるが、処理終了時には、図1に示すように、ピン(42)のちょうど真下にピン受け(43)が位置するように停止させられる。
図5および図6は、この基板処理装置で使用されている冷却機構の一実施形態を示している。
同図に示す冷却機構においては、3つのピン受け(43)は、昇降装置(図示略)によって、上下移動可能とされており、サセプタ(31)には、複数の通気孔(46)が貫通状に設けられている。そして、処理が終了して、ピン(42)のちょうど真下にピン受け(43)が位置するようにサセプタ(31)の回転が停止させられると、この状態で3つのピン受け(43)が上方に移動させられる。図5に示すように、ピン受け(43)は熱反射板(35)に設けられた貫通孔を通過して反応部(1a)に至り、ピン(42)の下端に当接する。そして、このピン(42)がピン受け(43)によって上方に移動させられることによって、基板(S)がサセプタ(31)から持ち上げられる。この段階で、上側および下側のガス供給手段(7)(11)から冷却ガスが吹き付けられ、基板(S)およびサセプタ(31)が冷却される。サセプタ(31)には、通気孔(46)が設けられいるので、基板(S)は、サセプタ(31)の通気孔(46)を通過した冷却ガスによっても冷却される。サセプタ(例えばカーボン製)(31)は熱容量が大きいため、冷却されにくいが、基板(S)は、サセプタ(31)とは接触していないため、サセプタ(31)の影響を受けることなく冷却される。
サセプタ(31)の通気孔(46)は、例えば、図5(b)に示すようにランダムに設けてもよく、また、同図(c)に示すように放射状に設けてもよい。
なお、この実施形態では、全てのピン受け(43)を上昇させているが、上昇させるピン受け(43)は、1つでもよく、この場合には、1つのピン(42)だけによって持ち上げられた基板(S)は、外周面の1点でサセプタ(31)に接触することになる。こうして、基板(S)とサセプタ(31)とは、点接触すなわち実質的には接触していないようになり、基板(S)は、サセプタ(31)の影響を受けることなく冷却される。
また、ピン受け(43)のみを上方移動させるのではなく、サセプタ(31)も下降させる相対移動を行ってもよい。
サセプタ(31)とピン受け(43)とは、図5の位置関係を保ったまま下方の搬入出部(1b)に垂直に移動させられる。この間にも冷却ガスの吹き付けは継続される。そして、冷却された基板(S)は、搬入出部(1b)から搬送ロボット(10)によって搬出される。
この実施形態の基板処理装置の制御部(40)には、図6に示すように、ガス供給圧力調整部(44)と、上下移動量調整部(45)とが設けられている。ガス供給圧力調整部(44)は、上側のガス供給手段(7)のガス供給圧力および下側のガス供給手段(11)のガス供給圧力をそれぞれ別個に調整するもので、誘導加熱用コイル(21)のガス流路(23)に接続された配管に設けられているバルブなど介して、誘導加熱用コイル(21)に設けられたガス吹き出し口(29)(30)から吹き出される冷却ガスの下向きの圧力を調整するとともに、熱反射板(35)のガス流路(36)に接続された配管に設けられているバルブなどを介して、熱反射板(35)のガス吹き出し口から吹き出される冷却ガスの上向きの圧力を調整している。上下移動量調整部(44)は、サセプタ(31)、ピン受け(43)および熱反射板(35)の上下移動量を昇降装置(39)を介してそれぞれ別個に調整するものである。
この制御部(40)によると、反応処理後、まず、ピン受け(43)が上方に移動させられ、図5の状態で、冷却作業が開始される。そして、冷却作業を継続しながら、サセプタ(31)が下方に移動させられる。この際、サセプタ(31)、ピン受け(43)および熱反射板(35)は、図5の位置関係を保ったまま、つまり、サセプタ(31)とピン受け(43)と熱反射板(35)とが同時に同じ速さで下降させられ、搬入出部(1b)に移動させられる。サセプタ(31)を反応部(1a)から搬入出部(1b)へ移動させる際には、サセプタ(31)の下降量および熱反射板(35)の下降量に応じて上側ガス供給手段(7)の供給圧を下側ガス供給手段(11)の供給圧より高める制御が行なわれる。したがって、サセプタ(31)および熱反射板(35)が下降することにより、誘導加熱用コイル(21)から基板(S)までの距離が長くなり、基板(S)付近における冷却ガスの上向き圧力と下向き圧力とのバランスが、制御部(40)によって保たれる。これにより、基板(S)に吹き付けられて下方に移動した排ガスが再び基板(S)に当たることによって生じる基板(S)の汚染を防止することができる。
図4に示したガス吹き出し口(29)(30)の開口側の部分には、図7に示すように、ねじ溝(51)(52)が施されることがある。図7の(a)に示すねじ溝(51)が施された孔は、コイルの中心軸方向に向かって傾斜させられており、図7の(b)に示すねじ溝(52)が施された孔は、コイル面の半径方向に直角の方向に傾斜させられている。これらのねじ溝(51)(52)には、必要に応じて、おねじ部材(54)(55)(56)が着脱自在にねじ込まれる。おねじ部材(54)(55)(56)としては、ガス吹き出し口を完全に塞ぐもの(54)と、ねじ込み方向に貫通孔(55a)(56a)を有しこの貫通孔(55a)(56a)がガス吹き出し孔として使用されるものとが適宜使用される。
図8(a)(b)は、図7で示されたねじ溝(51)(52)がおねじ部材(54)によって完全に塞がれているものを示している。このおねじ部材(54)は、市販のものが使用可能であり、例えば、基板(S)のサイズを大きいものから小さいものに変えた場合に、コイル(21)の外周縁部にあるガス吹き出し用ねじ溝(51)(52)を塞ぐために使用される。これにより、不要な部分への原料ガスの供給は停止し、原料ガスの無駄および成長した結晶による基板(S)の品質低下を防止することができる。
図9(a)(b)は、ねじ込み方向に貫通孔(55a)を有するおねじ部材(55)を示している。このおねじ部材(55)によると、その貫通孔(55a)がガス吹き出し孔として使用される。貫通孔(55a)の中心とおねじ部材(55)の中心とは一致させられている。したがって、ねじ溝(51)(52)の中心方向にガスを吹き出すことができる。
図10(a)(b)は、ねじ込み方向に貫通孔(56a)を有するおねじ部材(56)の他の例を示している。このおねじ部材(56)では、貫通孔(56a)の中心は、おねじ部材(56)の中心には一致しておらず、所定方向に傾斜させられている。このおねじ部材(56)によると、その貫通孔(56a)の方向がねじ溝(51)(52)の方向とは異なっており、これにより、誘導加熱用コイル(21)にあけられたねじ溝(51)(52)の方向とは異なった方向にガスを吹き出させることができる。したがって、貫通の方向を変えたいときには異なる貫通孔(56a)のおねじ部材(56)に代えることによって変更することができる。ねじ溝(51)(52)を有する孔は、必ずしも斜めに形成されている必要はなく、コイル面に対して直角であってもよい。そして、図10(b)に示すように、コイル面に対して直角の孔に施されたねじ溝(52)と傾斜貫通孔(56a)を有するおねじ部材(56)とが組み合わされることにより、傾斜方向のガス吹き出し口を得ることができる。
なお、おねじ部材(54)(55)(56)の頭頂部はコイル面より外に出ないようにすることが望ましい。
上記おねじ部材(54)(55)(56)は、種々の仕様のものを用意することが可能であり、その貫通孔(55a)(56a)の方向や太さ、形状の変更を基板(S)や原料ガスに応じて変更することにより、誘導加熱用コイル(21)はそのまま使用し、おねじ部材(54)(55)(56)を変更するだけで基板処理の仕様の変更に対応することができる。
おねじ部材は、誘導加熱用コイル(21)に悪影響を与えないよう、高周波コイルと同じ材質が用いられ、例えば、銅製の誘導加熱用コイル(21)に対応して銅製または黄銅製などとされる。
なお、図示省略したが、おねじ部材に設ける貫通孔は、らせん状でもよく、これにより、らせん状貫通孔から吹き出すガスを旋回流とし、基板(S)上の原料ガスが均一な乱流状態を得ることに寄与させることができる。
コイル本体(22)の内周部に設けられているガス吹き出し口(29)は、図4(a)に示すものでは、コイル(21)の対向面に設けられているが、コイル本体(22)の内周部に設けられるガス吹き出し口は、図11に示すように、内周面に設けられることがより好ましい。図11(a)に示すガス吹き出し口(57)は、コイル本体(22)の中心空間部内周面に設けられており、コイル(21)の中心軸を中心としてほぼ均等角度に配され、ガス吹き出し口(57)の方向は、対向面外側に向かいかつコイル(21)の中心軸方向に向かう方向とされている。そして、これらのガス吹き出し口(57)の方向は、それらがコイル(21)の中心軸上の1点でかつ基板(S)の上で結ばれるようになされている。また、図11(b)に示すガス吹き出し口(58)は、コイル本体(22)の中心空間部内周面に設けられており、コイル(21)の中心軸を中心としてほぼ均等角度に配され、ガス吹き出し口(58)の方向は、水平面内でかつコイル(21)の中心軸方向に対して傾斜する方向とされている。
上記の誘導加熱用コイル(21)の中心部にはコイルをなす導電体が存在しないため、この部分に均一に原料ガスを供給することは難しいものであるが、ガス吹き出し口(57)(58)を上記のように設けることによりコイル(21)中心部の下であっても原料ガスを十分に供給し気相反応処理時の均一性を向上させることができる。
なお、コイル本体(22)の中心空間部に設けられるガス吹き出し口については、図4(a)に示したもの(29)と図11(a)(b)に示したもの(57)(58)とを両方設けてもよく、いずれか一方だけを設けてもよい。
図2および図3に示した誘導加熱用コイル(21)は、その内周端と外周端とに電源接続端子が接続され、高周波電源によって駆動される。
高周波電源(高周波発振機)には、例えば、電力用半導体スイッチング素子であるIGBT(ゲート絶縁型バイポーラトランジスタ)が使用される。
なお、この発明による基板処理方法は、例えば上記の基板処理装置を使用することにより可能とされ、サセプタ(31)に載置された基板(S)を加熱しながらこれに原料ガスを吹き付けることにより、気相反応を用いた結晶膜あるいはその他の薄膜を基板上に成長させる基板処理方法において、基板処理(気相反応処理)後に、例えば、ピン受け(43)を上方に移動させてピン(42)の頂面によって基板(S)をサセプタ(31)から持ち上げ、この状態で冷却することを特徴とするものである。この際、サセプタ(31)に複数の通気孔(46)を設け、上側ガス供給手段(7)および下側ガス供給手段(11)を用いて基板(S)の上下両側から冷却ガスを吹き付けることが好ましく、冷却ガスを吹き付けながら基板(S)を反応部(1a)から搬出位置に下方移動させ、さらに、下方移動中の基板位置における上側冷却ガスの下向き圧力が下側冷却ガスの上向き圧力以上となるように、上側および下側のガス供給圧力の少なくとも一方を調整することがより好ましい。
産業上の利用可能性
この発明による基板処理装置および基板処理方法は、気相反応を用いて結晶膜あるいはその他の薄膜の生成を行う基板処理(CVD:Chemical Vapor Deposition)を行うのに適している。
【図面の簡単な説明】
図1は、この発明による基板処理装置の主要部の概要を示す垂直断面図である。
図2(a)は、誘導加熱用コイルの上面を示す平面図であり、図2(b)は(a)のb−b線に沿う断面図である。
図3は、誘導加熱用コイルの下面を示す底面図である。
図4は、誘導加熱用コイルに設けられたガス吹き出し口の拡大断面図であり、(a)は中心空間部に面する導電体要素の垂直断面図であり、(b)は中心空間部以外に面する導電体要素の垂直断面図(径方向)であり、(c)は(b)のC−C線に沿う断面図(周方向)である。
図5は、基板処理装置の冷却機構の一実施形態を示す垂直断面図である。
図6は、図5に示す基板処理装置の制御部を示すブロック図である。
図7は、ガス吹き出し口に設けられたねじ溝を示す拡大断面図である。
図8は、図7に示すねじ溝にねじ込まれるおねじ部材の一例を示す拡大断面図である。
図9は、図7に示すねじ溝にねじ込まれるおねじ部材の他の例を示す拡大断面図である。
図10は、図7に示すねじ溝にねじ込まれるおねじ部材のさらに他の例を示す拡大断面図である。
図11(a)は、誘導加熱用コイルに設けられるガス吹き出し口の他の例を示す拡大断面図(中心空間部に面する導電体要素の垂直断面図)であり、図11(b)は、誘導加熱用コイルに設けられるガス吹き出し口のさらに他の例を示す拡大断面図(中心空間部に面する導電体要素の水平断面図)である。
Technical field
The present invention relates to a substrate processing (CVD: Chemical Vapor Deposition) apparatus and a substrate processing method for generating a crystal film or other thin film by using a gas phase reaction, and in particular, after delivery and processing of a substrate to be processed to a reaction furnace. The present invention relates to a substrate processing apparatus and a substrate processing method in which a substrate is taken out of a reactor from a reaction furnace.
Background art
A substrate processing apparatus that generates a crystalline film or other thin film using a gas phase reaction, and performs transfer of a substrate to be processed to a reaction furnace and removal of the processed substrate out of the reaction furnace by a transfer robot, Conventionally known. The substrate after processing by this apparatus is cooled once because it is very high temperature, but it is cooled in the reaction furnace or taken out of the reaction furnace and cooled in a separate cooling chamber. It was. When cooling in the reaction furnace, it is performed by natural cooling or by supplying a purge gas (hydrogen, inert gas, etc.) after the reaction. It was held in place and cooled.
For example, Japanese Patent Laid-Open No. 8-239295 discloses a substrate processing apparatus provided with cooling means for blowing out a cooling gas from gas blowing ports provided on the surfaces of induction heating coils arranged on both upper and lower sides of a substrate supported by a susceptor. Is disclosed. According to this apparatus, after stopping high-frequency output after substrate processing, by blowing cooling gas from above and below, the substrate can be quickly cooled without providing a dedicated cooling furnace. It has the advantage that it can be enhanced.
By the way, in order to perform the gas phase reaction, it is necessary to heat the object to be processed to 900 degrees or more. However, this heating also heats the surroundings in addition to the substrate to be processed. There is a problem that crystal or thin film grows in an unnecessary portion, which peels off due to a gas flow or the like and adheres to the processing surface of the substrate, thereby degrading the quality of the substrate. For this reason, some thin film production apparatuses using a gas phase reaction have a structure that cools the peripheral wall surface of the reaction part (reaction part) in the reaction furnace.
In the case of induction heating, for example, a silicon substrate and a carbon susceptor have a characteristic that the temperature of the susceptor rises faster than the substrate up to about 400 degrees.
In general, the heat capacity of the susceptor is also much larger than that of the substrate.
According to the conventional substrate processing apparatus having a structure for cooling the surrounding wall surface of the reaction unit, the reaction unit is opened when the substrate is directly loaded into and unloaded from the reaction unit by the transfer robot. In addition to the possibility of entrainment, it is necessary to provide a substrate carry-in / out opening and open and close each time, and a cooling structure such as water cooling cannot be taken, and there is a possibility that unnecessary crystals and the like grow at the opening and closing.
In addition, in a single wafer type substrate processing apparatus that performs reaction processing for each substrate, in order to increase the working efficiency, the substrate is loaded, the substrate is heated, the crystal film or other thin film is applied to the heated substrate surface. Time required for a series of operations such as generation, cooling of the substrate, unloading of the substrate, and preparation of an environment for processing the next substrate to be processed must be reduced. However, the susceptor is greatly involved in cooling, and the susceptor used for early heating of the substrate serves as a heat source for supplying heat to the substrate to be cooled quickly during cooling because of its large heat capacity. There was a problem. In order to avoid the influence of this susceptor, there is a method of providing a cooling-dedicated chamber outside the reaction furnace and transporting and cooling the substrate to it, but there are costs and space problems required for the dedicated chamber, and hot substrate transport There's a problem.
An object of the present invention is to provide a substrate processing apparatus and a substrate processing method capable of solving the above problems and reducing the time for cooling the substrate and improving the work efficiency without providing a chamber dedicated to cooling. is there.
Disclosure of the invention
A substrate processing apparatus according to the present invention includes a reaction furnace, a susceptor for placing a substrate, a heating means for heating the substrate, a raw material gas supply means for supplying a raw material gas to the substrate surface, and a substrate in and out of the reaction furnace. A transfer robot, a gas supply means for blowing out a cooling gas, and a vertical movement means for moving the susceptor up and down. A headed pin is inserted into at least three stepped through holes provided at predetermined positions of the susceptor. The top surface is not protruded from the substrate mounting surface and the lower end portion is protruded from the susceptor so that it can be moved up and down, and the susceptor is lowered when the substrate is loaded and unloaded by the transfer robot. The lower end of the pin is received by the pin receiver located in the standby position below the pin, the pin is raised, and the substrate is lifted by the top surface of the pin In the plate processing apparatus, the reaction furnace is formed with a reaction portion that causes a gas phase reaction to the substrate to be processed, and a loading / unloading portion below the reaction portion where the susceptor is positioned when the substrate is loaded / unloaded by the transfer robot, At least one pin receiver is movable up and down, and the substrate can be lifted from the susceptor at a position other than the standby position during cooling.
As the heating means, a heater, a lamp, an induction heating coil, or the like is appropriately used.
The source gas supply means is provided with a dedicated supply port on the side or upper side of the substrate surface, or is constituted by, for example, a gas flow path and a gas blowing port provided in the induction heating coil.
The susceptor is made of, for example, carbon, quartz or the like, and is supported by a susceptor support arm provided at the upper end portion of the support column. A motor (such as a stepping motor or a servo motor) for rotating the column is provided at the bottom of the support column. The susceptor is rotated by the motor so that the distribution of the source gas depending on the source gas flow, the position of the heating means, and the like. And the effect of heat distribution is mitigated.
The gas supply means is composed of, for example, an upper gas supply means and a lower gas supply means, and the upper gas supply means, for example, is provided with a dedicated supply port above the substrate surface, or the raw material gas supply means has a raw material It is constituted by supplying a cooling gas (hydrogen, inert gas, etc.) instead of the gas. Further, the lower gas supply means is constituted by, for example, a dedicated cooling gas supply pipe or a gas flow path and a gas outlet provided in the induction heating coil or the heat reflecting plate of the lower heating means. Is done. In this case, the heat reflecting plate faces the susceptor and mainly reflects the heated substrate or the radiant heat of the susceptor during the heat treatment or is located between the susceptor and the heat reflecting plate. When there is, the heat ray emitted from the means is reflected to heat the lower surface of the susceptor by reflection of the heat ray.
The cooling gas blown onto the substrate is discharged from below the susceptor by the atmospheric pressure above the substrate surface and the exhaust gas discharging means located below the susceptor so as not to move above the substrate.
After being processed in the reaction section, the substrate is lifted from the susceptor by one or more pin receivers that have moved upward at or below this position, and is cooled by the cooling gas from the gas supply means. Thereafter, while maintaining this positional relationship, the substrate, the susceptor, and the pin receiver are lowered, and the substrate is placed in a loading / unloading section where the substrate can be loaded / unloaded by the transfer robot. Cooling gas may be supplied during this descent. Then, the lowered pin holder is lowered to the standby position, whereby the cooled substrate is carried out in a required direction (for example, a horizontal direction) by the transfer robot. As the susceptor descends, the lower gas supply means descends at a constant distance so as not to interfere with the susceptor. The lower gas supply means can be moved separately from the vertical movement of the susceptor.
The number of pin receivers that move upward may be one, but it is desirable to move (synchronously move) three or more pin receivers arranged at positions where the substrate can be stably supported.
According to the substrate processing apparatus of the present invention, by dividing the inside of the reaction furnace into the reaction part and the carry-in / out part, it is not necessary to reduce the cooling capacity of the peripheral wall surface of the reaction part, so that crystals and thin films are generated in unnecessary places. That can be suppressed. Also, by lifting the substrate at the reaction site from the susceptor during cooling, the cooling gas can be supplied to the processing surface of the substrate with the contact area between the substrate and the susceptor greatly reduced or non-contacted. The cooling rate can be improved.
In the above substrate processing apparatus, the gas supply means can supply a cooling gas to the lower part of the susceptor and can supply a cooling gas to the upper part of the substrate. Preferably, the susceptor is provided with a plurality of vent holes through which the cooling gas supplied by the lower gas supply means can pass.
The upper gas supply means is a gas supply means for raising the pressure in the space above the substrate to be higher than the pressure in the space below the substrate. For example, the gas supply means and the source gas are supplied to the space above the substrate. It is configured by supplying a cooling gas (a gas capable of cooling the substrate or the like with an inert gas or hydrogen) to one or both of the means.
In this way, the cooling gas can be supplied to the lower surface of the substrate from the lower side of the susceptor via the vent hole, and the cooling effect is further enhanced.
Pressure adjusting means for separately adjusting the gas supply pressures of the upper and lower gas supply means, and a movement amount adjusting means for moving the susceptor and the pin holder that lifts the susceptor while the substrate is lifted from the susceptor. It is preferable to provide.
In this way, it is possible to continue blowing the cooling gas even when the processed substrate is moved from the reaction unit to the loading / unloading unit with the substrate lifted from the susceptor, and the cooling operation and the moving operation are performed separately. Compared with the apparatus, it is possible to shorten the time from the substrate loading into the reaction furnace to the substrate unloading after the reaction processing, thereby further increasing the substrate processing capability. In particular, if the gas supply pressures of the upper and lower gas supply means are recognized and the movement amount of the substrate (susceptor) is recognized by the movement amount detection means or the like, the atmospheric pressure balance is maintained according to the movement amount of the substrate. The substrate can be moved vertically to the loading / unloading section while cooling.
A substrate processing method according to the present invention is a substrate processing method for growing a crystal film or other thin film using a vapor phase reaction on a substrate by heating a substrate placed on a susceptor and spraying a raw material gas on the substrate. After the substrate processing, the substrate is cooled while being lifted from the susceptor.
According to the substrate processing method of the present invention, the cooling gas can be supplied to the processing surface of the substrate in a state where the contact area between the substrate and the susceptor is significantly reduced, and the cooling rate can be improved.
Preferably, a plurality of air holes are provided in the susceptor regularly, for example, randomly or radially, and cooling gas is blown from the upper and lower sides of the substrate.
In this way, the cooling gas can be supplied to the lower surface of the substrate from the lower side of the susceptor via the vent hole, and the cooling effect is further enhanced.
The substrate is moved vertically from the reaction part to the unloading position while blowing the cooling gas, and the upper and lower pressures of the upper cooling gas at the position of the moving substrate are kept higher than the upper pressure of the lower cooling gas. It is preferable to adjust at least one of the lower gas supply pressures.
In this way, the cooling proceeds even when the processed substrate is moved from the reaction section to the unloading position, and compared with the method in which the cooling operation and the moving operation are performed separately, the reaction processing from the substrate loading to the reaction furnace is performed. The time until the substrate is unloaded can be shortened, and thus the substrate processing capability can be increased. Furthermore, when the substrate is lowered, the balance between the upward pressure and the downward pressure of the cooling gas in the vicinity of the substrate can be adjusted so that the downward pressure is maintained above the upward pressure. Further, it is possible to prevent the contamination of the substrate caused by the exhaust gas that has moved downward hits the substrate again.
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 schematically shows the main part of a substrate processing apparatus according to the present invention housed in a water-cooled container (not shown). The substrate processing apparatus includes a cylindrical outer heat insulating wall (2) and a cylindrical inner heat insulating wall (3 ) And a substrate carrying-in / out door (4), a first heating means (5) provided on the top of the outer heat insulating wall (2), and a top of the inner heat insulating wall (3). Provided below the substrate support means (6) positioned, the upper gas supply means (7) for supplying the source gas and the cooling gas to the surface of the substrate (S), and the substrate support means (6) in the inner heat insulating wall (3). The second heating means (8), the driving means (9) for supporting the substrate supporting means (6) and moving it in the required direction, and the substrate (S) are carried into the reaction furnace (1). In addition, a transfer robot (10) for carrying out the processed substrate (S) and a cooling gas are blown from below the substrate support means (6). And to lower the gas supply means (11), and a substrate board lifting means lifting the (S) from the substrate support means (12).
This substrate processing apparatus generates a crystal film or other thin film by using a gas phase reaction. A portion that causes a gas phase reaction is called a reaction portion (1a), which is different from the reaction portion (1a). A loading / unloading section (1b) for transferring the substrate (S) to the outside of the reaction furnace (1) is provided below the place.
Cooling water flow paths (2a) and (3a) are respectively provided in the outer heat insulating wall (2) and the inner heat insulating wall (3).
The first heating means (5) has an induction heating coil (also referred to as a high frequency coil) (21). As shown in detail in FIG. 2 and FIG. 3, the induction heating coil (21) is a conductor having a planar spiral shape, and has a gas flow path (23) and a cooling water flow path ( 24) comprises a coil body (22) formed in a spiral shape, and a lid (25) which covers the coil body (22) from above and closes the openings of the flow paths (23) and (24). In FIG. 2A, the lid (25) is omitted and only the coil body (22) is shown. In the figure, (26) is an insulating gap, and in this gap (26), the radial width of each conductor portion forming a spiral shape is constant except for a special portion such as an end portion. It is provided as follows.
As shown in FIG. 3, a plurality of gas outlets (29) and (30) leading to the gas flow path are provided on the coil surface (opposite surface) of the coil body (22) facing the substrate (S). ing. As shown in detail in FIG. 4A, the plurality of gas outlets (29) provided at the periphery of the central space portion of the coil body (22) are formed not to be directly below but to be inclined toward the center. ing. The inclination angles (K1) and (k2) of these gas outlets (29) are changed according to the positions provided. Further, as shown in detail in FIGS. 4B and 4C, the gas outlet (30) provided on the opposing surface other than the peripheral edge of the central space of the coil body (22) is not directly below but in the circumferential direction. It is formed to incline toward. As a result, the gas blowing direction on the surface facing the induction heating coil (21) is directed toward the center in the inner peripheral portion of the coil (21) as shown by the arrow in FIG. It is made to be blown out towards.
The gas flow path (23) and the gas blowing ports (29) and (30) of the induction heating coil (21) are used for blowing the source gas during the gas phase reaction process, and are cooled after the gas phase reaction process. It is also used for gas blowing. That is, the gas flow path (23) and the gas outlets (29) and (30), the external piping connected to the gas flow path, a plurality of gas pipings connected to the piping, and the gas pipings A gas supply means (7) partially incorporated in the induction heating coil (21) by combining a gas supply source for each of the source gas and the cooling gas, each gas supply pressure adjusting section, and a gas switching means. Is configured to serve as both a source gas supply unit that supplies a source gas to the surface of the substrate (S) and an upper gas supply unit that blows out a cooling gas from above the substrate support unit.
The substrate support means (6) has a circular plate-like susceptor (31) having a circular recess on the upper surface for placing the substrate (S), and a substantially horizontal direction at equal intervals from the upper end of the column (33). And a susceptor support arm (32) extending in three directions. One protrusion (32a) for supporting the susceptor (31) at three points is provided at the tip of the upper surface of each support arm (32).
The second heating means (8) is a heat reflecting plate (35) whose surface is plated with a metal such as gold, silver or aluminum and has a mirror surface. The heat reflecting plate (35) is formed in a disk shape having a through hole in the center. As shown in FIG. 1, a cooling gas passage (36) for blowing out a cooling gas vertically upward is provided at the top of the heat reflecting plate (35). Side gas supply means (11). In addition, a cooling water flow path (37) for cooling the heat reflecting plate (35) is provided below the heat reflecting plate (35).
Although not shown, an induction heating coil similar to the first heating means arranged so as not to interfere with the pin receiver (43) may be used as the second heating means.
The drive means (9) is inserted into the central through hole of the heat reflecting plate (35) and the upper end thereof is integrated with the central portion of the susceptor support arm (32), and the support (33). ) About a vertical axis, a motor (38) composed of a stepping motor or a servo motor, an elevating device (39) for moving the column (33) in the vertical direction, and a controller for driving the elevating device (39) And.
The transfer robot (10) is of a single-wafer type, and moves up and down to move in and out of the inner heat insulating wall (3) and to move the substrate (S) between the susceptor (31). Directional movement can be performed.
The substrate lifting means (12) includes stepped through holes (41) provided at a total of three locations on the substrate mounting surface equidistant from the center of the susceptor (31) and spaced 120 ° in the circumferential direction. A headed pin (42) accommodated in the through-hole (41) so that it can move up and down and the top does not exceed the substrate mounting surface, and a pin of the susceptor (31) provided below the susceptor (31) (42) and pin holders (43) provided concentrically with the same diameter and at 120 ° intervals.
As described above, the susceptor (31) is rotated by the motor (38) during the gas phase reaction process, but at the end of the process, as shown in FIG. The pin receiver (43) is stopped so that it is positioned.
5 and 6 show an embodiment of a cooling mechanism used in this substrate processing apparatus.
In the cooling mechanism shown in the figure, the three pin receivers (43) can be moved up and down by an elevating device (not shown), and a plurality of vent holes (46) penetrate the susceptor (31). It is provided in the shape. When the processing is completed and the rotation of the susceptor (31) is stopped so that the pin receiver (43) is positioned just below the pin (42), the three pin receivers (43) are moved upward in this state. Moved to. As shown in FIG. 5, the pin receiver (43) passes through the through hole provided in the heat reflecting plate (35), reaches the reaction part (1 a), and comes into contact with the lower end of the pin (42). The pin (42) is moved upward by the pin receiver (43), whereby the substrate (S) is lifted from the susceptor (31). At this stage, cooling gas is blown from the upper and lower gas supply means (7) and (11) to cool the substrate (S) and the susceptor (31). Since the vent hole (46) is provided in the susceptor (31), the substrate (S) is also cooled by the cooling gas that has passed through the vent hole (46) of the susceptor (31). The susceptor (for example, made of carbon) (31) has a large heat capacity and is difficult to be cooled. However, since the substrate (S) is not in contact with the susceptor (31), it is cooled without being affected by the susceptor (31). The
The vent holes (46) of the susceptor (31) may be provided randomly as shown in FIG. 5 (b), for example, or may be provided radially as shown in FIG. 5 (c).
In this embodiment, all the pin receivers (43) are raised. However, the number of the pin receivers (43) to be raised may be one, and in this case, it is lifted by only one pin (42). The substrate (S) comes into contact with the susceptor (31) at one point on the outer peripheral surface. Thus, the substrate (S) and the susceptor (31) are not in point contact, that is, substantially not in contact, and the substrate (S) is cooled without being affected by the susceptor (31).
Further, instead of moving only the pin receiver (43) upward, a relative movement for lowering the susceptor (31) may be performed.
The susceptor (31) and the pin receiver (43) are vertically moved to the lower loading / unloading section (1b) while maintaining the positional relationship of FIG. During this time, the blowing of the cooling gas is continued. And the cooled board | substrate (S) is carried out by the conveyance robot (10) from the carrying in / out part (1b).
As shown in FIG. 6, the control unit (40) of the substrate processing apparatus of this embodiment is provided with a gas supply pressure adjustment unit (44) and a vertical movement amount adjustment unit (45). The gas supply pressure adjusting section (44) separately adjusts the gas supply pressure of the upper gas supply means (7) and the gas supply pressure of the lower gas supply means (11). 21) Cooling gas blown out from the gas outlets (29) and (30) provided in the induction heating coil (21) through a valve or the like provided in a pipe connected to the gas flow path (23). While adjusting the downward pressure, the gas is blown out from the gas outlet of the heat reflecting plate (35) through a valve or the like provided in a pipe connected to the gas flow path (36) of the heat reflecting plate (35). Adjusts the upward pressure of the cooling gas to be used. The vertical movement amount adjustment unit (44) adjusts the vertical movement amounts of the susceptor (31), the pin receiver (43), and the heat reflecting plate (35) separately via the lifting device (39).
According to this control unit (40), after the reaction process, first, the pin receiver (43) is moved upward, and the cooling operation is started in the state of FIG. Then, the susceptor (31) is moved downward while continuing the cooling operation. At this time, the susceptor (31), the pin receiver (43), and the heat reflecting plate (35) maintain the positional relationship of FIG. 5, that is, the susceptor (31), the pin receiver (43), and the heat reflecting plate (35). Are simultaneously lowered at the same speed and moved to the carry-in / out section (1b). When the susceptor (31) is moved from the reaction section (1a) to the carry-in / out section (1b), the upper gas supply means (7) is selected according to the descending amount of the susceptor (31) and the descending amount of the heat reflecting plate (35). ) Is controlled to be higher than the supply pressure of the lower gas supply means (11). Therefore, when the susceptor (31) and the heat reflecting plate (35) are lowered, the distance from the induction heating coil (21) to the substrate (S) is increased, and the upward pressure of the cooling gas in the vicinity of the substrate (S) A balance with the downward pressure is maintained by the control unit (40). Thereby, the contamination of the substrate (S) caused by the exhaust gas sprayed onto the substrate (S) and moved downwards again hits the substrate (S) can be prevented.
As shown in FIG. 7, screw grooves (51) and (52) may be formed on the opening side of the gas outlets (29) and (30) shown in FIG. The hole provided with the screw groove (51) shown in FIG. 7A is inclined toward the central axis direction of the coil, and the screw groove (52) shown in FIG. 7B is provided. The holes are inclined in a direction perpendicular to the radial direction of the coil surface. Male screw members (54), (55), and (56) are detachably screwed into these screw grooves (51) and (52) as necessary. The male screw members (54), (55), and (56) include a member (54) that completely closes the gas outlet and a through hole (55a) (56a) in the screwing direction. ) Is used as appropriate as a gas blowing hole.
8 (a) and 8 (b) show that the screw grooves (51) and (52) shown in FIG. 7 are completely closed by the male screw member (54). A commercially available member can be used as the male screw member (54). For example, when the size of the substrate (S) is changed from a large one to a small one, a gas blowout at the outer peripheral edge of the coil (21) is provided. Used to close the thread groove (51) (52). Thereby, supply of the raw material gas to an unnecessary part is stopped, and the deterioration of the quality of the substrate (S) due to the waste of the raw material gas and the grown crystal can be prevented.
FIGS. 9A and 9B show a male screw member (55) having a through hole (55a) in the screwing direction. According to the male screw member (55), the through hole (55a) is used as a gas blowing hole. The center of the through hole (55a) is aligned with the center of the male screw member (55). Therefore, gas can be blown out toward the center of the thread grooves (51) and (52).
10A and 10B show another example of the male screw member (56) having a through hole (56a) in the screwing direction. In this male screw member (56), the center of the through hole (56a) does not coincide with the center of the male screw member (56), but is inclined in a predetermined direction. According to this male screw member (56), the direction of the through hole (56a) is different from the direction of the screw groove (51) (52), and thus the screw opened in the induction heating coil (21). Gas can be blown out in a direction different from the direction of the grooves (51) and (52). Therefore, when it is desired to change the direction of penetration, it can be changed by replacing with a male screw member (56) of a different through hole (56a). The holes having the thread grooves (51) and (52) are not necessarily formed obliquely, and may be perpendicular to the coil surface. Then, as shown in FIG. 10 (b), the thread groove (52) formed in the hole perpendicular to the coil surface and the male thread member (56) having the inclined through hole (56a) are combined. The gas outlet in the inclined direction can be obtained.
It should be noted that it is desirable that the tops of the male screw members (54), (55) and (56) do not come out of the coil surface.
The male screw members (54) (55) (56) can be prepared in various specifications, and the direction, thickness, and shape of the through holes (55a) (56a) can be changed by changing the substrate ( S) By changing according to the source gas, the induction heating coil (21) can be used as it is, and the specifications of the substrate processing can be changed simply by changing the male screw members (54) (55) (56). can do.
The male screw member is made of the same material as the high frequency coil so as not to adversely affect the induction heating coil (21). For example, the male screw member is made of copper or brass corresponding to the copper induction heating coil (21). The
Although not shown in the drawings, the through hole provided in the male screw member may have a spiral shape, whereby the gas blown out from the spiral through hole is a swirl flow, and the source gas on the substrate (S) is in a uniform turbulent flow state. Can contribute to obtaining
The gas outlet (29) provided in the inner peripheral part of the coil body (22) is provided on the opposing surface of the coil (21) in the case shown in FIG. As shown in FIG. 11, it is more preferable that the gas outlet provided in the inner peripheral portion is provided on the inner peripheral surface. The gas outlet (57) shown in FIG. 11 (a) is provided on the inner peripheral surface of the central space portion of the coil body (22), and is arranged at substantially equal angles around the central axis of the coil (21). The direction of the blowout port (57) is the direction toward the outside of the facing surface and toward the central axis direction of the coil (21). The direction of these gas outlets (57) is such that they are connected at one point on the central axis of the coil (21) and on the substrate (S). Further, the gas outlets (58) shown in FIG. 11 (b) are provided on the inner peripheral surface of the central space portion of the coil body (22), and are arranged at substantially equal angles around the central axis of the coil (21). The gas outlet (58) is inclined in the horizontal plane and with respect to the central axis direction of the coil (21).
Since the conductor forming the coil does not exist in the central portion of the induction heating coil (21), it is difficult to supply the raw material gas uniformly to this portion, but the gas blowing ports (57) (58) ) Is provided as described above, the material gas can be sufficiently supplied even under the center of the coil (21) to improve the uniformity during the gas phase reaction process.
In addition, about the gas blower outlet provided in the center space part of a coil main body (22), what was shown to Fig.4 (a) (29) and what was shown to Fig.11 (a) (b) (57) (58) ) May be provided, or only one of them may be provided.
The induction heating coil (21) shown in FIG. 2 and FIG. 3 is driven by a high-frequency power source with a power connection terminal connected to the inner and outer peripheral ends thereof.
For a high-frequency power source (high-frequency oscillator), for example, an IGBT (Gate Insulated Bipolar Transistor) that is a power semiconductor switching element is used.
The substrate processing method according to the present invention is made possible by, for example, using the above-described substrate processing apparatus, and by spraying a raw material gas onto the substrate (S) placed on the susceptor (31) while heating it. In the substrate processing method for growing a crystal film or other thin film using a gas phase reaction on the substrate, after the substrate processing (gas phase reaction processing), for example, the pin receiver (43) is moved upward to move the pin (42 The substrate (S) is lifted from the susceptor (31) by the top surface of), and cooled in this state. At this time, a plurality of vent holes (46) are provided in the susceptor (31), and cooling gas is blown from the upper and lower sides of the substrate (S) using the upper gas supply means (7) and the lower gas supply means (11). Preferably, the substrate (S) is moved downward from the reaction part (1a) to the carry-out position while spraying the cooling gas, and the downward pressure of the upper cooling gas at the substrate position in the downward movement is equal to or higher than the upward pressure of the lower cooling gas. It is more preferable to adjust at least one of the upper and lower gas supply pressures.
Industrial applicability
The substrate processing apparatus and the substrate processing method according to the present invention are suitable for performing substrate processing (CVD: Chemical Vapor Deposition) in which a crystal film or other thin film is generated using a gas phase reaction.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing an outline of a main part of a substrate processing apparatus according to the present invention.
Fig.2 (a) is a top view which shows the upper surface of the coil for induction heating, FIG.2 (b) is sectional drawing which follows the bb line | wire of (a).
FIG. 3 is a bottom view showing the lower surface of the induction heating coil.
FIG. 4 is an enlarged cross-sectional view of a gas outlet provided in the induction heating coil, (a) is a vertical cross-sectional view of a conductor element facing the central space portion, and (b) is other than the central space portion. FIG. 2C is a vertical sectional view (radial direction) of the conductor element facing the surface, and FIG. 4C is a sectional view (circumferential direction) along the line CC in FIG.
FIG. 5 is a vertical sectional view showing an embodiment of the cooling mechanism of the substrate processing apparatus.
FIG. 6 is a block diagram showing a control unit of the substrate processing apparatus shown in FIG.
FIG. 7 is an enlarged cross-sectional view showing a thread groove provided in the gas outlet.
FIG. 8 is an enlarged cross-sectional view showing an example of a male screw member screwed into the screw groove shown in FIG.
FIG. 9 is an enlarged cross-sectional view showing another example of the male screw member screwed into the screw groove shown in FIG.
FIG. 10 is an enlarged cross-sectional view showing still another example of the male screw member screwed into the screw groove shown in FIG.
FIG. 11A is an enlarged cross-sectional view (a vertical cross-sectional view of a conductor element facing the central space) showing another example of a gas outlet provided in the induction heating coil, and FIG. FIG. 10 is an enlarged cross-sectional view (a horizontal cross-sectional view of a conductor element facing a central space) showing still another example of a gas outlet provided in the induction heating coil.

Claims (6)

反応炉と、基板を載置するサセプタと、基板を加熱する加熱手段と、基板表面に原料ガスを供給する原料ガス供給手段と、基板を反応炉内に搬入出する搬送ロボットと、冷却用ガスを吹き出すガス供給手段と、サセプタを上下移動させる上下移動手段とを備え、サセプタの所定位置に設けられた少なくとも3つの段付きの貫通孔に、頭付きのピンが頂面を基板載置面から突出させないようにかつ下端部をサセプタから突出させて上下移動可能にそれぞれ嵌め入れられており、搬送ロボットによる基板の搬入出時にサセプタが下降させられることによって、各ピンの下方の待機位置に位置するピン受けによってピン下端が受けられてピンが上昇し、ピンの頂面によって基板が持ち上げられるようになされている基板処理装置において、
反応炉に、被処理基板に気相反応をせしめる反応部と、反応部の下方にあって搬送ロボットによる基板搬入出時にサセプタが位置する搬入出部とが形成されており、少なくとも1つのピン受けが上下移動可能とされて、冷却時に前記待機位置以外で基板をサセプタから持ち上げ可能とされていることを特徴とする基板処理装置。
A reaction furnace, a susceptor for mounting the substrate, a heating means for heating the substrate, a raw material gas supply means for supplying a raw material gas to the substrate surface, a transfer robot for carrying the substrate into and out of the reaction furnace, and a cooling gas Gas supply means for blowing out the gas, and vertical movement means for moving the susceptor up and down, and at least three stepped through holes provided at predetermined positions of the susceptor, the headed pin has the top surface from the substrate mounting surface. The lower end protrudes from the susceptor so that it does not protrude and is fitted in such a manner that it can move up and down, and the susceptor is lowered when the substrate is loaded and unloaded by the transfer robot, so that it is positioned at a standby position below each pin. In the substrate processing apparatus in which the lower end of the pin is received by the pin receiver, the pin is raised, and the substrate is lifted by the top surface of the pin.
The reaction furnace is formed with a reaction section for causing a gas phase reaction to the substrate to be processed and a loading / unloading section below the reaction section where the susceptor is positioned when the substrate is loaded / unloaded by the transfer robot. The substrate processing apparatus, wherein the substrate can be moved up and down and the substrate can be lifted from the susceptor at a position other than the standby position during cooling.
ガス供給手段は、サセプタの下部に冷却ガスを供給し得るとともに、ピン受けと干渉しないようになされた下側ガス供給手段と、基板の上部に冷却ガスを供給し得る上側ガス供給手段とを有しており、サセプタに、下側ガス供給手段により供給された冷却ガスが通過可能な複数の通気孔が設けられている請求項1に記載の基板処理装置。The gas supply means has a lower gas supply means that can supply a cooling gas to the lower part of the susceptor and that does not interfere with the pin receiver, and an upper gas supply means that can supply the cooling gas to the upper part of the substrate. The substrate processing apparatus according to claim 1, wherein the susceptor is provided with a plurality of ventilation holes through which the cooling gas supplied by the lower gas supply means can pass. 上側および下側のガス供給手段のガス供給圧力をそれぞれ別個に調整する圧力調整手段と、基板をサセプタから持ち上げた状態でサセプタおよびサセプタを持ち上げているピン受けを移動させる移動量調整手段とをさらに備えていることを特徴とする請求項2に記載の基板処理装置。Pressure adjusting means for separately adjusting the gas supply pressures of the upper and lower gas supply means, and a movement amount adjusting means for moving the susceptor and the pin holder that lifts the susceptor while the substrate is lifted from the susceptor. The substrate processing apparatus according to claim 2, wherein the substrate processing apparatus is provided. サセプタに載置された基板を加熱しながらこれに原料ガスを吹き付けることにより、気相反応を用いた結晶膜あるいはその他の薄膜を基板上に成長させる基板処理方法において、基板処理後に、基板をサセプタから持ち上げた状態で冷却することを特徴とする基板処理方法。In a substrate processing method for growing a crystal film or other thin film using a vapor phase reaction on a substrate by heating the substrate placed on the susceptor while spraying a source gas on the substrate, the substrate is processed after the substrate processing. The substrate processing method characterized by cooling in the state lifted from. サセプタに複数の通気孔を設け、基板の上下両側から冷却ガスを吹き付けることを特徴とする請求項4に記載の基板処理方法。The substrate processing method according to claim 4, wherein a plurality of ventilation holes are provided in the susceptor, and cooling gas is sprayed from both upper and lower sides of the substrate. 冷却ガスを吹き付けながら基板を反応部から搬出位置に下方移動させ、さらに、下方移動中の基板位置における上側冷却ガスの下向き圧力が下側冷却ガスの上向き圧力以上となるように、上側および下側のガス供給圧力の少なくとも一方を調整することを特徴とする請求項5に記載の基板処理方法。The substrate is moved downward from the reaction part to the unloading position while blowing the cooling gas, and the upper and lower sides of the upper cooling gas at the substrate position being moved downward are equal to or higher than the upward pressure of the lower cooling gas. The substrate processing method according to claim 5, wherein at least one of the gas supply pressures is adjusted.
JP2003568125A 2002-02-12 2002-02-12 Substrate processing apparatus and substrate processing method Pending JPWO2003069020A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/001131 WO2003069020A1 (en) 2002-02-12 2002-02-12 System for processing substrate and method for processing substrate

Publications (1)

Publication Number Publication Date
JPWO2003069020A1 true JPWO2003069020A1 (en) 2005-06-02

Family

ID=27677663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003568125A Pending JPWO2003069020A1 (en) 2002-02-12 2002-02-12 Substrate processing apparatus and substrate processing method

Country Status (2)

Country Link
JP (1) JPWO2003069020A1 (en)
WO (1) WO2003069020A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012186465A (en) * 2011-02-18 2012-09-27 Hitachi Kokusai Electric Inc Substrate processing apparatus
JP7170546B2 (en) * 2019-01-18 2022-11-14 京セラ株式会社 sample holder
KR102263713B1 (en) * 2019-06-27 2021-06-10 세메스 주식회사 Supporting unit, and a substrate processing apparatus including the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6167224A (en) * 1984-09-07 1986-04-07 Fujitsu Ltd Manufacture of semiconductor device
JP2691908B2 (en) * 1988-06-21 1997-12-17 東京エレクトロン株式会社 Heating device, heat treatment device, and heat treatment method
US6616767B2 (en) * 1997-02-12 2003-09-09 Applied Materials, Inc. High temperature ceramic heater assembly with RF capability

Also Published As

Publication number Publication date
WO2003069020A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
US8148271B2 (en) Substrate processing apparatus, coolant gas supply nozzle and semiconductor device manufacturing method
US6599367B1 (en) Vacuum processing apparatus
US5164012A (en) Heat treatment apparatus and method of forming a thin film using the apparatus
JPH11204442A (en) Single wafer heat treatment device
US20090078563A1 (en) Plasma Processing Apparatus And Method Capable of Adjusting Temperature Within Sample Table
KR20150045012A (en) Apparatus for processing substrate
JPS63213672A (en) Rapid heating cvd apparatus
US6729261B2 (en) Plasma processing apparatus
JP5964107B2 (en) Semiconductor manufacturing apparatus and semiconductor manufacturing method
WO2005064254A1 (en) Vertical heat treatment device and method of controlling the same
KR20070088501A (en) Substrate stage mechanism and substrate processing apparatus
JP2003133233A (en) Substrate processing apparatus
JP3258885B2 (en) Film processing equipment
TWM581766U (en) MOCVD reactor
TW202008467A (en) Heat treatment device and heat treatment method
JP2010028098A (en) Coating apparatus and coating method
JP4583618B2 (en) Plasma processing equipment
JPH09232297A (en) Heat treatment apparatus
JP2002155366A (en) Method and device of leaf type heat treatment
JPWO2003069020A1 (en) Substrate processing apparatus and substrate processing method
JP4516318B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP2003234169A (en) Induction heating equipment and induction heating method
JP2016516292A (en) Substrate processing equipment
JP2003231970A (en) Substrate treating device and process
JPH09237763A (en) Single wafer processing heat treatment apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081028