JPWO2003064028A1 - 物質活性化方法及びその装置 - Google Patents

物質活性化方法及びその装置 Download PDF

Info

Publication number
JPWO2003064028A1
JPWO2003064028A1 JP2003563709A JP2003563709A JPWO2003064028A1 JP WO2003064028 A1 JPWO2003064028 A1 JP WO2003064028A1 JP 2003563709 A JP2003563709 A JP 2003563709A JP 2003563709 A JP2003563709 A JP 2003563709A JP WO2003064028 A1 JPWO2003064028 A1 JP WO2003064028A1
Authority
JP
Japan
Prior art keywords
substance
processed
activating
magnetism
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003563709A
Other languages
English (en)
Inventor
北田 正吉
正吉 北田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Publication of JPWO2003064028A1 publication Critical patent/JPWO2003064028A1/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/342Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents with the aid of electrical means, electromagnetic or mechanical vibrations, or particle radiations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/126Microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/0242Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
    • B01J8/025Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields
    • C02F1/481Treatment of water, waste water, or sewage with magnetic or electric fields using permanent magnets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0852Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0854Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing electromagnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/085Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields
    • B01J2219/0862Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy creating magnetic fields employing multiple (electro)magnets
    • B01J2219/0867Six or more (electro)magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0877Liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/005Systems or processes based on supernatural or anthroposophic principles, cosmic or terrestrial radiation, geomancy or rhabdomancy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/48Devices for applying magnetic or electric fields
    • C02F2201/483Devices for applying magnetic or electric fields using coils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Electromagnetism (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

エネルギ強度が繰り返して変化する磁気で被処理物を処理することにより、被処理物の分極している分子が、外部の磁気に追従しようとする。この物質活性化方法により、被処理物を好適に活性化することができる。

Description

技術分野
本発明は、磁気及び/又は活性構造体により所定の物質を活性化するための物質活性化方法及びその装置に関する。より詳しくは、前記磁気が、エネルギ強度を繰り返して変化する磁気であり、前記活性構造体が、特定の元素から構成された粒子間にエネルギ集中の場を持たせ、このエネルギ集中の場に、特に水や炭化水素等の水素を含有する物質を通過又は滞留させることによって物質を活性化する機能を有する活性構造体であり、これらを用いた物質活性化方法及びその装置に関する。
背景技術
近年、石油等の天然資源の枯渇化や二酸化炭素による地球温暖化の観点から、石油に代わる代替燃料として、水素が注目されている。
今日、このような水素の製造方法としては、工業用水素の90%は石油または天然ガスから水蒸気改質法或いは部分酸化法で製造されている。
これら以外の他の水素を製造する方法としては、石炭を原料とする方法(COG法や発生炉ガス化法)、食塩電解槽からの副生水素の回収、水電解法等が従来から行われてきている。
また、最近は熱化学水素製造法や太陽光を利用した水素製造方法も研究されている。
上述した水素の製造方法以外の水素製造方法として、例えば水を熱分解させて水素を得る方法がある。この方法は最低でも1500℃の反応温度が必要になり、水の水素への分解率をあげるためにはさらに4300℃程度の高温下で反応を行う必要が有るのでエネルギ消費量が大きく、安価な熱源がある場合は別として実用的ではない。
一方、ナトリウム、アルミニウム、マグネシウム等のアルカリ金属類、または、アルカリ土類金属類を水に添加して、これらの金属と水とを化学反応させる方法が考えられるが、これらの金属は比較的高価であり、これらの化学反応は激しい反応であるので工業的に利用するのは困難である。
また、水の電解法における水の代わりにメタノール等の炭化水素を用いて電気分解することも考えられる。炭化水素は、分子内の水素と炭素との結合エネルギが比較的小さく、それらの電気分解に必要とされる電位差は水の電気分解よりも少なくて済むが、反応生成物としてCO、CO等の副産物の生成を伴うためこれらを分離・除去する対策を講じる必要がある。
本願出願人は、外部からエネルギを与えることなしに、水や炭化水素における水素結合から水素を遊離させて水素を発生させることが可能な活性構造体を鋭意検討し、先に特願平2001−021734号を出願した。
しかしながら、この活性構造体の性能をより向上させたいという要望があり、種々の被処理物の前処理方法を検討した結果、本発明をするに至った。
本発明は、前記課題を解決するためになされたものであって、被処理物を好適に活性化することができる物質活性化方法及びその装置を提供することを目的とする。
発明の開示
前記課題を解決するために、本発明の一側面としての物質活性化方法は、下記工程:(A)エネルギ強度が繰り返して変化する磁気で被処理物を処理して活性化する工程を含むことを特徴とする。
前記本発明の一側面としての物質活性化方法によると、被処理物をエネルギ強度が繰り返して変化する磁気で処理することで被処理物を活性化することにより、分子内で分極している分子が外部の磁気に追従しようとして、活性化される。
本発明に係る物質活性化方法は、前記(A)工程と、(B)活性化する前記被処理物を前記(A)工程の前段及び/又は後段で活性化する工程とを含むことができる。前記(A)工程と、(B)活性化する前記被処理物を前記(A)工程の前段及び/又は後段で活性化する工程とを含むことにより、さらに好適に被処理物を活性化することができる。
前記(A)工程における被処理物に磁気を加える方法は、好ましくは、高電圧パルス発振機で発生するマイクロ波を加える方法である。
前記(A)工程における被処理物に磁気を加える方法を、高電圧パルス発振機で発生するマイクロ波を加える方法とすることにより、高電圧でかつ電力消費量の少ない電源で発生したマイクロ波により被処理物を活性化することができる。
前記(A)工程における被処理物に磁気を加える方法は、好ましくは、交互に磁気の向きが反対になるように永久磁石を複数配置した管内に被処理物を通過させることで磁気を加える方法である。
前記(A)工程における被処理物に磁気を加える方法を、交互に磁気の向きが反対になるように永久磁石を複数配置した管内に被処理物を通過させることで磁気を加える方法とすることにより、前記被処理物に振動磁場を加えることができる結果、簡単に被処理物を活性化することができる。
また、前記(A)工程における被処理物に磁気を加える方法は、コイルを巻き付けた管内に被処理物を通過させ、このコイルに交流電流を流す方法で磁気を加える方法であってもよい。
前記(A)工程における被処理物に磁気を加える方法を、コイルを巻き付けた管内に被処理物を通過させ、このコイルに交流電流を流す方法として、被処理物を活性化すると、前記被処理物に振動磁場を加えることができる結果、簡単に被処理物を活性化することができる。
前記(B)工程は、好ましくは、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体に被処理物を通過させる活性化処理工程である。
前記(B)工程が、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体に被処理物を通過させる活性化処理工程とすることにより、更に被処理物を好適に活性化することができる。
前記粒子は、好ましくは、正四面体の頂点又は正三角形の頂点に配置する。
粒子を正四面体の頂点又は正三角形の頂点に配置すると、粒子間で高いエネルギ(による相互作用)が発生し、すなわち、エネルギ集中の場が生じ、前記エネルギ集中の場に被処理物を通過又は滞留させることにより、被処理物を活性化することが可能となる。
本発明の別の側面としての物質活性化装置は、エネルギ強度が繰り返して変化する磁気で被処理物を処理して活性化する装置を含むことを特徴とするものである。
エネルギ強度が繰り返して変化する磁気で処理することで被処理物を処理して活性化することにより、分子内で分極している分子が外部の磁気に追従しようとして、活性化される。
前記物質活性化装置の前段及び/又は後段に、好ましくは、前記被処理物を活性化する物質活性化装置とを備えてもよい。
前記物質活性化装置の前段及び/又は後段に、被処理物を活性化する物質活性化装置とを備えることにより、被処理物をより好適に活性化することができる。
前記被処理物に磁気を加える装置は、好ましくは、高電圧パルス発振機を使って発生する磁気を加える装置である。
前記被処理物に磁気を加える装置を、高電圧パルス発振機を使って発生する磁気を加える装置とすることにより、高電圧でかつ電力消費量の少ない電源で発生したマイクロ波により被処理物を活性化することができる。
また、前記被処理物に磁気を加える装置は、管内に交互に磁気の向きが反対になるように永久磁石を複数配置した永久磁石式磁場発生装置であってもよい。
被処理物に磁気を加える装置を、管内に交互に磁気の向きが反対になるように永久磁石を複数配置した永久磁石式磁場発生装置とすることにより、管内に前記被処理物を通過させるだけで磁気を加えることができる。その結果、被処理物を活性化することができる。
また、前記被処理物に磁気を加える装置は、交流電流を流すコイルを管外に巻き付けた管を管内に配置した電磁石式磁場発生装置であってもよい。
被処理物に磁気を加える装置が、交流電流を流すコイルを管外に巻き付けた管を管内に配置した電磁石式磁場発生装置であることにより、管内に前記被処理物を通過させるだけで磁気を加えることができる。その結果、被処理物をより好適に活性化することができる。
前記物質活性化装置の前段及び/又は後段で前記被処理物を活性化する装置は、好ましくは、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置である。
前記物質活性化装置の前段及び/又は後段で前記被処理物を活性化する装置を、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置とすることにより、被処理物をより好適に活性化することができる。
前記粒子は、好ましくは、正四面体の頂点又は正三角形の頂点に配置される。
粒子を正四面体の頂点又は正三角形の頂点に配置すると、粒子間で高いエネルギ(による相互作用)が発生し、エネルギ集中の場が生じ、前記エネルギ集中の場に被処理物を通過又は滞留させることにより、被処理物を活性化することが可能となる。
尚、ここでいう活性化とは、分子、原子がエネルギを付与されてエネルギレベルの高い状態で活発に運動することだけでなく、分子・原子同士の交換反応、すなわち分解反応等も含むものとする。
発明を実施するための最良の形態
以下、本発明の実施の形態について第1図から第5図を参照しながら具体的に説明する。
最初に、本発明に係る第一実施形態の物質活性化装置について第1図を参照して説明する。この物質活性化装置は、本発明の物質活性化方法を具現化するものである。
尚、第1図(a)は、本発明に係る第一実施形態の物質活性化装置に使用される高電圧パルス発振機の電源回路、第1図(b)は、第1図(a)の電源回路から発振される発生パルスの特性を示す図、第1図(c)は、第一実施形態の物質活性化装置の全体構成図である。
第一実施形態の物質活性化装置に使用される高電圧パルス発振機の電源回路は、第1図(a)に示すように、大電力のマイクロ波発振に適しているマグネトロンを使った発振回路である。
この発振回路は、パルス成形回路1からのパルス波がマグネトロンのカソード2に入ると、カソード電位は例えば数千ボルトの負電位になり、マグネトロンが発振する。パルス波が入らない場合は、カソード電位は負にならないので発振しない。
従って発振は、第1図(b)に示すような矩形のパルス状の電圧出力となる。
マグネトロンは、効率がよいので大出力発振には最適であるが、温度変化等により周波数が変化し易いのでドップラレーダ等特に周波数精度や安定度が要求されるものには、大電力クライストロンが使用されることがある。
マグネトロンから発振されたマイクロ波は、周波数が高い(例えば2.45GHz)ので導波管を介して伝搬される。
尚、低周波数(例えば400Hz)の発振機を使用する場合は、導波管ではなく電線ケーブルで伝搬することができる。
次に、第一実施形態の物質活性化装置の全体の構成について第1図(c)を参照して説明する。尚、被処理物として本実施形態では水を使用した場合について説明する。
第一実施形態の物質活性化装置10は、第1図(c)に示すように、
高電圧パルス発振機であるマイクロ波発振機11と、
前記マイクロ発振機11から発振されたマイクロ波を、矩形の箱であるオーブン16まで伝搬する導波管12と、
前記オーブン16から戻ってきた反射電力を減衰させてマイクロ波発振機11を保護するアイソレータ13と、
前記オーブン16への入射電力及び反射電力を表示するパワーモニタ14と、
前記導波管12の回路の整合を取ってオーブン16からの反射電力が最小になるように調整する整合器15と、
前記オーブン16内に配設され、マイクロ波を透過する材料(例えばテトラフルオロエチレン)で形成された配管16aと、
から主要部が構成される。
このように構成される第一実施形態の物質活性化装置の作用について説明する。
(1)最初に、図示しないポンプ等で配管16a内に水を通過させる。
(2)マイクロ波発振機11のスイッチON。周波数2.45GHz、印加電圧1000Vでマイクロ波を発振。
(3)パワーモニタ14を見ながら整合器15を調整してオーブン16からの反射電力が最小になるように調整する。
(4)水のオーブン16出口における温度が、所定の水温(例えば80℃)となるまでマイクロ波出力又は水の流量を調節して加熱し、被処理物である水を活性化する。
(5)オーブン16内で水に吸収されなかったマイクロ波は、オーブン16を出た後アイソレータ13により熱に変換されて系外に放出される。
このような構成と作用を有する第一実施形態の物質活性化装置によれば、水を活性化する方法が、マイクロ波発振機11で発生するマイクロ波を加える方法であることにより、
(1)水の分子は分極しているため、外部からマイクロ波を加えると、水分子が外部の電界に配向しようとして激しい振動や回転を起こす。周波数が高くなるのに従って外部の電界に追い付けなくなり、水分子同士の摩擦熱が大きくなる結果、水が昇温され、活性化される。
(2)第1図(b)に示すようなパルス特性を示すので、高電圧(1000V)であっても電力消費量の少ない電源で物質を活性化することができる。
尚、本実施形態では液体である水を活性化したが、テトラフルオロエチレン(PTFE)の配管16aではなく誘電体セラミックスの配管を使用すれば、気体(例えば酸素)を活性化することもできる。
次に、第二実施形態の物質活性化装置について第2図を参照して説明する。
尚、第2図は、第二実施形態の物質活性化装置の内部構造を示す概略図である。
第二実施形態の物質活性化装置20は、第2図に示すように、円筒ケース22の内部に、交互に磁気の向きが反対になるように円盤状の永久磁石23を複数配設した永久磁石式磁場発生装置21である。
永久磁石式磁場発生装置21において、振動磁場管の長さL[m]、永久磁石の個数N[−]、磁束密度B[T]、水の流速v[m/s]とすると、振動周波数F[1/s]=(N×v)/Lとなる。一方、断面積A[m]とすると、水の流量q[m/s]=A×vとなる。
水の処理量をQ[m/h]とすると、振動磁場を加える時間は、t[min]=(A×L)/(Q×60)=(q×N)/(F×Q×60)となる。
従って、水は、永久磁石式磁場発生装置21内を通過する間に、磁束密度B[T]、振動周波数F[1/s]の振動磁場の中で時間t[min]の間作用を受けることになる。
このような構成と作用を有する第二実施形態の物質活性化装置20によれば、交互に磁気の向きが反対になるように円盤状の永久磁石23を複数配置した管内に被処理物である水を通過させることにより、水に振動磁場を加えることできる結果、簡単に水を活性化することができる。
次に、第三実施形態の物質活性化装置について第3図を参照して説明する。
尚、第3図は、電磁石式磁場発生装置の内部構造を示す概略図である。
第三実施形態の物質活性化装置30は、第3図に示すように、コイル32を巻き付けた内部円筒ケース33と、前記内部円筒ケース33に巻き付けた前記コイル32に電力を供給する交流電源35と、これらを内部に収容する外部円筒ケース34とから構成される。
電磁石式磁場発生装置31においては、交流電源の周波数f[1/s]、振動磁場管の長さL′[m]、コイルを巻いた管の断面積A′[m]、水の処理量をQ′[m/h]とすると、振動周波数F′[1/s]=交流電源の周波数f、振動磁場作用時間t′[min]=(A′×L′)/(Q′×60)となる。
また、交流電流をI[A]、コイルの巻数をN′[回]、透磁率をμ[H/m]とすると、磁束密度B′[T]=(μ×I×N′)/L′となる。
従って、水は、電磁石式磁場発生装置30を通過する間に、磁束密度B′[T]、振動周波数F′[1/s]の振動磁場の中で時間t′[min]の間作用を受けることになる。
このような構成と作用からなる第三実施形態の物質活性化装置30によれば、コイル32を巻き付けた電磁石式磁場発生装置31の管内に被処理物である水を通過させ、このコイル32に交流電流を流す方法で水を活性化することにより、水に振動磁場を加えることができる結果、簡単に水を活性化することができる。
次に、第一実施形態の物質活性化装置から第三実施形態の物質活性化装置のうちの少なくとも一つの物質活性化装置と前段及び/又は後段で組み合わせて使用される第四実施形態の物質活性化装置について第4図を参照して説明する。
尚、第4図(a)は、第四実施形態の物質活性化装置の内部構造を示す図、第4図(b)は、第四実施形態の物質活性化装置を利用して水から水素を製造するためのプロセスフローチャートである。
第四実施形態の物質活性化装置40は、第4図(a)に示すように、珪素、チタン、ニッケル及びサマリウムからなる群から選択される単一成分の元素から構成された粒子40aの一種又はそれ以上を、各元素に固有の波動性エネルギを増幅させる位置に配置して、前記粒子40a間にエネルギ集中の場を持たせた活性構造体を形成し、それを容器40b内に収容した装置である。尚、本実施形態では単一成分の珪素の粒子40aを使用している。
このように構成することによって、粒子40a間で高いエネルギ(による相互作用)が発生し、すなわち、エネルギ集中の場が生じ、このエネルギ集中の場に被処理物である水を通過又は滞留させることにより物質を活性化することが可能となる。
尚、「各元素に固有の波動性エネルギを増幅させる位置」とは、実験的に見出された位置であって、所定の元素から構成された粒子40a間に物質を通過させるか或いは滞留させた際に、各元素の固有の振動・揺らぎ等により通過又は滞留する物質に対してエネルギを付与する位置を言う。
また、前記粒子40aは球状であり、各粒子40aが積層されて構成された正四面体の頂点に粒子40aが配置されている。尚、粒子40aは正三角形の頂点に配置しても良い。
このように、粒子40aを正四面体の頂点に配置したことにより、粒子40a間で高いエネルギ(による相互作用)が発生し、すなわち、エネルギ集中の場が生じ、前記エネルギ集中の場に被処理物である水を通過又は滞留させることにより、水を活性化することが可能となる。
このような構成を有する第四実施形態の物質活性化装置40の作用について、第4図(b)を参照して説明する。尚、本実施形態で使用する被処理物としては液体である水を使用するが、水以外の有機化合物や気体例えば酸素を管内に流しても同様に活性化される。
(1)最初に弁V2,V3,V6を開として弁V6から水を系内に供給し水の小循環ラインを形成する。水循環ポンプ41を起動し水を循環する。弁V4及び弁V5を開、弁V3を閉とする。
(2)ヒータ42、物質活性化装置40、電解槽43、気液分離器44、弁V5、弁V2、水循環ポンプ41、弁V4から形成される大循環ラインに水を循環させる。
(3)ヒータ42のスイッチON。尚、ヒータ42で加熱するのは、被処理物である水の活性化をさらに促進するために行う。また、本発明に係る物質活性化装置40に水を通過すると、波動性エネルギ集中の場でエネルギを付与され、水が活性化される。
(4)電解槽43のスイッチON。水を電解することによりガスを発生。
このとき水はヒータ42で加熱され、活性化装置40によりさらに水分子が活性化される結果、電解槽43内の水の分解が促進され単位電力当たりの水素の発生量が向上する(例えば1〜2割向上する)。
(5)電解槽43から排出される気泡を含んだ液は、気液分離器44に導入され、電解槽43から発生する気泡を含んだ液から気泡のみを分離される。
(6)気液分離器44で分離された気泡は、水素透過膜を備えた膜分離離装置45により、水素を回収(例えば回収率70%)され、水素透過膜を透過できなかった酸素含有ガスはそのまま大気に放出される。
(7)一方、気液分離器44で気泡を分離された液は、再び水循環ポンプ41で系内を循環される。
(8)運転中に電解され消費された水の量は、弁V6から補給水として補給される。
尚、本発明に係る物質活性化装置40の活性が高いときは、電解槽43を省略することもできる。また、活性が低いときは、物質活性化装置40を複数個直列及び/又は並列に並べて電解槽43を省略しても良い。
このような構成と作用を有する第四実施形態の物質活性化装置40によれば、(1)単一成分の珪素から構成された粒子40aを、珪素に固有の波動性エネルギを増幅させる位置に配置した活性構造体に、被処理物である水を通過させて活性化処理するように構成したことにより、水を好適に活性化することができる。(2)物質活性化装置40を、水を活性化する前処理装置として使用すれば、予め活性化された水を供給できるので、水の分解反応が促進される。
尚、本実施形態では被処理物として水を使用したが、有機化合物や気体である酸素等も同様に活性化することができる。
次に、第五実施形態の物質活性化装置について第5図を参照して説明する。
第五実施形態の物質活性化装置50は、第5図に示すように、第一実施形態の物質活性化装置10と第四実施形態の物質活性化装置40とを備えた装置である。
すなわち、マイクロ波発振機11を利用した物質活性化装置と、単一成分の珪素から構成された粒子を、珪素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置とを含む装置である。
尚、上述した第一実施形態の物質活性化装置10及び第四実施形態の物質活性化装置40の説明で使用した同じ部材については同じ符号を付して説明する。
このように構成される第五実施形態の物質活性化装置50の作用について第5図を参照して説明する。尚、第5図は、本発明に係る第五実施形態の物質活性化装置50を利用して水から水素を製造するためのプロセスフローチャートである。
尚、本実施形態で使用する被処理物としては液体である水を使用するが、水以外の有機化合物や気体、例えば酸素を流しても同様に活性化される。
(1)最初に弁V2,V3,V6を開として弁V6から系内に水を供給し、水の小循環ラインを形成する。水循環ポンプ41を起動し水を循環する。弁V4及び弁V5を開、弁V3を閉とする。
(2)オーブン16、活性化装置40、電解槽43、気液分離器44、弁V5、弁V2、水循環ポンプ41、弁V4から形成される大循環ラインに水を循環させる。
(3)オーブン16のスイッチON。オーブン16内でマイクロ波を使って水を加熱するのは、被処理物である水の活性化を促進するために行う。
第五実施形態の物質活性化装置50のオーブン16、及びその後段に設けられた活性化装置40に水を通過すると、オーブン16内で加熱され活性化された水が、さらに活性化装置40内の波動性エネルギ集中の場でエネルギを付与されて活性化される。
(4)電解槽43のスイッチON。水を電解することによりガスを発生。
このとき水はオーブン16で加熱されて活性化され、後段の活性化装置40によりさらに水分子が活性化される結果、電解槽43内での水の分解が促進され単位電力当たりの水素の発生量が向上する(例えば2〜3割向上する)。
(5)電解槽43から排出される気泡を含んだ液は、気液分離器44に導入され、電解槽43から発生する気泡を含んだ液から気泡のみを分離される。
(6)気液分離器44で分離された気泡は、水素透過膜を備えた膜分離装置45により、水素を回収(例えば回収率70%)され、水素透過膜を透過できなかった酸素含有ガスはそのまま大気に放出される。
(7)一方、気液分離された液は、再び水循環ポンプ41により系内を循環される。
(8)運転中に電解され消費された水の量は、弁V6から補給水として補給される。
尚、物質活性化装置40の活性が高いときは電解槽43を省略することもできる。また、活性が低いときは、物質活性化装置40を複数個直列及び/又は並列に並べて電解槽43を省略しても良い。
このような構成と作用を有する第五実施形態の物質活性化装置によれば、
(1)単一成分の珪素から構成される粒子を、珪素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置40と、マイクロ波発振機11を利用したオーブン16とを備えた構成とし、被処理物である水を循環させて活性化処理するように構成したことにより、水を好適に活性化することができる。その結果、電解槽43内での水の分解が促進され単位電力当たりの水素の発生量が向上する。
(2)マイクロ波発振機11を利用したオーブン16と、単一成分の珪素から構成された粒子40aを、珪素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置40とを備えて、水を処理する前処理装置として使用すれば、予め活性化された水を供給できるので、水の分解反応が促進される。
尚、本実施形態では被処理物として水を物質活性化装置に通過したが、有機化合物や気体、例えば酸素等も同様に通過させて活性化することができる。また、本実施形態では単一成分の珪素から構成された粒子を使用したが、その他のチタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を使用しても良い。
以上、本発明の物質活性化方法で使用される第一実施形態の物質活性化装置から第五実施形態の物質活性化装置までを説明したが、これらの実施形態の物質活性化装置のうちの少なくとも1つを使用することにより初めて被処理物である水を活性化できるのは言うまでもない。
最後に、本発明は、上述した第一実施形態の物質活性化装置から第五実施形態の物質活性化装置に限定されるものではなく、発明の技術的範囲を逸脱しない範囲内で適宜変更して実施可能である。
例えば、第四実施形態の物質活性化装置40とその他の物質活性化装置20,30のうちの少なくとも1つと組み合わせて物質を活性化する物質活性化装置を構成することも可能である。
また、電解槽43と物質活性化装置40とを一体化した装置に構成してもよい。すなわち、物質活性化装置40の粒子40aを板状に成形し、電解層43の電極として使用して電解することもできる。
また、オーブン16の配管16aの中に活性構造体を収容するようにすれば、1台の装置で水の活性化を同時に行うこともできる。
産業上の利用可能性
以上の構成と作用からなる本発明によれば、以下の効果を奏する。
1.被処理物をエネルギ強度が繰り返して変化する磁気で処理することで被処理物を活性化することにより、分子内で分極している分子が外部の磁気に追従しようとして、活性化される。
2.前記(A)工程と、(B)活性化する前記被処理物を前記(A)工程の前段及び/又は後段で活性化する工程とを含むことを含むことにより、さらに好適に被処理物を活性化することができる。
3.前記(A)工程における被処理物に磁気を加える方法が、高電圧パルス発振機で発生するマイクロ波を加える方法であることにより、高電圧でかつ電力消費量の少ない電源で発生したマイクロ波により被処理物を活性化することができる。
4.前記(A)工程における被処理物に磁気を加える方法が、交互に磁気の向きが反対になるように永久磁石を複数配置した管内に被処理物を通過させることで磁気を加える方法であることにより、前記被処理物に振動磁場を加えることができる結果、簡単に被処理物を活性化することができる。
5.前記(A)工程における被処理物に磁気を加える方法が、コイルを巻き付けた管内に被処理物を通過させ、このコイルに交流電流を流す方法で被処理物を活性化することにより、前記被処理物に振動磁場を加えることができる結果、簡単に被処理物を活性化することができる。
6.前記(B)工程を、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体に被処理物を通過させる活性化処理工程とすることにより、更に被処理物を好適に活性化することができる。
7.粒子を正四面体の頂点又は正三角形の頂点に配置したことにより、粒子間で高いエネルギ(による相互作用)が発生し、すなわち、エネルギ集中の場が生じ、前記エネルギ集中の場に被処理物を通過又は滞留させることにより、被処理物を活性化することが可能となる。
8.エネルギ強度が繰り返して変化する磁気で処理することで被処理物を処理して活性化することにより、分子内で分極している分子が外部の磁気に追従しようとして、活性化される。
9.前記物質活性化装置の前段及び/又は後段に、被処理物を活性化する物質活性化装置とを備えることにより、被処理物をより好適に活性化することができる。
10.前記被処理物に磁気を加える装置が、高電圧パルス発振機を使って発生する磁気を加える装置であることにより、高電圧でかつ電力消費量の少ない電源で発生したマイクロ波により被処理物を活性化することができる。
11.被処理物に磁気を加える装置が、管内に交互に磁気の向きが反対になるように永久磁石を複数配置した永久磁石式磁場発生装置であることにより、管内に前記被処理物を通過させるだけで磁気を加えることができる。その結果、被処理物を活性化することができる。
12.被処理物に磁気を加える装置が、交流電流を流すコイルを管外に巻き付けた管を管内に配置した電磁石式磁場発生装置であることにより、管内に前記被処理物を通過させるだけで磁気を加えることができる。その結果、被処理物をより好適に活性化することができる。
13.前記物質活性化装置の前段及び/又は後段で前記被処理物を活性化する装置が、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置であることにより、被処理物をより好適に活性化することができる。
14.粒子を正四面体の頂点又は正三角形の頂点に配置することより、粒子間で高いエネルギ(による相互作用)が発生し、エネルギ集中の場が生じ、前記エネルギ集中の場に被処理物を通過又は滞留させることにより、被処理物を活性化することが可能となる。
【図面の簡単な説明】
第1図(a)は、本発明に係る第一実施形態の物質活性化装置で使用される高電圧パルス発振機の電源回路を示す図であり、第1図(b)は、第1図(a)の電源回路から発振される発生パルスの特性を示す図であり、第1図(c)は、第一実施形態の物質活性化装置の全体構成図である。
第2図は、第二実施形態の物質活性化装置の内部構造を示す概略図である。
第3図は、第三実施形態の物質活性化装置の内部構造を示す概略図である。
第4図(a)は、第四実施形態の物質活性化装置の内部構造の縦断面図であり、第4図(b)は、第四実施形態の物質活性化装置を利用して水から水素を製造するためのプロセスフローチャートである。
第5図は、本発明に係る第五実施形態の物質活性化装置を利用した水から水素を製造するためのプロセスフローチャートである。

Claims (14)

  1. 下記工程:
    (A)エネルギ強度が繰り返して変化する磁気で被処理物を処理して活性化する工程
    を含むことを特徴とする物質活性化方法。
  2. 下記工程:
    (B)活性化する前記被処理物を前記(A)工程の前段及び/又は後段で活性化する工程、
    をさらに含むことを特徴とする請求の範囲第1項に記載の物質活性化方法。
  3. 前記(A)工程における被処理物に磁気を加える方法が、高電圧パルス発振機で発生するマイクロ波を加える方法であることを特徴とする請求の範囲第1項または第2項に記載の物質活性化方法。
  4. 前記(A)工程における被処理物に磁気を加える方法が、交互に磁気の向きが反対になるように永久磁石を複数配置した管内に被処理物を通過させることで磁気を加える方法であることを特徴とする請求の範囲第1項または第2項に記載の物質活性化方法。
  5. 前記(A)工程における被処理物に磁気を加える方法が、管外にコイルを巻き付けた管内に被処理物を通過させ、このコイルに交流電流を流す方法で磁気を加える方法であることを特徴とする請求の範囲第1項または第2項に記載の物質活性化方法。
  6. 前記(B)工程が、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体に被処理物を通過させる活性化処理工程であることを特徴とする請求の範囲第2項から第5項に記載の物質活性化方法。
  7. 前記粒子を正四面体の頂点又は正三角形の頂点に配置したことを特徴とする請求の範囲第6項に記載の物質活性化方法。
  8. エネルギ強度が繰り返して変化する磁気で被処理物を処理して活性化する装置を含むことを特徴とする物質活性化装置。
  9. 請求の範囲第8項に記載の物質活性化装置と、前記物質活性化装置の前段及び/又は後段に、前記被処理物を活性化する物質活性化装置とを備えたことを特徴とする物質活性化装置。
  10. 前記被処理物に磁気を加える装置が、高電圧パルス発振機を使って発生する磁気を加える装置であることを特徴とする請求の範囲第8項又は第9項に記載の物質活性化装置。
  11. 前記被処理物に磁気を加える装置が、管内に交互に磁気の向きが反対になるように永久磁石を複数配置した永久磁石式磁場発生装置であることを特徴とする請求の範囲第8項又は第9項に記載の物質活性化装置。
  12. 前記被処理物に磁気を加える装置が、交流電流を流すコイルを管外に巻き付けた管を管内に配置した電磁石式磁場発生装置であることを特徴とする請求の範囲第8項又は第9項に記載の物質活性化装置。
  13. 請求の範囲第8項に記載の物質活性化装置の前段及び/又は後段で前記被処理物を活性化する装置が、珪素、チタン、ニッケル、サマリウムからなる群から選択された単一成分の元素又は弗化炭素から構成された粒子を、各元素又は弗化炭素に固有の波動性エネルギを増幅させる位置に配置した活性構造体を収容した物質活性化装置であることを特徴とする請求の範囲第9項から第12項のうちの何れか1項に記載の物質活性化装置。
  14. 前記粒子を正四面体の頂点又は正三角形の頂点に配置したことを特徴とする請求の範囲第13項に記載の物質活性化装置。
JP2003563709A 2002-01-30 2003-01-23 物質活性化方法及びその装置 Withdrawn JPWO2003064028A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002022050 2002-01-30
JP2002022050 2002-01-30
PCT/JP2003/000592 WO2003064028A1 (fr) 2002-01-30 2003-01-23 Procede d'activation de substance et dispositif correspondant

Publications (1)

Publication Number Publication Date
JPWO2003064028A1 true JPWO2003064028A1 (ja) 2005-05-26

Family

ID=27654416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003563709A Withdrawn JPWO2003064028A1 (ja) 2002-01-30 2003-01-23 物質活性化方法及びその装置

Country Status (3)

Country Link
US (1) US20050178710A1 (ja)
JP (1) JPWO2003064028A1 (ja)
WO (1) WO2003064028A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090092540A1 (en) * 2007-10-05 2009-04-09 Realm Industries Method and apparatus of modifying bond angles of molecules
US7793621B2 (en) * 2007-10-05 2010-09-14 Realm Industries Alternative fuel engine
AU2014203279B2 (en) * 2013-06-19 2019-01-24 Hydrosmart A Liquid Treatment Device
JP6637297B2 (ja) * 2015-11-18 2020-01-29 斎 岩間 水処理装置および水処理方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3514604A (en) * 1968-06-28 1970-05-26 Mcpherson Instr Corp Pulsed microwave light source
JPS5939178B2 (ja) * 1977-04-25 1984-09-21 株式会社東芝 活性化ガス発生装置
US4672938A (en) * 1985-12-26 1987-06-16 Eaton Corporation Method and apparatus for multiphasic pretreatment of fuel to achieve hypergolic combustion
JPH06222121A (ja) * 1993-01-26 1994-08-12 Jeol Ltd パルスフーリエ変換電子スピン共鳴装置
JPH08144874A (ja) * 1994-11-14 1996-06-04 Yamashita Tsugiko 内燃機関の燃費改善装置
US5976398A (en) * 1996-09-04 1999-11-02 Fuji Xerox Co., Ltd. Process for manufacturing semiconductor, apparatus for manufacturing semiconductor, and amorphous material
JP2000254652A (ja) * 1999-03-05 2000-09-19 Kankyo Hozen Kk 水の磁気処理装置

Also Published As

Publication number Publication date
US20050178710A1 (en) 2005-08-18
WO2003064028A1 (fr) 2003-08-07

Similar Documents

Publication Publication Date Title
US20100206742A1 (en) Ultrasonic treatment chamber for treating hydrogen isotopes
CA2789402C (en) Method and apparatus for applying plasma particles to a liquid and use for disinfecting water
US20120097550A1 (en) Methods for enhancing water electrolysis
JP2009054557A (ja) 液体中プラズマ発生装置
Jerman The origin of life from quantum vacuum, water and polar molecules
Miyamoto et al. Modeling of laser-pulse induced water decomposition on two-dimensional materials by simulations based on time-dependent density functional theory
Foster et al. Towards understanding plasma formation in liquid water via single bubble studies
JPWO2003064028A1 (ja) 物質活性化方法及びその装置
Hansu The effect of dielectric barrier discharge cold plasmas on the electrochemical activity of Co–Cr–B based catalysts
JP2006327856A (ja) 異極像結晶を用いたオゾン生成方法および装置
US8236143B2 (en) Controlling chemical reactions by spectral chemistry and spectral conditioning
JP2016175820A (ja) アンモニアの製造方法及び化合物製造装置
US7261822B2 (en) Method and apparatus for activating water
JP2011224529A (ja) 水中溶存酸素増加装置
Becker Microplasmas, a platform technology for a plethora of plasma applications
US11071955B1 (en) Nanoplasmoid suspensions and systems and devices for the generation thereof
US8337708B2 (en) Method for manufacturing green-energy water and device thereof
JPH06317684A (ja) 常温核融合反応エネルギーの取り出し方法
JP2005520297A (ja) 電子化学における改良
Kladphet et al. Using numerical analysis of ordinary differential equation systems to predict the chemical concentration after plasma irradiation
JP4365595B2 (ja) オゾン発生方法およびオゾン発生装置
JP2023118104A (ja) アンモニアの製造方法および製造装置
JPH05329482A (ja) 超音波水中発電装置及び超音波水中発電による整水装置
Hosano et al. Performance Comparison of Streamer Discharge Generated in Different Reactors by High Voltage
Diono et al. Pulsed Discharge Plasma in High-Pressure Environment for Water Pollutant Degradation and Nanoparticle Synthesis. Plasma 2021, 4, 309–331

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20070807