JPWO2002080899A1 - Gastrointestinal disease treatment - Google Patents

Gastrointestinal disease treatment Download PDF

Info

Publication number
JPWO2002080899A1
JPWO2002080899A1 JP2002578938A JP2002578938A JPWO2002080899A1 JP WO2002080899 A1 JPWO2002080899 A1 JP WO2002080899A1 JP 2002578938 A JP2002578938 A JP 2002578938A JP 2002578938 A JP2002578938 A JP 2002578938A JP WO2002080899 A1 JPWO2002080899 A1 JP WO2002080899A1
Authority
JP
Japan
Prior art keywords
group
carbon atoms
methyl
general formula
ylthio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002578938A
Other languages
Japanese (ja)
Inventor
達央 堀添
達央 堀添
昌信 篠田
昌信 篠田
江守 英太
英太 江守
松浦 史義
史義 松浦
敏彦 金子
敏彦 金子
紀人 大井
紀人 大井
俊二 笠井
俊二 笠井
英樹 佳冨
英樹 佳冨
山崎 一斗
一斗 山崎
定一 宮下
定一 宮下
太郎 日原
太郎 日原
尚志 生木
尚志 生木
クラーク リチャード
リチャード クラーク
均 原田
均 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eisai Co Ltd
Original Assignee
Eisai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eisai Co Ltd filed Critical Eisai Co Ltd
Publication of JPWO2002080899A1 publication Critical patent/JPWO2002080899A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/42Oxazoles
    • A61K31/4211,3-Oxazoles, e.g. pemoline, trimethadione
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Rheumatology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Pulmonology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Pain & Pain Management (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本発明は、下記式(I)(式中、R1は水素原子などを;Lはアルキレン基などを;Mはアルキレン基などを;Tはアルキレン基などを;Wはカルボキシル基など炭化水素基などを;環Zは炭素数5ないし6の芳香族炭化水素基をそれぞれ表す。)で表される新規カルボン酸誘導体もしくはその塩またはそれらの水和物を有効成分とする医薬、特に、消化器疾患の予防・治療剤を提供する。In the present invention, the following formula (I) (wherein R1 represents a hydrogen atom or the like; L represents an alkylene group or the like; M represents an alkylene group or the like; T represents an alkylene group or the like; W represents a hydrocarbon group such as a carboxyl group or the like) Ring Z represents an aromatic hydrocarbon group having 5 to 6 carbon atoms, respectively), a pharmaceutical comprising the active ingredient as a novel carboxylic acid derivative represented by: Prophylactic and therapeutic agents are provided.

Description

技術分野
本発明は、消化器疾患の予防・治療に有用な新規カルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物からなる医薬に関する。さらに詳しくは、潰瘍性大腸炎、クローン病、膵炎または胃炎などの炎症性の消化器疾患の予防・治療などに有用な新規カルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物からなる医薬に関する。
従来技術
近年、トログリタゾン(Troglitazone)、ピオグリタゾン(Pioglitazone)、ロシグリタゾン(Rosiglitazone)などのチアゾリジン誘導体はインスリン抵抗性改善薬と呼ばれ、膵臓からのインスリンの分泌を促進することなく、インスリン抵抗性を改善(インスリン作用を増強)し、血糖を低下させることができる新規メカニズムの糖尿病治療剤として注目を集めている。
これらチアゾリジン骨格を有する薬剤は脂肪細胞の分化に関係し、核内受容体であるPPARγ(peroxisome proliferator−activated receptor gamma:脂肪細胞の分化に重要な転写因子)を介してその作用を発現していることがわかってきた(J.Biol.Chem.,270,p12953−12956,1995)。この前脂肪細胞の分化によりTNFα、FFAおよびleptinの分泌の少ない未成熟な小さな脂肪細胞が増加し、結果としてインスリン抵抗性が改善される。上記トログリタゾン、ピオグリタゾン、ロシグリタゾンなどのチアゾリジン誘導体もPPARγのagonistとして作用し、インスリン抵抗性改善効果を発現している。
ところで、PPARにはγの他にもα、βなどいくつかのサブタイプが発見されており、いずれも脂質代謝に関係する遺伝子の発現を調節している。これらのサブタイプは同一生物種内でのホモロジーよりも、各サブタイプの異性物種の間でのホモロジーが高いこと、および組織分布についてもγがほとんど脂肪組織に局在するのに対し、αは主に肝臓、それから心臓や腎臓に存在していることから、各サブタイプのそれぞれが独立した機能を担っていると考えられていた。近年PPARγはLPL、acyl−CoA carboxylase、GPDHなどの遺伝子群の発現を亢進し、糖を脂質に変え貯蔵する脂質同化作用を主として仲介するのに対して、PPARαは脂肪酸の細胞内への取り込み及びその酸化に関連した遺伝子群の発現を調節し脂質を分解する脂質異化作用を仲介することがわかってきた。
PPARγagonistであるチアゾリジン誘導体が単核球の炎症性サイトカインの産生を抑制することが、米国特許第5925657号公報に開示されている。
また、WO98/43081号公報には、PPARγagonistであるチアゾリジン誘導体が大腸癌を悪化しうることが開示されている。
しかし、PPARγagonist作用を有する化合物で消化器疾患治療剤ないしは抗炎症剤としての上市された例はない。さらに、チアゾリジン骨格を有するPPARγagonistの一部の薬物では肝障害が報告されており使用にあたり注意が必要である。このようなPPARγagonistの毒性はチアゾリジン部分に由来する特有のものという推測もあり、それ以外の新たな構造で上記の作用を発現する化合物を発見できれば毒性を完全に回避できる可能性があり非常に有用である。
。また前記の特許公報においてはPPARγagonist作用のみを有する化合物での報告であり、PPARγおよびαのdual agonistの消化器疾患や炎症に対する報告はなく、ましてやγ、α、およびβのtriple agonist作用を有する化合物については全く知られていない。
さらに、WO98/43081号公報(または、Nature Medicine,4,p1053−1057,1998)は、遺伝的に大腸に前癌病変を生ずるマウスの病変数を増加させるといったことを開示しているが、一方でヒト大腸癌由来の細胞株を用いた検討では全く逆の結果が得られており、必ずしも意見の一致をみていない(Nature Medicine,4,p1046−1052,1998)。
こうした中、上記の問題点を解決した優れた薬剤の開発が待望されている。
発明の開示
本発明者らは、これら種々点を満たす消化器疾患、特に炎症性の消化器疾患の予防や治療に有効な医薬の提供を目的とし、鋭意研究を行った結果、新規な構造を有するカルボン酸誘導体が、消化管において優れた抗炎症作用を有することを見いだし、本発明を完成した。
すなわち本発明は、1)一般式

Figure 2002080899
〔式中、Rは水素原子、水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基、炭素数1ないし6のアルキルチオ基、炭素数1ないし6のハイドロキシアルキル基、炭素数1ないし6のハイドロキシアルコキシ基、炭素数1ないし6のハイドロキシアルキルチオ基、炭素数1ないし6のアミノアルキル基、炭素数1ないし6のアミノアルコキシ基、炭素数1ないし6のアミノアルキルチオ基、炭素数1ないし6のハロゲン化アルキル基、炭素数1ないし6のハロゲン化アルコキシ基、炭素数1ないし6のハロゲン化アルキルチオ基、炭素数2ないし12のアルコキシアルキル基、炭素数2ないし12のアルコキシアルコキシ基、炭素数2ないし12のアルコキシアルキルチオ基、炭素数3ないし7のシクロアルキル基、炭素数3ないし7のシクロアルキルオキシ基、炭素数3ないし7のシクロアルキルチオ基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルケニルオキシ基、炭素数2ないし6のアルケニルチオ基、炭素数2ないし6のアルキニル基、炭素数2ないし6のアルキニルオキシ基、炭素数2ないし6のアルキニルチオ基、炭素数6ないし12のアリール基、炭素数6ないし12のアリールオキシ基、炭素数6ないし12のアリールチオ基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアルキルアリールオキシ基、炭素数7ないし18のアルキルアリールチオ基、炭素数7ないし18のアラルキル基、炭素数7ないし18のアラルキルオキシ基もしくは炭素数7ないし18のアラルキルチオ基を;Lは単結合または二重結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Mは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Tは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし3のアルキレン基、炭素数2ないし3のアルケニレン基もしくは炭素数2ないし3のアルキニレン基を;Wは2,4−ジオキソチアゾリジン−5−イル基、2,4−ジオキソチアゾリジン−5−イリデン基、カルボキシル基、または−CON(Rw1)Rw2(ここでRw1、Rw2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Wが2,4−ジオキソチアゾリジン−5−イル基、または2,4−ジオキソチアゾリジン−5−イリデン基である場合を除く。;
Figure 2002080899
は、単結合または二重結合を;Xは酸素原子、1以上の置換基を有していてもよい炭素数2ないし6のアルケニレン基、もしくはハイドロキシメチレン基、または一般式−CQ−(ここでQは酸素原子または硫黄原子を示す)、−CQNR−(ここでQは前記定義に同じ基を、Rは水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)、−NRCQ−(ここでQ、Rはそれぞれ前記定義に同じ基を示す)、−SONR−(ここでRは前記定義に同じ基を示す)、−NRSO−(Rは前記定義に同じ基を示す)、もしくは−NRx1CQNRx2−(ここでQは前記定義に同じ基を、Rx1またはRx2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Xが酸素原子である場合を除く。;Yは1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし12の芳香族炭化水素基、または炭素数3ないし7の脂環式炭化水素基を;環Zはさらに0から4の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし6の芳香族炭化水素基をそれぞれ示し;一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基は、環Z上で3個の原子を介して互いに結合するものとする。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を有効成分とする消化器疾患の予防・治療剤;2)一般式(I)において、Wがカルボン酸である1)記載の消化器疾患の予防・治療剤;3)一般式(I)において、Rがそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基である1)または2)記載の消化器疾患の予防・治療剤;4)一般式(I)において、環Zがさらに0から4の置換基を有していてもよいベンゼン環である1)または2)記載の消化器疾患の予防・治療剤;5)一般式(I)において、Xが一般式−CQNR−(ここでQ、Rは前記定義に同じ基を示す)または−NRCQ−(ここでQ、Rは前記定義に同じ基を示す)で示される基である1)または2)記載の消化器疾患の予防・治療剤;6)一般式(I)において、Yが1以上の置換基を有していてもよい、炭素数5ないし12の芳香族炭化水素基である1)または2)記載の消化器疾患の予防・治療剤;7)一般式(I)において、LまたはMが炭素数1ないし6のアルキレン基である1)または2)記載の消化器疾患の予防・治療剤;8)一般式(I)において、Tが炭素数1ないし3のアルキレン基である1)または2)記載の消化器疾患の予防・治療剤;9)一般式(I)において、Rがそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基であり、環Zがさらに0から4の置換基を有していてもよいベンゼン環である1)または2)記載の消化器疾患の予防・治療剤;10)一般式(I)において、Xが一般式−CQNR−(ここでQ、Rは前記定義に同じ基を示す)または−NRCQ−(ここでQ、Rは前記定義に同じ基を示す)で示される基であり、Yが1以上の置換基を有していてもよい、炭素数5ないし12の芳香族炭化水素基である1)または9)記載の消化器疾患の予防・治療剤;11)一般式(I)で表される化合物が(2S)−3−[3−([2,4−ジクロロベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸である1)ないし10)記載の消化器疾患の予防・治療剤;12)消化器疾患が、1.消化管の炎症性疾患、2.消化管の増殖性疾患、および3.消化管の潰瘍性疾患から選ばれる1の疾患である1)ないし11)記載の消化器疾患の予防・治療剤;13)消化器疾患が消化管の炎症性疾患である1)ないし12)記載の消化器疾患の予防・治療剤;14)消化管の炎症性疾患が、1.潰瘍性大腸炎、2.クローン病、3.膵炎、および4.胃炎から選ばれる1の疾患である13)記載の消化器疾患の予防・治療剤;15)消化管の炎症性疾患が、潰瘍性大腸炎である14)記載の消化器疾患の予防・治療剤;16)消化器疾患が消化管の増殖性疾患である1)ないし12)記載の消化器疾患の予防・治療剤;17)消化管の増殖性疾患が、1.消化管の良性腫瘍、2.消化管のポリープ、3.遺伝的ポリポーシス症候群、4.結腸癌、5.直腸癌、および6.胃癌から選ばれる1の疾患である16)記載の消化器疾患の予防・治療剤;18)消化器疾患が消化管の潰瘍性疾患である1)ないし12)記載の消化器疾患の予防・治療剤;19)消化管の潰瘍性疾患が、1.十二指腸潰瘍、2.胃潰瘍、3.食道潰瘍、4.逆流性食道炎、5.ストレス潰瘍およびびらん、6.薬剤によるびらん、ならびに7.Zollinger−Ellison症候群から選ばれる1の疾患である18)記載の消化器疾患の予防・治療剤;20)薬理学上有効な量の1)記載のカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物、および薬理学的に許容されるキャリアーを含んでなる医薬組成物;21)直腸投与用の製剤である20)記載の医薬組成物;22)一般式
Figure 2002080899
〔式中、Rは水素原子、水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基、炭素数1ないし6のアルキルチオ基、炭素数1ないし6のハイドロキシアルキル基、炭素数1ないし6のハイドロキシアルコキシ基、炭素数1ないし6のハイドロキシアルキルチオ基、炭素数1ないし6のアミノアルキル基、炭素数1ないし6のアミノアルコキシ基、炭素数1ないし6のアミノアルキルチオ基、炭素数1ないし6のハロゲン化アルキル基、炭素数1ないし6のハロゲン化アルコキシ基、炭素数1ないし6のハロゲン化アルキルチオ基、炭素数2ないし12のアルコキシアルキル基、炭素数2ないし12のアルコキシアルコキシ基、炭素数2ないし12のアルコキシアルキルチオ基、炭素数3ないし7のシクロアルキル基、炭素数3ないし7のシクロアルキルオキシ基、炭素数3ないし7のシクロアルキルチオ基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルケニルオキシ基、炭素数2ないし6のアルケニルチオ基、炭素数2ないし6のアルキニル基、炭素数2ないし6のアルキニルオキシ基、炭素数2ないし6のアルキニルチオ基、炭素数6ないし12のアリール基、炭素数6ないし12のアリールオキシ基、炭素数6ないし12のアリールチオ基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアルキルアリールオキシ基、炭素数7ないし18のアルキルアリールチオ基、炭素数7ないし18のアラルキル基、炭素数7ないし18のアラルキルオキシ基もしくは炭素数7ないし18のアラルキルチオ基を;Lは単結合または二重結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Mは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Tは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし3のアルキレン基、炭素数2ないし3のアルケニレン基もしくは炭素数2ないし3のアルキニレン基を;Wは2,4−ジオキソチアゾリジン−5−イル基、2,4−ジオキソチアゾリジン−5−イリデン基、カルボキシル基、または−CON(Rw1)Rw2(ここでRw1、Rw2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Wが2,4−ジオキソチアゾリジン−5−イル基、または2,4−ジオキソチアゾリジン−5−イリデン基である場合を除く。;
Figure 2002080899
は、単結合または二重結合を;Xは酸素原子、1以上の置換基を有していてもよい炭素数2ないし6のアルケニレン基、もしくはハイドロキシメチレン基、または一般式−CQ−(ここでQは酸素原子または硫黄原子を示す)、−CQNR−(ここでQは前記定義に同じ基を、Rは水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)、−NRCQ−(ここでQ、Rはそれぞれ前記定義に同じ基を示す)、−SONR−(ここでRは前記定義に同じ基を示す)、−NRSO−(Rは前記定義に同じ基を示す)、もしくは−NRx1CQNRx2−(ここでQは前記定義に同じ基を、Rx1またはRx2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Xが酸素原子である場合を除く。;Yは1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし12の芳香族炭化水素基、または炭素数3ないし7の脂環式炭化水素基を;環Zはさらに0から4の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし6の芳香族炭化水素基をそれぞれ示し;一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基は、環Z上で3個の原子を介して互いに結合するものとする。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を有効成分とする炎症性疾患の予防・治療剤;23)一般式(I)で表される化合物が(2S)−3−[3−([2,4−ジクロロベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸である22)記載の炎症性疾患の予防・治療剤;24)炎症性疾患が、1.関節炎リウマチ、2.多発性硬化症、3.免疫不全、4.悪液質、5.骨関節炎、6.骨粗鬆症、7.喘息疾患、および8.アレルギー疾患から選ばれる1の疾患である22)または23)記載の炎症性疾患の予防・治療剤、に関する。
本発明はまた、上記式(I)で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物の薬理学上有効量を患者に投与することにより、消化器疾患または炎症性疾患を予防・治療する方法を提供する。
更に、本発明は、上記式(I)で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を、消化器疾患または炎症性疾患の予防・治療剤の製造のために用いる用途を提供する。
尚、本発明に使用する化合物は、WO−A 01−25181(2001年4月12日公開)に記載している。
以下本発明の内容について詳細に説明する。
本明細書中においては、化合物の構造式が便宜上一定の異性体を表すことがあるが、本発明には化合物の構造上生ずる全ての、幾何異性体、不斉炭素に基づく光学異性体、立体異性体、互変異生体などの総ての異性体および異性体混合物を含み、便宜上の式の記載に限定されるものではない。
次に本明細書中で使用される語句について詳細に説明する。
、W、R、Rx1、およびRx2が1以上の置換基を有していてもよい炭素数1ないし6のアルキル基を示す場合、該アルキル基とは、炭素数1〜6の直鎖もしくは分枝鎖状のアルキル基を示し、具体的には例えばメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、i−ペンチル基、sec−ペンチル基、t−ペンチル基、ネオペンチル基、1−メチルブチル基、2−メチルブチル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、n−ヘキシル基、i−ヘキシル基、1−メチルペンチル基、2−メチルペンチル基、3−メチルペンチル基、1,1−ジメチルブチル基、1,2−ジメチルブチル基、2,2−ジメチルブチル基、1,3−ジメチルブチル基、2,3−ジメチルブチル基、3,3−ジメチルブチル基、1−エチルブチル基、2−エチルブチル基、1,1,2−トリメチルプロピル基、1,2,2−トリメチルプロピル基、1−エチル−1−メチルプロピル基、1−エチル−2−メチルプロピル基などが挙げられ、好ましくは、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、i−ペンチル基、sec−ペンチル基、t−ペンチル基、ネオペンチル基、1−メチルブチル基、2−メチルブチル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、n−ヘキシル基、i−ヘキシル基であり、より好ましくは、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基、n−ペンチル基、i−ペンチル基、sec−ペンチル基、t−ペンチル基、ネオペンチル基、1−メチルブチル基、2−メチルブチル基、1,1−ジメチルプロピル基、1,2−ジメチルプロピル基、さらに好ましくはメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、i−ブチル基、sec−ブチル基、t−ブチル基であり、もっとも好ましくはメチル基、エチル基、n−プロピル基、i−プロピル基である。
ここで、「置換基を有していてもよい」とは、具体的には例えば、水酸基;チオール基;ニトロ基;モルホリノ基;チオモルホリノ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子などのハロゲン原子;ニトリル基;アジド基;ホルミル基;メチル基、エチル基、プロピル基、イソプロピル基、ブチル基などのアルキル基;ビニル基、アリル基、プロペニル基などのアルケニル基;エチニル基、ブチニル基、プロパルギル基などのアルキニル基、低級アルキル基に対応するメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基などのハロゲノアルキル基;ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基などのヒドロキシアルキル基;グアニジノ基;ホルムイミドイル基;アセトイミドイル基;カルバモイル基;チオカルバモイル基;カルバモイルメチル基、カルバモイルエチル基などのカルバモイルアルキル基;メチルカルバモイル基、ジメチルカルバモイル基などのアルキルカルバモイル基;カルバミド基;アセチル基などのアルカノイル基;アミノ基;メチルアミノ基、エチルアミノ基、イソプロピルアミノ基などのアルキルアミノ基;ジメチルアミノ基、メチルエチルアミノ基、ジエチルアミノ基などのジアルキルアミノ基;アミノメチル基、アミノエチル基、アミノプロピル基などのアミノアルキル基;カルボキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基などのアルコキシカルボニル基;メトキシカルボニルメチル基、エトキシカルボニルメチル基、プロポキシカルボニルメチル基、メトキシカルボニルエチル基、エトキシカルボニルエチル基、プロポキシカルボニルエチル基などのアルコキシカルボニルアルキル基;メチルオキシメチル基、メチルオキシエチル基、エチルオキシメチル基、エチルオキシエチル基などのアルキルオキシアルキル基;メチルチオメチル基、メチルチオエチル基、エチルチオメチル基、エチルチオエチル基などのアルキルチオアルキル基;アミノメチルアミノメチル基、アミノエチルアミノメチル基などのアミノアルキルアミノアルキル基;メチルカルボニルオキシ基、エチルカルボニルオキシ基、イソプロピルカルボニルオキシ基などのアルキルカルボニルオキシ基;オキシメチル基、ベンジルオキシエチルオキシエチル基などのアリールアルコキシアルコキシアルキル基;ヒドロキシエチルオキシメチル基、ヒドロキシエチルオキシエチル基などのヒドロキシアルコキシアルキル基;ベンジルオキシメチル基、ベンジルオキシエチル基、ベンジルオキシプロピル基などのアリールアルコキシアルキル基;トリメチルアンモニオ基、メチルエチルメチルアンモニオ基、トリエチルアンモニオ基などの第四級アンモニオ基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基などのシクロアルキル基;シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基などのシクロアルケニル基;フェニル基、ピリジニル基、チエニル基、フリル基、ピロリル基などのアリール基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基などのアルキルチオ基;フェニルチオ基、ピリジニルチオ基、チエニルチオ基、フリルチオ基、ピロリルチオ基などのアリールチオ基;ベンジル基、トリチル基、ジメトキシトリチル基などのアリール低級アルキル基;スルホニル基、メシル基、p−トルエンスルホニル基などの置換スルホニル基;ベンゾイル基などのアリロイル基;フルオロフェニル基、ブロモフェニル基などのハロゲノアリール基;メチレンジオキシ基などのオキシアルコキシ基などの置換基で置換されていてもよいことを意味する。
「1以上の置換基を有していてもよい」とは、これらの基を任意に組み合わせて1または複数個有していてもよいことを意味し、例えば水酸基、チオール基、ニトロ基、モルホリノ基、チオモルホリノ基、ハロゲン原子、ニトリル基、アジド基、ホルミル基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、カルバモイル基、スルホニル基などで置換されたアルキル基;アルケニル基;アルキニル基;アルコキシ基なども本願発明中に含まれる。
以下、本願発明中において「置換基を有していてもよい」および「1以上の置換基を有していてもよい」とは上記意味を有するものとする。
が1以上の置換基を有していてもよい炭素数1ないし6のアルコキシ基を示す場合、該アルコキシ基とは、炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基を示し、具体的には前記アルキル基の末端に酸素原子が結合したものが相当し、例えばメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、i−ペンチルオキシ基、sec−ペンチルオキシ基、t−ペンチルオキシ基、ネオペンチルオキシ基、1−メチルブトキシ基、2−メチルブトキシ基、1,1−ジメチルプロポキシ基、1,2−ジメチルプロポキシ基、n−ヘキシルオキシ基、i−ヘキシルオキシ基、1−メチルペンチルオキシ基、2−メチルペンチルオキシ基、3−メチルペンチルオキシ基、1,1−ジメチルブトキシ基、1,2−ジメチルブトキシ基、2,2−ジメチルブトキシ基、1,3−ジメチルブトキシ基、2,3−ジメチルブトキシ基、3,3−ジメチルブトキシ基、1−エチルブトキシ基、2−エチルブトキシ基、1,1,2−トリメチルプロポキシ基、1,2,2−トリメチルプロポキシ基、1−エチル−1−メチルプロポキシ基、1−エチル−2−メチルプロポキシ基などが挙げられ、好ましくはメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、i−ペンチルオキシ基、sec−ペンチルオキシ基、t−ペンチルオキシ基、ネオペンチルオキシ基、1−メチルブトキシ基、2−メチルブトキシ基、1,1−ジメチルプロポキシ基、1,2−ジメチルプロポキシ基、n−ヘキシルオキシ基、i−ヘキシルオキシ基であり、より好ましくはメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、n−ペンチルオキシ基、i−ペンチルオキシ基、sec−ペンチルオキシ基、t−ペンチルオキシ基、ネオペンチルオキシ基、1−メチルブトキシ基、2−メチルブトキシ基、1,1−ジメチルプロポキシ基、1,2−ジメチルプロポキシ基、さらに好ましくはメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基、n−ブトキシ基、i−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、もっとも好ましくはメトキシ基、エトキシ基、n−プロポキシ基、i−プロポキシ基である。
が1以上の置換基を有していてもよい炭素数1ないし6のアルキルチオ基を示す場合、該アルキルチオ基とは、炭素数1〜6の直鎖もしくは分枝鎖状のアルキルチオ基を示し、具体的には前記アルキル基の末端に硫黄原子が結合したものが相当し、例えばメチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、sec−ブチルチオ基、t−ブチルチオ基、n−ペンチルチオ基、i−ペンチルチオ基、sec−ペンチルチオ基、t−ペンチルチオ基、ネオペンチルチオ基、1−メチルブチルチオ基、2−メチルブチルチオ基、1,1−ジメチルプロピルチオ基、1,2−ジメチルプロピルチオ基、n−ヘキシルチオ基、i−ヘキシルチオ基、1−メチルペンチルチオ基、2−メチルペンチルチオ基、3−メチルペンチルチオ基、1,1−ジメチルブチルチオ基、1,2−ジメチルブチルチオ基、2,2−ジメチルブチルチオ基、1,3−ジメチルブチルチオ基、2,3−ジメチルブチルチオ基、3,3−ジメチルブチルチオ基、1−エチルブチルチオ基、2−エチルブチルチオ基、1,1,2−トリメチルプロピルチオ基、1,2,2−トリメチルプロピルチオ基、1−エチル−1−メチルプロピルチオ基、1−エチル−2−メチルプロピルチオ基などが挙げられ、好ましくは、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、sec−ブチルチオ基、t−ブチルチオ基、n−ペンチルチオ基、i−ペンチルチオ基、sec−ペンチルチオ基、t−ペンチルチオ基、ネオペンチルチオ基、1−メチルブチルチオ基、2−メチルブチルチオ基、1,1−ジメチルプロピルチオ基、1,2−ジメチルプロピルチオ基、n−ヘキシルチオ基、i−ヘキシルチオ基であり、より好ましくは、メチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、sec−ブチルチオ基、t−ブチルチオ基、n−ペンチルチオ基、i−ペンチルチオ基、sec−ペンチルチオ基、t−ペンチルチオ基、ネオペンチルチオ基、1−メチルブチルチオ基、2−メチルブチルチオ基、1,1−ジメチルプロピルチオ基、1,2−ジメチルプロピルチオ基、さらに好ましくはメチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基、n−ブチルチオ基、i−ブチルチオ基、sec−ブチルチオ基、t−ブチルチオ基であり、もっとも好ましくはメチルチオ基、エチルチオ基、n−プロピルチオ基、i−プロピルチオ基である。
が1以上の置換基を有していてもよい炭素数1ないし6のハイドロキシアルキル基を示す場合、該ハイドロキシアルキル基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキル基において、置換可能な部位がハイドロキシ基で置換された基を示す。具体的には例えばハイドロキシメチル基、2−ハイドロキシエチル基、1−ハイドロキシエチル基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のハイドロキシアルコキシ基を示す場合、該ハイドロキシアルコキシ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基において、置換可能な部位がハイドロキシ基で置換された基を示す。具体的には例えばハイドロキシメトキシ基、2−ハイドロキシエトキシ基、1−ハイドロキシエトキシ基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のハイドロキシアルキルチオ基を示す場合、該ハイドロキシアルキルチオ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキルチオ基において、置換可能な部位がハイドロキシ基で置換された基を示す。具体的には例えばハイドロキシメチルチオ基、2−ハイドロキシエチルチオ基、1−ハイドロキシエチルチオ基などが挙げられる。
が1以上の置換基を有していてもよい炭素数1ないし6のアミノアルキル基を示す場合、該アミノアルキル基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキル基において、置換可能な部位がアミノ基で置換された基を示す。具体的には例えばアミノメチル基、2−アミノエチル基、1−アミノエチル基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のアミノアルコキシ基を示す場合、該アミノアルコキシ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基において、置換可能な部位がアミノ基で置換された基を示す。具体的には例えばアミノメトキシ基、2−アミノエトキシ基、1−アミノエトキシ基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のアミノアルキルチオ基を示す場合、該アミノアルキルチオ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキルチオ基において、置換可能な部位がアミノ基で置換された基を示す。具体的には例えばアミノメチルチオ基、2−アミノエチルチオ基、1−アミノエチルチオ基などが挙げられる。
が1以上の置換基を有していてもよい炭素数1ないし6のハロゲン化アルキル基を示す場合、該ハロゲン化アルキル基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキル基において、置換可能な部位が1以上のハロゲン原子で置換された基を示す。ここでハロゲン原子とはフッ素原子、塩素原子、臭素原子、ヨウ素原子などをいう。具体的には例えばフルオロメチル基、トリフルオロメチル基、2−フルオロエチル基、1−フルオロエチル基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のハロゲン化アルコキシ基を示す場合、該ハロゲン化アルコキシ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基において、置換可能な部位が1以上のハロゲン原子で置換された基を示す。具体的には例えばフルオロメトキシ基、トリフルオロメトキシ基、2−フルオロエトキシ基、1−フルオロエトキシ基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数1ないし6のハロゲン化アルキルチオ基を示す場合、該ハロゲン化アルキルチオ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキルチオ基において、置換可能な部位が1以上のハロゲン原子で置換された基を示す。具体的には例えばフルオロメチルチオ基、トリフルオロメチルチオ基、2−フルオロエチルチオ基、1−フルオロエチルチオ基などが挙げられる。
が1以上の置換基を有していてもよい炭素数2ないし12のアルコキシアルキル基を示す場合、該アルコキシアルキル基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキル基において、置換可能な部位が上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基で置換された基を示す。具体的には例えばメトキシメチル基、エトキシメチル基、1−メトキシエチル基、2−メトキシエチル基、1−エトキシエチル基、2−エトキシエチル基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし12のアルコキシアルコキシ基を示す場合、該アルコキシアルコキシ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基において、置換可能な部位が上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基で置換された基を示す。具体的には例えばメトキシメトキシ基、エトキシメトキシ基、1−メトキシエトキシ基、2−メトキシエトキシ基、1−エトキシエトキシ基、2−エトキシエトキシ基などが挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし12のアルコキシアルキルチオ基を示す場合、該アルコキシアルキルチオ基とは、上記炭素数1〜6の直鎖もしくは分枝鎖状のアルキルチオ基において、置換可能な部位が上記炭素数1〜6の直鎖もしくは分枝鎖状のアルコキシ基で置換された基を示す。具体的には例えばメトキシメチルチオ基、エトキシメチルチオ基、1−メトキシエチルチオ基、2−メトキシエチルチオ基、1−エトキシエチルチオ基、2−エトキシエチルチオ基などが挙げられる。
が1以上の置換基を有していてもよい炭素数3ないし7のシクロアルキル基を示す場合、該シクロアルキル基とは、炭素数3〜7の環状のアルキル基を意味し、具体的には例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基が挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数3ないし7のシクロアルキルオキシ基を示す場合、該シクロアルキルオキシ基とは、上記炭素数3〜7の環状のアルキル基において、その末端に酸素原子が結合したものが相当し、具体的には例えば、シクロプロピルオキシ基、シクロブチルオキシ基、シクロペンチルオキシ基、シクロヘキシルオキシ基、シクロヘプチルオキシ基が挙げられる。
同様にしてRが1以上の置換基を有していてもよい炭素数3ないし7のシクロアルキルチオ基を示す場合、該シクロアルキルチオ基とは、上記炭素数3〜7のシクロアルキル基において、その末端に硫黄原子が結合したものが相当し、具体的には例えば、シクロプロピルチオ基、シクロブチルチオ基、シクロペンチルチオ基、シクロヘキシルチオ基、シクロヘプチルチオ基が挙げられる。
が1以上の置換基を有していてもよい炭素数2ないし6のアルケニル基を示す場合、該アルケニル基とは、炭素数2〜6の直鎖もしくは分枝鎖状のアルケニル基を示し、上記炭素数2以上のアルキル基中に2重結合を有する化合物残基をいう。具体的には例えばエテニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、3−プロペン−1−イル基、1−ブテン−1−イル基、1−ブテン−2−イル基、1−ブテン−3−イル基、1−ブテン−4−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、1−メチル−1−プロペン−1−イル基、2−メチル−1−プロペン−1−イル基、1−メチル−2−プロペン−1−イル基、2−メチル−2−プロペン−1−イル基、1−メチル−1−ブテン−1−イル基、2−メチル−1−ブテン−1−イル基、3−メチル−1−ブテン−1−イル基、1−メチル−2−ブテン−1−イル基、2−メチル−2−ブテン−1−イル基、3−メチル−2−ブテン−1−イル基、1−メチル−3−ブテン−1−イル基、2−メチル−3−ブテン−1−イル基、3−メチル−3−ブテン−1−イル基、1−エチル−1−ブテン−1−イル基、2−エチル−1−ブテン−1−イル基、3−エチル−1−ブテン−1−イル基、1−エチル−2−ブテン−1−イル基、2−エチル−2−ブテン−1−イル基、3−エチル−2−ブテン−1−イル基、1−エチル−3−ブテン−1−イル基、2−エチル−3−ブテン−1−イル基、3−エチル−3−ブテン−1−イル基、1,1−ジメチル−1−ブテン−1−イル基、1,2−ジメチル−1−ブテン−1−イル基、1,3−ジメチル−1−ブテン−1−イル基、2,2−ジメチル−1−ブテン−1−イル基、3,3−ジメチル−1−ブテン−1−イル基、1,1−ジメチル−2−ブテン−1−イル基、1,2−ジメチル−2−ブテン−1−イル基、1,3−ジメチル−2−ブテン−1−イル基、2,2−ジメチル−2−ブテン−1−イル基、3,3−ジメチル−2−ブテン−1−イル基、1,1−ジメチル−3−ブテン−1−イル基、1,2−ジメチル−3−ブテン−1−イル基、1,3−ジメチル−3−ブテン−1−イル基、2,2−ジメチル−3−ブテン−1−イル基、3,3−ジメチル−3−ブテン−1−イル基、1−ペンテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、4−ペンテン−1−イル基、1−ペンテン−2−イル基、2−ペンテン−2−イル基、3−ペンテン−2−イル基、4−ペンテン−2−イル基、1−ペンテン−3−イル基、2−ペンテン−3−イル基、1−ペンテン−1−イル基、2−ペンテン−1−イル基、3−ペンテン−1−イル基、4−ペンテン−1−イル基、1−ペンテン−2−イル基、2−ペンテン−2−イル基、3−ペンテン−2−イル基、4−ペンテン−2−イル基、1−ペンテン−3−イル基、2−ペンテン−3−イル基、1−メチル−1−ペンテン−1−イル基、2−メチル−1−ペンテン−1−イル基、3−メチル−1−ペンテン−1−イル基、4−メチル−1−ペンテン−1−イル基、1−メチル−2−ペンテン−1−イル基、2−メチル−2−ペンテン−1−イル基、3−メチル−2−ペンテン−1−イル基、4−メチル−2−ペンテン−1−イル基、1−メチル−3−ペンテン−1−イル基、2−メチル−3−ペンテン−1−イル基、3−メチル−3−ペンテン−1−イル基、4−メチル−3−ペンテン−1−イル基、1−メチル−4−ペンテン−1−イル基、2−メチル−4−ペンテン−1−イル基、3−メチル−4−ペンテン−1−イル基、4−メチル−4−ペンテン−1−イル基、1−メチル−1−ペンテン−2−イル基、2−メチル−1−ペンテン−2−イル基、3−メチル−1−ペンテン−2−イル基、4−メチル−1−ペンテン−2−イル基、1−メチル−2−ペンテン−2−イル基、2−メチル−2−ペンテン−2−イル基、3−メチル−2−ペンテン−2−イル基、4−メチル−2−ペンテン−2−イル基、1−メチル−3−ペンテン−2−イル基、2−メチル−3−ペンテン−2−イル基、3−メチル−3−ペンテン−2−イル基、4−メチル−3−ペンテン−2−イル基、1−メチル−4−ペンテン−2−イル基、2−メチル−4−ペンテン−2−イル基、3−メチル−4−ペンテン−2−イル基、4−メチル−4−ペンテン−2−イル基、1−メチル−1−ペンテン−3−イル基、2−メチル−1−ペンテン−3−イル基、3−メチル−1−ペンテン−3−イル基、4−メチル−1−ペンテン−3−イル基、1−メチル−2−ペンテン−3−イル基、2−メチル−2−ペンテン−3−イル基、3−メチル−2−ペンテン−3−イル基、4−メチル−2−ペンテン−3−イル基、1−ヘキセン−1−イル基、1−ヘキセン−2−イル基、1−ヘキセン−3−イル基、1−ヘキセン−4−イル基、1−ヘキセン−5−イル基、1−ヘキセン−6−イル基、2−ヘキセン−1−イル基、2−ヘキセン−2−イル基、2−ヘキセン−3−イル基、2−ヘキセン−4−イル基、2−ヘキセン−5−イル基、2−ヘキセン−6−イル基、3−ヘキセン−1−イル基、3−ヘキセン−2−イル基、3−ヘキセン−3−イル基などが挙げられ、好ましくはエテニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、3−プロペン−1−イル基、1−ブテン−1−イル基、1−ブテン−2−イル基、1−ブテン−3−イル基、1−ブテン−4−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、1−メチル−1−プロペン−1−イル基、2−メチル−1−プロペン−1−イル基、1−メチル−2−プロペン−1−イル基、2−メチル−2−プロペン−1−イル基、1−メチル−1−ブテン−1−イル基、2−メチル−1−ブテン−1−イル基、3−メチル−1−ブテン−1−イル基、1−メチル−2−ブテン−1−イル基、2−メチル−2−ブテン−1−イル基、3−メチル−2−ブテン−1−イル基、1−メチル−3−ブテン−1−イル基、2−メチル−3−ブテン−1−イル基、3−メチル−3−ブテン−1−イル基、1−エチル−1−ブテン−1−イル基、2−エチル−1−ブテン−1−イル基、3−エチル−1−ブテン−1−イル基、1−エチル−2−ブテン−1−イル基、2−エチル−2−ブテン−1−イル基、3−エチル−2−ブテン−1−イル基、1−エチル−3−ブテン−1−イル基、2−エチル−3−ブテン−1−イル基、3−エチル−3−ブテン−1−イル基、1,1−ジメチル−1−ブテン−1−イル基、1,2−ジメチル−1−ブテン−1−イル基、1,3−ジメチル−1−ブテン−1−イル基、2,2−ジメチル−1−ブテン−1−イル基、3,3−ジメチル−1−ブテン−1−イル基、1,1−ジメチル−2−ブテン−1−イル基、1,2−ジメチル−2−ブテン−1−イル基、1,3−ジメチル−2−ブテン−1−イル基、2,2−ジメチル−2−ブテン−1−イル基、3,3−ジメチル−2−ブテン−1−イル基、1,1−ジメチル−3−ブテン−1−イル基、1,2−ジメチル−3−ブテン−1−イル基、1,3−ジメチル−3−ブテン−1−イル基、2,2−ジメチル−3−ブテン−1−イル基、3,3−ジメチル−3−ブテン−1−イル基であり、より好ましくはエテニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、3−プロペン−1−イル基、1−ブテン−1−イル基、1−ブテン−2−イル基、1−ブテン−3−イル基、1−ブテン−4−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基、1−メチル−1−プロペン−1−イル基、2−メチル−1−プロペン−1−イル基、1−メチル−2−プロペン−1−イル基、2−メチル−2−プロペン−1−イル基、1−メチル−1−ブテン−1−イル基、2−メチル−1−ブテン−1−イル基、3−メチル−1−ブテン−1−イル基、1−メチル−2−ブテン−1−イル基、2−メチル−2−ブテン−1−イル基、3−メチル−2−ブテン−1−イル基、1−メチル−3−ブテン−1−イル基、2−メチル−3−ブテン−1−イル基、3−メチル−3−ブテン−1−イル基であり、もっとも好ましくはエテニル基、1−プロペン−1−イル基、2−プロペン−1−イル基、3−プロペン−1−イル基、1−ブテン−1−イル基、1−ブテン−2−イル基、1−ブテン−3−イル基、1−ブテン−4−イル基、2−ブテン−1−イル基、2−ブテン−2−イル基である。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし6のアルケニルオキシ基を示す場合、該アルケニルオキシ基とは、上記炭素数2〜6の直鎖もしくは分枝鎖状のアルケニル基において、その末端に酸素原子が結合したものが相当し、具体的には例えばエテニルオキシ基、1−プロペン−1−イルオキシ基、2−プロペン−1−イルオキシ基、3−プロペン−1−イルオキシ基、1−ブテン−1−イルオキシ基、1−ブテン−2−イルオキシ基、1−ブテン−3−イルオキシ基、1−ブテン−4−イルオキシ基、2−ブテン−1−イルオキシ基、2−ブテン−2−イルオキシ基、1−メチル−1−プロペン−1−イルオキシ基、2−メチル−1−プロペン−1−イルオキシ基、1−メチル−2−プロペン−1−イルオキシ基、2−メチル−2−プロペン−1−イルオキシ基、1−メチル−1−ブテン−1−イルオキシ基、2−メチル−1−ブテン−1−イルオキシ基、3−メチル−1−ブテン−1−イルオキシ基、1−メチル−2−ブテン−1−イルオキシ基、2−メチル−2−ブテン−1−イルオキシ基、3−メチル−2−ブテン−1−イルオキシ基、1−メチル−3−ブテン−1−イルオキシ基、2−メチル−3−ブテン−1−イルオキシ基、3−メチル−3−ブテン−1−イルオキシ基、1−エチル−1−ブテン−1−イルオキシ基、2−エチル−1−ブテン−1−イルオキシ基、3−エチル−1−ブテン−1−イルオキシ基、1−エチル−2−ブテン−1−イルオキシ基、2−エチル−2−ブテン−1−イルオキシ基、3−エチル−2−ブテン−1−イルオキシ基、1−エチル−3−ブテン−1−イルオキシ基、2−エチル−3−ブテン−1−イルオキシ基、3−エチル−3−ブテン−1−イルオキシ基、1,1−ジメチル−1−ブテン−1−イルオキシ基、1,2−ジメチル−1−ブテン−1−イルオキシ基、1,3−ジメチル−1−ブテン−1−イルオキシ基、2,2−ジメチル−1−ブテン−1−イルオキシ基、3,3−ジメチル−1−ブテン−1−イルオキシ基、1,1−ジメチル−2−ブテン−1−イルオキシ基、1,2−ジメチル−2−ブテン−1−イルオキシ基、1,3−ジメチル−2−ブテン−1−イルオキシ基、2,2−ジメチル−2−ブテン−1−イルオキシ基、3,3−ジメチル−2−ブテン−1−イルオキシ基、1,1−ジメチル−3−ブテン−1−イルオキシ基、1,2−ジメチル−3−ブテン−1−イルオキシ基、1,3−ジメチル−3−ブテン−1−イルオキシ基、2,2−ジメチル−3−ブテン−1−イルオキシ基、3,3−ジメチル−3−ブテン−1−イルオキシ基、1−ペンテン−1−イルオキシ基、2−ペンテン−1−イルオキシ基、3−ペンテン−1−イルオキシ基、4−ペンテン−1−イルオキシ基、1−ペンテン−2−イルオキシ基、2−ペンテン−2−イルオキシ基、3−ペンテン−2−イルオキシ基、4−ペンテン−2−イルオキシ基、1−ペンテン−3−イルオキシ基、2−ペンテン−3−イルオキシ基、1−ペンテン−1−イルオキシ基、2−ペンテン−1−イルオキシ基、3−ペンテン−1−イルオキシ基、4−ペンテン−1−イルオキシ基、1−ペンテン−2−イルオキシ基、2−ペンテン−2−イルオキシ基、3−ペンテン−2−イルオキシ基、4−ペンテン−2−イルオキシ基、1−ペンテン−3−イルオキシ基、2−ペンテン−3−イルオキシ基、1−メチル−1−ペンテン−1−イルオキシ基、2−メチル−1−ペンテン−1−イルオキシ基、3−メチル−1−ペンテン−1−イルオキシ基、4−メチル−1−ペンテン−1−イルオキシ基、1−メチル−2−ペンテン−1−イルオキシ基、2−メチル−2−ペンテン−1−イルオキシ基、3−メチル−2−ペンテン−1−イルオキシ基、4−メチル−2−ペンテン−1−イルオキシ基、1−メチル−3−ペンテン−1−イルオキシ基、2−メチル−3−ペンテン−1−イルオキシ基、3−メチル−3−ペンテン−1−イルオキシ基、4−メチル−3−ペンテン−1−イルオキシ基、1−メチル−4−ペンテン−1−イルオキシ基、2−メチル−4−ペンテン−1−イルオキシ基、3−メチル−4−ペンテン−1−イルオキシ基、4−メチル−4−ペンテン−1−イルオキシ基、1−メチル−1−ペンテン−2−イルオキシ基、2−メチル−1−ペンテン−2−イルオキシ基、3−メチル−1−ペンテン−2−イルオキシ基、4−メチル−1−ペンテン−2−イルオキシ基、1−メチル−2−ペンテン−2−イルオキシ基、2−メチル−2−ペンテン−2−イルオキシ基、3−メチル−2−ペンテン−2−イルオキシ基、4−メチル−2−ペンテン−2−イルオキシ基、1−メチル−3−ペンテン−2−イルオキシ基、2−メチル−3−ペンテン−2−イルオキシ基、3−メチル−3−ペンテン−2−イルオキシ基、4−メチル−3−ペンテン−2−イルオキシ基、1−メチル−4−ペンテン−2−イルオキシ基、2−メチル−4−ペンテン−2−イルオキシ基、3−メチル−4−ペンテン−2−イルオキシ基、4−メチル−4−ペンテン−2−イルオキシ基、1−メチル−1−ペンテン−3−イルオキシ基、2−メチル−1−ペンテン−3−イルオキシ基、3−メチル−1−ペンテン−3−イルオキシ基、4−メチル−1−ペンテン−3−イルオキシ基、1−メチル−2−ペンテン−3−イルオキシ基、2−メチル−2−ペンテン−3−イルオキシ基、3−メチル−2−ペンテン−3−イルオキシ基、4−メチル−2−ペンテン−3−イルオキシ基、1−ヘキセン−1−イルオキシ基、1−ヘキセン−2−イルオキシ基、1−ヘキセン−3−イルオキシ基、1−ヘキセン−4−イルオキシ基、1−ヘキセン−5−イルオキシ基、1−ヘキセン−6−イルオキシ基、2−ヘキセン−1−イルオキシ基、2−ヘキセン−2−イルオキシ基、2−ヘキセン−3−イルオキシ基、2−ヘキセン−4−イルオキシ基、2−ヘキセン−5−イルオキシ基、2−ヘキセン−6−イルオキシ基、3−ヘキセン−1−イルオキシ基、3−ヘキセン−2−イルオキシ基、3−ヘキセン−3−イルオキシ基などが挙げられ、好ましくはエテニルオキシ基、1−プロペン−1−イルオキシ基、2−プロペン−1−イルオキシ基、3−プロペン−1−イルオキシ基、1−ブテン−1−イルオキシ基、1−ブテン−2−イルオキシ基、1−ブテン−3−イルオキシ基、1−ブテン−4−イルオキシ基、2−ブテン−1−イルオキシ基、2−ブテン−2−イルオキシ基、1−メチル−1−プロペン−1−イルオキシ基、2−メチル−1−プロペン−1−イルオキシ基、1−メチル−2−プロペン−1−イルオキシ基、2−メチル−2−プロペン−1−イルオキシ基、1−メチル−1−ブテン−1−イルオキシ基、2−メチル−1−ブテン−1−イルオキシ基、3−メチル−1−ブテン−1−イルオキシ基、1−メチル−2−ブテン−1−イルオキシ基、2−メチル−2−ブテン−1−イルオキシ基、3−メチル−2−ブテン−1−イルオキシ基、1−メチル−3−ブテン−1−イルオキシ基、2−メチル−3−ブテン−1−イルオキシ基、3−メチル−3−ブテン−1−イルオキシ基、1−エチル−1−ブテン−1−イルオキシ基、2−エチル−1−ブテン−1−イルオキシ基、3−エチル−1−ブテン−1−イルオキシ基、1−エチル−2−ブテン−1−イルオキシ基、2−エチル−2−ブテン−1−イルオキシ基、3−エチル−2−ブテン−1−イルオキシ基、1−エチル−3−ブテン−1−イルオキシ基、2−エチル−3−ブテン−1−イルオキシ基、3−エチル−3−ブテン−1−イルオキシ基、1,1−ジメチル−1−ブテン−1−イルオキシ基、1,2−ジメチル−1−ブテン−1−イルオキシ基、1,3−ジメチル−1−ブテン−1−イルオキシ基、2,2−ジメチル−1−ブテン−1−イルオキシ基、3,3−ジメチル−1−ブテン−1−イルオキシ基、1,1−ジメチル−2−ブテン−1−イルオキシ基、1,2−ジメチル−2−ブテン−1−イルオキシ基、1,3−ジメチル−2−ブテン−1−イルオキシ基、2,2−ジメチル−2−ブテン−1−イルオキシ基、3,3−ジメチル−2−ブテン−1−イルオキシ基、1,1−ジメチル−3−ブテン−1−イルオキシ基、1,2−ジメチル−3−ブテン−1−イルオキシ基、1,3−ジメチル−3−ブテン−1−イルオキシ基、2,2−ジメチル−3−ブテン−1−イルオキシ基、3,3−ジメチル−3−ブテン−1−イルオキシ基であり、より好ましくはエテニルオキシ基、1−プロペン−1−イルオキシ基、2−プロペン−1−イルオキシ基、3−プロペン−1−イルオキシ基、1−ブテン−1−イルオキシ基、1−ブテン−2−イルオキシ基、1−ブテン−3−イルオキシ基、1−ブテン−4−イルオキシ基、2−ブテン−1−イルオキシ基、2−ブテン−2−イルオキシ基、1−メチル−1−プロペン−1−イルオキシ基、2−メチル−1−プロペン−1−イルオキシ基、1−メチル−2−プロペン−1−イルオキシ基、2−メチル−2−プロペン−1−イルオキシ基、1−メチル−1−ブテン−1−イルオキシ基、2−メチル−1−ブテン−1−イルオキシ基、3−メチル−1−ブテン−1−イルオキシ基、1−メチル−2−ブテン−1−イルオキシ基、2−メチル−2−ブテン−1−イルオキシ基、3−メチル−2−ブテン−1−イルオキシ基、1−メチル−3−ブテン−1−イルオキシ基、2−メチル−3−ブテン−1−イルオキシ基、3−メチル−3−ブテン−1−イルオキシ基であり、さらに好ましくはエテニルオキシ基、1−プロペン−1−イルオキシ基、2−プロペン−1−イルオキシ基、3−プロペン−1−イルオキシ基、1−ブテン−1−イルオキシ基、1−ブテン−2−イルオキシ基、1−ブテン−3−イルオキシ基、1−ブテン−4−イルオキシ基、2−ブテン−1−イルオキシ基、2−ブテン−2−イルオキシ基であり、もっとも好ましくはエテニルオキシ基、1−プロペン−1−イルオキシ基、2−プロペン−1−イルオキシ基、3−プロペン−1−イルオキシ基である。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし6のアルケニルチオ基を示す場合、該アルケニルチオ基とは、上記炭素数2〜6の直鎖もしくは分枝鎖状のアルケニル基において、その末端に硫黄原子が結合したものが相当し、具体的には例えばエテニルチオ基、1−プロペン−1−イルチオ基、2−プロペン−1−イルチオ基、3−プロペン−1−イルチオ基、1−ブテン−1−イルチオ基、1−ブテン−2−イルチオ基、1−ブテン−3−イルチオ基、1−ブテン−4−イルチオ基、2−ブテン−1−イルチオ基、2−ブテン−2−イルチオ基、1−メチル−1−プロペン−1−イルチオ基、2−メチル−1−プロペン−1−イルチオ基、1−メチル−2−プロペン−1−イルチオ基、2−メチル−2−プロペン−1−イルチオ基、1−メチル−1−ブテン−1−イルチオ基、2−メチル−1−ブテン−1−イルチオ基、3−メチル−1−ブテン−1−イルチオ基、1−メチル−2−ブテン−1−イルチオ基、2−メチル−2−ブテン−1−イルチオ基、3−メチル−2−ブテン−1−イルチオ基、1−メチル−3−ブテン−1−イルチオ基、2−メチル−3−ブテン−1−イルチオ基、3−メチル−3−ブテン−1−イルチオ基、1−エチル−1−ブテン−1−イルチオ基、2−エチル−1−ブテン−1−イルチオ基、3−エチル−1−ブテン−1−イルチオ基、1−エチル−2−ブテン−1−イルチオ基、2−エチル−2−ブテン−1−イルチオ基、3−エチル−2−ブテン−1−イルチオ基、1−エチル−3−ブテン−1−イルチオ基、2−エチル−3−ブテン−1−イルチオ基、3−エチル−3−ブテン−1−イルチオ基、1,1−ジメチル−1−ブテン−1−イルチオ基、1,2−ジメチル−1−ブテン−1−イルチオ基、1,3−ジメチル−1−ブテン−1−イルチオ基、2,2−ジメチル−1−ブテン−1−イルチオ基、3,3−ジメチル−1−ブテン−1−イルチオ基、1,1−ジメチル−2−ブテン−1−イルチオ基、1,2−ジメチル−2−ブテン−1−イルチオ基、1,3−ジメチル−2−ブテン−1−イルチオ基、2,2−ジメチル−2−ブテン−1−イルチオ基、3,3−ジメチル−2−ブテン−1−イルチオ基、1,1−ジメチル−3−ブテン−1−イルチオ基、1,2−ジメチル−3−ブテン−1−イルチオ基、1,3−ジメチル−3−ブテン−1−イルチオ基、2,2−ジメチル−3−ブテン−1−イルチオ基、3,3−ジメチル−3−ブテン−1−イルチオ基、1−ペンテン−1−イルチオ基、2−ペンテン−1−イルチオ基、3−ペンテン−1−イルチオ基、4−ペンテン−1−イルチオ基、1−ペンテン−2−イルチオ基、2−ペンテン−2−イルチオ基、3−ペンテン−2−イルチオ基、4−ペンテン−2−イルチオ基、1−ペンテン−3−イルチオ基、2−ペンテン−3−イルチオ基、1−ペンテン−1−イルチオ基、2−ペンテン−1−イルチオ基、3−ペンテン−1−イルチオ基、4−ペンテン−1−イルチオ基、1−ペンテン−2−イルチオ基、2−ペンテン−2−イルチオ基、3−ペンテン−2−イルチオ基、4−ペンテン−2−イルチオ基、1−ペンテン−3−イルチオ基、2−ペンテン−3−イルチオ基、1−メチル−1−ペンテン−1−イルチオ基、2−メチル−1−ペンテン−1−イルチオ基、3−メチル−1−ペンテン−1−イルチオ基、4−メチル−1−ペンテン−1−イルチオ基、1−メチル−2−ペンテン−1−イルチオ基、2−メチル−2−ペンテン−1−イルチオ基、3−メチル−2−ペンテン−1−イルチオ基、4−メチル−2−ペンテン−1−イルチオ基、1−メチル−3−ペンテン−1−イルチオ基、2−メチル−3−ペンテン−1−イルチオ基、3−メチル−3−ペンテン−1−イルチオ基、4−メチル−3−ペンテン−1−イルチオ基、1−メチル−4−ペンテン−1−イルチオ基、2−メチル−4−ペンテン−1−イルチオ基、3−メチル−4−ペンテン−1−イルチオ基、4−メチル−4−ペンテン−1−イルチオ基、1−メチル−1−ペンテン−2−イルチオ基、2−メチル−1−ペンテン−2−イルチオ基、3−メチル−1−ペンテン−2−イルチオ基、4−メチル−1−ペンテン−2−イルチオ基、1−メチル−2−ペンテン−2−イルチオ基、2−メチル−2−ペンテン−2−イルチオ基、3−メチル−2−ペンテン−2−イルチオ基、4−メチル−2−ペンテン−2−イルチオ基、1−メチル−3−ペンテン−2−イルチオ基、2−メチル−3−ペンテン−2−イルチオ基、3−メチル−3−ペンテン−2−イルチオ基、4−メチル−3−ペンテン−2−イルチオ基、1−メチル−4−ペンテン−2−イルチオ基、2−メチル−4−ペンテン−2−イルチオ基、3−メチル−4−ペンテン−2−イルチオ基、4−メチル−4−ペンテン−2−イルチオ基、1−メチル−1−ペンテン−3−イルチオ基、2−メチル−1−ペンテン−3−イルチオ基、3−メチル−1−ペンテン−3−イルチオ基、4−メチル−1−ペンテン−3−イルチオ基、1−メチル−2−ペンテン−3−イルチオ基、2−メチル−2−ペンテン−3−イルチオ基、3−メチル−2−ペンテン−3−イルチオ基、4−メチル−2−ペンテン−3−イルチオ基、1−ヘキセン−1−イルチオ基、1−ヘキセン−2−イルチオ基、1−ヘキセン−3−イルチオ基、1−ヘキセン−4−イルチオ基、1−ヘキセン−5−イルチオ基、1−ヘキセン−6−イルチオ基、2−ヘキセン−1−イルチオ基、2−ヘキセン−2−イルチオ基、2−ヘキセン−3−イルチオ基、2−ヘキセン−4−イルチオ基、2−ヘキセン−5−イルチオ基、2−ヘキセン−6−イルチオ基、3−ヘキセン−1−イルチオ基、3−ヘキセン−2−イルチオ基、3−ヘキセン−3−イルチオ基などが挙げられ、好ましくはエテニルチオ基、1−プロペン−1−イルチオ基、2−プロペン−1−イルチオ基、3−プロペン−1−イルチオ基、1−ブテン−1−イルチオ基、1−ブテン−2−イルチオ基、1−ブテン−3−イルチオ基、1−ブテン−4−イルチオ基、2−ブテン−1−イルチオ基、2−ブテン−2−イルチオ基、1−メチル−1−プロペン−1−イルチオ基、2−メチル−1−プロペン−1−イルチオ基、1−メチル−2−プロペン−1−イルチオ基、2−メチル−2−プロペン−1−イルチオ基、1−メチル−1−ブテン−1−イルチオ基、2−メチル−1−ブテン−1−イルチオ基、3−メチル−1−ブテン−1−イルチオ基、1−メチル−2−ブテン−1−イルチオ基、2−メチル−2−ブテン−1−イルチオ基、3−メチル−2−ブテン−1−イルチオ基、1−メチル−3−ブテン−1−イルチオ基、2−メチル−3−ブテン−1−イルチオ基、3−メチル−3−ブテン−1−イルチオ基、1−エチル−1−ブテン−1−イルチオ基、2−エチル−1−ブテン−1−イルチオ基、3−エチル−1−ブテン−1−イルチオ基、1−エチル−2−ブテン−1−イルチオ基、2−エチル−2−ブテン−1−イルチオ基、3−エチル−2−ブテン−1−イルチオ基、1−エチル−3−ブテン−1−イルチオ基、2−エチル−3−ブテン−1−イルチオ基、3−エチル−3−ブテン−1−イルチオ基、1,1−ジメチル−1−ブテン−1−イルチオ基、1,2−ジメチル−1−ブテン−1−イルチオ基、1,3−ジメチル−1−ブテン−1−イルチオ基、2,2−ジメチル−1−ブテン−1−イルチオ基、3,3−ジメチル−1−ブテン−1−イルチオ基、1,1−ジメチル−2−ブテン−1−イルチオ基、1,2−ジメチル−2−ブテン−1−イルチオ基、1,3−ジメチル−2−ブテン−1−イルチオ基、2,2−ジメチル−2−ブテン−1−イルチオ基、3,3−ジメチル−2−ブテン−1−イルチオ基、1,1−ジメチル−3−ブテン−1−イルチオ基、1,2−ジメチル−3−ブテン−1−イルチオ基、1,3−ジメチル−3−ブテン−1−イルチオ基、2,2−ジメチル−3−ブテン−1−イルチオ基、3,3−ジメチル−3−ブテン−1−イルチオ基であり、より好ましくはエテニルチオ基、1−プロペン−1−イルチオ基、2−プロペン−1−イルチオ基、3−プロペン−1−イルチオ基、1−ブテン−1−イルチオ基、1−ブテン−2−イルチオ基、1−ブテン−3−イルチオ基、1−ブテン−4−イルチオ基、2−ブテン−1−イルチオ基、2−ブテン−2−イルチオ基、1−メチル−1−プロペン−1−イルチオ基、2−メチル−1−プロペン−1−イルチオ基、1−メチル−2−プロペン−1−イルチオ基、2−メチル−2−プロペン−1−イルチオ基、1−メチル−1−ブテン−1−イルチオ基、2−メチル−1−ブテン−1−イルチオ基、3−メチル−1−ブテン−1−イルチオ基、1−メチル−2−ブテン−1−イルチオ基、2−メチル−2−ブテン−1−イルチオ基、3−メチル−2−ブテン−1−イルチオ基、1−メチル−3−ブテン−1−イルチオ基、2−メチル−3−ブテン−1−イルチオ基、3−メチル−3−ブテン−1−イルチオ基であり、さらに好ましくはエテニルチオ基、1−プロペン−1−イルチオ基、2−プロペン−1−イルチオ基、3−プロペン−1−イルチオ基、1−ブテン−1−イルチオ基、1−ブテン−2−イルチオ基、1−ブテン−3−イルチオ基、1−ブテン−4−イルチオ基、2−ブテン−1−イルチオ基、2−ブテン−2−イルチオ基であり、もっとも好ましくはエテニルチオ基、1−プロペン−1−イルチオ基、2−プロペン−1−イルチオ基、3−プロペン−1−イルチオ基である。
が1以上の置換基を有していてもよい炭素数2ないし6のアルキニル基を示す場合、該アルキニル基とは、炭素数2〜6の直鎖もしくは分枝鎖状のアルキニル基を示し、上記炭素数2以上のアルキル基中に3重結合を有する化合物残基をいう。具体的には例えばエチニル基、1−プロピン−1−イル基、2−プロピン−1−イル基、3−プロピン−1−イル基、1−ブチン−1−イル基、1−ブチン−2−イル基、1−ブチン−3−イル基、1−ブチン−4−イル基、2−ブチン−1−イル基、2−ブチン−2−イル基、1−メチル−1−プロピン−1−イル基、2−メチル−1−プロピン−1−イル基、1−メチル−2−プロピン−1−イル基、2−メチル−2−プロピン−1−イル基、1−メチル−1−ブチン−1−イル基、2−メチル−1−ブチン−1−イル基、3−メチル−1−ブチン−1−イル基、1−メチル−2−ブチン−1−イル基、2−メチル−2−ブチン−1−イル基、3−メチル−2−ブチン−1−イル基、1−メチル−3−ブチン−1−イル基、2−メチル−3−ブチン−1−イル基、3−メチル−3−ブチン−1−イル基、1−エチル−1−ブチン−1−イル基、2−エチル−1−ブチン−1−イル基、3−エチル−1−ブチン−1−イル基、1−エチル−2−ブチン−1−イル基、2−エチル−2−ブチン−1−イル基、3−エチル−2−ブチン−1−イル基、1−エチル−3−ブチン−1−イル基、2−エチル−3−ブチン−1−イル基、3−エチル−3−ブチン−1−イル基、1,1−ジメチル−1−ブチン−1−イル基、1,2−ジメチル−1−ブチン−1−イル基、1,3−ジメチル−1−ブチン−1−イル基、2,2−ジメチル−1−ブチン−1−イル基、3,3−ジメチル−1−ブチン−1−イル基、1,1−ジメチル−2−ブチン−1−イル基、1,2−ジメチル−2−ブチン−1−イル基、1,3−ジメチル−2−ブチン−1−イル基、2,2−ジメチル−2−ブチン−1−イル基、3,3−ジメチル−2−ブチン−1−イル基、1,1−ジメチル−3−ブチン−1−イル基、1,2−ジメチル−3−ブチン−1−イル基、1,3−ジメチル−3−ブチン−1−イル基、2,2−ジメチル−3−ブチン−1−イル基、3,3−ジメチル−3−ブチン−1−イル基、1−ペンチン−1−イル基、2−ペンチン−1−イル基、3−ペンチン−1−イル基、4−ペンチン−1−イル基、1−ペンチン−2−イル基、2−ペンチン−2−イル基、3−ペンチン−2−イル基、4−ペンチン−2−イル基、1−ペンチン−3−イル基、2−ペンチン−3−イル基、1−ペンチン−1−イル基、2−ペンチン−1−イル基、3−ペンチン−1−イル基、4−ペンチン−1−イル基、1−ペンチン−2−イル基、2−ペンチン−2−イル基、3−ペンチン−2−イル基、4−ペンチン−2−イル基、1−ペンチン−3−イル基、2−ペンチン−3−イル基、1−メチル−1−ペンチン−1−イル基、2−メチル−1−ペンチン−1−イル基、3−メチル−1−ペンチン−1−イル基、4−メチル−1−ペンチン−1−イル基、1−メチル−2−ペンチン−1−イル基、2−メチル−2−ペンチン−1−イル基、3−メチル−2−ペンチン−1−イル基、4−メチル−2−ペンチン−1−イル基、1−メチル−3−ペンチン−1−イル基、2−メチル−3−ペンチン−1−イル基、3−メチル−3−ペンチン−1−イル基、4−メチル−3−ペンチン−1−イル基、1−メチル−4−ペンチン−1−イル基、2−メチル−4−ペンチン−1−イル基、3−メチル−4−ペンチン−1−イル基、4−メチル−4−ペンチン−1−イル基、1−メチル−1−ペンチン−2−イル基、2−メチル−1−ペンチン−2−イル基、3−メチル−1−ペンチン−2−イル基、4−メチル−1−ペンチン−2−イル基、1−メチル−2−ペンチン−2−イル基、2−メチル−2−ペンチン−2−イル基、3−メチル−2−ペンチン−2−イル基、4−メチル−2−ペンチン−2−イル基、1−メチル−3−ペンチン−2−イル基、2−メチル−3−ペンチン−2−イル基、3−メチル−3−ペンチン−2−イル基、4−メチル−3−ペンチン−2−イル基、1−メチル−4−ペンチン−2−イル基、2−メチル−4−ペンチン−2−イル基、3−メチル−4−ペンチン−2−イル基、4−メチル−4−ペンチン−2−イル基、1−メチル−1−ペンチン−3−イル基、2−メチル−1−ペンチン−3−イル基、3−メチル−1−ペンチン−3−イル基、4−メチル−1−ペンチン−3−イル基、1−メチル−2−ペンチン−3−イル基、2−メチル−2−ペンチン−3−イル基、3−メチル−2−ペンチン−3−イル基、4−メチル−2−ペンチン−3−イル基、1−ヘキシン−1−イル基、1−ヘキシン−2−イル基、1−ヘキシン−3−イル基、1−ヘキシン−4−イル基、1−ヘキシン−5−イル基、1−ヘキシン−6−イル基、2−ヘキシン−1−イル基、2−ヘキシン−2−イル基、2−ヘキシン−3−イル基、2−ヘキシン−4−イル基、2−ヘキシン−5−イル基、2−ヘキシン−6−イル基、3−ヘキシン−1−イル基、3−ヘキシン−2−イル基、3−ヘキシン−3−イル基などが挙げられ、好ましくはエチニル基、1−プロピン−1−イル基、2−プロピン−1−イル基、3−プロピン−1−イル基、1−ブチン−1−イル基、1−ブチン−2−イル基、1−ブチン−3−イル基、1−ブチン−4−イル基、2−ブチン−1−イル基、2−ブチン−2−イル基、1−メチル−1−プロピン−1−イル基、2−メチル−1−プロピン−1−イル基、1−メチル−2−プロピン−1−イル基、2−メチル−2−プロピン−1−イル基、1−メチル−1−ブチン−1−イル基、2−メチル−1−ブチン−1−イル基、3−メチル−1−ブチン−1−イル基、1−メチル−2−ブチン−1−イル基、2−メチル−2−ブチン−1−イル基、3−メチル−2−ブチン−1−イル基、1−メチル−3−ブチン−1−イル基、2−メチル−3−ブチン−1−イル基、3−メチル−3−ブチン−1−イル基、1−エチル−1−ブチン−1−イル基、2−エチル−1−ブチン−1−イル基、3−エチル−1−ブチン−1−イル基、1−エチル−2−ブチン−1−イル基、2−エチル−2−ブチン−1−イル基、3−エチル−2−ブチン−1−イル基、1−エチル−3−ブチン−1−イル基、2−エチル−3−ブチン−1−イル基、3−エチル−3−ブチン−1−イル基、1,1−ジメチル−1−ブチン−1−イル基、1,2−ジメチル−1−ブチン−1−イル基、1,3−ジメチル−1−ブチン−1−イル基、2,2−ジメチル−1−ブチン−1−イル基、3,3−ジメチル−1−ブチン−1−イル基、1,1−ジメチル−2−ブチン−1−イル基、1,2−ジメチル−2−ブチン−1−イル基、1,3−ジメチル−2−ブチン−1−イル基、2,2−ジメチル−2−ブチン−1−イル基、3,3−ジメチル−2−ブチン−1−イル基、1,1−ジメチル−3−ブチン−1−イル基、1,2−ジメチル−3−ブチン−1−イル基、1,3−ジメチル−3−ブチン−1−イル基、2,2−ジメチル−3−ブチン−1−イル基、3,3−ジメチル−3−ブチン−1−イル基であり、より好ましくはエチニル基、1−プロピン−1−イル基、2−プロピン−1−イル基、3−プロピン−1−イル基、1−ブチン−1−イル基、1−ブチン−2−イル基、1−ブチン−3−イル基、1−ブチン−4−イル基、2−ブチン−1−イル基、2−ブチン−2−イル基、1−メチル−1−プロピン−1−イル基、2−メチル−1−プロピン−1−イル基、1−メチル−2−プロピン−1−イル基、2−メチル−2−プロピン−1−イル基、1−メチル−1−ブチン−1−イル基、2−メチル−1−ブチン−1−イル基、3−メチル−1−ブチン−1−イル基、1−メチル−2−ブチン−1−イル基、2−メチル−2−ブチン−1−イル基、3−メチル−2−ブチン−1−イル基、1−メチル−3−ブチン−1−イル基、2−メチル−3−ブチン−1−イル基、3−メチル−3−ブチン−1−イル基であり、さらに好ましくはエチニル基、1−プロピン−1−イル基、2−プロピン−1−イル基、3−プロピン−1−イル基、1−ブチン−1−イル基、1−ブチン−2−イル基、1−ブチン−3−イル基、1−ブチン−4−イル基、2−ブチン−1−イル基、2−ブチン−2−イル基であり、もっとも好ましくはエチニル基、1−プロピン−1−イル基、2−プロピン−1−イル基、3−プロピン−1−イル基である。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし6のアルキニルオキシ基を示す場合、該アルキニルオキシ基とは、上記炭素数2〜6の直鎖もしくは分枝鎖状のアルキニル基において、その末端に酸素原子が結合したものが相当し、具体的には例えばエチニルオキシ基、1−プロピン−1−イルオキシ基、2−プロピン−1−イルオキシ基、3−プロピン−1−イルオキシ基、1−ブチン−1−イルオキシ基、1−ブチン−2−イルオキシ基、1−ブチン−3−イルオキシ基、1−ブチン−4−イルオキシ基、2−ブチン−1−イルオキシ基、2−ブチン−2−イルオキシ基、1−メチル−1−プロピン−1−イルオキシ基、2−メチル−1−プロピン−1−イルオキシ基、1−メチル−2−プロピン−1−イルオキシ基、2−メチル−2−プロピン−1−イルオキシ基、1−メチル−1−ブチン−1−イルオキシ基、2−メチル−1−ブチン−1−イルオキシ基、3−メチル−1−ブチン−1−イルオキシ基、1−メチル−2−ブチン−1−イルオキシ基、2−メチル−2−ブチン−1−イルオキシ基、3−メチル−2−ブチン−1−イルオキシ基、1−メチル−3−ブチン−1−イルオキシ基、2−メチル−3−ブチン−1−イルオキシ基、3−メチル−3−ブチン−1−イルオキシ基、1−エチル−1−ブチン−1−イルオキシ基、2−エチル−1−ブチン−1−イルオキシ基、3−エチル−1−ブチン−1−イルオキシ基、1−エチル−2−ブチン−1−イルオキシ基、2−エチル−2−ブチン−1−イルオキシ基、3−エチル−2−ブチン−1−イルオキシ基、1−エチル−3−ブチン−1−イルオキシ基、2−エチル−3−ブチン−1−イルオキシ基、3−エチル−3−ブチン−1−イルオキシ基、1,1−ジメチル−1−ブチン−1−イルオキシ基、1,2−ジメチル−1−ブチン−1−イルオキシ基、1,3−ジメチル−1−ブチン−1−イルオキシ基、2,2−ジメチル−1−ブチン−1−イルオキシ基、3,3−ジメチル−1−ブチン−1−イルオキシ基、1,1−ジメチル−2−ブチン−1−イルオキシ基、1,2−ジメチル−2−ブチン−1−イルオキシ基、1,3−ジメチル−2−ブチン−1−イルオキシ基、2,2−ジメチル−2−ブチン−1−イルオキシ基、3,3−ジメチル−2−ブチン−1−イルオキシ基、1,1−ジメチル−3−ブチン−1−イルオキシ基、1,2−ジメチル−3−ブチン−1−イルオキシ基、1,3−ジメチル−3−ブチン−1−イルオキシ基、2,2−ジメチル−3−ブチン−1−イルオキシ基、3,3−ジメチル−3−ブチン−1−イルオキシ基、1−ペンチン−1−イルオキシ基、2−ペンチン−1−イルオキシ基、3−ペンチン−1−イルオキシ基、4−ペンチン−1−イルオキシ基、1−ペンチン−2−イルオキシ基、2−ペンチン−2−イルオキシ基、3−ペンチン−2−イルオキシ基、4−ペンチン−2−イルオキシ基、1−ペンチン−3−イルオキシ基、2−ペンチン−3−イルオキシ基、1−ペンチン−1−イルオキシ基、2−ペンチン−1−イルオキシ基、3−ペンチン−1−イルオキシ基、4−ペンチン−1−イルオキシ基、1−ペンチン−2−イルオキシ基、2−ペンチン−2−イルオキシ基、3−ペンチン−2−イルオキシ基、4−ペンチン−2−イルオキシ基、1−ペンチン−3−イルオキシ基、2−ペンチン−3−イルオキシ基、1−メチル−1−ペンチン−1−イルオキシ基、2−メチル−1−ペンチン−1−イルオキシ基、3−メチル−1−ペンチン−1−イルオキシ基、4−メチル−1−ペンチン−1−イルオキシ基、1−メチル−2−ペンチン−1−イルオキシ基、2−メチル−2−ペンチン−1−イルオキシ基、3−メチル−2−ペンチン−1−イルオキシ基、4−メチル−2−ペンチン−1−イルオキシ基、1−メチル−3−ペンチン−1−イルオキシ基、2−メチル−3−ペンチン−1−イルオキシ基、3−メチル−3−ペンチン−1−イルオキシ基、4−メチル−3−ペンチン−1−イルオキシ基、1−メチル−4−ペンチン−1−イルオキシ基、2−メチル−4−ペンチン−1−イルオキシ基、3−メチル−4−ペンチン−1−イルオキシ基、4−メチル−4−ペンチン−1−イルオキシ基、1−メチル−1−ペンチン−2−イルオキシ基、2−メチル−1−ペンチン−2−イルオキシ基、3−メチル−1−ペンチン−2−イルオキシ基、4−メチル−1−ペンチン−2−イルオキシ基、1−メチル−2−ペンチン−2−イルオキシ基、2−メチル−2−ペンチン−2−イルオキシ基、3−メチル−2−ペンチン−2−イルオキシ基、4−メチル−2−ペンチン−2−イルオキシ基、1−メチル−3−ペンチン−2−イルオキシ基、2−メチル−3−ペンチン−2−イルオキシ基、3−メチル−3−ペンチン−2−イルオキシ基、4−メチル−3−ペンチン−2−イルオキシ基、1−メチル−4−ペンチン−2−イルオキシ基、2−メチル−4−ペンチン−2−イルオキシ基、3−メチル−4−ペンチン−2−イルオキシ基、4−メチル−4−ペンチン−2−イルオキシ基、1−メチル−1−ペンチン−3−イルオキシ基、2−メチル−1−ペンチン−3−イルオキシ基、3−メチル−1−ペンチン−3−イルオキシ基、4−メチル−1−ペンチン−3−イルオキシ基、1−メチル−2−ペンチン−3−イルオキシ基、2−メチル−2−ペンチン−3−イルオキシ基、3−メチル−2−ペンチン−3−イルオキシ基、4−メチル−2−ペンチン−3−イルオキシ基、1−ヘキシン−1−イルオキシ基、1−ヘキシン−2−イルオキシ基、1−ヘキシン−3−イルオキシ基、1−ヘキシン−4−イルオキシ基、1−ヘキシン−5−イルオキシ基、1−ヘキシン−6−イルオキシ基、2−ヘキシン−1−イルオキシ基、2−ヘキシン−2−イルオキシ基、2−ヘキシン−3−イルオキシ基、2−ヘキシン−4−イルオキシ基、2−ヘキシン−5−イルオキシ基、2−ヘキシン−6−イルオキシ基、3−ヘキシン−1−イルオキシ基、3−ヘキシン−2−イルオキシ基、3−ヘキシン−3−イルオキシ基などが挙げられ、好ましくはエチニルオキシ基、1−プロピン−1−イルオキシ基、2−プロピン−1−イルオキシ基、3−プロピン−1−イルオキシ基、1−ブチン−1−イルオキシ基、1−ブチン−2−イルオキシ基、1−ブチン−3−イルオキシ基、1−ブチン−4−イルオキシ基、2−ブチン−1−イルオキシ基、2−ブチン−2−イルオキシ基、1−メチル−1−プロピン−1−イルオキシ基、2−メチル−1−プロピン−1−イルオキシ基、1−メチル−2−プロピン−1−イルオキシ基、2−メチル−2−プロピン−1−イルオキシ基、1−メチル−1−ブチン−1−イルオキシ基、2−メチル−1−ブチン−1−イルオキシ基、3−メチル−1−ブチン−1−イルオキシ基、1−メチル−2−ブチン−1−イルオキシ基、2−メチル−2−ブチン−1−イルオキシ基、3−メチル−2−ブチン−1−イルオキシ基、1−メチル−3−ブチン−1−イルオキシ基、2−メチル−3−ブチン−1−イルオキシ基、3−メチル−3−ブチン−1−イルオキシ基、1−エチル−1−ブチン−1−イルオキシ基、2−エチル−1−ブチン−1−イルオキシ基、3−エチル−1−ブチン−1−イルオキシ基、1−エチル−2−ブチン−1−イルオキシ基、2−エチル−2−ブチン−1−イルオキシ基、3−エチル−2−ブチン−1−イルオキシ基、1−エチル−3−ブチン−1−イルオキシ基、2−エチル−3−ブチン−1−イルオキシ基、3−エチル−3−ブチン−1−イルオキシ基、1,1−ジメチル−1−ブチン−1−イルオキシ基、1,2−ジメチル−1−ブチン−1−イルオキシ基、1,3−ジメチル−1−ブチン−1−イルオキシ基、2,2−ジメチル−1−ブチン−1−イルオキシ基、3,3−ジメチル−1−ブチン−1−イルオキシ基、1,1−ジメチル−2−ブチン−1−イルオキシ基、1,2−ジメチル−2−ブチン−1−イルオキシ基、1,3−ジメチル−2−ブチン−1−イルオキシ基、2,2−ジメチル−2−ブチン−1−イルオキシ基、3,3−ジメチル−2−ブチン−1−イルオキシ基、1,1−ジメチル−3−ブチン−1−イルオキシ基、1,2−ジメチル−3−ブチン−1−イルオキシ基、1,3−ジメチル−3−ブチン−1−イルオキシ基、2,2−ジメチル−3−ブチン−1−イルオキシ基、3,3−ジメチル−3−ブチン−1−イルオキシ基であり、より好ましくはエチニルオキシ基、1−プロピン−1−イルオキシ基、2−プロピン−1−イルオキシ基、3−プロピン−1−イルオキシ基、1−ブチン−1−イルオキシ基、1−ブチン−2−イルオキシ基、1−ブチン−3−イルオキシ基、1−ブチン−4−イルオキシ基、2−ブチン−1−イルオキシ基、2−ブチン−2−イルオキシ基、1−メチル−1−プロピン−1−イルオキシ基、2−メチル−1−プロピン−1−イルオキシ基、1−メチル−2−プロピン−1−イルオキシ基、2−メチル−2−プロピン−1−イルオキシ基、1−メチル−1−ブチン−1−イルオキシ基、2−メチル−1−ブチン−1−イルオキシ基、3−メチル−1−ブチン−1−イルオキシ基、1−メチル−2−ブチン−1−イルオキシ基、2−メチル−2−ブチン−1−イルオキシ基、3−メチル−2−ブチン−1−イルオキシ基、1−メチル−3−ブチン−1−イルオキシ基、2−メチル−3−ブチン−1−イルオキシ基、3−メチル−3−ブチン−1−イルオキシ基であり、さらに好ましくはエチニルオキシ基、1−プロピン−1−イルオキシ基、2−プロピン−1−イルオキシ基、3−プロピン−1−イルオキシ基、1−ブチン−1−イルオキシ基、1−ブチン−2−イルオキシ基、1−ブチン−3−イルオキシ基、1−ブチン−4−イルオキシ基、2−ブチン−1−イルオキシ基、2−ブチン−2−イルオキシ基であり、もっとも好ましくはエチニルオキシ基、1−プロピン−1−イルオキシ基、2−プロピン−1−イルオキシ基、3−プロピン−1−イルオキシ基である。
同様にしてRが1以上の置換基を有していてもよい炭素数2ないし6のアルキニルチオ基を示す場合、該アルキニルチオ基とは、上記炭素数2〜6の直鎖もしくは分枝鎖状のアルキニル基において、その末端に硫黄原子が結合したものが相当し、具体的には例えばエチニルチオ基、1−プロピン−1−イルチオ基、2−プロピン−1−イルチオ基、3−プロピン−1−イルチオ基、1−ブチン−1−イルチオ基、1−ブチン−2−イルチオ基、1−ブチン−3−イルチオ基、1−ブチン−4−イルチオ基、2−ブチン−1−イルチオ基、2−ブチン−2−イルチオ基、1−メチル−1−プロピン−1−イルチオ基、2−メチル−1−プロピン−1−イルチオ基、1−メチル−2−プロピン−1−イルチオ基、2−メチル−2−プロピン−1−イルチオ基、1−メチル−1−ブチン−1−イルチオ基、2−メチル−1−ブチン−1−イルチオ基、3−メチル−1−ブチン−1−イルチオ基、1−メチル−2−ブチン−1−イルチオ基、2−メチル−2−ブチン−1−イルチオ基、3−メチル−2−ブチン−1−イルチオ基、1−メチル−3−ブチン−1−イルチオ基、2−メチル−3−ブチン−1−イルチオ基、3−メチル−3−ブチン−1−イルチオ基、1−エチル−1−ブチン−1−イルチオ基、2−エチル−1−ブチン−1−イルチオ基、3−エチル−1−ブチン−1−イルチオ基、1−エチル−2−ブチン−1−イルチオ基、2−エチル−2−ブチン−1−イルチオ基、3−エチル−2−ブチン−1−イルチオ基、1−エチル−3−ブチン−1−イルチオ基、2−エチル−3−ブチン−1−イルチオ基、3−エチル−3−ブチン−1−イルチオ基、1,1−ジメチル−1−ブチン−1−イルチオ基、1,2−ジメチル−1−ブチン−1−イルチオ基、1,3−ジメチル−1−ブチン−1−イルチオ基、2,2−ジメチル−1−ブチン−1−イルチオ基、3,3−ジメチル−1−ブチン−1−イルチオ基、1,1−ジメチル−2−ブチン−1−イルチオ基、1,2−ジメチル−2−ブチン−1−イルチオ基、1,3−ジメチル−2−ブチン−1−イルチオ基、2,2−ジメチル−2−ブチン−1−イルチオ基、3,3−ジメチル−2−ブチン−1−イルチオ基、1,1−ジメチル−3−ブチン−1−イルチオ基、1,2−ジメチル−3−ブチン−1−イルチオ基、1,3−ジメチル−3−ブチン−1−イルチオ基、2,2−ジメチル−3−ブチン−1−イルチオ基、3,3−ジメチル−3−ブチン−1−イルチオ基、1−ペンチン−1−イルチオ基、2−ペンチン−1−イルチオ基、3−ペンチン−1−イルチオ基、4−ペンチン−1−イルチオ基、1−ペンチン−2−イルチオ基、2−ペンチン−2−イルチオ基、3−ペンチン−2−イルチオ基、4−ペンチン−2−イルチオ基、1−ペンチン−3−イルチオ基、2−ペンチン−3−イルチオ基、1−ペンチン−1−イルチオ基、2−ペンチン−1−イルチオ基、3−ペンチン−1−イルチオ基、4−ペンチン−1−イルチオ基、1−ペンチン−2−イルチオ基、2−ペンチン−2−イルチオ基、3−ペンチン−2−イルチオ基、4−ペンチン−2−イルチオ基、1−ペンチン−3−イルチオ基、2−ペンチン−3−イルチオ基、1−メチル−1−ペンチン−1−イルチオ基、2−メチル−1−ペンチン−1−イルチオ基、3−メチル−1−ペンチン−1−イルチオ基、4−メチル−1−ペンチン−1−イルチオ基、1−メチル−2−ペンチン−1−イルチオ基、2−メチル−2−ペンチン−1−イルチオ基、3−メチル−2−ペンチン−1−イルチオ基、4−メチル−2−ペンチン−1−イルチオ基、1−メチル−3−ペンチン−1−イルチオ基、2−メチル−3−ペンチン−1−イルチオ基、3−メチル−3−ペンチン−1−イルチオ基、4−メチル−3−ペンチン−1−イルチオ基、1−メチル−4−ペンチン−1−イルチオ基、2−メチル−4−ペンチン−1−イルチオ基、3−メチル−4−ペンチン−1−イルチオ基、4−メチル−4−ペンチン−1−イルチオ基、1−メチル−1−ペンチン−2−イルチオ基、2−メチル−1−ペンチン−2−イルチオ基、3−メチル−1−ペンチン−2−イルチオ基、4−メチル−1−ペンチン−2−イルチオ基、1−メチル−2−ペンチン−2−イルチオ基、2−メチル−2−ペンチン−2−イルチオ基、3−メチル−2−ペンチン−2−イルチオ基、4−メチル−2−ペンチン−2−イルチオ基、1−メチル−3−ペンチン−2−イルチオ基、2−メチル−3−ペンチン−2−イルチオ基、3−メチル−3−ペンチン−2−イルチオ基、4−メチル−3−ペンチン−2−イルチオ基、1−メチル−4−ペンチン−2−イルチオ基、2−メチル−4−ペンチン−2−イルチオ基、3−メチル−4−ペンチン−2−イルチオ基、4−メチル−4−ペンチン−2−イルチオ基、1−メチル−1−ペンチン−3−イルチオ基、2−メチル−1−ペンチン−3−イルチオ基、3−メチル−1−ペンチン−3−イルチオ基、4−メチル−1−ペンチン−3−イルチオ基、1−メチル−2−ペンチン−3−イルチオ基、2−メチル−2−ペンチン−3−イルチオ基、3−メチル−2−ペンチン−3−イルチオ基、4−メチル−2−ペンチン−3−イルチオ基、1−ヘキシン−1−イルチオ基、1−ヘキシン−2−イルチオ基、1−ヘキシン−3−イルチオ基、1−ヘキシン−4−イルチオ基、1−ヘキシン−5−イルチオ基、1−ヘキシン−6−イルチオ基、2−ヘキシン−1−イルチオ基、2−ヘキシン−2−イルチオ基、2−ヘキシン−3−イルチオ基、2−ヘキシン−4−イルチオ基、2−ヘキシン−5−イルチオ基、2−ヘキシン−6−イルチオ基、3−ヘキシン−1−イルチオ基、3−ヘキシン−2−イルチオ基、3−ヘキシン−3−イルチオ基などが挙げられ、好ましくはエチニルチオ基、1−プロピン−1−イルチオ基、2−プロピン−1−イルチオ基、3−プロピン−1−イルチオ基、1−ブチン−1−イルチオ基、1−ブチン−2−イルチオ基、1−ブチン−3−イルチオ基、1−ブチン−4−イルチオ基、2−ブチン−1−イルチオ基、2−ブチン−2−イルチオ基、1−メチル−1−プロピン−1−イルチオ基、2−メチル−1−プロピン−1−イルチオ基、1−メチル−2−プロピン−1−イルチオ基、2−メチル−2−プロピン−1−イルチオ基、1−メチル−1−ブチン−1−イルチオ基、2−メチル−1−ブチン−1−イルチオ基、3−メチル−1−ブチン−1−イルチオ基、1−メチル−2−ブチン−1−イルチオ基、2−メチル−2−ブチン−1−イルチオ基、3−メチル−2−ブチン−1−イルチオ基、1−メチル−3−ブチン−1−イルチオ基、2−メチル−3−ブチン−1−イルチオ基、3−メチル−3−ブチン−1−イルチオ基、1−エチル−1−ブチン−1−イルチオ基、2−エチル−1−ブチン−1−イルチオ基、3−エチル−1−ブチン−1−イルチオ基、1−エチル−2−ブチン−1−イルチオ基、2−エチル−2−ブチン−1−イルチオ基、3−エチル−2−ブチン−1−イルチオ基、1−エチル−3−ブチン−1−イルチオ基、2−エチル−3−ブチン−1−イルチオ基、3−エチル−3−ブチン−1−イルチオ基、1,1−ジメチル−1−ブチン−1−イルチオ基、1,2−ジメチル−1−ブチン−1−イルチオ基、1,3−ジメチル−1−ブチン−1−イルチオ基、2,2−ジメチル−1−ブチン−1−イルチオ基、3,3−ジメチル−1−ブチン−1−イルチオ基、1,1−ジメチル−2−ブチン−1−イルチオ基、1,2−ジメチル−2−ブチン−1−イルチオ基、1,3−ジメチル−2−ブチン−1−イルチオ基、2,2−ジメチル−2−ブチン−1−イルチオ基、3,3−ジメチル−2−ブチン−1−イルチオ基、1,1−ジメチル−3−ブチン−1−イルチオ基、1,2−ジメチル−3−ブチン−1−イルチオ基、1,3−ジメチル−3−ブチン−1−イルチオ基、2,2−ジメチル−3−ブチン−1−イルチオ基、3,3−ジメチル−3−ブチン−1−イルチオ基であり、より好ましくはエチニルチオ基、1−プロピン−1−イルチオ基、2−プロピン−1−イルチオ基、3−プロピン−1−イルチオ基、1−ブチン−1−イルチオ基、1−ブチン−2−イルチオ基、1−ブチン−3−イルチオ基、1−ブチン−4−イルチオ基、2−ブチン−1−イルチオ基、2−ブチン−2−イルチオ基、1−メチル−1−プロピン−1−イルチオ基、2−メチル−1−プロピン−1−イルチオ基、1−メチル−2−プロピン−1−イルチオ基、2−メチル−2−プロピン−1−イルチオ基、1−メチル−1−ブチン−1−イルチオ基、2−メチル−1−ブチン−1−イルチオ基、3−メチル−1−ブチン−1−イルチオ基、1−メチル−2−ブチン−1−イルチオ基、2−メチル−2−ブチン−1−イルチオ基、3−メチル−2−ブチン−1−イルチオ基、1−メチル−3−ブチン−1−イルチオ基、2−メチル−3−ブチン−1−イルチオ基、3−メチル−3−ブチン−1−イルチオ基であり、さらに好ましくはエチニルチオ基、1−プロピン−1−イルチオ基、2−プロピン−1−イルチオ基、3−プロピン−1−イルチオ基、1−ブチン−1−イルチオ基、1−ブチン−2−イルチオ基、1−ブチン−3−イルチオ基、1−ブチン−4−イルチオ基、2−ブチン−1−イルチオ基、2−ブチン−2−イルチオ基であり、もっとも好ましくはエチニルチオ基、1−プロピン−1−イルチオ基、2−プロピン−1−イルチオ基、3−プロピン−1−イルチオ基である。
が1以上の置換基を有していてもよい炭素数6ないし12のアリール基を示す場合、該アリール基とは芳香族環基をいい、具体的には例えば、フェニル基、1−ナフチル基、2−ナフチル基、as−インダセニル基、s−インダセニル基、アセナフチレニル基などが挙げられる。好ましくはフェニル基、1−ナフチル基、2−ナフチル基、であり、より好ましくはフェニル基である。
同様にしてRが1以上の置換基を有していてもよい炭素数6ないし12のアリールオキシ基を示す場合、該アリールオキシ基とは、上記炭素数6ないし12のアリール基において、その末端に酸素原子が結合したものが相当し、具体的には例えばフェニルオキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基、as−インダセニルオキシ基、s−インダセニルオキシ基、アセナフチレニルオキシ基などが挙げられる。好ましくはフェニルオキシ基、1−ナフチルオキシ基、2−ナフチルオキシ基であり、より好ましくはフェニルオキシ基である。
同様にしてRが1以上の置換基を有していてもよい炭素数6ないし12のアリールチオ基を示す場合、該アリールチオ基とは、上記炭素数6ないし12のアリール基において、その末端に硫黄原子が結合したものが相当し、具体的には例えばフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基、as−インダセニルチオ基、s−インダセニルチオ基、アセナフチレニルチオ基などが挙げられる。好ましくはフェニルチオ基、1−ナフチルチオ基、2−ナフチルチオ基であり、より好ましくはフェニルチオ基である。
が1以上の置換基を有していてもよい炭素数7ないし18のアルキルアリール基を示す場合、該アルキルアリール基とは上記炭素数6ないし12のアリール基において、置換可能な部分が上記炭素数1ないし6のアルキル基で置換された基をいい、具体的には例えば、トリル基、キシリル基、クメニル基、メシチル基、シメニル基、スチリル基などが挙げられる。好ましくはトリル基、キシリル基、クメニル基、メシチル基、シメニル基、スチリル基であり、より好ましくはトリル基、キシリル基、クメニル基、メシチル基であり、さらに好ましくはトリル基、キシリル基、クメニル基である。
同様にしてRが1以上の置換基を有していてもよい炭素数7ないし18のアルキルアリールオキシ基を示す場合、該アルキルアリールオキシ基とは、上記炭素数7ないし18のアルキルアリール基において、その末端に酸素原子が結合したものが相当し、具体的には例えばo−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基、2,3−キシリル−1−オキシ基、2,4−キシリル−1−オキシ基、2,5−キシリル−1−オキシ基、o−クメニルオキシ基、m−クメニルオキシ基、p−クメニルオキシ基、メシチルオキシ基、2,3−シメニル−1−オキシ基、2,4−シメニル−1−オキシ基、2,5−シメニル−1−オキシ基、o−スチリルオキシ基、m−スチリルオキシ基、p−スチリルオキシ基などが挙げられる。好ましくはo−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基、2,3−キシリル−1−オキシ基、2,4−キシリル−1−オキシ基、2,5−キシリル−1−オキシ基、o−クメニルオキシ基、m−クメニルオキシ基、p−クメニルオキシ基、メシチルオキシ基、2,3−シメニル−1−オキシ基、2,4−シメニル−1−オキシ基、2,5−シメニル−1−オキシ基、o−スチリルオキシ基、m−スチリルオキシ基、p−スチリルオキシ基であり、より好ましくはo−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基、2,3−キシリル−1−オキシ基、2,4−キシリル−1−オキシ基、2,5−キシリル−1−オキシ基、o−クメニルオキシ基、m−クメニルオキシ基、p−クメニルオキシ基、メシチルオキシ基、o−スチリルオキシ基、m−スチリルオキシ基、p−スチリルオキシ基であり、さらに好ましくはo−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基、2,3−キシリル−1−オキシ基、2,4−キシリル−1−オキシ基、2,5−キシリル−1−オキシ基、メシチルオキシ基であり、もっとも好ましくはo−トリルオキシ基、m−トリルオキシ基、p−トリルオキシ基である。
同様にしてRが1以上の置換基を有していてもよい炭素数7ないし18のアルキルアリールチオ基を示す場合、該アルキルアリールチオ基とは、上記炭素数7ないし18のアルキルアリール基において、その末端に硫黄原子が結合したものが相当し、具体的には例えばo−トリルチオ基、m−トリルチオ基、p−トリルチオ基、2,3−キシリル−1−チオ基、2,4−キシリル−1−チオ基、2,5−キシリル−1−チオ基、o−クメニルチオ基、m−クメニルチオ基、p−クメニルチオ基、メシチルチオ基、2,3−シメニル−1−チオ基、2,4−シメニル−1−チオ基、2,5−シメニル−1−チオ基、o−スチリルチオ基、m−スチリルチオ基、p−スチリルチオ基などが挙げられる。好ましくはo−トリルチオ基、m−トリルチオ基、p−トリルチオ基、2,3−キシリル−1−チオ基、2,4−キシリル−1−チオ基、2,5−キシリル−1−チオ基、o−クメニルチオ基、m−クメニルチオ基、p−クメニルチオ基、メシチルチオ基、2,3−シメニル−1−チオ基、2,4−シメニル−1−チオ基、2,5−シメニル−1−チオ基、o−スチリルチオ基、m−スチリルチオ基、p−スチリルチオ基であり、より好ましくはo−トリルチオ基、m−トリルチオ基、p−トリルチオ基、2,3−キシリル−1−チオ基、2,4−キシリル−1−チオ基、2,5−キシリル−1−チオ基、o−クメニルチオ基、m−クメニルチオ基、p−クメニルチオ基、メシチルチオ基、o−スチリルチオ基、m−スチリルチオ基、p−スチリルチオ基であり、さらに好ましくはo−トリルチオ基、m−トリルチオ基、p−トリルチオ基、2,3−キシリル−1−チオ基、2,4−キシリル−1−チオ基、2,5−キシリル−1−チオ基、メシチルチオ基であり、もっとも好ましくはo−トリルチオ基、m−トリルチオ基、p−トリルチオ基である。
が1以上の置換基を有していてもよい炭素数7ないし18のアラルキル基を示す場合、該アラルキル基とは上記炭素数1ないし6のアルキル基において、置換可能な部分が上記炭素数6ないし12のアリール基で置換された基をいい、具体的には例えば、ベンジル基、フェネチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基、1−ナフチルプロピル基、2−ナフチルプロピル基などが挙げられる。好ましくはベンジル基、フェネチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基、1−ナフチルプロピル基、2−ナフチルプロピル基であり、より好ましくはベンジル基、フェネチル基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチルメチル基、2−ナフチルメチル基であり、さらに好ましくはベンジル基、フェネチル基、3−フェニルプロピル基、4−フェニルブチル基であり、もっとも好ましくはベンジル基、フェネチル基である。
同様にしてRが1以上の置換基を有していてもよい炭素数7ないし18のアラルキルオキシ基を示す場合、該アラルキルオキシ基とは、上記炭素数7ないし18のアラルキル基において、その末端に酸素原子が結合したものが相当し、具体的には例えばベンジルオキシ基、フェネチルオキシ基、3−フェニルプロピルオキシ基、4−フェニルブチルオキシ基、5−フェニルペンチルオキシ基、6−フェニルヘキシルオキシ基、1−ナフチルメチルオキシ基、2−ナフチルメチルオキシ基、1−ナフチルエチルオキシ基、2−ナフチルエチルオキシ基、1−ナフチルプロピルオキシ基、2−ナフチルプロピルオキシ基などが挙げられる。好ましくはベンジルオキシ基、フェネチルオキシ基、3−フェニルプロピルオキシ基、4−フェニルブチルオキシ基、5−フェニルペンチルオキシ基、6−フェニルヘキシルオキシ基、1−ナフチルメチルオキシ基、2−ナフチルメチルオキシ基、1−ナフチルエチルオキシ基、2−ナフチルエチルオキシ基、1−ナフチルプロピルオキシ基、2−ナフチルプロピルオキシ基であり、より好ましくはベンジルオキシ基、フェネチルオキシ基、3−フェニルプロピルオキシ基、4−フェニルブチルオキシ基、5−フェニルペンチルオキシ基、6−フェニルヘキシルオキシ基、1−ナフチルメチルオキシ基、2−ナフチルメチルオキシ基であり、さらに好ましくはベンジルオキシ基、フェネチルオキシ基、3−フェニルプロピルオキシ基、4−フェニルブチルオキシ基であり、もっとも好ましくはベンジルオキシ基、フェネチルオキシ基である。
同様にしてRが1以上の置換基を有していてもよい炭素数7ないし18のアラルキルチオ基を示す場合、該アラルキルチオ基とは、上記炭素数7ないし18のアラルキル基において、その末端に硫黄原子が結合したものが相当し、具体的には例えばベンジルチオ基、フェネチルチオ基、3−フェニルプロピルチオ基、4−フェニルブチルチオ基、5−フェニルペンチルチオ基、6−フェニルヘキシルチオ基、1−ナフチルメチルチオ基、2−ナフチルメチルチオ基、1−ナフチルエチルチオ基、2−ナフチルエチルチオ基、1−ナフチルプロピルチオ基、2−ナフチルプロピルチオ基などが挙げられる。好ましくはベンジルチオ基、フェネチルチオ基、3−フェニルプロピルチオ基、4−フェニルブチルチオ基、5−フェニルペンチルチオ基、6−フェニルヘキシルチオ基、1−ナフチルメチルチオ基、2−ナフチルメチルチオ基、1−ナフチルエチルチオ基、2−ナフチルエチルチオ基、1−ナフチルプロピルチオ基、2−ナフチルプロピルチオ基であり、より好ましくはベンジルチオ基、フェネチルチオ基、3−フェニルプロピルチオ基、4−フェニルブチルチオ基、5−フェニルペンチルチオ基、6−フェニルヘキシルチオ基、1−ナフチルメチルチオ基、2−ナフチルメチルチオ基であり、さらに好ましくはベンジルチオ基、フェネチルチオ基、3−フェニルプロピルチオ基、4−フェニルブチルチオ基であり、もっとも好ましくはベンジルチオ基、フェネチルチオ基である。
Lが単結合をを示す場合は、基Xと基Yが単結合で結合した以下の一般式
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を示すものとする。
同様にしてLが二重結合をを示す場合は、XとYが単結合で結合した以下の一般式
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を示すものとする。
Mが単結合をを示す場合は、以下の一般式
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を示すものとする。
Tが単結合をを示す場合は、以下の一般式
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を示すものとする。
LおよびMが1以上の置換基を有していてもよい炭素数1ないし6のアルキレン基を示す場合、該アルキレン基とは上記炭素数1ないし6のアルキル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には例えば、メチレン基、エチレン基、メチルエチレン基、プロピレン基、エチルエチレン基、1,1−ジメチルエチレン基、1,2−ジメチルエチレン基、トリメチレン基、1−メチルトリメチレン基、1−エチルトリメチレン基、2−メチルトリメチレン基、1,1−ジメチルトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などが挙げられる。好ましくはメチレン基、エチレン基、メチルエチレン基、プロピレン基、エチルエチレン基、1,1−ジメチルエチレン基、1,2−ジメチルエチレン基、トリメチレン基、1−メチルトリメチレン基、1−エチルトリメチレン基、2−メチルトリメチレン基、1,1−ジメチルトリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基であり、より好ましくはメチレン基、エチレン基、メチルエチレン基、プロピレン基、エチルエチレン基、1,1−ジメチルエチレン基、1,2−ジメチルエチレン基、トリメチレン基、1−メチルトリメチレン基、1−エチルトリメチレン基、2−メチルトリメチレン基、1,1−ジメチルトリメチレン基であり、さらに好ましくはメチレン基、エチレン基、メチルエチレン基、プロピレン基、エチルエチレン基、1,1−ジメチルエチレン基、1,2−ジメチルエチレン基、トリメチレン基であり、さらにより好ましくはメチレン基、エチレン基、メチルエチレン基、プロピレン基であり、もっとも好ましくはメチレン基、エチレン基である。
同様にしてTが1以上の置換基を有していてもよい炭素数1ないし3のアルキレン基を示す場合、該アルキレン基とは上記炭素数1ないし3のアルキル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には上記で示した炭素数1ないし3のアルキレン基が挙げられる。好ましくはメチレン基、エチレン基、プロピレン基であり、さらに好ましくはメチレン基、エチレン基であり、もっとも好ましくはメチレン基である。
L、M、およびXが1以上の置換基を有していてもよい炭素数2ないし6のアルケニレン基を示す場合、該アルケニレン基とは上記炭素数2ないし6のアルケニル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には例えば、ビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基、ヘキセニレン基などが挙げられる。好ましくはビニレン基、プロペニレン基、ブテニレン基、ペンテニレン基であり、より好ましくはビニレン基、プロペニレン基、ブテニレン基であり、さらに好ましくはビニレン基、プロペニレン基であり、最も好ましくはビニレン基である。
同様にしてTが1以上の置換基を有していてもよい炭素数2ないし3のアルケニレン基を示す場合、該アルケニレン基とは上記炭素数2ないし3のアルケニル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には上記で示した炭素数2ないし3のアルケニレン基が挙げられる。好ましくはビニレン基、プロペニレン基であり、さらに好ましくはビニレン基である。
LおよびMが1以上の置換基を有していてもよい炭素数2ないし6のアルキニレン基を示す場合、該アルキニレン基とは上記炭素数2ないし6のアルキニル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には例えば、エチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基、ヘキシニレン基などが挙げられる。好ましくはエチニレン基、プロピニレン基、ブチニレン基、ペンチニレン基であり、より好ましくはエチニレン基、プロピニレン基、ブチニレン基であり、さらに好ましくはエチニレン基、プロピニレン基であり、最も好ましくはエチニレン基である。
同様にしてTが1以上の置換基を有していてもよい炭素数2ないし3のアルキニレン基を示す場合、該アルキニレン基とは上記炭素数2ないし3のアルキニル基からさらに水素原子を1個除いて誘導される二価の基を意味し、具体的には上記で示した炭素数2ないし3のアルキニレン基が挙げられる。好ましくはエチニレン基、プロピニレン基であり、さらに好ましくはエチニレン基である。
w1、Rw2、R、Rx1およびRx2が1以上の置換基を有していてもよい炭素数2ないし7の脂肪族アシル基を示す場合、該脂肪族アシル基とは上記炭素数1ないし6のアルキル基、上記炭素数2ないし6のアルケニル基または上記炭素数2ないし6のアルキニル基において、その末端にカルボニル基が結合したものが相当し、具体的には例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、アクリロイル基、メタクリロイル基、クロトニル基などの基が挙げられる。好ましくはアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基、アクリロイル基、メタクリロイル基、クロトニル基であり、より好ましくはアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、ピバロイル基、ヘキサノイル基、オクタノイル基であり、さらに好ましくはアセチル基、プロピオニル基、ブチリル基、イソブチリル基であり、もっとも好ましくはアセチル基、プロピオニル基である。
w1、Rw2、R、Rx1およびRx2が1以上の置換基を有していてもよい炭素数7ないし19の芳香族アシル基を示す場合、該芳香族アシル基とは上記炭素数5ないし12のアリール基において、その末端にカルボニル基または上記炭素数2ないし7の脂肪族アシル基からさらに水素原子を1個除いて誘導される基が結合したものが相当し、具体的には例えばベンゾイル基、o−トルオイル基、m−トルオイル基、p−トルオイル基、シンナモイル基、1−ナフトイル基、2−ナフトイル基などが挙げられる。好ましくはベンゾイル基、o−トルオイル基、m−トルオイル基、p−トルオイル基、シンナモイル基、1−ナフトイル基、2−ナフトイル基であり、より好ましくはベンゾイル基、o−トルオイル基、m−トルオイル基、p−トルオイル基、シンナモイル基であり、さらに好ましくはベンゾイル基、シンナモイル基であり、もっとも好ましくはベンゾイル基である。
Figure 2002080899
は、単結合または二重結合を示す。従って、以下の一般式(I)
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表される本発明化合物は、以下の各一般式
Figure 2002080899
Figure 2002080899
〔式中の記号は前記定義に同じである。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を包含する。
Qは酸素原子または硫黄原子を示す。従って一般式−CQ−はカルボニル基またはチオカルボニル基を意味する。
Yは1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし12の芳香族炭化水素基を示す場合、該芳香族炭化水素基とは上記炭素数6ないし12のアリール基または上記炭素数6ないし12のアリール基において、置換可能な部分が上記炭素数1ないし6の脂肪族炭化水素基で置換された基をいい(但し芳香族炭化水素基として炭素数12を越えることはなく、該脂肪族炭化水素基は1価およびそれ以上の価の基も含む。)、具体的には例えば、フェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、メシチル基、シメニル基、o−クメニル基、m−クメニル基、p−クメニル基、ベンジル基、フェネチル基、α−メチルベンジル基、ベンズヒドリル基、トリチル基、ベンジリデン基、スチリル基、シンナミル基、シンナミリデン基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチル基、2−ナフチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基、as−インダセニル基、s−インダセニル基、アセナフチレニル基などが挙げられる。好ましくはフェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、メシチル基、シメニル基、o−クメニル基、m−クメニル基、p−クメニル基、ベンジル基、フェネチル基、α−メチルベンジル基、ベンズヒドリル基、トリチル基、ベンジリデン基、スチリル基、シンナミル基、シンナミリデン基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチル基、2−ナフチル基、1−ナフチルメチル基、2−ナフチルメチル基、1−ナフチルエチル基、2−ナフチルエチル基、as−インダセニル基、s−インダセニル基、アセナフチレニル基であり、より好ましくはフェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、メシチル基、シメニル基、o−クメニル基、m−クメニル基、p−クメニル基、ベンジル基、フェネチル基、α−メチルベンジル基、ベンズヒドリル基、トリチル基、ベンジリデン基、スチリル基、シンナミル基、シンナミリデン基、3−フェニルプロピル基、4−フェニルブチル基、5−フェニルペンチル基、6−フェニルヘキシル基、1−ナフチル基、2−ナフチル基、1−ナフチルメチル基、2−ナフチルメチル基であり、さらに好ましくはフェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、メシチル基、シメニル基、o−クメニル基、m−クメニル基、p−クメニル基、ベンジル基、フェネチル基、α−メチルベンジル基、ベンズヒドリル基、トリチル基、ベンジリデン基、スチリル基、シンナミル基、シンナミリデン基であり、さらにより好ましくはフェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、メシチル基、シメニル基、o−クメニル基、m−クメニル基、p−クメニル基、ベンジル基、フェネチル基であり、もっとも好ましくはフェニル基、o−トリル基、m−トリル基、p−トリル基、2,3−キシリル基、2,4−キシリル基、2,5−キシリル基、ベンジル基である。
ここで、ヘテロ原子とは、具体的には酸素原子、硫黄原子、窒素原子、リン、砒素、アンチモン、ケイ素、ゲルマニウム、スズ、鉛、ホウ素、水銀などが挙げられ、好ましくは酸素原子、硫黄原子、窒素原子、リンであり、より好ましくは酸素原子、硫黄原子、窒素原子であり、さらに好ましく硫黄原子、窒素原子である。
以下本明細書中において、「1以上のヘテロ原子を有していてもよい」におけるヘテロ原子とは、上記定義を意味する。
従って、Yが1以上のヘテロ原子を有する炭素数5ないし12の芳香族炭化水素基を示す場合を具体的に示すと、例えば、ピリジン、チオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、ピリダジン、ピリミジン、ピラジン、インドール、イソインドール、インダゾール、クロメン、キノリン、イソキノリン、シンノリン、キナゾリン、キノキサリン、ナフチリジン、フタラジン、プリン、プテリジン、チエノフラン、イミダゾチアゾール、ベンゾフラン、ベンゾチオフェン、ベンズオキサゾール、ベンズチアゾール、ベンズチアジアゾール、ベンズイミダゾール、イミダゾピリジン、ピロロピリジン、ピロロピリミジン、ピリドピリミジンなどが挙げられ、好ましくはピリジン、チオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、ピリダジン、ピリミジン、ピラジン、インドール、イソインドール、インダゾール、クロメン、キノリン、イソキノリン、シンノリン、キナゾリン、キノキサリン、ナフチリジン、フタラジン、プリン、プテリジン、チエノフラン、イミダゾチアゾール、ベンゾフラン、ベンゾチオフェン、ベンズオキサゾール、ベンズチアゾール、ベンズチアジアゾール、ベンズイミダゾール、イミダゾピリジン、ピロロピリジン、ピロロピリミジン、ピリドピリミジンであり、より好ましくはピリジン、チオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、ピリダジン、ピリミジン、ピラジン、インドール、イソインドール、インダゾール、ベンズオキサゾール、ベンズチアゾール、ベンズチアジアゾールであり、さらに好ましくはチオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、インドール、イソインドール、インダゾールであり、さらにより好ましくはチオフェン、フラン、ピロール、オキサゾール、チアゾール、イミダゾール、インドールであり、もっとも好ましくはオキサゾール、インドールである。
Yが1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数3ないし7の脂環式炭化水素基を示す場合、該脂環式炭化水素基とは炭素数3〜7の環状の脂肪族炭化水素基を意味し、具体的には例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基などが挙げられる。好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプテニル基であり、より好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基であり、さらに好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基であり、もっとも好ましくはシクロプロピル基、シクロブチル基、シクロペンチル基である
環Zがさらに0から4の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし6の芳香族炭化水素基を示す場合、上記炭素数5ないし12の芳香族炭化水素基における、炭素数5ないし6の芳香族炭化水素基が該当し、具体的には例えばフェニル基が挙げられる。ここで、環Zが1以上のヘテロ原子を有する炭素数5ないし6の芳香族炭化水素基とは、具体的には例えばピリジン、チオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、ピリダジン、ピリミジン、ピラジンなどが挙げられる。好ましくはピリジン、チオフェン、フラン、ピロール、オキサゾール、イソキサゾール、チアゾール、イソチアゾール、イミダゾール、トリアゾール、ピラゾール、フラザン、チアジアゾール、オキサジアゾール、ピリダジン、ピリミジン、ピラジンであり、より好ましくはピリジン、ピリダジン、ピリミジン、ピラジンである。
ここで、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基は、環Z上で3個の原子を介して互いに結合するものとする。具体的には例えば環Zがベンゼン環の場合は、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で表される化合物を示し、従って、環Zがベンゼン環の場合は、上記のそれぞれの基は互いにm位で結合するものである。また、環Zが例えばフラン環の場合は、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で表される化合物のように、それぞれの基の間に3つの原子を介して結合することを意味する。但し、このフラン環の場合、酸素原子の位置は上記の化合物の位置に限定されるものではない。
本願発明において塩とは、種類は特に限定されないが具体的に挙げると、例えばフッ化水素酸塩、塩酸塩、硫酸塩、硝酸塩、過塩素酸塩、リン酸塩、炭酸塩、重炭酸塩、臭化水素酸塩、ヨウ化水素酸塩などの無機酸の付加塩;酢酸塩、マレイン酸塩、フマール酸塩、蓚酸塩、乳酸塩、酒石酸塩、トリフルオロ酢酸塩などの有機カルボン酸の付加塩;メタンスルホン酸塩、トリフルオロメタンスルホン酸塩、エタンスルホン酸塩、ヒドロキシメタンスルホン酸塩、ヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、タウリン塩などの有機スルホン酸の付加塩;トリメチルアミン塩、トリエチルアミン塩、ピリジン塩、プロカイン塩、ピコリン塩、ジシクロヘキシルアミン塩、N,N’−ジベンジルエチレンジアミン塩、N−メチルグルカミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリス(ヒドロキシメチルアミノ)メタン塩、フェネチルベンジルアミン塩などのアミンの付加塩;ナトリウム塩、カリウム塩などのアルカリ金属の付加塩;マグネシウム塩、カルシウム塩などのアルカリ土類金属の付加塩;アルギニン塩、リジン塩、セリン塩、グリシン塩、アスパラギン酸塩、グルタミン酸塩などのアミノ酸の付加塩などを挙げることができる。好ましくは薬理学的に許容できる塩である。
薬理学的に許容できる塩としては、特に種類は限定されないがたとえば塩酸塩、硫酸塩、炭酸塩、重炭酸塩、臭化水素酸塩、ヨウ化水素酸塩などの無機酸の付加塩;酢酸塩、マレイン酸塩、乳酸塩、酒石酸塩、トリフルオロ酢酸塩などの有機カルボン酸の付加塩;メタンスルホン酸塩、ヒドロキシメタンスルホン酸塩、ヒドロキシエタンスルホン酸塩、ベンゼンスルホン酸塩、トルエンスルホン酸塩、タウリン塩などの有機スルホン酸の付加塩;トリメチルアミン塩、トリエチルアミン塩、ピリジン塩、プロカイン塩、ピコリン塩、ジシクロヘキシルアミン塩、N,N’−ジベンジルエチレンジアミン塩、N−メチルグルカミン塩、ジエタノールアミン塩、トリエタノールアミン塩、トリス(ヒドロキシメチルアミノ)メタン塩、フェネチルベンジルアミン塩などのアミンの付加塩;ナトリウム塩、カリウム塩などのアルカリ金属の付加塩;アルギニン塩、リジン塩、セリン塩、グリシン塩、アスパラギン酸塩、グルタミン酸塩などのアミノ酸の付加塩などを挙げることができる。
本発明においてエステルとは一般式(I)におけるWのカルボキシル基のエステルを意味する。これは有機合成上通常用いられるものであれば特に限定されず、生理学上許容され、そして生理的条件下で加水分解されるエステル基を含むもので、具体的には例えば、炭素数1ないし6のアルキル基、炭素数6ないし12のアリール基、ベンジル基などの炭素数7ないし20のアラルキル基、炭素数7ないし20のヘテロアリールアルキル基、4−メトキシベンジル基、アルカノイルオキシアルキル基、例えばアセトキシメチル基、プロピオニルオキシメチル基またはピバロキシメチル基、アルコキシカルボニルオキシアルキル基、例えばメトキシカルボニルオキシメチル基、エトキシカルボニルオキシメチル基または2−メトキシカルボニルオキシエチル基、(5−メチル−2−オキソ−1,3−ジオキソ−4−イル)−メチル基などを挙げることができる。
消化器疾患とは、具体的には例えば1)潰瘍性大腸炎、クローン病、膵炎、胃炎などの消化管の炎症性疾患、2)消化管の良性腫瘍、消化管のポリープ、遺伝的ポリポーシス症候群、結腸癌、直腸癌、胃癌などの消化管の増殖性疾患、および3)十二指腸潰瘍、胃潰瘍、食道潰瘍、逆流性食道炎、ストレス潰瘍およびびらん、薬剤によるびらん、Zollinger−Ellison症候群などの消化管の潰瘍性疾患などが挙げられる。
炎症性疾患とは、1)関節炎リウマチ、2)多発性硬化症、3)免疫不全、4)悪液質、5)骨関節炎、6)骨粗鬆症、7)喘息疾患、8)アレルギー疾患、および9)消化管の炎症性疾患などが挙げられる。
直腸投与用の製剤とは、直腸に直接又は間接的に投与できる製剤であれば限定されないが、具体的には例えば、坐剤が挙げられる。
本発明において、前記一般式(I)を有するカルボン酸誘導体、その薬理学上許容される塩もしくはその薬理学上許容されるエステルが溶媒和物を形成する場合は、それらもすべて本発明に含まれる。
一般式(I)
Figure 2002080899
(式中の記号は前記定義に同じ基を示す。)で表される本発明化合物は定法により合成することができるが、例えば以下の方法で合成することができる。
A.一般式(I)においてTが単結合である、一般式
Figure 2002080899
(式中の記号は前記定義に同じ基を示す。)で表される本発明化合物の製造法。
具体的には本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の一般製造法A(1)またはA(2)で合成することができる。
一般製造法A(1)
Figure 2002080899
式中、各記号は前記定義に同じ基を、Pcはカルボキシル基の保護基を、Mは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし5のアルキレン基、炭素数2ないし5のアルケニレン基もしくは炭素数2ないし5のアルキニレン基を、Rは炭素数1ないし6のアルキル基を、R11は水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示し;一般式PcOCQ−(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式−MCHO(ここで式中の記号は前記定義に同じ基を示す)で示される基は環Z上で3個の原子を介して互いに結合するものとする。
一般式(1−iii)の化合物は、一般式(1−i)の化合物に一般式(1−ii)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1−ii)の化合物と一般式(1−i)である化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷−50℃で行うことが出来る。
一般式(1−iv)の化合物は一般式(1−iii)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(1−v)の化合物は一般式(1−iv)の化合物に一般式(1−vii)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−室温で行うことが出来る。
一般式(1−vi)の化合物は一般式(1−v)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
一般製造法A(2)
Figure 2002080899
Figure 2002080899
式中、各記号は前記定義に同じ基を、PnおよびPn’はそれぞれ異なってアミノ基の保護基を、R12は水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示し;一般式PcOCQ−(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式−MCHO(ここで式中の記号は前記定義に同じ基を示す)で示される基は環Z上で3個の原子を介して互いに結合するものとする。
一般式(2−iii)の化合物は、一般式(2−i)の化合物に一般式(2−ii)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(2−ii)である化合物と一般式(2−i)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷−50℃で行うことが出来る。
一般式(2−iv)の化合物は一般式(2−iii)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。反応温度としてはは氷冷下から室温でおこなうことが出来る。
一般式(2−v)の化合物は一般式(2−iv)の化合物とジ−t−ブチルジカーボネートを反応させることにより製造できる。
反応は有機溶媒例えばエタノール、メタノール中で有機塩基、例えばトリエチルアミン等の存在下で一般式(2−iv)の化合物とジ−t−ブチルジカーボネートを反応させることにより行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(2−vi)の化合物は一般式(2−v)の化合物に一般式(1−vii)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−室温で行うことが出来る。
一般式(2−vii)の化合物は、有機溶媒、例えばメタノール、テトラヒドロフラン、アセトン、酢酸エチル等中で一般式(2−vi)の化合物を塩酸等と反応させることにより製造できる。反応温度としては氷冷から室温で行うことが出来る。
一般式(2−viii)の化合物は一般式(2−vii)の化合物と亜硝酸イソアミルとの反応により製造できる。
反応はクロロホルム等の有機溶媒中、酢酸等有機酸の存在下で一般式(2−vii)の化合物に亜硝酸イソアミルを加えることにより行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(2−ix)の化合物は一般式(2−viii)の化合物と一般式(2−xi)の化合物をロジウムアセテートの存在下加熱還流することにより製造できる。
一般式(2−x)の化合物は一般式(2−ix)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の一般製造法A(3)で合成することができる。
一般製造法A(3)
Figure 2002080899
式中、各記号は前記定義に同じ基を、R13は水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示し;式ON−で示される基と、一般式−MCHO(ここで式中の記号は前記定義に同じ基を示す)で示される基は環Z上で3個の原子を介して互いに結合するものとする。
一般式(3−ii)の化合物は、一般式(3−i)の化合物に一般式(1−ii)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1−ii)である化合物と一般式(3−i)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷−50℃で行うことが出来る。
一般式(3−iii)の化合物は一般式(3−ii)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(3−iv)の化合物は一般式(3−iii)の化合物に一般式(3−vi)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばテトラヒドロフラン等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、カルボニルジイミダゾール等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−50℃で行うことが出来る。
一般式(3−v)の化合物は一般式(3−iv)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の一般製造法A(4)で合成することができる。
一般製造法A(4)
Figure 2002080899
式中、各記号は前記定義に同じ基を、R14は水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示し;一般式PcOCQ−(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式−MCHO(ここで式中の記号は前記定義に同じ基を示す)で示される基は環Z上で3個の原子を介して互いに結合するものとする。
一般式(4−ii)の化合物は、一般式(4−i)の化合物に一般式(1−ii)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1−ii)である化合物と一般式(4−i)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷−50℃で行うことが出来る。
一般式(4−iii)の化合物は、一般式(4−ii)の化合物を有機溶媒、例えばテトラヒドロフラン、ジクロロメタン等中で、トリフルオロ酢酸等の有機酸で処理することにより製造できる。
一般式(4−iv)の化合物は一般式(4−iii)の化合物に一般式(1−vii)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−室温で行うことが出来る。
一般式(4−v)の化合物は一般式(4−iv)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の一般製造法A(5)で合成することができる。
一般製造法A(5)
Figure 2002080899
式中、各記号は前記定義に同じ基を、R15は水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示し;一般式Rx2HN−(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式−MCH(R15)W(ここで式中の記号は前記定義に同じ基を示す)で示される基は環Z上で3個の原子を介して互いに結合するものとする。〕
一般式(5−ii)の化合物は一般式(3−iii)の化合物と一般式(5−i)の化合物をテトラヒドロフラン等の溶媒中で反応させることにより合成できる。反応温度としては室温から50℃で行うことが出来る。
一般式(5−i)の化合物は一般式(5−iii)の化合物にアジ化ジフェニルホスホリル(DPPA)などを反応させることにより合成できる。
反応は有機溶媒例えばトルエン、テトラヒドロフラン等中で有機塩基、例えばトリエチルアミン存在下で行うことが出来る。反応温度としては室温から加熱還流下で行うことが出来る。
次に、より具体的に本発明化合物の一般的合成方法を述べる。本発明化合物は以下のような一般合成法により、また通常の有機合成手法により製造することができる。
製造法A(1)
Figure 2002080899
Figure 2002080899
式中の記号は前記定義に同じ意味を、またR1aは水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示す。
一般式(1c)の化合物は、一般式(1a)の化合物に一般式(1b)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1b)の化合物と一般式(1a)である化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(1d)の化合物は一般式(1c)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(1e)の化合物は一般式(1d)の化合物に一般式(1g)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷から室温で行うことが出来る。
一般式(1f)の化合物は一般式(1e)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温から加熱還流下で行うことが出来る。
製造法A(2)
Figure 2002080899
式中の記号は前記定義に同じ意味を、またR1bは水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示す。
一般式(2c)の化合物は、一般式(2a)の化合物に一般式(2b)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(2b)である化合物と一般式(2a)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(2d)の化合物は一般式(2c)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。反応温度としてはは氷冷下から室温でおこなうことが出来る。
一般式(2e)の化合物は一般式(2d)の化合物とジ−t−ブチルジカーボネートを反応させることにより製造できる。
反応は有機溶媒例えばエタノール、メタノール中で有機塩基、例えばトリエチルアミン等の存在下で一般式(2d)の化合物とジ−t−ブチルジカーボネートを反応させることにより行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(2f)の化合物は一般式(2e)の化合物に一般式(1g)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷から室温で行うことが出来る。
一般式(2g)の化合物は、有機溶媒、例えばメタノール、テトラヒドロフラン、アセトン、酢酸エチル等中で一般式(2f)の化合物を塩酸等と反応させることにより製造できる。反応温度としては氷冷から室温で行うことが出来る。
一般式(2h)の化合物は一般式(2g)の化合物と亜硝酸イソアミルとの反応により製造できる。
反応はクロロホルム等の有機溶媒中、酢酸等有機酸の存在下で一般式(2g)の化合物に亜硝酸イソアミルを加えることにより行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(2i)の化合物は一般式(2h)の化合物と一般式(2k)の化合物をロジウムアセテートの存在下加熱還流することにより製造できる。
一般式(2j)の化合物は一般式(2i)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温から加熱還流下で行うことが出来る。
製造法A(3)
Figure 2002080899
式中の記号は前記定義に同じ意味を、またR1cは水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示す。
一般式(3b)の化合物は、一般式(3a)の化合物に一般式(1b)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1b)である化合物と一般式(3a)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(3c)の化合物は一般式(3b)の化合物をエタノール、酢酸エチル、テトラヒドロフラン等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(3d)の化合物は一般式(3c)の化合物に一般式(3f)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばテトラヒドロフラン等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、カルボニルジイミダゾール等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷から50℃で行うことが出来る。
一般式(3e)の化合物は一般式(3d)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温から加熱還流下で行うことが出来る。
製造法A(4)
Figure 2002080899
Figure 2002080899
式中の記号は前記定義に同じ意味を、またR1dは水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示す。
一般式(4b)の化合物は、一般式(4a)の化合物に一般式(1b)の化合物を反応させることにより製造できる。
反応は有機溶媒例えばテトラヒドロフラン、N,N−ジメチルホルムアミド等中一般式(1b)である化合物と一般式(4a)の化合物を水素化ナトリウム、水素化カリウム、t−ブトキシカリウム等の存在下で行うことが出来る。反応温度としては氷冷から50℃で行うことが出来る。
一般式(4c)の化合物は、一般式(4b)の化合物を有機溶媒、例えばテトラヒドロフラン、ジクロロメタン等中で、トリフルオロ酢酸等の有機酸で処理することにより製造できる。
一般式(4d)の化合物は一般式(4c)の化合物に一般式(1g)の化合物を作用させることにより製造できる。
反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷から室温で行うことが出来る。
一般式(4e)の化合物は一般式(4d)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温から加熱還流下で行うことが出来る。
製造法A(5)
Figure 2002080899
式中、各記号は前記定義に同じ基を、R1eは水素原子、保護基で保護された水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、水酸基が保護基で保護された炭素数1ないし6のハイドロキシアルキル基、アミノ基が保護基で保護された炭素数1ないし6のアミノアルキル基、炭素数1ないし6のハロゲン化アルキル基、炭素数2ないし12のアルコキシアルキル基、炭素数3ないし7のシクロアルキル基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルキニル基、炭素数6ないし12のアリール基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアラルキル基をそれぞれ示す。
一般式(5b)の化合物は一般式(3c)の化合物と一般式(5a)の化合物をテトラヒドロフラン等の溶媒中で反応させることにより合成できる。反応温度としては室温から50℃で行うことが出来る。
一般式(5a)の化合物は一般式(5c)の化合物にアジ化ジフェニルホスホリル(DPPA)を反応させることにより合成できる。
反応は有機溶媒例えばトルエン、テトラヒドロフラン等中で有機塩基、例えばトリエチルアミン存在下で行うことが出来る。反応温度としては室温から加熱還流下で行うことが出来る。
B.一般式(I)においてTが単結合以外である、一般式
Figure 2002080899
(式中の記号は前記定義に同じ基を示す。)で表される本発明化合物の製造法。
以下、本発明化合物の一般的合成法を述べる。
具体的には本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の製造法B(1)、B(6)またはB(7)で合成することができる。
具体的には本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の製造法B(3)で合成することができる。
具体的には本発明中、以下の一般式
Figure 2002080899
(式中の記号は前記定義に同じ基をそれぞれ示す。)で表される化合物は例えば以下の製造法B(4)またはB(5)で合成することができる。
製造法B(1)
Figure 2002080899
Figure 2002080899
式中、各記号は前記定義に同じ基を、Rは上記に示したY−L−基またはY=L−基に対応する基をそれぞれ示す。
一般式(1b)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(1a)の化合物にクロロギ酸メチル、クロロギ酸エチル等を反応させることにより酸無水物とした後、水素化ホウ素ナトリウム、水素下ホウ素カリウム等で還元することにより製造できる。
一般式(1c)の化合物はトルエン等の有機溶媒中、ジアザビシクロ[5.4.0]ウンデセン等の有機塩基存在下で一般式(1b)の化合物とアジ化ジフェニルホスホリルと反応させることにより製造できる。
一般式(1d)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(1c)の化合物にトリフェニルホスフィンを作用させることにより製造できる。
一般式(1e)の化合物は一般式(1d)の化合物に一般式(1g)の化合物を作用させることにより製造できる。反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−室温で行うことが出来る。
一般式(1f)の化合物は一般式(1e)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
製造法B(2)
Figure 2002080899
式中、Rは水酸基の保護基を、RおよびRは前記Yにおける置換基をそれぞれ示す。
一般式(2b)の化合物は、一般式(2a)に無水ジエチルエーテルやテトラヒドロフランなどの溶媒中ノルマルブチルリチウム、sec−ブチルリチウム、リチウムジイソプロピルアミドなどの強塩基を作用させ、アルコキシ基のオルト位をリチオ化した後、N,N−ジメチルホルムアミドなどのホルミル化剤を反応させることにより製造出来る。反応温度としては−78℃から50℃で行うことが出来る。
一般式(2c)の化合物は一般式(2b)の化合物のRがメトキシメチル基などの場合、アセトンやテトラヒドロフランなどの溶媒中、塩酸、硫酸、パラトルエンスルホン酸、メタンスルホン酸などの酸を作用させて得ることが出来る。
一般式(2d)の化合物は一般式(2c)の化合物に、N,−ジメチルホルムアミド、テトラヒドロフラン、N−メチルピロリドンなどの溶媒中、水素化ナトリウム、カリウムtertブトキシドなどの塩基を作用させた後、ヨウ化メチルなどのハロゲン化アルキルなどを反応させることにより得ることが出来る。反応温度は、−78℃から100℃の範囲で行うことが出来る。
一般式(2e)の化合物は一般式(2d)の化合物をジメチルスルホキシドとリン酸二水素ナトリウム水溶液の混合溶媒中、亜塩素酸ナトリウムなどの酸化剤を作用させることにより得ることが出来る。
製造法B(3)
Figure 2002080899
式中、各記号は前記定義に同じ基を、RO−基は前記環Z上の置換基を、Rはカルボキシル基の保護基をそれぞれ示す。
一般式(3b)の化合物は、一般式(3a)の化合物に塩化チオニルや二塩化オキサリルなどの酸ハロゲン化剤をジクロロメタン、四塩化炭素、クロロホルムなどの溶媒中作用させた後適当なアニリン誘導体を作用させて製造できる。反応は−20℃から100℃でおこなうことができる。
一般式(3c)の化合物は、一般式(3b)の化合物とヘキサメチレンテトラミンをトリフルオロ酢酸などの溶媒中、50℃から100℃の範囲で作用させるか、ジクロロメタン中ジクロロメチルメチルエーテルと四塩化チタンを−20℃から50℃で作用させることにより製造出来る。
一般式(3d)の化合物は、一般式(3c)の化合物にN,N−ジメチルホルムアミドやN−メチルピロリドン、テトラヒドロフラン中適当なホスホラン、ホスホネートを作用させることにより製造出来る。
一般式(3e)の化合物は一般式(3d)の化合物をエタノール、酢酸エチル、メタノール、テトラヒドロフランなどの溶媒中、パラジウム炭素などの触媒存在下、水素添加反応を行うことにより製造出来る。
一般式(3f)の化合物は一般式(3e)の化合物をエタノール、メタノール、テトラヒドロフランなどの溶媒中、水酸化ナトリウムや水酸化カリウム等の無機塩基で加水分解することにより製造出来る。
製造法B(4)
Figure 2002080899
式中、各記号は前記定義に同じ基をそれぞれ示す。
一般式(4c)の化合物は、一般式(4a)の化合物に一般式(4b)の化合物を反応させることにより製造できる。反応は有機溶媒例えばテトラヒドロフラン等中、一般式(4a)の化合物と一般式(4b)の化合物をトリフェニルホスフィン存在下ジエチルアゾジカルボキシレート、ジイソプロピルアゾジカルボキシレート等と処理することにより行うことができる。
一般式(4d)の化合物は一般式(4c)の化合物とヘキサメチレンテトラミンをトリフルオロ酢酸などの溶媒中、50℃から100℃の範囲で作用させることにより製造出来る。
一般式(4f)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(4d)の化合物に一般式(4e)の化合物を水素化ナトリウム、水素化カリウム存在下で反応させた後、エタノール、酢酸エチル等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(4g)の化合物は一般式(4f)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
製造法B(5)
Figure 2002080899
式中、各記号は前記定義に同じ基を、Rは上記に示したY−L−基またはY=L−基に対応する基をそれぞれ示す。
一般式(5b)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(5a)の化合物にクロロギ酸メチル、クロロギ酸エチル等を反応させることにより酸無水物とした後、水素化ホウ素ナトリウム、水素化ホウ素カリウム等で還元することにより製造できる。
一般式(5d)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(5b)の化合物に一般式(5c)の化合物を水素化ナトリウム、水素化カリウム等存在下反応させることにより製造できる。
一般式(5e)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(5d)の化合物にN,N−ジメチルホルムアミド、N−ホルミルモルホリン等をn−ブチルリチウム等存在下反応させることにより製造できる。
一般式(5f)の化合物はテトラヒドロフラン等の有機溶媒中、一般式(5e)の化合物に一般式(4e)の化合物を水素化ナトリウム、水素化カリウム等存在下で反応させた後、エタノール、酢酸エチル等の溶媒中、パラジウム炭素等の触媒存在下還元することにより製造できる。
一般式(5g)の化合物は一般式(5f)の化合物をエタノール溶媒中、無機塩基、例えば水酸化ナトリウム、水酸化カリウム等で加水分解することにより製造できる。反応温度としては室温−加熱還流下で行うことが出来る。
製造法B(6)
Figure 2002080899
式中、各記号は前記定義に同じ基を、Rは上記に示したY−L−基またはY=L−基に対応する基をそれぞれ示す。
一般式(6b)の化合物は一般式(6a)の化合物に2−メトキシベンジルアルコールを作用させることにより製造できる。反応は有機溶媒、例えばジメチルスルホキシド、N,N−ジメチルホルムアミド等中で縮合剤、例えば1−エチル−3−(3’−ジメチルアミノプロピル)カルボジイミド、シアノリン酸ジエチル等で処理することにより行うことが出来る。また必要なら有機塩基、例えばトリエチルアミン等を添加しても良い。反応温度としては氷冷−室温で行うことが出来る。
一般式(6c)の化合物は、一般式(6b)の化合物とヘキサメチレンテトラミンをトリフルオロ酢酸などの溶媒中、50℃から100℃の範囲で作用させるか、ジクロロメタン中ジクロロメチルメチルエーテルと四塩化チタンを−20℃から50℃で作用させることにより製造出来る。
一般式(6d)の化合物は、一般式(6c)の化合物に2,4−チアゾリジンジオンを作用させることにより製造出来る。反応は有機溶媒、例えばベンゼン、トルエン等中で、触媒として二級アミン(ピペリジン、ピロリジン等)と有機酸(酢酸、安息香酸等)存在下、加熱還流させることにより行うことができる。
製造法B(7)
Figure 2002080899
式中、各記号は前記定義に同じ基を、Rは上記に示したY−L−基またはY=L−基に対応する基をそれぞれ示す。
一般式(7b)の化合物は一般式(7a)の化合物をエタノール、酢酸エチル、N,N−ジメチルホルムアミドなどの溶媒中、室温−加熱下、パラジウム炭素などの触媒存在下、常圧−20kg/cm加圧下水素添加反応を行うことにより製造出来る。
製造法C(1)
Figure 2002080899
一般式(1b)の化合物はトルエン等の有機溶媒中、ジアザビシクロ[5.4.0]ウンデセン等の有機塩基存在下で一般式(1b)の化合物とアジ化ジフェニルホスホリルと反応させることにより製造できる。反応温度としては、−20℃から50℃が好ましい。
一般式(1c)の化合物は酢酸エチル等の有機溶媒中、10%パラジウム炭素、第三ブチルジカーボネートの存在下で一般式(1b)の化合物を接触水素化還元することにより製造できる。
一般式(1d)の化合物はN,N−ジメチルホルムアミド、アセトニトリル等の有機溶媒中、一般式(1c)の化合物をN−ブロモスクシイミドと反応させることにより製造できる。反応温度としては、−0℃から50℃が好ましい。
一般式(1e)の化合物はN,N−ジメチルホルムアミド等の有機溶媒中、ジクロロビストリフェニルフォスフィンパラジウム等の金属触媒、ギ酸ナトリウム等の還元剤の存在下で一般式(1c)の化合物と一酸化炭素と反応させることにより製造できる。反応温度としては、80℃から150℃が好ましい。
一般式(1f)の化合物は、一般式(1e)の化合物にN,N−ジメチルホルムアミドやN−メチルピロリドン、テトラヒドロフラン中適当なホスホラン、ホスホネートを作用させた後、エタノール、酢酸エチル、メタノール、テトラヒドロフランなどの溶媒中、パラジウム炭素などの触媒存在下、水素添加反応を行うことにより製造出来る。反応温度としては、0℃から50℃が好ましい。
製造法C(2)
Figure 2002080899
式中、Rは上記に示したY−L−基またはY=L−基に対応する基を示す。
式(2b)の化合物は、式(2a)の化合物にトルエンなどの溶媒中、好ましくは80−100℃にて、(トリフェニルホスホラニリデン)アセトアルデヒドを作用させた後、N,N−ジメチルホルムアミドやN−メチルピロリドン、テトラヒドロフランなどの溶媒中、水素化ナトリウムなどの塩基存在下、適当なホスホネートを作用させ、次いで、メタノール、エタノール酢酸エチルテトラヒドロフランなどの溶媒中、パラジウム炭素などの触媒存在下、水素添加反応を行うことにより製造できる。
一般式(2c)の化合物は、式(2b)の化合物のの化合物のアミノ基の保護基であるtert−ブトキシカルボニル基を酸性条件下脱保護した後、生じたアミノ基にRCOOHを縮合させ、次いで、塩基によりエステル基を加水分解することにより製造できる。脱保護反応はジクロロメタン、1,4−ジオキサン、メタノール、あるいはエタノールなどの溶媒中で塩酸、トリフルオロ酢酸などの酸を用いて行われる。縮合反応は、ジメチルスルホキシドやN,N−ジメチルホルムアミドなどの有機溶媒中、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドあるいはシアノリン酸ジエチル等を縮合剤として行うことができる。また、必要ならば、トリエチルアミンなどの塩基を添加してもよい。加水分解反応はメタノールやエタノールなどの溶媒中水酸化ナトリウム、水酸化カリウムなどの塩基を用いて行うことができる。
製造方法C(3)
Figure 2002080899
式中、Rは上記に示したY−L−基またはY=L−基に対応する基を示す。
式(3b)の化合物は、式(3a)の化合物をジクロロメタンなどの溶媒中、m−クロロ過安息香酸などの有機過酸化物を作用させることで製造できる。本化合物は酢酸、水などを溶媒中、過酸化水素を作用させることによっても製造できる。
式(3c)の化合物は、式(3b)の化合物をジクロロメタンなどの溶媒中、ジメチルカルバミルクロリドおよびトリメチルシリルシアニドを作用させることで製造できる。
式(3d)の化合物は、式(3c)の化合物をメタノール、エタノール酢酸エチルテトラヒドロフランなどの溶媒中、パラジウム炭素などの触媒存在下、水素添加反応を行うことにより製造できる。この際、塩酸などに代表される酸を添加すると、反応が加速される。
一般式(3e)の化合物は、式(3d)の化合物のアミノ基にRCOOHを縮合させた後に、塩基によりエステル基を加水分解することにより製造できる。縮合反応は、ジメチルスルホキシドやN,N−ジメチルホルムアミドなどの有機溶媒中、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドあるいはシアノリン酸ジエチル等を縮合剤として行うことができる。また、必要ならば、トリエチルアミンなどの塩基を添加してもよい。加水分解反応はメタノールやエタノールなどの溶媒中水酸化ナトリウム、水酸化カリウムなどの塩基を用いて行うことができる。
製造法C(4)
Figure 2002080899
一般式(4a)の化合物は、対応する安息香酸、ベンズアルデヒド誘導体を水素化ホウ素ナトリウム、ジボラン等を用いて還元する事により得られる。反応温度としては、−20℃から50℃が好ましい。
一般式(4b)の化合物は、テトラヒドロフラン等の溶媒中、一般式(4b)の化合物にトリアルキルシリルハライド等のアルキル化剤を反応させることにより得られる。反応温度としては、0℃から50℃が好ましい。
一般式(4c)の化合物は、テトラヒドロフラン等の溶媒中、一般式(4b)の化合物にブチルリチウム等の強塩基を作用させ、リチオ化し4−ホルミルモルフォリン等のホルミル化剤を反応させることにより製造できる。反応温度としては−78℃が適当である。
一般式(4d)の化合物は、一般式(4c)の化合物にN,N−ジメチルホルムアミドやN−メチルピロリドン、テトラヒドロフラン中適当なホスホラン、ホスホネートを作用させた後、テトラヒドロフラン等の溶媒中、テトラブチルアンモニウムフルオリドを反応させることにより得られる。反応温度としては、0℃から50℃が好ましい。
一般式(4e)の化合物はトルエン等の有機溶媒中、ジアザビシクロ[5.4.0]ウンデセン等の有機塩基存在下で一般式(4d)の化合物とアジ化ジフェニルホスホリルと反応させた後、酢酸エチル等の有機溶媒中、10%パラジウム炭素、第三ブチルジカーボネートの存在下で接触水素化還元することにより製造できる。反応温度としては、−20℃から50℃が好ましい。
製造法C(5)
Figure 2002080899
一般式(5b)の化合物は、メタノール等の溶媒中、一般式(5a)の化合物にオルトギ酸トリメチル等の脱水剤とトシル酸等の酸触媒の存在下、0℃から80℃の温度で、反応させることにより得られる。
一般式(5c)の化合物は、テトラヒドロフラン、ジエチルエーテル等の溶媒中、一般式(5b)の化合物に水素化アルミニウムリチウム等の還元剤を反応させることにより得られるアルコールをトルエン等の有機溶媒中、ジアザビシクロ[5.4.0]ウンデセン等の有機塩基存在下でアジ化ジフェニルホスホリルと反応させた後、塩酸等の酸を作用させることにより得られる。
一般式(5d)の化合物は、一般式(5c)の化合物にN,N−ジメチルホルムアミドやN−メチルピロリドン、テトラヒドロフラン中適当なホスホラン、ホスホネートを作用させた後、エタノール、酢酸エチル、メタノール、テトラヒドロフランなどの溶媒中、パラジウム炭素などの触媒存在下、水素添加反応を行うことにより製造出来る。反応温度としては、0℃から50℃が好ましい。
一般式(5e)の化合物は、N,N−ジメチルホルムアミド、アセトニトリル、ピリジン等の有機溶媒中、一般式(5d)の化合物をイオドメタン、エタン、プロパン、トリフルオロメタンスルフォニルクロリド等のアルキル化剤を0℃から50℃にて反応させることにより得られる。
一般式(5f)の化合物は、トルエン等の有機溶媒中、一般式(5e)の化合物(R2=トリフルオロメタンスルホン誘導体)をテトラキストリフェニルフォスフィンパラジウム等の金属触媒と炭酸カリウム等の無機塩基の存在下、アリルホウ酸誘導体を80℃から150℃にて反応させることにより得られる。
製造法C(6)
Figure 2002080899
一般式(6b)の化合物はN,N−ジメチルホルムアミド、アセトニトリル等の有機溶媒中、一般式(6a)の化合物をN−イオドスクシイミドと反応させることにより製造できる。反応温度としては、−0℃から50℃が好ましい。
一般式(6c)の化合物はN,N−ジメチルホルムアミド等の有機溶媒中、ジクロロビストリフェニルフォスフィンパラジウム等の金属触媒、よう化銅、トリエチルアミン等の有機塩基の存在下で一般式(6b)の化合物とアセチレンを反応させることにより製造できる。反応温度としては、80℃から150℃が好ましい。
一般式(6d)の化合物はN,N−ジメチルホルムアミド等の有機溶媒中、炭酸カリウム等の無機塩基の存在下で一般式(6c)の化合物を加熱することにより得られる。反応温度としては、80℃から150℃が好ましい。
製造法C(7)
Figure 2002080899
Figure 2002080899
一般式(7c)の化合物は−78℃から0℃の範囲ででテトラヒドロフラン等の無水溶媒中、一般式(7b)の化合物にヘキサメチルジシラザンナトリウム、リチウムジイソプロピルアミド等を反応させた後、一般式(7a)の化合物(PGは酸で切れる保護基を意味する)と反応させることにより製造できる。
一般式(7d)の化合物は0℃から室温の範囲で一般式(7c)の化合物にトリフルオロ酢酸およびトリエチルシランを反応させることにより製造できる。
一般式(7e)の化合物は−78℃から室温までの範囲でN,N−ジメチルホルムアミド、ジクロロメタン、あるいはジエチルエーテル等の無水溶媒中、ピリジン、トリエチルアミン等の塩基の存在下で一般式(7d)の化合物と適当な酸クロリド、活性化エステル等を反応させることにより製造できる。
一般式(7f)の化合物は一般式(7e)の化合物をエタノール、メタノール、あるいはテトラヒドロフラン等の溶媒中、水酸化ナトリウムや水酸化リチウム等の無機塩基で加水分解することにより製造できる。
また、中間体(7e)は以下のルートによっても製造できる。
Figure 2002080899
一般式(7h)の化合物は−78℃から0℃の範囲でテトラヒドロフラン等の無水溶媒中、一般式(7b)の化合物にヘキサメチルジシラザンナトリウム、リチウムジイソプロピルアミド等を反応させた後、一般式(7g)の化合物と反応させることにより製造できる。
一般式(7e)の化合物は0℃から室温の範囲で一般式(7h)の化合物にトリフルオロ酢酸およびトリエチルシランを反応させることにより製造できる。
Figure 2002080899
一般式(7j)の化合物は−78℃から室温の範囲でトルエン、ジクロロメタン等の無水溶媒中、一般式(7i)の化合物(Xはオキサゾリジノン等の不斉補助基を意味する)にジブチルボロントリフレート等のジアルキルボラン化合物を反応させた後、−78℃から室温の範囲で一般式(7a)の化合物(PGは酸で切れる保護基を意味する)と反応させることによりジアステレオ選択的に製造できる。
一般式(7k)の化合物は0℃から室温の範囲で一般式(7j)の化合物にトリフルオロ酢酸およびトリエチルシランを反応させることにより製造できる。
一般式(7l)の化合物は−78℃から室温までの範囲でN,N−ジメチルホルムアミド、ジクロロメタン、あるいはジエチルエーテル等の無水溶媒中、ピリジン、トリエチルアミン等の塩基の存在下で一般式(7k)の化合物と適当な酸クロリド、活性エステル等を反応させることにより製造できる。
一般式(7m)の化合物は−30℃から室温までの範囲でエタノール、メタノール、あるいはテトラヒドロフラン等の溶媒中、又はこれらの溶媒の一つと水との混合溶媒中で、一般式(7l)の化合物を水酸化リチウム/過酸化水素、または水酸化ナトリウム等の無機塩基と反応させること、又はナトリウムメトキシドと水酸化ナトリウムと順次反応させることにより製造できる。
また、中間体(7l)は以下のルートによっても製造できる。
Figure 2002080899
一般式(7m)の化合物は−78℃から室温の範囲でトルエン、ジクロロメタン等の無水溶媒中、一般式(7i)の化合物(Xはオキサゾリジノン等の不斉補助基を意味する)にジブチルボロントリフレート等のジアルキルボロン化合物を反応させた後、−78℃から室温の範囲で一般式(7g)の化合物と反応させることによりジアステレオマ選択的に製造できる。
一般式(7l)の化合物は0℃から室温の範囲で一般式(7m)の化合物にトリフルオロ酢酸およびトリエチルシランを反応させることにより製造できる。
製造法C(8)
Figure 2002080899
一般式(1b)の化合物は一般式(1a)の化合物にルイス酸の存在下オルトエステルを作用させることにより製造できる。反応は有機溶媒、例えばメタノール、エタノール、トルエン等中で行うことが出来る。ルイス酸としてはp−トルエンスルホン酸、塩酸等を用いることが出来、オルトエステルとしてはオルトぎ酸メチル、オルトぎ酸エチル等を用いることが出来る。反応温度としては室温から100℃で行うことが出来る。
一般式(8c)の化合物は、一般式(8b)の化合物にn−ブチルリチウム等の塩基を作用させ、更にN,N−ジメチルホルムアミド、N−ホルミルモルホリン等を反応させることにより製造できる。反応は有機溶媒例えばジエチルエーテル、テトラヒドロフラン等中で行うことが出来、反応温度としては−80℃から0℃で行うことが出来る。
一般式(8d)の化合物は一般式(8c)の化合物にメタノール、エタノール等の溶媒中水素化ホウ素ナトリウムを反応させることにより製造できる。反応温度としては、0℃から室温で行うことが出来る。
一般式(8e)の化合物は一般式(8d)の化合物に1,8−ジアザビシクロ[5.4.0]−7−ウンデセンの存在下ジフェニルホスホリルアジドを反応させることにより合成できる。反応はトルエン、中で行うことが出来、反応温度としては0℃から室温で行うことが出来る。
一般式(8f)の化合物は一般式(8e)の化合物にトリフェニルホスフィンを作用させることにより製造できる。反応は有機溶媒例えばテトラヒドロフラン、水等中で行うことが出来、反応温度としては0℃から50℃で行うことが出来る。
一般式(8g)の化合物は一般式(8f)の化合物に第三ブチルジカーボネートを作用させることにより製造できる。反応は有機溶媒例えばテトラヒドロフラン、ジクロロメタン等中で行うことが出来、反応温度としては0℃から室温で行うことが出来る。
一般式(8h)の化合物は一般式(8g)の化合物を塩酸等の酸で処理することにより製造できる。反応溶は有機溶媒例えばテトラヒドロフラン、アセトン等中で行うことが出来、反応温度としては0℃から室温で行うことが出来る。
製造法C(9)
Figure 2002080899
一般式(9b)の化合物は、一般式(9a)の化合物にジクロロメタン等の溶媒中、三臭化リン、臭化チオニル等を作用させることにより製造できる。
一般式(9c)の化合物は、テトラヒドロフラン等の溶媒中、水素化ナトリウム等の塩基存在下、一般式(9b)の化合物とアルコールを作用させてエーテル化させた後、エタノールまたはメタノール中、水酸化ナトリウム、水酸化カリウム等の無機塩基で加水分解することにより製造できる。
製造法C(10)
Figure 2002080899
一般式(10b)の化合物は、一般式(9b)の化合物に有機酸(酢酸、安息香酸等)および二級アミン(ピペリジン、ピロリジン等)存在下、ベンゼン、トルエン等の有機溶媒中で、2,4−チアゾリジンジオンを加熱還流下にて作用させた後、エタノール、酢酸エチル、N,N−ジメチルホルムアミドなどの溶媒中、室温−加熱下、パラジウム炭素などの触媒存在下、常圧−20kg/cm加圧下水素添加反応を行うことにより製造できる。
一般式(10c)の化合物は、一般式(10b)の化合物のアミノ基の保護基であるtert−ブトキシカルボニル基を酸性条件下脱保護した後、生じたアミノ基にカルボン酸を縮合させることにより製造できる。脱保護反応はジクロロメタン、1,4−ジオキサン、メタノール、あるいはエタノールなどの溶媒中で塩酸、トリフルオロ酢酸などの酸を用いて行われる。縮合反応は、ジメチルスルホキシドやN,N−ジメチルホルムアミドなどの有機溶媒中、1−エチル−3−(3−ジメチルアミノプロピル)カルボジイミドあるいはシアノリン酸ジエチル等を縮合剤として行うことができる。また、必要ならば、トリエチルアミンなどの塩基を添加してもよい。
製造法C(11)
Figure 2002080899
一般式(11b)の化合物は、ジメチルスルホキシド等の溶媒中、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム等の触媒および酢酸カリウム等の無機塩基存在下、室温―加熱還流下にて一般式(11a)およびビス(ピナコラート)ジボロンを反応させることにより製造できる。
一般式(11c)の化合物は、ジメトキシエタン等の溶媒中、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム等の触媒および炭酸カリウム等の無機塩基存在下、室温―加熱還流下にて一般式(11b)およびアリールブロミドを反応させた後、エタノールまたはメタノール中、水酸化ナトリウム、水酸化カリウム等の無機塩基で加水分解することにより製造できる。
上記の合成法において、保護基で保護された水酸基とは、水酸基の保護基で保護された水酸基を意味し、具体例を挙げると、通常、有機合成上水酸基の保護基として知られている基で保護された水酸基であればいかなる基でもよく特に限定されないが、例えば水酸基の保護基としてはトリメチルシリル基、t−ブチルジメチルシリル基等の低級アルキルシリル基;例えばメトキシメチル基、2−メトキシエトキシメチル基等の低級アルコキシメチル基;例えばテトラヒドロピラニル基;例えばベンジル基、p−メトキシベンジル基、2,4−ジメトキシベンジル基、o−ニトロベンジル基、p−ニトロベンジル基、トリチル基等のアラルキル基;例えばホルミル基、アセチル基等のアシル基;例えばt−ブトキシカルボニル基、2−ヨードエトキシカルボニル基、2,2,2−トリクロロエトキシカルボニル基等の低級アルコキシカルボニル基;例えば2−プロペニルオキシカルボニル基、2−クロロ−2−プロペニルオキシカルボニル基、3−メトキシカルボニル−2−プロペニルオキシカルボニル基、2−メチル−2−プロペニルオキシカルボニル基、2−ブテニルオキシカルボニル基、シンナミルオキシカルボニル基等のアルケニルオキシカルボニル基;例えばベンジルオキシカルボニル基、p−メトキシベンジルオキシカルボニル基、o−ニトロベンジルオキシカルボニル基、p−ニトロベンジルオキシカルボニル基等のアラルキルオキシカルボニル基等が挙げられる。
これらの保護基の脱離は、使用した保護基の種類に応じ、加水分解、還元など常法により行うことができる。
次に、保護基で保護されたアミノ基におけるアミノ基の保護基とは、具体例を挙げると、通常、有機合成上アミノ基の保護基として知られている基であればいかなる基でもよく、特に限定されないが、たとえばホルミル基、アセチル基、クロロアセチル基、ジクロロアセチル基、プロピオニル基、フェニルアセチル基、フェノキシアセチル基、チエニルアセチル基などの置換または非置換の低級アルカノイル基;ベンジルオキシカルボニル基、t−ブトキシカルボニル基、p−ニトロベンジルオキシカルボニル基などの置換または非置換の低級アルコキシカルボニル基;メチル基、t−ブチル基、2,2,2−トリクロロエチル基、トリチル基、p−メトキシベンジル基、p−ニトロベンジル基、ジフェニルメチル基、ピバロイルオキシメチル基などの置換低級アルキル基;トリメチルシリル基、t−ブチルジメチルシリル基などの置換シリル基;トリメチルシリルメトキシメチル基、トリメチルシリルエトキシメチル基、t−ブチルジメチルシリルメトキシメチル基、t−ブチルジメチルシリルエトキシメチル基などの置換シリルアルコキシアルキル基;ベンジリデン基、サリチリデン基、p−ニトロベンジリデン基、m−クロルベンジリデン基、3,5−ジ(t−ブチル)−4−ハイドロキシベンジリデン基、3,5−ジ(t−ブチル)ベンジリデン基などの置換または非置換のベンジリデン基などを挙げることができる。
これらの保護基の脱離は、使用した保護基の種類に応じ、加水分解、還元など常法により行うことができる。
また、カルボキシ基の保護基とは、具体例を挙げると、通常、有機合成上カルボキシル基の保護基として知られている基で保護されたカルボキシル基であればいかなる基でもよく特に限定されないが、カルボキシル基の保護基としては、例えばメチル基、エチル基、イソプロピル基、t−ブチル基のような直鎖状若しくは分枝鎖状の炭素数1〜4の低級アルキル基、例えば2−ヨウ化エチル基、2,2,2−トリクロロエチル基のようなハロゲノ低級アルキル基、例えばメトキシメチル基、エトキシメチル基、イソブトキシメチル基のような低級アルコキシメチル基、ブチリルオキシメチル基、ピバロイルオキシメチル基のような低級脂肪族アシルオキシメチル基、例えば、1−メトキシカルボニルオキシエチル基、1−エトキシカルボニルオキシエチル基のような1−低級アルコキシカルボニルオキシエチル基、例えばベンジル、p−メトキシベンジル基、o−ニトロベンジル基、p−ニトロベンジル基のようなアラルキル基、ベンズヒドリル基およびフタリジル基等を挙げることができる。
これらの保護基の脱離は、使用した保護基の種類に応じ、加水分解、還元など常法により行うことができる。
上記で説明したとおりであるが、本発明で使用しうる溶媒としては、反応を阻害しないものであって、通常有機合成上用いられているものであればいかなる溶媒でもよく特に限定されず、例えば、メタノール、エタノール、プロパノール、ブタノールなどの低級アルコール類、エチレングリコール、グリセリンなどのポリアルコール類、アセトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノンなどのケトン類、ジエチルエーテル、イソプロピルエーテル、テトラヒドロフラン、ジオキサン、2−メトキシエタノール、1,2−ジメトキシエタンなどのエーテル類、アセトニトリル、プロピオニトリルなどのニトリル類、酢酸メチル、酢酸エチル、酢酸イソプロピル、酢酸ブチル、フタル酸ジエチルなどのエステル類、ジクロロメタン、クロロホルム、四塩化炭素、1,2−ジクロロエタン、トリクロロエチレン、テトラクロロエチレンなどのハロゲン化炭化水素類、ベンゼン、トルエン、キシレン、モノクロルベンゼン、ニトロベンゼン、インデン、ピリジン、キノリン、コリジン、フェノールなどの芳香族類、ペンタン、シクロヘキサン、ヘキサン、ヘプタン、オクタン、イソオクタン、石油ベンジン、石油エーテルなどの炭化水素類、エタノールアミン、ジエチルアミン、トリエチルアミン、ピロリジン、ピペリジン、ピペラジン、モルホリン、アニリン、ジメチルアニリン、ベンジルアミン、トルイジンなどのアミン類、ホルムアミド、N−メチルピロリドン、N,N−ジメチルイミダゾロン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミドなどのアミド類、ヘキサメチルリン酸トリアミド、ヘキサメチル亜リン酸トリアミドなどのリン酸アミド類、水、その他一般に使用される溶媒などの一種もしくは二種以上の混合溶媒を挙げることができ、その混合比は特に限定されない。
上記で説明したとおりであるが、本発明で使用しうる塩基としては、反応を阻害しないものであって、通常、有機合成上塩基として知られているものであればいかなるものでもよく特に限定されず、具体的には例えば炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水素化ナトリウム、水素化カリウム、t−ブトキシカリウム、ピリジン、ジメチルアミノピリジン、トリメチルアミン、トリエチルアミン、N,N−ジイソプロピルエチルアミン、N−メチルモルホリン、N−メチルピロリジン、N−メチルピペリジン、N,N−ジメチルアニリン、1,8−ジアザビシクロ[5,4,0]ウンデカ−7−エン(DBU)、ピリジン、4−ジメチルアミノピリジン、ピコリン、ルチジン、キノリン、イソキノリン、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、ブチルリチウム、ナトリウムメチラート,カリウムメチラート,ナトリウムエチラートなどのナトリウムまたはカリウムアルコラート等が挙げられる。
上記で説明したとおりであるが、本発明で使用しうる還元剤としては、反応を阻害しないものであって、通常有機合成に用いられているものであればよく特に限定されず、具体的には例えばNaBH、LiBH、Zn(BH、MeNBH(OAc)、NaBHCN、Selectride、Super Hydride(LiBHEt)、LiAlH、DIBAL、LiAlH(t−BuO)、Red−al、binapなどの他、白金、パラジウム、ロジウム、ルテニウム、ニッケルなどの接触水素添加触媒などが挙げられる。
以上の反応終了後、所望により通常の処理法によって、例えばシリカゲルまたは吸着樹脂等を用いるカラムクロマトグラフィーや適当な溶媒から再結晶することにより精製することが可能である。
本発明に係る医薬の投与量は症状の程度、年齢、性別、体重、投与形態、疾患の種類等により異なるが、通常成人1日当たり100μg〜10gであり1〜数回に分けて投与する。
本発明に係る医薬の投与形態は特に限定されず、通常用いられる方法により経口または非経口的に投与することができる。
これら製剤化には通常用いられる賦形剤,結合剤,滑沢剤,着色剤,矯味矯臭剤等,および必要により安定化剤,乳化剤,吸収促進剤,界面活性剤等を使用することができ、一般に医薬品製剤の原料として用いられる成分を配合して常法により製剤化される。本発明中において薬理学的に許容されるキャリアーとは、これらのものをいい、具体的には以下に列記される。
これらの成分としては例えば、動植物油(大豆油、牛脂、合成グリセライドなど)、炭化水素(流動パラフィン、スクワラン、固形パラフィンなど)、エステル油(ミリスチン酸オクチルドデシル、ミリスチン酸イソプロピルなど)、高級アルコール(セトステアリルアルコール、ベヘニルアルコールなど)、シリコン樹脂、シリコン油、界面活性剤(ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン硬化ひまし油、ポリオキシエチレンポリオキシプロピレンブロックコポリマーなど)、水溶性高分子(ヒドロキシエチルセルロース、ポリアクリル酸、カルボキシビニルポリマー、ポリエチレングリコール、ポリビニルピロリドン、メチルセルロースなど)、アルコール(エタノール、イソプロパノールなど)、多価アルコール(グリセリン、プロピレングリコール、ジプロピレングリコール、ソルビトールなど)、糖(グルコース、ショ糖など)、無機粉体(無水ケイ酸、ケイ酸アルミニウムマグネシウム、ケイ酸アルミニウムなど)、精製水などが挙げられる。pH調製のためには無機酸(塩酸、りん酸など)、無機酸のアルカリ金属塩(りん酸ナトリウムなど)、無機塩基(水酸化ナトリウムなど)、有機酸(低級脂肪酸、クエン酸、乳酸など)、有機酸のアルカリ金属塩(クエン酸ナトリウム、乳酸ナトリウムなど)、有機塩基(アルギニン、エタノールアミンなど)などを用いることができる。また、必要に応じて、防腐剤、抗酸化剤などを添加することができる。
次に本願の有用性を示すために薬理実験例を示す。
実験例1:転写活性の測定
GAL4−PPAR LBDのキメラ発現ベクターは、yeastの転写因子であるGAL4の1−147アミノ酸領域に、ヒトPPARの167−468(PPARα)、138−440(NUC−1)、174−475(PPARγ)アミノ酸領域(LBD;Ligand Binding Domain)を連結させてそれぞれ構築した。レポータージーンにはPLAP(Placental Alkaline Phosphatase)を用い、これを5copyのGAL4 DNA binding elementを含むTK promoterの下流に連結させ構築した。Host cellにはCV−1(ATCC CCL−70)を用いた。すなわち、CV−1 cellを35mm dishに5x10になるように蒔き、10% FCS/DMEMで24時間培養後、FuGENE6 transfection reagentを使用して、GAL4−PPAR LBD expression vectorとGAL4 DBD−TK−PLAP expression vectorをco−transfectした。Transfectionを行った24時間後に、1x10/wellになるように96−well plateに蒔き直し、さらに24時間培養を続けた。24時間後に、内在性alkaline phosphataseを失活させるために65℃で処理した10% FCSを含むDMEMに培地交換するとともに、任意の濃度で化合物を添加した。化合物添加後24時間の間に分泌されたPLAP活性により転写活性を測定し、EC50を算出した。PLAP活性は、培養上清10μlにassay buffer 50μlと化学発光基質50μlを加え、室温で1時間インキュベート後に測定した。PPARα、PPARβ、およびPPARγに対する転写活性をそれぞれ表1に示した。
Figure 2002080899
実験例2:消化管における抗炎症作用
雌性ICRマウス(各群10例、日本チャールズリバー、横浜)に4%デキストラン硫酸ナトリウム溶液を5日間自由摂水させ、実験的大腸炎を誘発した。8日後、Cooper HSらの既報(Laboratory Invest(69),p.238−249,1993)に従って下痢、血便及び体重減少の3指標についてそれぞれ0(正常)から4(重症)に分類し、3指標の平均値を大腸炎活動指数(Disease Activity Index)とした。被験化合物は0.5%メチルセルロース溶液に懸濁し、ゾンデを用いて大腸炎誘発開始日より1日1回経口投与した。その結果を表2に示す。
Figure 2002080899
以上のように、本発明化合物は消化管において優れた抗炎症作用を有し、消化器疾患治療剤、特に炎症性腸疾患治療剤として非常に有用である。
本発明化合物は、チアゾリジン骨格を有さず、PPARγagonist作用を有する化合物で問題となっている肝障害などの毒性を完全に回避できる可能性もある。
実施例
以下の実施例により本発明を詳細に且つ具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
実施例1
製造例1a)
Figure 2002080899
エチル 2−(ジエチルホスホリル)−2−エチルアセテート1.5gをテトラヒドロフラン30mlに溶解し、氷冷下で60%水素化ナトリウム0.26gを加えた。反応液を氷冷下で30分間撹拌した後、ベンジル 5−ホルミル−2−メトキシベンゾエート1.5gを加え、室温で20時間撹拌した。反応物に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1)溶出分画よりベンジル 5−(3−エトキシ−2−エトキシ−3−オキソ−1−プロペニル)−2−メトキシベンゾエート1.6gをE−Z混じりで得た。
H−NMR(Z−isomer,CDCl)δ:1.25(t,J=6.8Hz,3H)1.36(t,J=7.2Hz,3H)3.96(s,3H)3.98(q,J=6.8Hz,2H)4.27(q,J=7.2Hz,2H)6.92(s,1H)6.98(d,J=8.0Hz,1H)7.30−7.43(m,5H)7.90(dd,J=2.4,8.0Hz,1H)8.32(d,J=2.4Hz,1H)
製造例1b)
Figure 2002080899
ベンジル 5−(3−エトキシ−2−エトキシ−3−オキソ−1−プロペニル)−2−メトキシベンゾエート1.6gをエタノール30mlに溶解し、10%パラジウム炭素0.35gを加え、水素雰囲気下で16時間撹拌した。触媒を濾過し溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画より5−(3−エトキシ−2−エトキシ−3−オキソプロピル)−2−メトキシ安息香酸1.2gを得た。
H−NMR(CDCl)δ:1.16(t,J=6.8Hz,3H)1.25(t,J=7.2Hz,3H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.34(dq,J=6.8,9.2Hz,1H)3.61(dq,J=6.8,9.2Hz,1H)3.98(dd,J=4.8,8.0Hz,1H)4.05(s,3H)4.18(q,J=7.2Hz,2H)6.97(d,J=8.0Hz,1H)7.47(dd,J=2.4,8.0Hz,1H)8.06(d,J=2.4Hz,1H)
実施例1c)
Figure 2002080899
5−(3−エトキシ−2−エトキシ−3−オキソプロピル)−2−メトキシ安息香酸0.58gと4−(トリフルオロメチル)ベンジルアミン0.34gをN,N−ジメチルホルムアミド7mlに溶解し、氷冷下シアノホスホン酸ジエチル0.30ml、トリエチルアミン0.27mlを加えた。反応混合物を室温で16時間撹拌した後氷水中に注ぎ、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画よりエチル 2−エトキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパノエート0.64gを得た。
H−NMR(CDCl)δ:1.16(t,J=6.8Hz,3H)1.25(t,J=7.2Hz,3H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.34(dq,J=6.8,9.2Hz,1H)3.61(dq,J=6.8,9.2Hz,1H)3.93(s,3H)4.01(dd,J=4.8,8.0Hz,1H)4.18(q,J=7.2Hz,2H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.12(d,J=2.4Hz,1H)8.29(m,1H)
実施例1d)
Figure 2002080899
エチル 2−エトキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパノエート0.25gをメタノール7mlに溶解し、1N水酸化ナトリウム3mlを加え、室温で14時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−エトキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパン酸0.18gを得た。
H−NMR(DMSO−d)δ:1.02(t,J=7.2Hz,3H)2.82(dd,J=8.0,14.4Hz,1H)2.91(dd,J=5.2,14.4Hz,1H)3.30(dq,J=7.2,9.6Hz,1H)3.50(dq,J=7.2,9.6Hz,1H)3.86(s,3H)3.94(dd,J=5.2,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.05(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.61(d,J=2.4Hz,1H)7.68(d,J=2.4Hz,2H)8.78(t,J=6.0Hz,1H)
実施例2
製造例2b)
Figure 2002080899
製造例1b)と同様の方法で5−(3−エトキシ−2−イソプロポキシ−3−オキソプロピル)−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:0.94(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.26(t,J=7.2Hz,3H)2.93(dd,J=8.0,14.0Hz,1H)3.02(dd,J=4.8,14.0Hz,1H)3.52(sept,J=6.0Hz,1H)4.03(dd,J=4.8,8.0Hz,1H)4.06(s,3H)4.15−4.22(m,2H)6.98(d,J=8.0Hz,1H)7.47(dd,J=2.4,8.0Hz,1H)8.08(d,J=2.4Hz,1H)
実施例2c)
Figure 2002080899
実施例1c)と同様の方法でエチル 2−イソプロポキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.25(t,J=7.2Hz,3H)2.92(dd,J=8.0,14.0Hz,1H)3.01(dd,J=4.8,14.0Hz,1H)3.51(sept,J=6.0Hz,1H)3.93(s,3H)4.05(dd,J=4.8,8.0Hz,1H)4.14−4.21(m,2H)4.73(d,J=6.0Hz,2H)6.90(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.13(d,J=2.4Hz,1H)8.30(m,1H)
実施例2d)
Figure 2002080899
実施例1d)と同様の方法で2−イソプロポキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパン酸を得た。
H−NMR(DMSO−d)δ:0.89(t,J=6.0Hz,3H)1.03(t,J=6.0Hz,3H)2.76(dd,J=8.0,14.0Hz,1H)2.88(dd,J=4.8,14.0Hz,1H)3.48(sept,J=6.0Hz,1H)3.86(s,3H)3.99(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.04(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.62(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.77(t,J=6.0Hz,1H)
実施例3
製造例3b)
Figure 2002080899
製造例1b)と同様の方法で5−(3−エトキシ−2−tert−ブトキシ−3−オキソプロピル)−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:1.02(s,9H)1.25(t,J=7.2Hz,3H)2.85(dd,J=8.0,14.0Hz,1H)2.95(dd,J=4.8,14.0Hz,1H)4.06(s,3H)4.10(dd,J=4.8,8.0Hz,1H)4.18(q,J=7.2Hz,2H)6.98(d,J=8.0Hz,1H)7.47(dd,J=2.4,8.0Hz,1H)8.07(d,J=2.4Hz,1H)
実施例3c)
Figure 2002080899
実施例1c)と同様の方法でエチル 2−tert−ブトキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパノエートを得た。
H−NMR(CDCl)δ:1.02(s,9H)1.25(t,J=7.2Hz,3H)2.85(dd,J=8.0,14.0Hz,1H)2.95(dd,J=4.8,14.0Hz,1H)3.93(s,3H)4.10(dd,J=4.8,8.0Hz,1H)4.18(q,J=7.2Hz,2H)4.73(d,J=6.0Hz,2H)6.90(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.13(d,J=2.4Hz,1H)8.29(m,1H)
実施例3d)
Figure 2002080899
実施例1d)と同様の方法で2−tert−ブトキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパン酸を得た。
H−NMR(DMSO−d)δ:0.94(s,9H)2.70(dd,J=8.8,13.2Hz,1H)2.83(dd,J=4.4,13.2Hz,1H)3.86(s,3H)4.01(dd,J=4.4,8.8Hz,1H)4.56(d,J=6.0Hz,2H)7.04(d,J=8.0Hz,1H)7.31(dd,J=2.0,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.63(d,J=2.0Hz,1H)7.68(d,J=8.0Hz,2H)8.77(t,J=6.0Hz,1H)
実施例4
製造例4b)
Figure 2002080899
製造例1b)と同様の方法で5−(3−エトキシ−2−ヒドロキシ−3−オキソプロピル)−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:1.31(t,J=7.2Hz,3H)2.95(dd,J=8.0,14.0Hz,1H)3.12(dd,J=4.8,14.0Hz,1H)4.06(s,3H)4.23(q,J=7.2Hz,2H)4.40(dd,J=4.8,8.0Hz,1H)6.98(d,J=8.0Hz,1H)7.47(dd,J=2.4,8.0Hz,1H)8.01(d,J=2.4Hz,1H)
実施例4c)
Figure 2002080899
実施例1c)と同様の方法でエチル 2−ヒドロキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパノエートを得た。
H−NMR(CDCl)δ:1.31(t,J=7.2Hz,3H)2.95(dd,J=8.0,14.0Hz,1H)3.15(dd,J=4.8,14.0Hz,1H)3.92(s,3H)4.23(q,J=7.2Hz,2H)4.40−4.43(m,1H)4.73(d,J=6.0Hz,2H)6.92(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.08(d,J=2.4Hz,1H)8.28(m,1H)
実施例4d)
Figure 2002080899
実施例1d)と同様の方法で2−ヒドロキシ−3−(4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル)プロパン酸を得た。
H−NMR(DMSO−d)δ:2.75(dd,J=8.0,14.0Hz,1H)2.90(dd,J=4.8,14.0Hz,1H)3.86(s,3H)4.08(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.05(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.62(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.77(t,J=6.0Hz,1H)
実施例5
製造例5b)
Figure 2002080899
製造例1b)と同様の方法で5−[2−(エトキシカルボニル)ブチル]−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:0.92(t,J=7.6Hz,3H)1.17(t,J=6.8Hz,3H)1.51−1.70(m,2H)2.54−2.60(m,1H)2.75(dd,J=6.4,13.6Hz,1H)2.91(dd,J=8.4,13.6Hz,1H)4.02−4.10(m,2H)4.05(s,3H)6.96(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)8.00(d,J=2.4Hz,1H)
実施例5c)
Figure 2002080899
実施例1c)と同様の方法でエチル 2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)ベンジル]ブタノエートを得た。
H−NMR(CDCl)δ:0.91(t,J=7.6Hz,3H)1.18(t,J=6.8Hz,3H)1.51−1.70(m,2H)2.54−2.61(m,1H)2.75(dd,J=6.4,13.6Hz,1H)2.92(dd,J=8.4,13.6Hz,1H)3.92(s,3H)4.04−4.15(m,2H)4.73(d,J=6.0Hz,2H)6.89(d,J=8.0Hz,1H)7.26(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.05(d,J=2.4Hz,1H)8.30(m,1H)
実施例5d)
Figure 2002080899
実施例1d)と同様の方法で2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)ベンジル]ブタン酸を得た。
H−NMR(DMSO−d)δ:0.84(t,J=7.2Hz,3H)1.43−1.49(m,2H)2.38−2.43(m,1H)2.64(dd,J=6.0,13.6Hz,1H)2.75(dd,J=8.8,13.6Hz,1H)3.85(s,3H)4.54(d,J=6.4Hz,2H)7.04(d,J=8.0Hz,1H)7.27(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.55(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.78(t,J=6.4Hz,1H)
実施例6
製造例6b)
Figure 2002080899
製造例1b)と同様の方法で5−{2−(エトキシカルボニル)エチル}−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:1.14(t,J=6.8Hz,3H)2.56(t,J=7.2Hz,2H)2.88(t,J=7.2Hz,2H)3.98(s,3H)4.06(q,J=6.8Hz,2H)6.92(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.98(d,J=2.4Hz,1H)
実施例6c)
Figure 2002080899
実施例1c)と同様の方法でエチル 3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:1.12(t,J=6.8Hz,3H)2.60(t,J=7.2Hz,2H)2.95(t,J=7.2Hz,2H)3.92(s,3H)4.11(q,J=6.8Hz,2H)4.73(d,J=6.0Hz,2H)6.90(d,J=8.0Hz,1H)7.26(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.07(d,J=2.4Hz,1H)8.30(m,1H)
実施例6d)
Figure 2002080899
実施例1d)と同様の方法で3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:2.48(t,J=7.2Hz,2H)2.76(t,J=7.2Hz,2H)3.85(s,3H)4.54(d,J=6.4Hz,2H)7.04(d,J=8.0Hz,1H)7.31(dd,J=2.4,8.0Hz,1H)7.51(d,J=8.0Hz,2H)7.57(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.78(t,J=6.4Hz,1H)
実施例7
実施例7c)
Figure 2002080899
実施例1c)と同様の方法でエチル 2−エトキシ−3−[4−メトキシ−3−({[(1−メチル−1H−2−インドリル)メチル]アミノ}カルボニル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:1.16(t,J=6.8Hz,3H)1.25(t,J=7.2Hz,3H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.34(dq,J=6.8,9.2Hz,1H)3.61(dq,J=6.8,9.2Hz,1H)3.74(s,3H)3.84(s,3H)4.01(dd,J=4.8,8.0Hz,1H)4.18(q,J=7.2Hz,2H)4.87(d,J=6.0Hz,2H)6.87(d,J=8.0Hz,1H)6.90(s,1H)7.11(dd,J=0.8,8.0Hz,1H)7.20(dd,J=0.8,8.0Hz,1H)7.30(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.59(d,J=8.0Hz,1H)8.10(m,1H)8.12(d,J=2.4Hz,1H)
実施例7d)
Figure 2002080899
実施例1d)と同様の方法で2−エトキシ−3−[4−メトキシ−3−({[(1−メチル−1H−2−インドリル)メチル]アミノ}カルボニル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:1.03(t,J=6.8Hz,3H)2.83(dd,J=7.2,14.0Hz,1H)2.91(dd,J=4.8,14.0Hz,1H)3.30(dq,J=6.8,9.6Hz,1H)3.50(dq,J=6.8,9.6Hz,1H)3.74(s,3H)3.84(s,3H)3.94(dd,J=4.8,7.2Hz,1H)4.67(d,J=5.6Hz,2H)6.35(s,1H)6.97(dd,J=0.8,8.0Hz,1H)7.04(d,J=8.0Hz,1H)7.09(dd,J=0.8,8.0Hz,1H)7.31(dd,J=2.0,8.0Hz,1H)7.39(d,J=8.0Hz,1H)7.46(d,J=8.0Hz,1H)7.61(d,J=2.0Hz,1H)8.57(t,J=5.6Hz,1H)
実施例8
実施例8c)
Figure 2002080899
実施例1c)と同様の方法でエチル 3−[3−({[シクロヘキシルメチル]アミノ}カルボニル)−4−メトキシフェニル]−2−エトキシプロパノエートを得た。
H−NMR(CDCl)δ:0.95−1.07(m,2H)1.16(t,J=6.8Hz,3H)1.16−1.25(m,3H)1.25(t,J=7.2Hz,3H)1.50−1.80(m,6H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.30(t,J=6.4Hz,2H)3.34(dq,J=6.8,9.2Hz,1H)3.61(dq,J=6.8,9.2Hz,1H)3.94(s,3H)4.01(dd,J=4.8,8.0Hz,1H)4.18(q,J=7.2Hz,2H)6.87(d,J=8.0Hz,1H)7.37(dd,J=2.4,8.0Hz,1H)7.90(m,1H)8.08(d,J=2.4Hz,1H)
実施例8d)
Figure 2002080899
実施例1d)と同様の方法で3−(3−[{(シクロヘキシルメチル)アミノ}カルボニル]−4−メトキシフェニル)−2−エトキシプロパン酸を得た。
H−NMR(DMSO−d)δ:0.89−0.95(m,2H)1.03(t,J=7.2Hz,3H)1.14−1.20(m,3H)1.45−1.70(m,6H)2.81(dd,J=8.0,14.0Hz,1H)2.90(dd,J=5.2,14.0Hz,1H)3.10(dd,J=6.4,6.4Hz,2H)3.30(dq,J=7.2,9.6Hz,1H)3.50(dq,J=7.2,9.6Hz,1H)3.83(s,3H)3.93(dd,J=5.2,8.0Hz,1H)7.02(d,J=8.0Hz,1H)7.28(dd,J=2.4,8.0Hz,1H)7.57(d,J=2.4Hz,1H)8.07(t,J=6.4Hz,1H)
実施例9
実施例9a)
Figure 2002080899
メチル 2−アミノ−3−メトキシ({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパノエート0.25gおよび酢酸0.12mlをクロロホルム8mlに溶解し、室温で亜硝酸イソアミル0.10mlを加えた。反応液を30分間加熱還流した後、室温まで冷却し、酢酸エチルで希釈した。有機層を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧留去した後、残渣を1−プロパノール8mlに溶解し、室温で酢酸ロジウム13mgを加えた。反応液を5時間加熱還流し、溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画よりメチル 3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロポキシプロパノエート0.18gを得た。
H−NMR(CDCl)δ:0.84(t,J=7.2Hz,3H)1.55(tq,J=6.8,7.2Hz,2H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.21(dt,J=6.8,8.8Hz,1H)3.53(dt,J=6.8,8.8Hz,1H)3.73(s,3H)3.93(s,3H)4.02(dd,J=4.8,8.0Hz,1H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.36(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.10(d,J=2.4Hz,1H)8.29(m,1H)
実施例9b)
Figure 2002080899
メチル 3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロポキシプロパノエート0.18gをメタノール2mlに溶解し、1N水酸化ナトリウム2mlを加え、室温で4時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロポキシプロパン酸0.15gを得た。
H−NMR(DMSO−d)δ:0.76(t,J=7.2Hz,3H)1.41(tq,J=6.4,7.2Hz,2H)2.82(dd,J=8.0,14.4Hz,1H)2.91(dd,J=4.8,14.4Hz,1H)3.17(dt,J=6.4,9.2Hz,1H)3.43(dt,J=6.4,9.2Hz,1H)3.86(s,3H)3.92(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.05(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.61(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.78(t,J=6.0Hz,1H)
実施例10
実施例10a)
Figure 2002080899
実施例9a)と同様の方法でメチル 2−ブトキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.84(t,J=7.2Hz,3H)1.25−1.32(m,2H)1.46−1.55(m,2H)2.98(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.25(dt,J=6.8,8.8Hz,1H)3.55(dt,J=6.8,8.8Hz,1H)3.73(s,3H)3.93(s,3H)4.01(dd,J=4.8,8.0Hz,1H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.35(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.10(d,J=2.4Hz,1H)8.29(m,1H)
実施例10b)
Figure 2002080899
実施例9b)と同様の方法で2−ブトキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:0.77(t,J=7.2Hz,3H)1.15−1.25(m,2H)1.32−1.41(m,2H)2.82(dd,J=8.4,14.0Hz,1H)2.91(dd,J=4.8,14.0Hz,1H)3.20(dt,J=6.4,9.2Hz,1H)3.46(dt,J=6.4,9.2Hz,1H)3.86(s,3H)3.90(dd,J=4.8,8.4Hz,1H)4.55(d,J=6.0Hz,2H)7.05(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.61(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.77(t,J=6.0Hz,1H)
実施例11
実施例11a)
Figure 2002080899
実施例9a)と同様の方法でメチル 2−シクロヘキシルオキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.80(dd,J=6.4,16.0Hz,1H)1.08−1.90(m,9H)2.96(dd,J=8.0,14.0Hz,1H)3.02(dd,J=4.8,14.0Hz,1H)3.14−3.21(m,1H)3.73(s,3H)3.93(s,3H)4.10(dd,J=4.8,8.0Hz,1H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.36(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.10(d,J=2.4Hz,1H)8.29(m,1H)
実施例11b)
Figure 2002080899
実施例9b)と同様の方法で2−シクロヘキシルオキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:0.75(dd,J=6.4,16.0Hz,1H)1.00−1.71(m,9H)2.78(dd,J=8.0,14.0Hz,1H)2.89(dd,J=4.8,14.0Hz,1H)3.18−3.23(m,1H)3.86(s,3H)4.03(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.05(d,J=8.0Hz,1H)7.33(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.63(d,J=2.4Hz,1H)7.67(d,J=8.0Hz,2H)8.77(t,J=6.0Hz,1H)
実施例12
実施例12a)
Figure 2002080899
実施例9a)と同様の方法でメチル 3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−(2,2,2−トリフルオロエトキシ)プロパノエートを得た。
H−NMR(CDCl)δ:3.04(dd,J=8.0,14.0Hz,1H)3.15(dd,J=4.8,14.0Hz,1H)3.67(dd,J=8.8,12.0Hz,1H)3.73(s,3H)3.93(s,3H)4.03(d,J=8.8,12.0Hz,1H)4.20(dd,J=4.8,8.0Hz,1H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.36(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,1H)8.10(d,J=8.0Hz,2H)8.29(m,1H)
実施例12b)
Figure 2002080899
実施例9b)と同様の方法で3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−(2,2,2−トリフルオロエトキシ)プロパン酸を得た。
H−NMR(DMSO−d)δ:2.92(dd,J=8.0,14.0Hz,1H)3.01(dd,J=4.8,14.0Hz,1H)3.87(s,3H)4.03(dd,J=8.8,12.0Hz,1H)4.11(d,J=8.8,12.0Hz,1H)4.26(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.4Hz,2H)7.06(d,J=8.0Hz,1H)7.31(dd,J=2.4,8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.61(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)8.78(t,J=6.4Hz,1H)
実施例13
実施例13a)
Figure 2002080899
実施例9a)と同様の方法でメチル 2−イソブトキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.82(d,J=6.4Hz,6H)1.80(tq,J=6.4,6.4Hz,1H)2.98(dd,J=8.0,14.0Hz,1H)2.99(dd,J=6.4,8.8Hz,1H)3.04(dd,J=4.8,14.0Hz,1H)3.36(dd,J=6.4,8.8Hz,1H)3.72(s,3H)3.93(s,3H)4.00(dd,J=4.8,8.0Hz,1H)4.73(d,J=6.0Hz,2H)6.91(d,J=8.0Hz,1H)7.36(dd,J=2.4,8.0Hz,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.10(d,J=2.4Hz,1H)8.29(m,1H)
実施例13b)
Figure 2002080899
実施例9b)と同様の方法で2−イソブトキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:0.74(d,J=6.4Hz,6H)1.67(tq,J=6.4,6.4Hz,1H)2.82(dd,J=8.0,14.4Hz,1H)2.92(dd,J=4.8,14.4Hz,1H)2.96(dd,J=6.4,8.8Hz,1H)3.26(dd,J=6.4,8.8Hz,1H)3.86(s,3H)3.90(dd,J=4.8,8.0Hz,1H)4.55(d,J=6.0Hz,2H)7.04(d,J=8.0Hz,1H)7.32(dd,J=2.4,8.0Hz,1H)7.51(d,J=8.0Hz,2H)7.62(d,J=2.4Hz,1H)7.67(d,J=8.0Hz,2H)8.76(t,J=6.0Hz,1H)
実施例14
製造例14a)
Figure 2002080899
エチル 2−(ジエチルホスホリル)−2−イソプロピルアセテート1.5gをテトラヒドロフラン10mlに溶解し、氷冷下で60%水素化ナトリウム0.22gを加えた。反応液を氷冷下で20分間撹拌した後、4−メトキシ−3−ニトロベンズアルデヒド0.88gを加え、室温で2時間撹拌した。反応物に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(9:1)溶出分画よりエチル−2−イソプロポキシ−3−(4−メトキシ−3−ニトロフェニル)−2−プロパノエート0.85gをE−Z混じりで得た。
H−NMR(CDCl)δ:1.17+1.37(t,J=6.0Hz,3H)1.27+1.31(d,J=6.0Hz,6H)3.94+3.98(s,3H)4.17+4.28(q,J=6.0Hz,2H)6.10+6.88(s,1H)7.00+7.06(d,J=8.0Hz,1H)7.40+7.91(dd,J=8.0,2.0Hz,1H)7.75+8.37(d,J=2.0Hz,1H)
製造例14b)
Figure 2002080899
エチル−2−イソプロポキシ−3−(4−メトキシ−3−ニトロフェニル)−2−プロパノエート0.85gをエタノール15mlに溶解し、10%パラジウム炭素0.3gを加え、水素雰囲気下で4時間撹拌した。触媒を濾過し溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(6:1)溶出分画よりエチル−3−(3−アミノ−4−メトキシフェニル)−2−イソプロポキシプロパノエート0.72gを得た。
H−NMR(CDCl)δ:1.00(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=6.0Hz,3H)2.83(m,2H)3.50(dq,J−6.4,6.4Hz,1H)3.81(s,3H)4.00(dd,J=8.4,4.8Hz,1H)4.17(q,J=6.0Hz,2H)6.60(dd,J=8.0,2.0Hz,1H)6.67(d,J=2.0Hz,1H)6.70(d,J=8.0Hz,1H)
実施例14c)
Figure 2002080899
エチル−3−(3−アミノ−4−メトキシフェニル)−2−イソプロポキシプロパノエート0.3gと(α,α,α−トリフルオロ−p−トリル)酢酸0.218gをテトラヒドロフラン7mlに溶解し、カルボニルジイミダゾール0.22gとトリエチルアミン0.23mlを加え、50℃で2時間撹拌した。反応混合物を氷冷し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(6:1)溶出分画よりエチル−2−イソプロポキシ−3−[4−メトキシ−3−(4−トリフルオロメチルフェニルアセチルアミノ)フェニル]プロパノエート0.34gを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.10(d,J=6.0Hz,3H)1.22(t,J=7.2Hz,3H)2.83(dd,J=14.0,6.0Hz,1H)2.93(dd,J=14.0,4.4Hz,1H)3.48(dq,J=6.0,6.0Hz,1H)3.73(s,3H)3.78(s,2H)4.02(dd,J=7.6,4.4Hz,1H)4.15(q,J=8.0Hz,2H)6.72(d,J=8.0Hz,1H)6.91(dd,J=8.0,2.0Hz,1H)7.46(d,J=8.0Hz,2H)7.64(d,J=8.0Hz,2H)7.73(s,1H)8.24(d,J=2.0Hz,1H)
実施例14d)
Figure 2002080899
エチル−2−イソプロポキシ−3−(4−メトキシ−3−(4−トリフルオロメチルフェニルアセチルアミノ)フェニル)プロパノエート0.34gをエタノール5mlに溶解し、5N水酸化ナトリウム0.28mlを加え、室温で4時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−イソプロポキシ−3−(4−メトキシ−3−[{2−(4−トリフルオロメチル)フェニル]アセチル}アミノ)フェニルプロパン酸0.28gを得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.89(dd,J=14.0,6.0Hz,1H)3.06(dd,J=14.0,4.4Hz,1H)3.58(dq,J=6.0,6.0Hz,1H)3.75(s,3H)3.80(s,2H)4.13(dd,J=7.6,4.4Hz,1H)6.74(d,J=8.0Hz,1H)6.90(dd,J=8.0,2.0Hz,1H)7.48(d,J=8.0Hz,2H)7.65(d,J=8.0Hz,2H)7.73(s,1H)8.26(d,J=2.0Hz,1H)
実施例15
実施例15c)
Figure 2002080899
実施例14c)と同様の方法により、エチル−2−イソプロポキシ−3−(4−メトキシ−3−{[2−(5−メチル−2−フェニル−1,3−オキサゾリル−4−イル)アセチル]アミノ}フェニル)プロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.13(d,J=6.0Hz,3H)1.24(t,J=7.2Hz,3H)2.40(s,3H)2.87(dd,J=14.0,8.8Hz,1H)2.95(dd,J=14.0,8.8Hz,1H)3.50(dq,J=6.4,6.4HZ,1H)3.63(s,2H)3.75(s,3H)4.04(dd,J=8.4,4.8Hz,1H)4.17(q,J=7.2Hz,2H)6.73(d,J=8.0Hz,1H)6.90(dd,J=8.0,2.0Hz,1H)7.47(m,3H)8.08(m,2H)8.33(d,J=2.0Hz,1H)9.42(s,1H)
実施例15d)
Figure 2002080899
実施例14d)と同様の方法により、2−イソプロポキシ−3−(4−メトキシ−3−{[2−(5−メチル−2−フェニル−1,3−オキサゾール−4−イル)アセチル]アミノ}フェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.40(s,3H)2.89(dd,J=14.0,8.8Hz,1H)3.09(dd,J=14.0,8.8Hz,1H)3.58(dq,J=6.4,6.4HZ,1H)3.63(s,2H)3.75(s,3H)4.14(dd,J=8.4,4.8Hz,1H)6.75(d,J=8.0Hz,1H)6.88(dd,J=8.0,2.0Hz,1H)7.46(m,3H)8.08(m,2H)8.33(d,J=2.0Hz,1H)9.46(s,1H)
実施例16
製造例16a)
Figure 2002080899
エチル 2−(ジエチルホスホリル)−2−イソプロピルアセテート1.6gをテトラヒドロフラン30mlに溶解し、氷冷下で60%水素化ナトリウム0.24gを加えた。反応液を氷冷下で30分間撹拌した後、tert−ブチル 5−ホルミル−2−メトキシベンゾエート1.2gを加え、室温で3時間撹拌した。反応物に塩化アンモニウム水溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画よりtert−ブチル 5−(3−エトキシ−2−イソプロポキシ−3−オキソ−1−プロペニル)−2−メトキシベンゾエート1.5gをE−Z混じりで得た。
H−NMR(Z−isomer,CDCl)δ:1.28(d,J=6.4Hz,6H)1.36(t,J=7.2Hz,3H)1.59(s,9H)3.91(s,3H)4.29(q,J=7.2Hz,2H)4.41(sept,J=6.4Hz,1H)6.92(d,J=8.0Hz,1H)6.96(s,1H)7.85(dd,J=2.4,8.0Hz,1H)8.26(d,J=2.4Hz,1H)
製造例16b)
Figure 2002080899
tert−ブチル 5−(3−エトキシ−2−イソプロポキシ−3−オキソ−1−プロペニル)−2−メトキシベンゾエート0.3gをジクロロメタン2.5mlに溶解し、氷冷下トリフルオロ酢酸1.2mlを加え、そのまま氷冷下2時間撹拌した。反応混合物にトルエン30mlを加え溶媒を減圧留去する操作を2回繰り返した後、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画より5−[(Z)−3−エトキシ−2−イソプロポキシ−3−オキソ−1−プロペニル]−2−メトキシ安息香酸65mgを得た。
H−NMR(CDCl)δ:1.30(d,J=6.4Hz,6H)1.36(t,J=7.2Hz,3H)4.09(s,3H)4.29(q,J=7.2Hz,2H)4.47(sept,J=6.4Hz,1H)6.96(s,1H)7.05(d,J=8.0Hz,1H)8.18(dd,J=2.4,8.0Hz,1H)8.57(d,J=2.4Hz,1H)
実施例16c)
Figure 2002080899
5−[(E)−3−エトキシ−2−イソプロポキシ−3−オキソ−1−プロペニル]−2−メトキシ安息香酸65mgと4−(トリフルオロメチル)ベンジルアミン37mgをN,N−ジメチルホルムアミド1mlに溶解し、氷冷下シアノホスホン酸ジエチル33μl、トリエチルアミン30μlを加えた。反応混合物を室温で16時間撹拌した後氷水中に注ぎ、酢酸エチルで抽出した。有機膚を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(5:1)溶出分画よりエチル(Z)−2−イソプロポキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロペノエート77mgを得た。
H−NMR(CDCl)δ:1.30(d,J=6.4Hz,6H)1.36(t,J=7.2Hz,3H)3.97(s,3H)4.29(q,J=7.2Hz,2H)4.47(sept,J=6.4Hz,1H)4.75(d,J=6.0Hz,2H)6.99(d,J=8.0Hz,1H)7.01(s,1H)7.47(d,J=8.0Hz,2H)7.60(d,J=8.0Hz,2H)8.12(dd,J=2.4,8.0Hz,1H)8.18(m,1H)8.57(d,J=2.4Hz,1H)
実施例16d)
Figure 2002080899
エチル(Z)−2−イソプロポキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロペノエート77mgをメタノール2mlに溶解し、1N水酸化ナトリウム1mlを加え、室温で22時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して(Z)−2−イソプロポキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]アミノ}カルボニル)フェニル]−2−プロペン酸44mgを得た
H−NMR(DMSO−d)δ:1.17(d,J=6.4Hz,6H)3.90(s,3H)4.46(sept,J=6.4Hz,1H)4.56(d,J=6.4Hz,2H)6.90(s,1H)7.15(d,J=8.8Hz,1H)7.53(d,J=8.0Hz,2H)7.68(d,J=8.0Hz,2H)7.87(dd,J=2.4,8.8Hz,1H)8.30(d,J=2.4Hz,1H)8.82(m,1H)
実施例17
製造例17a)
Figure 2002080899
製造例14a)と同様の方法でエチル 2−エチル−3−(4−メトキシ−3−ニトロフェニル)−2−プロペノエートをE−Z混じりで得た。
H−NMR(CDCl)δ:1.15+1.35(m,6H)2.45+2.53(q,J=6.0Hz,2H)3.95+3.98(s,3H)4.18+4.27(d,J=6.0Hz,2H)6.52+7.53(d,1H)7.01+7.11(d,J=8.0Hz,1H)7.44+7.55(dd,J=8.0,2.0Hz,1H)7.79+7.89(d,J=2.0Hz,1H)
製造例17b)
Figure 2002080899
製造例14b)と同様の方法でエチル 2−(3−アミノ−4−メトキシベンジル)ブタノエートを得た。
H−NMR(CDCl)δ:0.88(t,J=6.0Hz,3H)1.17(t,J=6.0Hz,3H)1.56(m,2H)2.52(m,1H)2.59(dd,J=13.5,7.0Hz,1H)2.80(dd,J=13.5,8.0Hz,1H)3.81(s,3H)4.08(q,J=6.0Hz,2H)6.50(dd,J=8.0,2.0Hz,1H)6.54(d,J=2.0Hz,1H)6.68(d,J=8.0Hz,1H)
実施例17c)
Figure 2002080899
実施例14c)と同様の方法でエチル 2−(4−メトキシ−3−{[2−(5−メチル−2−フェニル−1,3−オキサゾール−4−イル)アセチル]アミノ}ベンジル)ブタノエートを得た。
H−NMR(CDCl)δ:0.89(t,J=6.0Hz,3H)1.18(t,J=6.0Hz,3H)1.58(m,2H)2.56(m,1H)2.68(dd,J=13.5,7.0Hz,1H)2.88(dd,J=13.5,8.0Hz,1H)3.63(s,2H)3.74(s,3H)4.08(q,J=6.0Hz,2H)6.71(d,J=8.0Hz,2H)6.79(dd,J=8.0,2.0Hz,2H)7.46(m,3H)8.07(m,2H)8.25(d,J=2.0Hz,1H)9.40(bs,1H)
実施例17d)
Figure 2002080899
実施例14d)と同様の方法で2−(4−メトキシ−3−{[2−(5−メチル−2−フェニル−1,3−オキサゾール−4−イル)アセチル]アミノ}ベンジル)ブタン酸を得た。
H−NMR(CDCl)δ:0.94(t,J=6.0Hz,3H)1.60(m,2H)2.61(m,1H)2.72(dd,J=13.5,7.0Hz,1H)2.90(dd,J=13.5,8.0Hz,1H)3.62(s,2H)3.74(s,3H)6.73(d,J=8.0Hz,2H)6.83(dd,J=8.0,2.0Hz,2H)7.46(m,3H)8.06(m,2H)8.26(d,J=2.0Hz,1H)9.40(bs,1H)
実施例18
実施例18c)
Figure 2002080899
実施例17c)と同様の方法でエチル 2−(4−メトキシ−3−{[2−(3−フルオロ−4−トリフルオロメチルフェニル)アセチル]アミノ}ベンジル)ブタノエートを得た。
H−NMR(CDCl)δ:0.88(t,J=6.0Hz,3H)1.17(t,J=6.0Hz,3H)1.58(m,2H)2.54(m,1H)2.67(dd,J=13.5,7.0Hz,1H)2.86(dd,J=13.5,8.0Hz,1H)3.77(s,2H)3.79(s,3H)4.08(q,J=6.0Hz,2H)6.73(d,J=8.0Hz,1H)6.83(dd,J=8.0,2.0Hz,1H)7.24(m,2H)7.61(t,J=7.5Hz,1H)7.77(bs,1H)8.17(d,J=2.0Hz,1H)
実施例18d)
Figure 2002080899
実施例17d)と同様の方法で2−(4−メトキシ−3−{[2−(3−フルオロ−4−トリフルオロメチルフェニル)アセチル]アミノ}ベンジル)ブタン酸を得た。
H−NMR(CDCl)δ:0.93(t,J=6.0Hz,3H)1.59(m,2H)2.59(m,1H)2.70(dd,J=13.5,7.0Hz,1H)2.89(dd,J=13.5,8.0Hz,1H)3.70+3.77(s,2H)3.79+3.81(s,3H)6.74(d,J=8.0Hz,1H)6.86(dd,J=8.0,2.0Hz,1H)7.17(d,J=8.0Hz,1H)7.22(d,J=10.5Hz,1H)7.60(t,J=7.5Hz,1H)7.78(bs,1H)8.17(d,J=2.0Hz,1H)
実施例19
製造例19a)
Figure 2002080899
5−[2−(エトキシカルボニル)ブチル]−2−メトキシ安息香酸0.50gをテトラヒドロフラン8mlに溶解し、氷冷下でクロロぎ酸エチル0.20mlおよびトリエチルアミン0.29mlを加えた。反応液を氷冷下で10分間撹拌した後、不溶物を濾過した。母液を再度氷冷し、水10μlおよび水素化ホウ素ナトリウム136mgを加え、室温で2時間撹拌した。反応物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画よりエチル 2−[3−(ヒドロキシメチル)−4−メトキシベンジル]ブタノエート0.47gを得た。
H−NMR(CDCl)δ:0.90(t,J=7.2Hz,3H)1.17(t,J=6.8Hz,3H)1.50−1.64(m,2H)2.51−2.57(m,1H)2.68(dd,J=6.8,14.0Hz,1H)2.87(dd,J=8.0,14.0Hz,1H)3.84(s,3H)4.04−4.10(m,2H)4.65(s,2H)6.78(d,J=9.2Hz,1H)7.05(d,J=9.2Hz,1H)7.07(s,1H)
製造例19b)
Figure 2002080899
エチル 2−[3−(ヒドロキシメチル)−4−メトキシベンジル]ブタノエート0.47gをトルエン6mlに溶解し、アジ化ジフェニルホスホリル0.54mlおよびジアザビシクロ[5.4.0]ウンデセン0.37mlを加え、室温で16時間撹拌した。反応物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(5:1)溶出分画より1−{5−[2−(エトキシカルボニル)ブチル]−2−メトキシベンジル}−1,2−トリアザジエン−2−イウム0.47gを得た。
H−NMR(CDCl)δ:0.90(t,J=7.2Hz,3H)1.17(t,J=6.8Hz,3H)1.50−1.64(m,2H)2.51−2.57(m,1H)2.68(dd,J=6.8,14.0Hz,1H)2.87(dd,J=8.0,14.0Hz,1H)3.82(s,3H)4.02−4.12(m,2H)4.30(s,2H)6.81(d,J=8.0Hz,1H)7.03(s,1H)7.11(d,J=8.0Hz,1H)
製造例19c)
Figure 2002080899
1−{5−[2−(エトキシカルボニル)ブチル]−2−メトキシベンジル}−1,2−トリアザジエン−2−イウム0.47gをテトラヒドロフラン6mlに溶解し、水0.4mlおよびトリフェニルホスフィン0.55gを加え、室温で20時間撹拌した。溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル−メタノール−トリエチルアミン(10:1:0.1)溶出分画よりエチル 2−[3−(アミノメチル)−4−メトキシベンジル]ブタノエート0.40gを得た。
H−NMR(CDCl)δ:0.90(t,J=7.2Hz,3H)1.17(t,J=6.8Hz,3H)1.50−1.64(m,2H)2.49−2.56(m,1H)2.67(dd,J=6.8,14.0Hz,1H)2.86(dd,J=8.0,14.0Hz,1H)3.77(s,2H)3.81(s,3H)4.04−4.10(m,2H)6.76(d,J=8.8Hz,1H)7.00(d,J=8.8Hz,1H)7.01(s,1H)
実施例19d)
Figure 2002080899
エチル 2−[3−(アミノメチル)−4−メトキシベンジル]ブタノエート0.40gと4−(トリフルオロメチル)安息香酸0.29gをN,N−ジメチルホルムアミド5mlに溶解し、氷冷下シアノホスホン酸ジエチル0.24ml、トリエチルアミン0.21mlを加えた。反応混合物を室温で16時間撹拌した後氷水中に注ぎ、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画よりエチル 2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)ベンジル]ブタノエート0.59gを得た。
H−NMR(CDCl)δ:0.91(t,J=7.2Hz,3H)1.16(t,J=6.8Hz,3H)1.50−1.67(m,2H)2.49−2.56(m,1H)2.68(dd,J=6.4,14.0Hz,1H)2.86(dd,J=8.6,14.0Hz,1H)3.86(s,3H)4.01−4.10(m,2H)4.61(d,J=6.0Hz,2H)6.67−6.72(m,1H)6.81(d,J=8.0Hz,1H)7.08(dd,J=2.4,8.0Hz,1H)7.13(d,J=2.4Hz,1H)7.68(d,J=8.0Hz,2H)7.86(d,J=8.0Hz,2H)
実施例19e)
Figure 2002080899
エチル 2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)ベンジル]ブタノエート0.59gをエタノール5mlに溶解し、1N水酸化ナトリウム2mlを加え、70℃で4時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)ベンジル]ブタン酸0.50gを得た。
H−NMR(DMSO−d)δ:0.80(t,J=7.2Hz,3H)1.39−1.46(m,2H)2.33−2.40(m,1H)2.55(dd,J=6.4,14.0Hz,1H)2.72(dd,J=8.0,14.0Hz,1H)3.77(s,3H)4.42(d,J=5.6Hz,2H)6.88(d,J=8.0Hz,1H)7.01(s,1H)7.03(d,J=8.0Hz,1H)7.85(d,J=8.0Hz,2H)8.07(d,J=8.0Hz,2H)9.03(t,J=5.6Hz,1H)
実施例20
製造例20a)
Figure 2002080899
製造例19a)と同様の方法でエチル 3−[3−(ヒドロキシメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=7.2Hz,3H)2.88(dd,J=8.4,14.0Hz,1H)2.95(dd,J=5.2,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)3.85(s,3H)4.00(dd,J=5.2,8.4Hz,1H)4.11−4.21(m,2H)4.65(d,J=6.4Hz,2H)6.79(d,J=8.8Hz,1H)7.14(d,J=8.8Hz,1H)7.15(s,1H)
製造例20b)
Figure 2002080899
製造例19b)と同様の方法で1−[5−(3−エトキシイソプロポキシオキソプロピル)−2−メトキシベンジル]−1,2−トリアザジエン−2−イウムを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.25(t,J=7.2Hz,3H)2.88(dd,J=8.8,13.6Hz,1H)2.95(dd,J=4.8,13.6Hz,1H)3.50(sept,J=6.0Hz,1H)3.84(s,3H)4.00(dd,J=4.8,8.8Hz,1H)4.15−4.21(m,2H)4.32(s,2H)6.83(d,J=8.0Hz,1H)7.14(d,J=2.0Hz,1H)7.20(dd,J=2.0,8.0Hz,1H)
製造例20c)
Figure 2002080899
製造例19c)と同様の方法でエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.25(t,J=7.2Hz,3H)2.88(dd,J=8.8,13.6Hz,1H)2.95(dd,J=4.8,13.6Hz,1H)3.50(sept,J=6.0Hz,1H)3.84(s,3H)4.00(dd,J=4.8,8.8Hz,1H)4.15−4.21(m,2H)4.32(s,2H)6.83(d,J=8.0Hz,1H)7.14(d,J=2.0Hz,1H)7.20(dd,J=2.0,8.0Hz,1H)
実施例20d)
Figure 2002080899
実施例19d)と同様の方法でエチル 2−イソプロポキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)1.24(t,J=7.2Hz,3H)2.88(dd,J=8.4,14.0Hz,1H)2.95(dd,J=4.8,14.0Hz,1H)3.51(sept,J=6.0Hz,1H)3.87(s,3H)4.01(dd,J=4.8,8.4Hz,1H)4.12−4.20(m,2H)4.62(d,J=6.0Hz,2H)6.65−6.70(m,1H)6.82(d,J=8.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.68(d,J=8.4Hz,2H)7.86(d,J=8.4Hz,2H)
実施例20e)
Figure 2002080899
実施例19e)と同様の方法で2−イソプロポキシ−3−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)フェニル]プロパン酸を得た。
H−NMR(DMSO−d)δ:0.78(d,J=6.0Hz,3H)0.93(d,J=6.0Hz,3H)2.68(dd,J=8.0,14.0Hz,1H)2.81(dd,J=4.0,14.0Hz,1H)3.41(sept,J=6.0Hz,1H)3.78(s,3H)3.92(dd,J=4.8,8.4Hz,1H)4.43(d,J=6.0Hz,2H)6.88(d,J=8.0Hz,1H)7.07(s,1H)7.08(d,J=8.0Hz,1H)7.85(d,J=8.0Hz,2H)8.09(d,J=8.0Hz,2H)9.06(t,J=6.0Hz,1H)
実施例21
製造例21a)
Figure 2002080899
1−(メトキシメチル)−3−(トリフルオロメチル)ベンゼン7.0gを無水ジエチルエーテル300mlに溶解し、−78℃でノルマルブチルリチウム(2.5Mヘキサン溶液)19mlを滴下した。反応混合物を室温で3時間撹拌し、再び−78℃に冷却して、N,N−ジメチルホルムアミド10mlを加えた。反応液を室温に戻し、水に注ぎ、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(9:1)溶出画分より1−(メトキシメチル)−3−(トリフルオロメチル)ベンツアルデヒド5.0gを赤燈色油状物として得た。
H−NMR(CDCl)δ:3.54(s,3H)5.35(s,2H)7.34(d,J=8Hz,1H)7.49(s,1H)7.94(d,J=8Hz,1H)10.52(s,1H)
製造例21b)
Figure 2002080899
1−(メトキシメチル)−3−(トリフルオロメチル)ベンツアルデヒド5.0gをアセトン25mlに溶かし、6N塩酸22mlを加えた。室温で3時間反応させ、水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥し、減圧下溶媒を留去し、2−ヒドロキシ−4−(トリフルオロメチル)ベンツアルデヒド4.5gを淡赤燈色油状物として得た。
H−NMR(CDCl)δ:7.2−7.3(m,2H)7.70(d,J=8Hz,1H)10.0(s,1H)11.1(s,1H)
製造例21c)
Figure 2002080899
2−ヒドロキシ−4−(トリフルオロメチル)ベンツアルデヒド4.5gをN,N−ジメチルホルムアミド20mlに溶解し、水素化ナトリウム(60%油性)1.0gを加え、室温で30分撹拌した。これにヨウ化メチル1.8mlを滴下し、1時間反応させた。反応液に水を加え、酢酸エチルで抽出後飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(9:1)溶出画分より2−メトキシ−4−(トリフルオロメチル)ベンツアルデヒド3.0gを無色油状物として得た。
H−NMR(CDCl)δ:4.00(s,3H)7.22(s,1H)7.29(d,J=8Hz,1H)7.93(d,J=8Hz,1H)10.50(s,1H)
製造例21d)
Figure 2002080899
2−メトキシ−4−(トリフルオロメチル)ベンツアルデヒド3.0gをジメチルスルホキシド50mlとリン酸二水素ナトリウム1.6g水溶液(20ml)に溶解し、亜塩素酸ナトリウム8.0g水溶液(30ml)を滴下した。室温で3日間撹拌後、水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:7)溶出画分より、2−メトキシ−4−(トリフルオロメチル)安息香酸0.8gを無色固体として得た。
H−NMR(CDCl)δ:4.14(s,3H)7.29(s,1H)7.41(d,J=8Hz,1H)8.30(d,J=8Hz,1H)
実施例21e)
Figure 2002080899
2−メトキシ−4−(トリフルオロメチル)安息香酸0.24gとエチル 2−[3−(アミノメチル)−4−メトキシベンジル]ブタノエート0.3gを実施例19d)に続き、実施例19e)と同様に処理し、2−[4−メトキシ−3−({[2−メトキシ−4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)ベンジル]ブタン酸0.3gを淡黄色油状物として得た。
H−NMR(CDCl)δ:0.93(t,J=7Hz,3H)1.5−1.7(m,2H)2.5−2.6(m,1H)2.69(dd,J=7,14Hz,1H)2.89(dd,J=8,14Hz,1H)3.87(s,3H)3.98(s,3H)4.62(d,J=6Hz,2H)6.80(d,J=8Hz,1H)7.08(dd,J=2,8Hz,1H)7.16(s,2H)7.28−7.34(m,1H)8.26−8.40(m,1H)8.36(t,J=6Hz,1H)
実施例22
製造例22a)
Figure 2002080899
2−メトキシフェニル酢酸5.0gをジクロロメタン20mlに溶解し、二塩化オキサリル4.6gを加え、室温で3時間撹拌した。減圧下溶媒と過剰の二塩化オキサリルを留去し、残渣をジクロロメタン20mlに溶解し、氷冷下4−トリフルオロメチルアニリン14gを加え、室温で12時間撹拌した。反応液に水を加え、酢酸エチルで抽出し、1N塩酸、飽和食塩水で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下で溶媒を留去した。析出した固体をろ取後ジエチルエーテルで洗浄し、N−[4−(トリフルオロメチル)フェニル]−2−(2−メトキシフェニル)アセトアミド8.0gを無色固体として得た。
H−NMR(CDCl)δ:3.73(s,2H)4.95(s,3H)6.98(d,J=8Hz,1H)7.00(d,J=8Hz,1H)7.28−7.35(m,2H)7.50−7.60(m,4H)7.91(s,1H)
製造例22b)
Figure 2002080899
N−[4−(トリフルオロメチル)フェニル]−2−(2−メトキシフェニル)アセトアミド1.0gをトリフルオロ酢酸10mlに溶かし、ヘキサメチレンテトラミン0.46gを加え、85℃で3時間反応させた。反応液を室温に戻し、水と酢酸エチルを加え、更に炭酸水素ナトリウムをPH=8になるまで加えた。酢酸エチルで抽出後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(1:1)溶出画分よりN−[4−(トリフルオロメチル)フェニル]−2−(5−ホルミル−2−メトキシフェニル)アセトアミド0.7gを無色油状物として得た。
H−NMR(CDCl)δ:3.78(s,2H)4.00(s,3H)7.07(d,J=8Hz,1H)7.54(d,J=9Hz,2H)7.57(d,J=9Hz,2H)7.85(d,J=2Hz,1H)7.83−7.90(m,1H)9.91(s,1H)
実施例22c)
Figure 2002080899
N−[4−(トリフルオロメチル)フェニル]−2−(5−ホルミル−2−メトキシフェニル)アセトアミド0.7gと2−ホスホノブタン酸エチル1.6gを製造例1a)と同様に処理し、エチル 2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}フェニル)−2−プロペノエート0.8gを無色油状物として得た。
H−NMR(CDCl)δ:1.18(t,J=7Hz,3H)1.34(t,J=7Hz,3H)2.55(q,J=7Hz,2H)3.74(s,2H)3.97(s,3H)4.26(q,J=7Hz,2H)6.99(d,J=9Hz,1H)7.34(d,J=9Hz,1H)7.38(dd,J=2,8Hz,1H)7.48−7.62(m,5H)7.82(s,1H)
実施例22d)
Figure 2002080899
エチル 2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}フェニル)−2−プロペノエート0.3gを製造例1b)と同様に処理し、エチル 2−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}ベンジル)ブタノエート0.3gを無色油状物として得た。
H−NMR(CDCl)δ:0.91(t,J=7Hz,3H)1.14(t,J=7Hz,3H)1.5−1.8(m,2H)2.48−2.60(m,1H)2.71(dd,J=6,14Hz,1H)2.87(dd,J=4,14Hz,1H)3.68(s,2H)3.91(s,3H)3.95−4.10(m,2H)6.86(d,J=9Hz,1H)7.09(s,1H)7.06−7.12(m,1H)7.51(d,J=9Hz,2H)7.56(d,J=9Hz,2H)7.94(s,1H)
実施例22e)
Figure 2002080899
エチル 2−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}ベンジル)ブタノエート0.3gを実施例19e)と同様に処理し、2−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}ベンジル)ブタン酸0.11gを無色固体として得た。
H−NMR(DMSO−d)δ:0.84(t,J=8Hz,3H)1.46(sept,J=8Hz,2H)2.35−2.60(m,1H)2.57(dd,J=6,14Hz,1H)2.74(dd,J=8,14Hz,1H)3.61(s,2H)3.71(s,3H)6.86(d,J=8Hz,1H)7.02(s,1H)7.03(d,J=8Hz,1H)7.64(d,J=9Hz,2H)7.79(d,J=9Hz,2H)10.4(s,1H)12.1(s,1H)
実施例23
実施例23a)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート0.15gと2−メトキシ−4−(トリフルオロメチル)安息香酸0.24gを実施例19d)に続き、実施例1d)と同様に処理し、2−イソプロポキシ−3−[4−メトキシ−3−({[2−メトキシ−4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)フェニル]プロパン酸0.15gを淡黄色油状物として得た。
H−NMR(CDCl)δ:1.00(d,J=6Hz,3H)1.14(d,J=6Hz,3H)2.90(dd,J=8,14Hz,1H)3.03(dd,J=4,14Hz,1H)3.56(sept,J=6Hz,1H)3.88(s,3H)4.00(s,3H)4.08(dd,J=4,8Hz,1H)4.63(d,J=6Hz,2H)6.81(d,J=8Hz,1H)7.14(dd,J=2,8Hz,1H)7.17(s,1H)7.22(d,J=2Hz,1H)7.32(d,J=8Hz,1H)8.30(d,J=8Hz,1H)8.35(t,J=8Hz,1H)
実施例24
実施例24a)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート0.15gをN,N−ジメチルホルムアミド5mlに溶解し、ピリジン0.2mlと2−フルオロ−4−(トリフルオロメチル)安息香酸クロリド0.24gを加え、室温で12時間反応させた。反応液に水を加え、酢酸エチルで抽出し、飽和食塩水で洗浄後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、酢酸エチル−ヘキサン(1:2)溶出画分よりエチル 2−イソプロポキシ−3−[4−メトキシ−3−({[2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)フェニル]プロパノエート0.2gを淡黄色油状物として得た。これを更に実施例1d)と同様に処理し、2−イソプロポキシ−3−[4−メトキシ−3−({[2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)フェニル]プロパン酸0.15gを淡黄色固体として得た。
H−NMR(CDCl)δ:1.00(d,J=6Hz,3H)1.15(d,J=6Hz,3H)2.91(dd,J=8,14Hz,1H)3.04(dd,J=4,14Hz,1H)3.56(sept,J=6Hz,1H)3.87(s,3H)4.09(dd,J=4,8Hz,1H)4.64(d,J=6Hz,2H)6.82(d,J=8Hz,1H)7.16(dd,J=2,8Hz,1H)7.22(d,J=2Hz,1H)7.37(d,J=12Hz,1H)7.51(d,J=8Hz,1H)7.34−7.5(m,1H)8.22(t,J=8Hz,1H)
実施例25
製造例25a)
Figure 2002080899
4−ヒドロキシベンゾトリフルオリド1.1gおよび2−メトキシフェネチルアルコール1.0gをテトラヒドロフラン200mlに溶解し、トリフェニルホスフィン2.6gおよびジイソプロピルアゾジカルボキシレート2.0gを加え、室温で24時間撹拌した。溶媒を減圧留去した後、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(10:1)溶出分画より1−メトキシ−2−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンゼン1.6gを得た。
H−NMR(CDCl)δ:3.14(t,J=7.2Hz,2H)3.85(s,3H)4.20(t,J=7.2Hz,2H)6.85−6.92(m,2H)6.96(d,J=8.0Hz,2H)7.20−7.27(m,2H)7.51(d,J=8.0Hz,2H)
製造例25b)
Figure 2002080899
1−メトキシ−2−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンゼン1.6gを実施例22b)と同様に処理し、4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンズアルデヒド0.20gを得た。
H−NMR(CDCl)δ:3.18(t,J=7.2Hz,2H)3.93(s,3H)4.20(t,J=7.2Hz,2H)6.95(d,J=8.0Hz,2H)6.99(d,J=8.0Hz,1H)7.52(d,J=8.0Hz,2H)7.78(s,1H)7.80(d,J=8.0Hz,1H)9.89(s,1H)
実施例25c)
Figure 2002080899
4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンズアルデヒド0.20gを製造例1a)に続き、製造例1b)と同様に処理し、エチル 2−(4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンジル)ブタノエート0.22gを得た。
H−NMR(CDCl)δ:0.91(t,J=6.8Hz,3H)1.16(t,J=7.2Hz,3H)1.52−1.67(m,2H)2.48−2.56(m,1H)2.67(dd,J=6.8,13.6Hz,1H)2.86(dd,J=8.4,13.6Hz,1H)3.07(t,J=7.2Hz,2H)3.81(s,3H)4.04−4.10(m,2H)4.16(t,J=7.2Hz,2H)6.77(d,J=8.0Hz,1H)6.96(d,J=8.0Hz,2H)7.00(s,1H)7.01(d,J=8.0Hz,1H)7.52(d,J=8.0Hz,2H)
実施例25d)
Figure 2002080899
エチル 2−(4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンジル)ブタノエート0.22gを実施例19e)と同様に処理し、2−(4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンジル)ブタン酸0.20gを得た。
H−NMR(CDCl)δ:0.95(t,J=7.2Hz,3H)1.53−1.67(m,2H)2.52−2.60(m,1H)2.69(dd,J=6.8,14.0Hz,1H)2.90(dd,J=8.0,14.0Hz,1H)3.07(t,J=7.2Hz,2H)3.81(s,3H)4.16(t,J=7.2Hz,2H)6.78(d,J=8.0Hz,1H)6.96(d,J=8.0Hz,2H)7.02(s,1H)7.03(d,J=8.0Hz,1H)7.52(d,1=8.0Hz,2H)
実施例26
製造例26a)
Figure 2002080899
5−ブロモ−2−メトキシ安息香酸3.0gを製造例19a)と同様に処理し、5−ブロモ−2−メトキシフェニルメタノール1.7gを得た。
H−NMR(CDCl)δ:2.20(m,1H)3.82(s,3H)4.64(d,J=6.0Hz,2H)6.77(d,J=8.0Hz,1H)7.37(dd,J=2.0,8.0Hz,1H)7.52(d,J=2.0Hz,1H)
製造例26b)
Figure 2002080899
5−ブロモ−2−メトキシフェニルメタノール0.8gをテトラヒドロフラン30mlに溶解し、4−(トリフルオロメチル)ベンジルブロミド2.6gおよび水素化ナトリウム(60%油状)0.22gを加え、室温で16時間撹拌した。反応液に水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(9:1)溶出分画より4−ブロモ−1−メトキシ−2−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンゼン1.4gを得た。
H−NMR(CDCl)δ:3.80(s,3H)4.57(s,2H)4.64(s,2H)6.77(d,J=8.0Hz,1H)7.37(dd,J=2.0,8.0Hz,1H)7.50(d,J=8.0Hz,2H)7.52(d,J=2.0Hz,1H)7.61(d,J=8.0Hz,2H)
製造例26c)
Figure 2002080899
4−ブロモ−1−メトキシ−2−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンゼン1.4gをテトラヒドロフラン15mlに溶解し、−78℃に冷却した後、n−ブチルリチウム(1.5Mペンタン溶液)3.0mlを加えた。反応液を−78℃で30分間撹拌した後、N−ホルミルモルホリン0.45mlを加え、−78℃で1時間撹拌した。反応液に1N塩酸を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画より4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンズアルデヒド0.42gを得た。
H−NMR(CDCl)δ:3.92(s,3H)4.63(s,2H)4.70(s,2H)6.99(d,J=8.0Hz,1H)7.51(d,J=8.0Hz,2H)7.62(d,J=8.0Hz,2H)7.84(dd,J=2.0,8.0Hz,1H)7.98(d,J=2.0Hz,1H)9.90(s,1H)
実施例26d)
Figure 2002080899
4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンズアルデヒド0.42gを製造例1a)に続き、製造例1b)と同様に処理し、エチル 2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンジル]ブタノエート0.33gを得た。
H−NMR(CDCl)δ:0.91(t,J=7.6Hz,3H)1.16(t,J=7.2Hz,3H)1.52−1.68(m,2H)2.50−2.57(m,1H)2.70(dd,J=6.8,14.0Hz,1H)2.88(dd,J=8.4,14.0Hz,1H)3.80(s,3H)4.01−4.10(m,2H)4.57(s,2H)4.64(s,2H)6.78(d,J=8.0Hz,1H)7.06(dd,J=2.0,8.0Hz,1H)7.19(d,J=2.0Hz,1H)7.50(d,J=8.0Hz,2H)7.61(d,J=8.0Hz,2H)
実施例26e)
Figure 2002080899
エチル 2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンジル]ブタノエート0.33gを実施例19e)と同様に処理し、2−[4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンジル]ブタン酸0.30gを得た。
H−NMR(CDCl)δ:0.95(t,J=7.2Hz,3H)1.54−1.68(m,2H)2.55−2.62(m,1H)2.71(dd,J=6.8,13.6Hz,1H)2.92(dd,J=8.0,13.6Hz,1H)3.79(s,3H)4.57(s,2H)4.63(s,2H)6.78(d,J=8.0Hz,1H)7.08(dd,J=2.0,8.0Hz,1H)7.21(d,J=2.0Hz,1H)7.49(d,J=8.0Hz,2H)7.61(d,J=8.0Hz,2H)
実施例27
製造例27a)
Figure 2002080899
4−(トリフルオロメチル)安息香酸5.7gと2−メトキシベンジルアミン4.0gをN,N−ジメチルホルムアミド100mlに溶解し、氷冷下シアノホスホン酸ジエチル4.8ml、トリエチルアミン4.2mlを加えた。反応混合物を室温で16時間撹拌した後氷水中に注ぎ、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画よりN1−(2−メトキシベンジル)−4−(トリフルオロメチル)ベンズアミド8.7gを得た。
H−NMR(CDCl)δ:3.89(s,3H)4.65(d,J=5.6Hz,2H)6.70(br,1H)6.92(d,J=8.4Hz,1H)6.95(t,J=7.6Hz,1H)7.28−7.36(m,2H)7.68(d,J=8.4Hz,2H)7.86(d,J=8.4Hz,2H)
製造例27b)
Figure 2002080899
N1−(2−メトキシベンジル)−4−(トリフルオロメチル)ベンズアミド8.7gをトリフルオロ酢酸20mlに溶かし、ヘキサメチレンテトラミン3.9gを加え、85℃で3時間反応させた。反応液を室温に戻し、水と酢酸エチルを加え、更に炭酸水素ナトリウムをPH=8になるまで加えた。酢酸エチルで抽出後、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出画分よりN1−(5−ホルミル−2−メトキシベンジル)−4−(トリフルオロメチル)ベンズアミド4.2gを得た。
H−NMR(CDCl)δ:3.99(s,3H)4.72(d,J=5.6Hz,2H)6.70(br,1H)7.02(d,J=8.4Hz,1H)7.68(d,J=8.4Hz,2H)7.83−7.90(m,4H)9.89(s,1H)
実施例27c)
Figure 2002080899
N1−(5−ホルミル−2−メトキシベンジル)−4−(トリフルオロメチル)ベンズアミド1.5gをトルエン15mlに溶解し、2,4−チアゾリジンジオン0.52g、ピロリジン36mgおよび酢酸30mgを加え、ディーンスターク装置を付して2時間加熱還流した。室温まで冷却後、析出した結晶を濾取し、酢酸エチルで洗浄した後、乾燥し、N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−4−(トリフルオロメチル)ベンズアミド1.4gを得た。
H−NMR(DMSO−d)δ:3.90(s,3H)4.47(d,J=5.6Hz,2H)6.70(br,1H)7.17(d,J=8.8Hz,1H)7.40(s,1H)7.54(d,J=8.8Hz,1H)7.70(s,1H)7.87(d,J=8.0Hz,2H)8.13(d,J=8.0Hz,2H)9.23(t,J=5.6Hz,1H)
実施例28
製造例28a)
Figure 2002080899
2−フルオロ−4−(トリフルオロメチル)安息香酸1.5gと2−メトキシベンジルアミン0.90gを製造例27a)と同様に処理し、N1−(2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド2.0gを得た。
H−NMR(CDCl)δ:3.90(s,3H)4.67(d,J=4.8Hz,2H)6.90−6.96(m,2H)7.25−7.39(m,4H)7.52(d,J=8.0Hz,1H)8.24(t,J=8.0Hz,1H)
製造例28b)
Figure 2002080899
N1−(2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド2.0gを製造例27b)と同様に処理し、N1−(5−ホルミル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド1.1gを得た。
H−NMR(CDCl)δ:4.00(s,3H)4.72(d,J=5.6Hz,2H)7.03(d,J=8.0Hz,1H)7.32(br,1H)7.40(d,J=12.0Hz,1H)7.53(d,J=8.0Hz,1H)7.84−7.88(m,2H)8.25(t,J=8.0Hz,1H)9.89(s,1H)
実施例28c)
Figure 2002080899
N1−(5−ホルミル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド1.1gを実施例27c)と同様に処理し、N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−2−フルオロ−4−(トリフルオロメチル)ベンズアミド0.70gを得た。
H−NMR(DMSO−d)δ:3.89(s,3H)4.45(d,J=5.6Hz,2H)7.18(d,J=8.8Hz,1H)7.44(d,J=2.0Hz,1H)7.55(dd,J=2.0,8.8Hz,1H)7.68(d,J=8.0Hz,1H)7.71(s,1H)7.83−7.90(m,2H)9.02(t,J=5.6Hz,1H)
実施例29
Figure 2002080899
N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−4−(トリフルオロメチル)ベンズアミド0.55gをN,N−ジメチルホルムアミド20mlに懸濁し、10%パラジウム炭素0.60gを加え、50度、15kg/cmに水素加圧下16時間撹拌した。反応後、触媒を濾過し溶媒を減圧留去した後、残渣に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(1:1)溶出分画よりN1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル}−4−(トリフルオロメチル)ベンズアミド1.2gを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=9.2,17.5Hz,1H)3.28(dd,J=4.0,17.5Hz,1H)3.79(s,3H)4.42(d,J=5.6Hz,2H)4.79(dd,J=4.0,9.2Hz,1H)6.93(d,J=8.4Hz,1H)7.08(d,J=2.0Hz,1H)7.10(dd,J=2.0,8.4Hz,1H)7.84(d,J=8.0Hz,2H)8.08(d,J=8.0Hz,2H)9.05(t,J=5.6Hz,1H)
実施例30
Figure 2002080899
N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−2−フルオロ−4−(トリフルオロメチル)ベンズアミド0.70gを製造例29)と同様に処理し、N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル}−2−フルオロ−4−(トリフルオロメチル)ベンズアミド0.47gを得た。
H−NMR(DMSO−d)δ:3.01(dd,J=9.6,18.0Hz,1H)3.31(dd,J=4.0,18.0Hz,1H)3.79(s,3H)4.40(d,J=5.6Hz,2H)4.81(dd,J=4.0,9.6Hz,1H)6.94(d,J=9.2Hz,1H)7.12(m,2H)7.66(d,J=7.2Hz,1H)7.80−7.84(m,2H)8.88(t,J=5.6Hz,1H)
実施例31
製造例31a)
Figure 2002080899
2−メトキシベンジルアミン13.0gをテトラヒドロフラン80mlに溶解し、第三ブチルジカーボネート16gのテトラヒドロフラン(20ml)溶液を加えた。室温で1時間攪拌した後、溶媒を減圧留去した。残渣を酢酸エチルに溶解し、1N塩酸、飽和食塩水にて順次洗浄した。有機層を無水硫酸マグネシウムで乾燥した後、溶媒を減圧下留去し、第三ブチル N−(2−メトキシベンジル)カルバメート19.0gを得た。
H−NMR(CDCl)δ:1.45(s,9H)3.84(s,3H)4.27−4.33(m,2H)5.01(br,1H)6.84(d,J=8.8Hz,1H)6.94(t,J=8.8Hz,1H)7.23−7.29(m,2H)
MS m/e(ESI)440(MH
製造例31b)
Figure 2002080899
第三ブチル N−(2−メトキシベンジル)カルバメート6.04gをアセトニトリル50mlに溶解し、N−ブロモコハクイミド4.6gを加えた。室温にて3時間攪拌した後、溶媒を減圧下留去した。残渣を酢酸エチルに溶解し、水、飽和食塩水にて順次洗浄し太。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をメチル第三ブチルメチルエーテルとヘキサンの混液で洗浄し、第三ブチル N−(5−ブロモ−2−メトキシベンジル)カルバメート6.97gを得た。
H−NMR(CDCl)δ:1.45(s,9H)3.62(s,3H)4.26(d,J=6.4Hz,2H)4.97(br,1H)6.72(d,J=8.8Hz,1H)7.34(dd,J=2.8,11.2Hz)7.35(s,1H)
製造例31c)
Figure 2002080899
第三ブチル N−(5−ブロモ−2−メトキシベンジル)カルバメート1.015g、ジクロロビス(トリフェニルホスフィン)パラジウム(II)45mg、ギ酸ナトリウム330mg、およびトリフェニルホスフィン17mgを無水N,N−ジメチルホルムアミドに溶解し、一酸化炭素雰囲気下で110℃にて2時間攪拌した。反応混合物を酢酸エチルで希釈し、水、飽和重炭酸ナトリウム水、にて洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、ヘキサン−酢酸エチル(3:1)溶出分画より第三ブチル N−(5−ホルミル−2−メトキシベンジル)カルバメート640mgを得た。
H−NMR(CDCl)δ:1.45(s,9H)3.94(s,3H)4.36(d,J=6.0Hz,2H)5.00(br,1H)6.98(d,J=8.4Hz,1H)7.80−7.83(m,2H)9.88(s,1H)
製造例31d)
Figure 2002080899
窒素雰囲気下でヘキサメチルジシラザンナトリウム(1Mテトラヒドロフラン溶液)80mlをテトラヒドロフラン40mlで希釈し、−78℃に冷却した後、エチル 2−イソプロポキシ酢酸11.68gのテトラヒドロフラン(10ml)溶液を加えた。30分撹拌した後、tert−ブチル N−(5−ホルミル−2−メトキシベンジル)カルバメート10.73gのテトラヒドロフラン(10ml)溶液を加え、更に1時間撹拌した後、飽和塩化アンモニウム水溶液100mlを加えた。反応液を水400mlと酢酸エチル500mlに注ぎ、有機層を無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し(溶出溶媒:ヘキサン−酢酸エチル)、エチル 3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−3−ヒドロキシ−2−イソプロポキシプロパノエート(エリスロ体およびスレオ体の混合物)12.8gを無色油状物として得た。
H−NMR(CDCl)δ:0.99(d,J=6.1Hz,3H)1.15(d,J=6.1Hz,3H)1.19(t,J=7.6Hz,3H)1.44(s,9H)2.91(d,J=5.2Hz,1H)3.43(sept,J=6.1Hz,1H)3.83(s,3H)4.03(d,J=6.3Hz,1H)4.12(q,J=7.6Hz,2H)4.29(d,J=6.6Hz,2H)4.86(dd,J=5.2,6.3Hz,1H)4.99(t,J=6.6Hz,1H)6.81(d,J=8.7Hz,1H)7.23−7.29(m,2H)
δ:1.11(t,J=6.9Hz,3H)1.17(d,J=6.1,Hz,3H)1.19(d,J=6.1Hz,3H)1.44(s,9H)3.00(d,J=4.4Hz,1H)3.63(sept,J=6.1Hz,1H)3.83(s,3H)3.95(d,J=5.9Hz,1H)4.08(q,J=6.9Hz,2H)4.29(d,J=6.6Hz,2H)4.80(dd,J=4.4,5.9Hz,1H)4.99(t,J=6.6Hz,1H)6.81(d,J=8.7Hz,1H)7.23−7.29(m,2H)
製造例31e)
Figure 2002080899
エチル 3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−3−ヒドロキシ−2−イソプロポキシプロパノエート(エリスロ体およびスレオ体の混合物)24.7gをトリフルオロ酢酸400mlに溶解し、トリエチルシラン96mlを加え、38時間撹拌した。溶媒を減圧下留去し、残渣を3N塩酸300mlとヘキサン200mlに溶解した。水層をヘキサン100mlで洗浄し、5N水酸化ナトリウム溶液でアルカリ性にし、ジクロロメタン200ml×4で抽出した。有機層を合わせた。無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、tlc並びにH−nmrにおいて製造例2c)で得た化合物と同一のエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート13.0gを淡黄色油状物として得た。
実施例31f)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート18.67gおよびトリエチルアミン7.7gのジエチルエーテル(300ml)溶液に水冷下2,4−ジクロロベンゾイルクロリド15.9gのテトラヒドロフラン(15ml)溶液を滴下した。氷冷下で30分、更に室温で30分撹拌した後、反応液を水500mlに注ぎ、酢酸エチル300mlで抽出した。有機層を飽和硫酸水素ナトリウム水溶液200ml、飽和炭酸水素ナトリウム200ml、および飽和食塩水200mlで順次洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィーにて精製し(溶出溶媒:ヘキサン−酢酸エチル)、tlc並びにH−nmrにおいて実施例31g)で得た化合物と同一のエチル 3−(3−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパノエート28.2gを無色固体として得た。
実施例31g)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートと2,4−ジクロロ安息香酸を実施例19d)と同様に処理し、エチル 3−(3−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパノエートを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)1.23(t,J=6.8Hz,3H)2.87(dd,J=8.4,13.6Hz,1H)2.94(dd,J=4.8,13.6Hz,1H)3.50(sept,J=6.0Hz,1H)3.84(s,3H)4.01(dd,J=4.8,8.4Hz,1H)4.05−4.20(m,2H)4.61(d,J=5.6Hz,2H)6.74−6.84(m,1H)6.79(d,J=8.4Hz,1H)7.16(dd,J=2.0,8.4Hz,1H)7.22(d,J=2.0Hz,1H)7.29(dd,J=2.0,8.4Hz,1H)7.39(d,J=2.0Hz,1H)7.64(d,J=8.0Hz,1H)
実施例31h)
Figure 2002080899
実施例1d)と同様に処理し、3−(3−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.91(dd,J=7.2,14Hz,1H)3.04(dd,J=4.0,14Hz,1H)3.56(sept,J=6.0Hz,1H)3.84(s,3H)4.09(dd,J=4.4,7.6Hz,1H)4.60(d,J=6.0Hz,2H)6.81(d,J=8.4Hz,1H)6.83(m,1H)7.16(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.0Hz,1H)7.29(dd,J=2.0,8.4Hz,1H)7.39(d,J=2.0Hz,1H)7.64(d,J=8.4Hz,1H)
実施例31i)
Figure 2002080899
3−(3−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸1.0gをエタノール5mlに溶かし、1N水酸化ナトリウム水溶液2.3mlを加え減圧下溶媒を留去し、3−(3−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸 ナトリウムを得た。
H−NMR(DMSO−d)δ:0.79(d,J=6.0Hz,3H)0.97(d,J=6.0Hz,3H)2.51(dd,J=9.2,13.6Hz,1H)2.79(dd,J=4.0,13.6Hz,1H)3.48(sept,J=6.0Hz,1H)3.63(dd,J=3.6,8.8Hz,1H)3.75(s,3H)4.35(d,J=6.0Hz,2H)6.82(d,J=8.4Hz,1H)7.07(d,J=7.6Hz,1H)7.15(s,1H)7.48(s,2H)7.67(s,1H)8.87(t,J=6.0Hz,1H)
実施例32
実施例32a)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートと4−クロロ−2−フルオロ安息香酸を実施例19d)と同様に処理し、エチル 3−(3−{[(4−クロロ−2−フルオロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパノエートを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.13(d,J=6.0Hz,3H)1.22(t,J=7.2Hz,3H)2.86(dd,J=8.0,14Hz,1H)2.93(dd,J=4.8,14Hz,1H)3.49(sept,J=6.0Hz,1H)3.86(s,3H)4.00(dd,J=5.2,8.0Hz,1H)4.05−4.25(m,2H)4.62(d,J=5.6Hz,2H)6.80(d,J=8.4Hz,1H)7.10−7.20(m,2H)7.20(d,J=2.0Hz,1H)7.23(dd,J=2.0,8.4Hz,1H)7.2−7.35(m,1H)8.06(t,J=8.4Hz,1H)
実施例32b)
Figure 2002080899
実施例1d)と同様な方法で3−(3−{[(4−クロロ−2−フルオロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.01(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.90(dd,J=7.6,14Hz,1H)3.04(dd,J=4.0,14Hz,1H)3.55(sept,J=6.0Hz,1H)3.87(s,3H)4.09(dd,J=4.0,7.6Hz,1H)4.62(d,J=5.6Hz,2H)6.82(d,J=8.0Hz,1H)7.08−7.18(m,2H)7.16−7.28(m,2H)7.24−7.38(m,1H)8.05(t,J=8.4Hz,1H)
実施例32b)
Figure 2002080899
実施例31c)と同様な方法で3−(3−{[(4−クロロ−2−フルオロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸ナトリウムを得た。
H−NMR(DMSO−d)δ:0.77(d,J=6.4Hz,3H)0.95(d,J=6.0Hz,3H)2.53(dd,J=9.2,14Hz,1H)2.79(dd,J=3.2,14Hz,1H)3.46(sept,J=6.0Hz,1H)3.64(dd,J=3.6,9.2Hz,1H)3.76(s,3H)4.38(t,J=5.2Hz,2H)6.82(d,J=8.4Hz,1H)7.07(d,J=8.8Hz,1H)7.10(s,1H)7.36(d,J=8.4Hz,1H)7.53(d,J=10Hz,1H)7.67(t,J=8Hz,1H)8.76(m,1H)
実施例33
実施例33a)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートと2−メトキシ−6−メチルニコチン酸を実施例19d)と同様な方法で処理し、エチル 2−イソプロポキシ−3−[4−メトキシ−3−({[(2−メトキシ−6−メチル−3−ピリジル)カルボニル]アミノ}メチル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.12(d,J=6.0Hz,3H)1.21(t,J=7.2Hz,3H)2.47(s,3H)2.86(dd,J=8.4,14Hz,1H)2.93(dd,J=5.2,14Hz,1H)3.49(sept,J=6.0Hz,1H)3.89(s,3H)4.00(dd,J=4.8,8.0Hz,1H)4.04(s,3H)4.1−4.2(m,2H)4.62(d,J=6.0Hz,2H)6.80(d,J=8.4Hz,1H)6.86(d,J=7.6Hz,1H)7.14(dd,J=2.0,8.0Hz,1H)7.20(d,J=2.0Hz,1H)8.39(d,J=7.6Hz,1H)8.42(m,1H)
実施例33b)
Figure 2002080899
実施例1d)と同様な方法により2−イソプロポキシ−3−[4−メトキシ−3−({[(2−メトキシ−6−メチル−3−ピリジル)カルボニル]アミノ}メチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.03(d,J=6.0Hz,3H)1.14(d,J=6.4Hz,3H)2.47(s,3H)2.90(dd,J=7.2,14Hz,1H)3.04(dd,J=4.4,14Hz,1H)3.56(sept,J=6.4Hz,1H)3.89(s,3H)4.06(s,3H)4.0−4.15(m,1H)4.61(d,J=4.0Hz,2H)6.81(d,J=8.4Hz,1H)6.86(d,J=7.6Hz,1H)7.12(dd,J=2.0,8.4Hz,1H)7.20(d,J=2.4Hz,1H)8.37(d,J=7.6Hz,1H)8.48(m,1H)
実施例34
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートと4−クロロ−2−メトキシ安息香酸を実施例20d)に続き、実施例1d)と同様に処理し、3−(3−{[(4−クロロ−2−メトキシベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)2.90(dd,J=7.6,14Hz,1H)3.03(dd,J=4.4,14Hz,1H)3.56(sept,J=6.0Hz,1H)3.88(s,3H)3.94(s,3H)4.05−4.15(m,1H)4.61(dd,J=2.0,6.0Hz,2H)6.81(d,J=8.4Hz,1H)6.95(d,J=2.0Hz,1H)7.05(dd,J=2.0,8.4Hz,1H)7.13(dd,J=2.0,8.4Hz,1H)7.20(d,J=2.0Hz,1H)8.14(d,J=8.4Hz,1H)8.28(t,J=5.6Hz,1H)
実施例35
実施例35d)
Figure 2002080899
エチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートと2,6−ジメトキシニコチン酸を実施例20d)に続き、実施例1d)と同様に処理し、3−[3−({[(2,6−ジメトキシ−3−ピリジル)カルボニル]アミノ}メチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.00(d,J=6.4Hz,3H)1.13(d,J=6.4Hz,3H)2.89(dd,J=7.6,14Hz,1H)3.03(dd,J=4.4,14Hz,1H)3.55(sept,J=6.0Hz,1H)3.88(s,3H)3.95(s,3H)4.07(s,3H)3.8−4.2(m,1H)4.60(dd,J=1.6,6.0Hz,2H)6.41(d,J=8.4Hz,1H)6.80(d,J=8.4Hz,1H)7.13(dd,J=2.0,8.4Hz,1H)7.21(d,J=2.0Hz,1H)8.32(m,1H)8.41(d,J=8.4Hz,1H)
実施例36
製造例36a)
Figure 2002080899
2−イソプロポキシ酢酸98g及びトリエチルアミン360mlのテトラヒドロフラン(4l)溶液を−25℃に冷却し、2,2−ジメチルプロパノイルクロリド92mlを滴下した後、反応液を5時間−20℃で撹拌した。無水塩化リチウム50gと(4S)−4−ベンジル−1,3−オキザゾロン−2−オン120gを順次加え、室温で更に一晩撹拌した後、反応液を濾過し、減圧下で濃縮した。残渣を酢酸エチル2lに溶解し、飽和炭酸水素ナトリウム水溶液で洗浄した後、無水硫酸マグネシウムで乾燥した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーにて精製し(溶出溶媒:ヘキサン−酢酸エチル)、(4S)−4−ベンジル−3−(2−イソプロポキシアセチル)−1,3−オキザゾロン−2−オン106.6gを無色油状物として得た。
H−NMR(CDCl)δ:1.17(d,J=6.0Hz,6H)2.81(dd,J=9.5,13.4Hz,1H)3.35(dd,J=3.2,13.4Hz,1H)3.74(sept,J=6.0Hz,1H))4.24(dd,J=3.5,9.3Hz)4.29(t,J=9.3Hz,1H)4.65(d,J=19.5Hz,1H)4.69(m,1H)4.70(d,J=19.5Hz,1H)7.22(d,J=7.2Hz,2H)7.30−7.45(m,3H)
製造例36b)
Figure 2002080899
(4S)−4−ベンジル−3−(2−イソプロポキシアセチル)−1,3−オキザゾロン−2−オン127.4gのトルエン(4l)溶液を等分にわけて−75℃に冷却した後、それぞれの溶液にトリエチルアミン28.0gを加えた。内温が−70℃を超えない速度でジブチルボロントリフレート(1Mジクロロメタン溶液)232mlを滴下した。滴下後50分撹拌した後、内温を0℃まで上昇させ、更に50分撹拌し、再び−75℃に冷却した。この反応液に予め約−70℃に冷却したtert−ブチル N−(5−ホルミル−2−メトキシベンジル)カルバメートのジクロロメタン(1.4l)溶液をカネールを利用して加え、−75℃で30分撹拌した後、約1時間をかけて内温を10分毎に10℃ずつ0℃まで上昇させた。0℃で75分撹拌した後、メタノール1.21l、pH7バッファー(リン酸第二水素ナトリウム−クエン酸)0.605l、および過酸化水素(30%水溶液)0.262lの混合液を加えた。二つの反応液を合わせ、水9lに注ぎ、ジクロロメタン1lで抽出した。有機層を飽和食塩水4lで洗浄した後、水層をあわせ、酢酸エチル4lで抽出した。すべての有機層を合わせ、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し(溶出溶媒:ヘキサン−酢酸エチル)、tert−ブチル N−(5−(1R,2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)カルバメート111.0gを無色固体として得た。
H−NMR(CDCl)δ:1.17(d,J=6.2Hz,3H)1.21(d,J=6.2Hz,3H)1.43(s,9H)2.75(dd,J=9.6,13.2Hz,1H)3.02−3.15(br.s,1H)3.24(dd,J=3.6,13.2Hz,1H)3.64−3.73(m,2H)3.83(s,3H)4.02(d,J=8.2Hz,1H)4.23(dd,J=6.2,15.6Hz,1H)4.31(dd,J=6.4,15.6Hz,1H)4.46(m,1H)4.78(d,J=5.6Hz,1H)4.99(m,1H)5.42(d,J=5.6Hz,1H)6.83(d,J=8.3Hz,1H)7.19(d,J=7.2Hz,2H)7.26−7.39(m,5H)
製造例36c)
Figure 2002080899
製造例31e)と同様にtert−ブチル N−(5−(1R,2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)カルバメート8.96gを還元した後、粗生成物に4N塩酸酢酸エチル溶液50mlを加えた。溶媒を減圧下留去した後、残渣をジイソプロピルエーテル−ヘキサンで懸濁し、固形物を濾取、上記溶媒にて洗浄し、(4S)−3−(2S)−3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノイル−4−ベンジル−1,3−オキザゾラン−2−オン塩酸塩7.89gを無色固体として得た。
H−NMR(CDCl)δ:1.00(d,J=6.3Hz,3H)1.14(d,J=6.3Hz,3H)2.77−2.85(m,2H)2.94(dd,J=3.5,11.9Hz,1H)3.28(dd,J=1.7,12.8Hz,1H)3.50(sept,J=6.3Hz,1H)3.82(s,3H)4.10−4.19(m,4H)4.64(m,1H)5.28(dd,J=3.5,7.9Hz,1H)6.81(d,J=8.4Hz,1H)7.20(d,J=7.0Hz,2H)7.25−7.34(m,5H)8.25(br.s,3H)
製造例36d)
Figure 2002080899
製造例31f)と同様に(4S)−3−(2S)−3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポコシプロパノイル−4−ベンジル−1,3−オキザゾラン−2−オン塩酸塩7.66gをアミド化した後、粗生成物を還流下で酢酸エチル20mlに溶解し、室温に冷却した。ジイソプロピルエーテル60mlとヘキサン120mlを順次加え、析出物を濾取し、N1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−2 イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド6.46gを無色固体として得た。
H−NMR(CDCl)δ:1.04(d,J=6.2Hz,3H)1.16(d,J=6.2Hz,3H)2.75(dd,J=10.1,12.6Hz,1H)2.88(dd,J=7.9,13.9Hz,1H)2.93(dd,J=4.7,13.9Hz,1H)3.32(dd,J=3.5,12.6Hz,1H)3.52(sept,J=6.2Hz,1H)3.86(s,3H)3.98(t,J=8.5Hz,1H)4.11(dd,J=2.6,8.5Hz,1H)4.56(m,1H)4.65(d,J=5.9Hz,2H)5.34(dd,J=4.7,7.9Hz,1H)6.8(d,J=8.7Hz,1H)7.20−7.38(m,8H)7.56(d,J=8.7Hz,1H),8.34(t,J=8.7Hz,1H)
実施例36e)
Figure 2002080899
製造例36b)と同様に(4S)−4−ベンジル−3−(2−イソプロポキシアセチル)−1,3−オキザゾロン−2−オン1.39gとN1−(5−ホルミル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンザミド0.89gからN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド1.36gを無色固体として得た。
H−NMR(CDCl)δ:1.15(d,J=6.0Hz,3H)1.20(d,J=3Hz,3H)2.67(dd,J=9.6,13.4Hz,1H)3.05−3.14(br.s,1H)3.25(dd,J=3.8,13.4Hz,1H)3.61(t,J=8.6Hz,1H)3.67(sept,J=6.0Hz,1H)3.86(s,3H)3.93(dd,J=1.7,8.6Hz,1H)4.44(m,1H)4.60(dd,J=5.2,14.1Hz,1H)4.66(dd,J=5.2,14.1Hz)4.79(d,J=5.8Hz,1H)5.42(d,J=5.8Hz,1H)6.88(d,J=8.7Hz,1H)7.19(d,J=7.1Hz,2H)7.27−7.33(m,4H)7.36(dd,J=0.8,11.1Hz,1H)7.39(dd,J=2.0,8.0Hz,1H)7.44(d,J=7.7Hz,1H)8.03(t,J=7.7Hz,1H)
実施例36f)
Figure 2002080899
製造例31e)と同様にN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド1.36gからtlc並びにH−nmrにおいて製造例36d)で得た化合物と同一のN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド1.30gを無色固体として得た。
実施例36g)
Figure 2002080899
製造例37c)と同様にN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2−フルオロ−4−(トリフルオロメチル)ベンズアミド6.46gからtlc並びにH−nmrにおいて実施例6a)で得た化合物と同一の(2S)−3−[3−([2−フルオロ−4−(トチフルオロメチル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸4.81gを無色油状物として得た。HPLC分析による純度:97.7%、光学純度:96.8%e.e.(ODカラム;流速0.5ml/min;2−プロパノール:ヘキサン:トリフルロ酢酸=700:300:1)。
実施例37
製造例37a)
Figure 2002080899
2−メトキシベンジルアミン50mLおよびピリジン123mLのN,N−ジメチルホルムアミド(400mL)溶液に5−10℃にて2,4−ジクロロベンゾイルクロリド45mLを1.5時間かけて滴下した後、室温にて16時間攪拌した。反応液を酢酸エチル、飽和塩化アンモニウム水溶液および1N水酸化ナトリウム水溶液にて希釈した。有機層を1N水酸化ナトリウム水溶液、1N塩酸(×2)、飽和塩化アンモニウム水溶液(×2)、および飽和食塩水にて洗浄した後、無水硫酸ナトリウムにて乾燥、濃縮した。残さをジイソプロピルエーテル(300mL)およびジエチルエーテル(500mL)にて懸濁し、固形物を濾取、ジエチルエーテルにて洗浄し、N1−(2−メトキシベンジル)−2,4−ジクロロベンズアミド81.1gを淡黄色固体として得た。
H−NMR(CDCl)δ:3.87(s,3H)4.64(d,J=6.0Hz,2H)6.82(br,1H)6.89(d,J=8.4Hz,1H)6.92−6.98(m,1H)7.26−7.32(m,2H)7.35(dd,J=2.4,7.6Hz,1H)7.40(d,J=2.4Hz,1H)7.65(d,J=8.4Hz,1H)
製造例37b)
Figure 2002080899
N1−(2−メトキシベンジル)−2,4−ジクロロベンズアミド10.0gのトリフルオロ酢酸(200mL)溶液にヘキサメチレンテトラミン9.04gを加え、50℃にて23時間攪拌した。反応液を室温まで放冷した後、濃縮した。残さを氷水にて希釈し、1N水酸化ナトリウム水溶液にてpH=11−12に調整した。このものを酢酸エチルにて抽出した。有機層を1N水酸化ナトリウム水溶液(×3)、1N塩酸(×2)、および飽和食塩水にて洗浄した後、無水硫酸ナトリウムにて乾燥、シリカゲル100gを通し濾過した。濾液を濃縮した後、残さを酢酸エチルにて懸濁した。固形物を濾取、酢酸エチルにて洗浄し、N1−(5−ホルミル−2−メトキシベンジル)−2,4−ジクロロベンズアミド7.15gを無色固体として得た。
H−NMR(CDCl)δ:3.97(s,3H)4.68(d,J=6.0Hz,2H)6.81(br,1H)7.01(d,J=8.4Hz,1H)7.31(dd,J=2.0,8.4Hz,1H)7.41(d,J=2.0Hz,1H)7.68(d,J=8.4Hz,1H)7.85(dd,J=2.0,8.4Hz,1H)7.90(d,J=2.0Hz,1H)9.88(s,1H)
実施例37c)
Figure 2002080899
製造例36b)と同様に(4S)−4−ベンジル−3−(2−イソプロポキシアセチル)−1,3−オキザゾロン−2−オン125.0gとN1−(5−ホルミル−2−メトキシベンジル)−2,4−ジクロロベンズアミド101.9gからN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2,4−ジクロロベンズアミド167.0gを無色固体として得た。
H−NMR(CDCl)δ:1.15(d,J=6.2Hz,3H)1.20(d,J=6.2Hz,3H)2.71(dd,J=9.5,14.1Hz,1H)3.06−3.15(br.s,1H)3.25(dd,J=3.2,14.1Hz,1H)3.68(sept,J=6.2Hz,1H)3.69(dd,J=7.8,8.5Hz,1H)3.84(s,3H)3.97(dd,J=2.1,8.5Hz,1H)4.44(m,1H)4.58(dd,J=5.3,13.9Hz,H)4.63(dd,J=5.3,13.9Hz,1H)4.79(d,J=5.6Hz,1H)5.40(d,J=5.6Hz,1H)6.73(t,J=5.3Hz,1H)6.85(d,J=8.2Hz,1H)7.16(d,J=7.0Hz,2H)7.25−7.34(m,5H)7.37(dd,J=1.9,8.2Hz,1H)7.40(d,J=1.9Hz,1H)7.58(d,J=8.2Hz,1H)
製造例37d)
Figure 2002080899
製造例31e)と同様にN1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−1−ヒドロキシ−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2,4−ジクロロベンズアミド167gから粗生成物を得、これを還流下で酢酸エチル550mlに溶解し、室温に冷却させた後、ジイソプロピルエーテル550mlとヘキサン800mlを順次に加え、析出物を濾取し、N1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2,4−ジクロロベンズアミド119.7gを無色固体として得た。
H−NMR(CDCl)δ:1.04(d,J=6.2Hz,3H)1.17(d,J=6.2Hz,1H)2.96(dd,J=9.1,13.3Hz,1H)2.89(dd,J=7.8,13.2Hz,1H)2.94(dd,J=5.3,13.2Hz,1H)3.30(dd,J=3.1,13.3Hz,1H)3.53(sept,J=6.2Hz,1H)3.84(s,3H)4.02(t,J=8.4Hz,1H)4.11(dd,J=1.6,8.4Hz,1H)4.57(m,1H)4.59(dd,J=6.2,14.3Hz,1H)4.63(dd,J=6.2,14.3Hz,1H)5.34(dd,J=5.3,7.8Hz,1H)6.75(t,J=6.2Hz,1H)6.80(d,J=8.2Hz,1H)7.19(d,J=8.3Hz,2H)7.22−7.33(m,6H)7.40(d,J=2.8Hz,1H)7.63(d,J=10.3Hz,1H)
実施例37e)
Figure 2002080899
N1−(5−(2S)−3−[(4S)−4−ベンジル−2−オキソ−1,3−オキザゾラン−3−イル]−2−イソプロポキシ−3−オキソプロピル−2−メトキシベンジル)−2,4−ジクロロベンズアミド124.9gのテトラヒドロフラン(1.6l)溶液に水400mlを加え、−10℃に冷却した後、30%過酸化水素水184mlと水酸化リチウム20.3gの水(150ml)溶液を順次加え、4℃で24時間撹拌した。再び−10℃に冷却した後、2M亜硫酸ナトリウム水溶液1.5lを加え、5N塩酸でpHを2−3に調節し、酢酸エチル1.5lで抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した。残渣を1N水酸化ナトリウムに溶解し、水層をジエチルエーテル−ジクロロメタンの4:1混合溶媒1lで4回抽出した。有機層を合わせ、溶媒を減圧下留去した。残渣を酢酸エチル−ヘキサンから再結晶し、(4S)−4−ベンジル−3−(2−イソプロポキシアセチル)−1,3−オキザゾロン−2−オン33.7gを回収した。水層を5N塩酸でpHを2−3に調節し、ジクロロメタン1.5lと0.5lで抽出した。有機層を合わせ、無水硫酸マグネシウムで乾燥した後、溶媒を減圧下留去し、tlc並びにH−nmrにおいて製造例31b)で得た化合物と同一の(2S)−3−[3−([2,4−ジクロロベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸87.7gを得た。HPLC分析による純度:98.6%(ODカラム;流速0.5ml/min;2−プロパノール:ヘキサン:トリフルロ酢酸=700:300:1)。この化合物をシリカゲルカラムクロマトグラフィーにて精製(溶出溶媒ヘキサン−酢酸エチル)した後、酢酸エチル410mlとヘプタン410mlから再結晶化することによってHPLC分析による純度:99.8%、光学純度:99.7%e.e.の無色固体61.6gを得た。
実施例38
製造例38a)
Figure 2002080899
tert−ブチル N−(5−ホルミル−2−メトキシベンジル)カルバメート2.75gおよび(トリフェニルホスホラニリデン)アセトアルデヒド4.73gのトルエン(50mL)懸濁液を80℃にて16時間攪拌した。反応液を室温まで放冷した後、不溶物をシリカゲルを通し濾去、濾液を濃縮した。得られた残さ2.47gを用い、製造例1a)および製造例1b)と同様の方法でエチル 5−(3−{[(tert−ブトキシカルボニル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシペンタノエート630mgを無色油状物として得た。
H−NMR(CDCl)δ:1.13(d,J=6.0Hz,3H)1.19(d,J=6.0Hz,3H)1.27(t,J=7.2Hz,3H)1.44(s,9H)1.50−1.80(m,4H)2.55(t,J=7.2Hz,2H)3.57(sept,J=6.0Hz,1H)3.81(s,3H)3.88(dd,J=4.8,7.6Hz,1H)4.19(q,J=7.2Hz,2H)4.27(d,J=5.6Hz,2H)5.01(br,1H)6.76(d,J=8.0Hz,1H)7.00−7.08(m,2H)
実施例38b)
Figure 2002080899
エチル 5−(3−{[(tert−ブトキシカルボニル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシペンタノエート50mgに4NHCl/ジオキサン2mLを加え、室温にて3.5時間攪拌した。反応液を濃縮した後、残さをN,N−ジメチルホルムアミド2mLに溶解し、そのうち1mLに2,4−ジクロロ安息香酸12mg、シアノホスホン酸ジエチル9μL、およびトリエチルアミン17μLを加え、室温にて17時間攪拌した。反応液を水にて希釈し、酢酸エチルにて抽出した。有機層を濃縮した後、残さをメタノール0.4mLに溶解し、5N水酸化ナトリウム水溶液0.1mLを加え、室温にて1時間攪拌した。反応液を濃縮し、1N塩酸にて中和した。酢酸エチルにて抽出した後、逆相系のカラムで溶出溶媒として水−アセトニトリル−トリフルオロ酢酸系を用いたHPLCにて精製し、5−(3{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシペンタン酸5.02mgを得た。
MS m/e(ESI)468(MH
実施例39
Figure 2002080899
2−イソプロポキシ−5−[4−メトキシ−3−({[(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノ}メチル)フェニル]ペンタン酸はエチル 5−(3−{[(tert−ブトキシカルボニル)アミノ]メチル}−4−メトキシフェニル)−2−イソプロポキシペンタノエートを用い、実施例38と同様の方法で得た。
MS m/e(ESI)497(MH
実施例40
製造例40a)
Figure 2002080899
4−ピリジンカルボクスアルデヒド4.0gを用い、製造例1a)および製造例1b)と同様の方法で、エチル 2−イソプロポキシ−3−(4−ピリジル)プロパノエート4.88gを無色油状物として得た。
H−NMR(CDCl)δ:0.93(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.26(t,J=7.2Hz,3H)2.92(dd,J=8.8,13.6Hz,1H)3.00(dd,J=4.4,13.6Hz,1H)3.52(sept,J=6.0Hz,1H)4.06(dd,J=4.4,8.8Hz,1H)4.15−4.24(m,2H)7.19(dd,J=1.6,4.4Hz,2H)8.51(dd,J=1.6,4.4Hz,2H)
製造例40b)
Figure 2002080899
エチル 2−イソプロポキシ−3−(4−ピリジル)プロパノエート4.88gのジクロロメタン(50mL)溶液にm−クロロ過安息香酸6.0gを加え、室温にて1.5時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液にて希釈した後、水層をジクロロメタンにて3回抽出した。合わせた有機層を無水硫酸ナトリウムにて乾燥した後、濃縮し、4−(3−エトキシ−2−イソプロポキシ−3−オキソプロピル)−1−ピリジニウムオレートの粗生成物6.40gを黄色油状物として得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.27(t,J=7.2Hz,3H)2.93(dd,J=8.8,14.0Hz,1H)3.00(dd,J=4.0,14.0Hz,1H)3.55(sept,J=6.0Hz,1H)4.03(dd,J=4.0,8.8Hz,1H)4.16−4.25(m,2H)7.20−7.25(m,2H)8.16−8.21(m,2H)
製造例40c)
Figure 2002080899
4−(3−エトキシ−2−イソプロポキシ−3−オキソプロピル)−1−ピリジニウムオレートの粗生成物6.40gおよびトリメチルシリルシアニド3.3mLのジクロロメタン(60mL)溶液にジメチルカルバミルクロリド2.3mLを40分間かけて滴下した後、11.5時間攪拌した。反応液に10%炭酸カリウム水溶液を加え、室温にて30分間攪拌した。有機層を無水硫酸ナトリウムで乾燥し濃縮した。残さをシリカゲルフラッシュカラムクロマトグラフィーにて精製し、エチル 3−(2−シアノ−4−ピリジル)−2−イソプロポキシプロパノエート3.87gを淡黄色油状物として得た。
H−NMR(CDCl)δ:0.94(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.28(t,J=7.2Hz,3H)2.99(dd,J=8.8,14.0Hz,1H)3.06(dd,J=4.0,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)4.06(dd,J=4.0,8.8Hz,1H)4.17−4.26(m,2H)7.43(dd,J=1.6,5.0Hz,1H)7.63(dd,J=0.8,1.6Hz,1H)8.61(dd,J=0.8,5.0Hz,2H)
製造例40d)
Figure 2002080899
エチル 3−(2−シアノ−4−ピリジル)−2−イソプロポキシプロパノエート1.0gをエタノール70mLに溶解し、濃塩酸1.9mLおよび10%パラジウム炭素0.9gを加え、水素雰囲気下、室温にて2時間攪拌した。触媒を濾去、溶媒を減圧留去した後、酢酸エチルおよびトルエンにて共沸し、エチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩1.21gを粗生成物として得た。
H−NMR(DMSO−d)δ:0.90(d,J=6.0Hz,3H)1.07(d,J=6.0Hz,3H)1.19(t,J=7.2Hz,3H)2.96(dd,J=8.8,14.0Hz,1H)3.08(dd,J=4.4,8.8Hz,1H)3.55(sept,J=6.0Hz,1H)4.13(q,J=7.2Hz,2H)4.25(br,2H)4.31(dd,J=4.4,8.8Hz,1H)7.52(d,J=5.2Hz,1H)7.97(s,1H)8.63(d,J=5.2Hz,1H)8.66−8.83(m,3H)
実施例40e)
Figure 2002080899
3−(2−{[(2,4−ジクロロベンゾイル)アミノ]メチル}−4−ピリジル)−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)3.27(d,J=5.6Hz,2H)3.69(sept,J=6.0Hz,1H)4.30(t,J=5.6Hz,1H)4.80−4.91(m,2H)7.27(dd,J=2.0,7.8Hz,1H)7.39(d,J=2.0Hz,1H)7.48(d,J=7.8Hz,1H)7.68(dd,J=1.6,6.0Hz,1H)7.93(d,J=1.6Hz,1H)8.56(d,J=6.0Hz,1H)8.60(t,J=6.0Hz,1H)
MS m/e(ESI)440(MH
実施例41
Figure 2002080899
2−イソプロポキシ−3−[2−({[(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノ}メチル)−4−ピリジル]プロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.19(d,J=6.0Hz,3H)2.72(s,3H)3.28(d,J=6.0Hz,2H)3.71(sept,J=6.0Hz,1H)4.31(t,J=5.6Hz,1H)4.84(dd,J=2.8,5.6Hz,2H)7.41−7.49(m,3H)7.68(dd,J=2.0,6.0Hz,1H)7.88−7.93(m,2H)7.94(d,J=1.2Hz,1H)8.57(d,J=6.0Hz,1H)8.74(t,J=6.0Hz,1H)
MS m/e(ESI)411(MH
実施例42
Figure 2002080899
3−(2−{[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル}−4−ピリジル)−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)435(MH
実施例43
Figure 2002080899
3−(2−{[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル}−4−ピリジル)−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)435(MH
実施例44
Figure 2002080899
3−[2−({[2−クロロ−4−(シクロペンチルオキシ)ベンゾイル]アミノ}メチル)−4−ピリジル]−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)461(MH
実施例45
Figure 2002080899
エチル 3−[2−({[2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノ}メチル)−4−ピリジル]−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)429(MH
実施例46
Figure 2002080899
2−イソプロポキシ−3−{2−[({[4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}プロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)454(MH
実施例47
Figure 2002080899
3−{2−[({[2−(3−クロロ−4−フルオロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)492(MH
実施例48
Figure 2002080899
3−{2−[({[2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)474(MH
実施例49
Figure 2002080899
3−{2−[({[2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)474(MH
実施例50
Figure 2002080899
3−{2−[({[2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}−2−イソプロポキシプロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)508(MH
実施例51
Figure 2002080899
2−イソプロポキシ−3−{2−[({[2−(4−メトキシフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}プロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)470(MH
実施例52
Figure 2002080899
2−イソプロポキシ−3−{2−[({[4−メチル−2−(2−メチルフェニル)−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}プロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)454(MH
実施例53
Figure 2002080899
2−イソプロポキシ−3−{2−[({[4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニル}アミノ)メチル]−4−ピリジル}プロパン酸トリフルオロ酢酸塩はエチル 3−[2−(アミノメチル)−4−ピリジル]−2−イソプロポキシプロパノエート塩酸塩を用い、実施例19d)および実施例19e)と同様の方法で得た。
MS m/e(ESI)446(MH
実施例54
Figure 2002080899
桂皮酸を用い、実施例19d)及び実施例19e)と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−フェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)398(MH
実施例55
Figure 2002080899
実施例54と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−2−メチル−3−フェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.09(d,J=1.2Hz,3H)2.92(dd,J=7.2,13.6Hz,1H)3.07(dd,J=4.4,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.87(s,3H)4.12(dd,J=4.4,7.2Hz,1H)4.54(d,J=5.6Hz,2H)6.46(br,1H)6.82(d,J=8.4Hz,1H)7.15(dd,J=2.0,8.4Hz,1H)7.22(d,J=2.4Hz,1H)7.26−7.39(m,6H)
MS m/e(ESI)412(MH
実施例56
Figure 2002080899
実施例54と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(2−クロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.92(dd,J=7.2,13.6Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.86(s,3H)4.11(t,J=4.4Hz,1H)4.54(d,J=5.6Hz,2H)6.22(br,1H)6.40(d,J=16.0Hz,1H)6.81(d,J=8.4Hz,1H)7.14(d,J=8.0Hz,1H)7.21−7.27(m,2H)7.40(d,J=2.0,7.6Hz,1H)7.56(d,J=7.6Hz,1H)7.97(d,J=16.0Hz,1H)
MS m/e(ESI)432(MH
実施例57
Figure 2002080899
実施例54と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(3−クロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)432(MH
実施例58
Figure 2002080899
実施例54と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(4−クロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)432(MH
実施例59
Figure 2002080899
実施例54と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(3,4−ジクロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)466(MH
実施例60
製造例60a)
Figure 2002080899
ジエチルホスホノ酢酸600mgと3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプピオン酸エチルエステル969mgをN,N−ジメチルホルムアミド10mlに溶解し、シアノホスホン酸ジエチル470μl、トリエチルアミン1.07mlを順次加えた。室温にて終夜攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。3−[3−([2−(ジエトキシフォスフォリル)アセチル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロピオン酸エチルエステル1.387gを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23−1.30(m,9H)2.84(d,J=20.4Hz,2H)2.85−2.94(m,2H)3.48(sept,J=6.0Hz,1H)3.84(s,3H)4.00(dd,J=4.8,8.4Hz,1H)4.03−4.21(m,6H)4.43(d,J=6.0Hz,2H)6.77(d,J=8.0Hz,1H)7.12−7.15(m,2H)
実施例60b)
Figure 2002080899
3−[3−([2−(ジエトキシフォスフォリル)アセチル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロピオン酸エチルエステル15mgをテトラヒドロフラン0.4mlに溶解し、水素化リチウム約3mgを加え、室温にて0.5時間攪拌した。4−(トリフルオロメチル)ベンズアルデヒド10mgのN,N−ジメチルホルムアミド(0.1ml)溶液を加えた。室温で1時間攪拌後、メタノール0.5ml、5N−水酸化ナトリウム0.1mlを加え、室温で終夜攪拌したのち、1N−塩酸を加え、酢酸エチルにて抽出し、溶媒を減圧濃縮した。残渣をHPLCにて精製し、2−イソプロポキシ−3−4−メトキシ−3−[((E)−3−[4−(トリフルオロメチル)フェニル]−2−プロペノイルアミノ)メチル]フェニルプロピオン酸9.26mgを得た。
MS m/e(ESI)466(MH
実施例61
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(2,3−ジクロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)466(MH
実施例62
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−4−メトキシ−3−[((E)−3−[2−フルオロ−3−(トリフルオロメチル)フェニル]−2−プロペノイルアミノ)メチル]フェニルプロピオン酸を得た。
MS m/e(ESI)484(MH
実施例63
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(2,4−ジクロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)466(MH
実施例64
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(4−ブロモ−2−フルオロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)494(MH
実施例65
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(2,5−ジクロロフェニル−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)466(MH
実施例66
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−3−(1−ナフチル)−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)448(MH
実施例67
製造例67a)
Figure 2002080899
2−ジエチルホスホノプロピオン酸643mgと3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプピオン酸エチルエステル973mgをN,N−ジメチルホルムアミド10mlに溶解し、シアノホスホン酸ジエチル470μl、トリエチルアミン1.07mlを順次加えた。室温にて終夜攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。3−[3−([2−(ジエトキシフォスフォリル)プロパノイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロピオン酸エチルエステル1.310gを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24−1.29(m,9H)1.40(dd,J=7.2,17.6Hz,3H)2.79−2.94(m,3H)3.50(sept,J=6.0Hz,1H)3.84(s,3H)3.98−4.2(m,7H)4.43(d,J=4.8Hz,2H)6.77(d,J=8.4Hz,1H)7.12(d,J=8.4Hz,1H)7.16(s,1H)
実施例67b)
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(2−クロロフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)446(MH
実施例68
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(2−メチルフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)426(MH
実施例69
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(4−クロロフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)446(MH
実施例70
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−4−メトキシ−3−[((E)−2−メチル−3−[4−(トリフルオロメチル)フェニル]−2−プロペノイルエミノ)メチル]フェニルプロピオン酸を得た。
MS m/e(ESI)480(MH
実施例71
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(2,3−ジクロロフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)480(MH
実施例72
Figure 2002080899
実施例60と同様の方法で、3−3−[((E)−3−[2−フルオロ−3−(トリフルオロメチル)フェニル]−2−メチル−2−プロペノイルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)498(MH
実施例73
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(3−フルオロ−2−メチルフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)444(MH
実施例74
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(2,4−ジクロロフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)480(MH
実施例75
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(2−フルオロ−4−ブロモフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)510(MH
実施例76
Figure 2002080899
実施例60と同様の方法で、3−[3−([(E)−3−(3,4−ジクロロフェニル)−2−メチル−プロペノイル]アミノメチル)−4 メトキシフェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)480(MH
実施例77
Figure 2002080899
実施例60と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([(E)−2−メチル−3−(1−ナフチル)−2−プロペノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)462(MH
実施例78
製造例78a)
Figure 2002080899
プロピオール酸114mgをテトラヒドロフラン8mlに溶解し、水素化リチウム13mg、クロロギ酸エチル140μlを順次加え室温にて1時間攪拌した。3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプピオン酸エチルエステル489mgのテトラヒドロフラン2mlに溶液を加えた後、トリエチルアミン210μlを加え、室温にて終夜攪拌した。反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(2:1→3:2)溶出分画より2−イソプロポキシ−3−4−メトキシ−3−[(プロピオロイルアミノ)メチル]フェニルプロピオン酸エチルエステル230mgを得た。
H−NMR(CDCl)δ:0.98(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.25(t,J=7.2Hz,3H)2.76(s,1H)2.87(dd,J=8.4,14.0Hz,1H)2.94(dd,J=4.8,14.0Hz,1H)3.51(sept,J=6.0Hz,1H)3.85(s,3H)4.01(dd,J=5.2,8.4Hz,1H)4.12(q,J=8.0Hz,2H)4.45(d,J=6.0Hz,2H)6.35(br,1H)6.80(d,J=8.0Hz,1H)7.13−7.18(m,2H)
実施例78b)
Figure 2002080899
2−イソプロポキシ−3−4−メトキシ−3−[(プロピオロイルアミノ)メチル]フェニルプロピオン酸エチルエステル16mgをN,N−ジメチルホルムアミド0.6mlに溶解し、イオドベンゼン15mg、ジクロロビストリフェニルフォスフィンパラジウム3mg、よう化銅2mg、塩化リチウム3mg、トリエチルアミン0.1mlを加え、窒素雰囲気下、室温にて終夜攪拌した。反応混合物に水を加え、酢酸エチルにて抽出し、溶媒を減圧濃縮した。残渣にメタノール0.5ml、5N−水酸化ナトリウム0.1mlを加え、室温で終夜攪拌した。反応混合物を5N−塩酸で酸性にし、酢酸エチルにて抽出し、溶媒を減圧濃縮した。残渣をHPLCにて精製し、2−イソプロポキシ−3−(4−メトキシ−3−[(3−フェニル−2−プロピノイル)アミノ]メチルフェニル)プロピオン酸1.91mgを得た。
MS m/e(ESI)397(MH
実施例79
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(4−メトキシフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)426(MH
実施例80
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(4−メチルフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)410(MH
実施例81
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(4−フルオロフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)414(MH
実施例82
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(3−メトキシフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)426(MH
実施例83
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−14−メトキシ−3−([3−(3−ブロモフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)475(MH
実施例84
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−4−メトキシ−3−[(3−[3−(トリフルオロメチル)フェニル]−2−プロピノイルアミノメチル]プロピオン酸を得た。
MS m/e(ESI)464(MH
実施例85
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(3−メチルフェニル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)410(MH
実施例86
Figure 2002080899
実施例78と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([3−(1−ナフチル)−2−プロピノイル]アミノメチル)フェニル]プロピオン酸を得た。
MS m/e(ESI)446(MH
実施例87
製造例87a)
Figure 2002080899
製造例89e)と同様の方法で3−ブロモ−2,6−ジメトキシベンズアルデヒドを用い3−(3−[(第三ブトキシカルボニル)アミノ]メチル−2,4−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23(t,J=7.2Hz,3H)1.44(s,9H)2.87(dd,J=8.4,14.0Hz,1H)2.98(dd,J=5.6,14.0Hz,1H)3.51(sept,J=6.4Hz,1H)3.80(s,3H)3.83(s,3H)4.12−4.17(m,3H)4.40(d,J=5.2Hz,2H)5.11(br,1H)6.60(d,J=8.8Hz,1H)7.15(d,J=8.8Hz,1H)
実施例87b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−2,4−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステルを用い、実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−2,4−ジメトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)470(MH
実施例88
製造例88a)
Figure 2002080899
製造例89e)と同様の方法で5−ブロモ−2,4−ジメトキシベンズアルデヒドを用い3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4,6−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.98(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)1.26(t,J=6.8Hz,3H)1.43(s,9H)2.86(dd,J=8.8,18.4Hz,1H)2.98(dd,J=6.4,13.6Hz,1H)3.51(sept,J=6.4Hz,1H)3.83(s,3H)3.84(s,3H)4.08−4.17(m,3H)4.20(brs,2H)4.94(br,1H)6.40(s,1H)7.02(s,1H)
実施例88b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4,6−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステルを用い、実施例38と同様の方法で処理し、3−(5−[(2,4−ジクロロベンゾイル)アミノ]メチル−2,4−ジメトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)470(MH
実施例89
製造例89a)
Figure 2002080899
5−ブロモ−2,3−ジメトキシベンズアルデヒド10.67gをテトラヒドロフラン100ml、エタノール100mlに溶解し、水素化ホウ素ナトリウム1gを加え、室温にて終夜攪拌した。1N−塩酸を加えた後、酢酸エチルにて抽出し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、5−ブロモ−2,3−ジメトキシベンジルアルコール10.27gを得た。この粗成生物5.326gをN,N−ジメチルホルムアミド50mlに溶解し、イミダゾール1.8g、第三ブチルクロロジフェニルシラン5.9gを加え室温にて終夜攪拌した。反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、[(5−ブロモ−2,3−ジメトキシベンジル 1)オキシ](第三ブチル)ジフェニルシラン10.72gを得た。
H−NMR(CDCl)δ:1.10(s,9H)3.63(s,3H)3.84(s,3H)4.76(s,2H)6.96(d,J=2.0Hz,1H)7.33(d,J=1.6Hz,1H)7.63−7.45(m,6H)7.68−7.71(m,4H)
製造例89b)
Figure 2002080899
[(5−ブロモ−2,3−ジメトキシベンジル 1)オキシ](第三ブチル)ジフェニルシラン10.72gをテトラヒドロフラン100mlに溶解し、窒素雰囲気下、−78℃に冷却した。ブチルリチウム(1.5Mヘキサン溶液)16mlを加え、30分攪拌した後、4−ホルミルモルホリン2.5mlを加えた。−78℃で1時間攪拌した後1N−塩酸を加え、酢酸エチルにて抽出し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(2:1→3:2)溶出分画より3−([1−(第三ブチル)−1,1−ジフェニルシリル]オキシメチル)−4,5−ジメトキシベンズアルデヒド9.4gを得た。
H−NMR(CDCl)δ:1.12(s,9H)3.77(s,3H)3.91(s,3H)4.84(s,2H)7.39−7.44(m,7H)7.69−7.72(m,5H)9.91(s,1H)
製造例89c)
Figure 2002080899
2−イソプロポキシホスホノ酢酸ジエチル510mgをテトラヒドロフラン20mlに溶解し、水素化ナトリウム370mgを加えた。室温にて30分攪拌し、3−([1−(第三ブチル)−1,1−ジフェニルシリル]オキシメチル)−4,5−ジメトキシベンズアルデヒド3.485gのN,N−ジメチルホルムアミド5ml溶液を加えた。室温にて終夜攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。(E,Z)−3−[[1−(第三ブチル)−1,1−ジフェニルシリル]オキシメチル)−4,5−ジメトキシフェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステル5.01gを得た。この粗生成物5.01gをテトラヒドロフラン30mlに溶解し、酢酸1ml、テトラブチルアンモニウムフルオリド(1M溶液)10mlを順次加えた。反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(2:1→3:2)溶出分画より(E,Z)−3−[ヒドロキシメチル)−4,5−ジメトキシフェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステル2.209gを得た。
H−NMR(CDCl)δ:1.24−1.39(m,9H)3.84,3.87(each s,3H)3.89,3.92(each s,3H)4.16,4.29(each q,J=7.2Hz,2H)4.27,4.47(each sept,J=6.0Hz,1H)4.65,4.67(each s,2H)6.16,6.94(each s,1H)6.79(s,1H)7.23,7.67(each d,J=2.0Hz and 1.6Hz,1H)
製造例89d)
Figure 2002080899
(E,Z)−3−[ヒドロキシメチル)−4,5−ジメトキシフェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステル2.209gをトルエン15mlに溶解し、アジ化ジフェニルホスホリル1.6mlおよびジアザビシクロ[5.4.0]ウンデセン1.1mlを加え、室温で終夜撹拌した。反応物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(2:1→3:2)溶出分画より(E,Z)−3−[3−(アジドメチル)−4,5−ジメトキシフェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.14(t,=6.8Hz,3H)1.30(d,J=7.2Hz,3H)1.35(d,J=7.2Hz,3H)3.84,3.87(each s,3H)3.90,3.92(each s,3H)4.16,4.30(each q,J=6.8Hz,2H)4.35(d,J=11.2Hz,2H)4.50(sept,J=6.4Hz,1H)6.14,6.93(each s,1H)6.75,6.72(each d,J=2.0Hz,1H)7.26,7.64(each d,J=2.0Hz,1H)
製造例89e)
Figure 2002080899
(E,Z)−3−[3−(アジドメチル)−4,5−ジメトキシフェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステル2.124gを酢酸エチル50mlに溶解し、第三ブチルジカーボネート1.5g、10%パラジウム炭素800mgを加え、水素雰囲気下、室温にて20時間攪拌した。反応混合物をセライト濾過し、濾液を濃縮し、残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(5:1→4:1)溶出分画より3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4,5−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステル1.93gを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.26(t,J=6.8Hz,3H)1.44(s,9H)2.87(dd,J=8.4,14.0Hz,1H)2.94(dd,J=4.8,14.0Hz,1H)3.51(sept,J=6.4Hz,1H)3.82(s,3H)3.84(s,3H)4.02(dd,J=4.8,8.4Hz,1H)4.13−4.22(m,2H)4.29(d,J=6.0Hz,2H)4.94(br,1H)6.76(s,1H)6.78(s,1H)
実施例89f)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4,5−ジメトキシフェミル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4,5−ジメトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)470(MH
実施例90
製造例90a)
Figure 2002080899
2−ベンジルオキシ−5−ホルミル−安息香酸メチルエステル39.1gをメタノール300mlに溶解し、オルトギ酸トリメチル60ml、パラトシル酸2gを加え4時間加熱還流した。室温に冷却した後、トリエチルアミン5mlを加え、減圧濃縮した。残渣を酢酸エチルに溶解し、水、飽和重曹水にて順次洗浄し無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。2−(ベンジルオキシ)−5−(ジメトキシメチル)安息香酸メチルエステル39.08gを得た。
H−NMR(CDCl)δ:3.32(6H,s)3.88(s,3H)5.19(s,2H)5.37(s,1H)7.03(d,J=8.0Hz,1H)7.33−7.41(m,3H)7.47−7.53(m,3H)7.91(s,1H)
製造例90b)
Figure 2002080899
氷冷下水素化アルミナムヒドリド7gをテトラヒドロフラン200mlに懸濁し、2−(ベンジルオキシ)−5−(ジメトキシメチル)安息香酸メチルエステル39.08gのテトラヒドロフラン100ml溶液を加えた。5分攪拌した後水、15%水酸化ナトリウム、水を加え、濾過した。濾液を減圧濃縮し、2−(ベンジルオキシ)−5−(ジメトキシメチル)ベンジルアルコール35.15gを得た。この粗生成物をトルエン250mlに溶解し、アジ化ジフェニルホスホリル40gおよびジアザビシクロ[5.4.0]ウンデセン22mlを加え、室温で終夜撹拌した。反応物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(15:1)溶出分画より4−(ベンジルオキシ)−3−(アジドメチル)ジメトキシメチルベンゼン17.4gを得た。このものを1ヶ月室温にて放置し、シリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(12:1)溶出分画より4−(ベンジルオキシ)−3−(アジドメチル)ベンズアルデヒド9.39gを得た。
H−NMR(CDCl)δ:4.48(s,2H)5.22(s,2H)7.90(d,J=8.8Hz,1H)7.37−7.45(m,5H)7.84−7.86(m,2H)9.90(s,1H)
製造例90c)
Figure 2002080899
2−イソプロポキシホスホノ酢酸ジエチル12.9gをテトラヒドロフラン100mlに溶解し、氷冷下、水素化ナトリウム1.7gを加えた。室温にて30分攪拌し、3,4−(ベンジルオキシ)−3−(アジドメチル)ベンズアルデヒド9.39gのN,N−ジメチルホルムアミド20ml溶液を加えた。室温にて4時間攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。(E,Z)−3−[アジドメチル)−4−(ベンジルオキシ)フェニル]−2−イソプロポキシ−2−プロピオン酸エチルエステル16.7gを得た。この粗生成物12.46gをエタノールに溶解し、第三ブチルジカーボネート8.3g、10%パラジウム炭素3gを加え、水素雰囲気下、室温にて1.5日攪拌した。反応混合物をセライト濾過し、濾液を濃縮し、残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(4:1)溶出分画より3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル6.2gを得た。
H−NMR(CDCl)δ:0.99(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23(t,J=7.2Hz,3H)1.44(s,9H)2.84(dd,J=8.4,13.6Hz,1H)2.90(dd,J=5.0,13.6Hz,1H)3.50(sept,J=6.4Hz,1H)3.98(dd,J=5.6,8.4Hz,1H)4.12(q,J=6.8Hz,2H)4.19(d,J=6.4Hz,2H)5.22(br,1H)6.86(d,J=8.4Hz,1H)6.94(d,J=2.0Hz,1H)7.08(dd,=2.0,8.0Hz,1H)8.77(br,1H)
製造例90d)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル402mgをアセトニトリル5mlに溶解し、N−ブロモスクシイミド200mgを加えた。室温にて1時間攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(5:1)溶出分画より3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル433mgを得た。
H−NMR(CDCl)δ:0.98(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.25(t,J=6.8Hz,3H)1.44(s,9H)2.80(dd,J=8.4,13.6Hz,1H)2.88(dd,J=7.2,14.0Hz,1H)3.51(sept,J=6.4Hz,1H)3.97(dd,J=4.8,8.4Hz,1H)4.16−4.22(m,2H)4.24(d,J=6.8Hz,2H)5.20(br,1H)6.96(d,J=1.6Hz,1H)7.35(d,J=2.0Hz,1H)8.45(br,1H)
製造例90e)
Figure 2002080899
3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル944mgをN,N−ジメチルホルムアミド5mlに溶解し、イオドメタン0.15ml、炭酸カリウム500mgを順次加えた。室温にて2時間攪拌したのち、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(4:1)溶出分画より3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル876mgを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.45(s,9H)2.86(dd,J=8.4,14.0Hz,1H)2.93(dd,J=4.4,14.0Hz,1H)3.51(sept,J=6.4Hz,1H)3.74(s,3H)3.84(s,3H)4.02(dd,J=4.8,8.4Hz,1H)4.34(d,J=6.0Hz,2H)4.95(br,1H)7.12(d,J=1.6Hz,1H)7.37(d,J=2.0Hz,1H)
実施例90f)
Figure 2002080899
3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−ブロモ−5−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)520(MH
実施例91
製造例91a)
Figure 2002080899
3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル876mgをプロピオニトリル5mlに溶解し、シアン化ナトリウム182mg、テトラキストリフェニルフォスフィンパラジウム214mg、よう化銅70mgを加え、窒素雰囲気下、終夜加熱還流した。反応混合物を室温まで冷却し、酢酸エチルを加えセライト濾過した。濾液を減圧濃縮し残渣をリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(4:1)溶出分画より3−(3−シアノ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル586mgを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.27(t,J=6.8Hz,3H)1.45(s,9H)2.89(dd,J=8.4,14.0Hz,1H)2.97(dd,J=4.4,14.0Hz,1H)3.53(sept,J=6.4Hz,1H)4.00(dd,J=4.8,8.4Hz,1H)4.07(s,3H)4.21−4.27(m,2H)4.30(s,2H)4.94(br,1H)7.40(d,J=2.4Hz,1H)7.42(d,J=0.8Hz,1H)
実施例91b)
Figure 2002080899
3−(3−シアノ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−シアノ−5−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)465(MH
実施例92
製造例92a)
Figure 2002080899
5−ブロモ−2−クロロ安息香酸12gをテトラヒドロフラン60mlに溶解し、ボランテトラヒドロフランコンプレックス(1Mテトラヒドロフラン溶液)148.3gを加えた。室温にて2.5日攪拌した。1N−塩酸を加え、酢酸エチルにて抽出し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、5−ブロモ−2−クロロベンジルアルコール11.46gを得た。この粗成生物を製造例89e)と同様の方法で処理し、3−(3−[(第三ブトキシカルボニル)アミノ]メチルフェミル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=7.2Hz,3H)1.46(s,9H)2.93(dd,J=8.4,14.0Hz,1H)3.07(dd,J=4.8,14.0Hz,1H)3.49(sept,J=6.4Hz,1H)4.04(dd,J=4.8,8.4Hz,1H)4.12−4.19(m,2H)4.30(d,J=5.2Hz,2H)4.80(br,1H)7.12−7.16(m,3H)7.23(d,J=8.0Hz,1H)
実施例92b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチルフェミル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチルフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)410(MH
実施例93
製造例93a)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル795mgをN,N−ジメチルホルムアミド2mlに溶解し、イオドエタン0.3ml、炭酸カリウム200mgを順次加えた。50℃にて4時間攪拌したのち、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(8:1)溶出分画より3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル185mgを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=6.8Hz,3H)1.42(t,J=6.8Hz,3H)1.45(s,9H)2.86(dd,J=8.4,14.0Hz,1H)2.93(dd,J=4.8,14.0Hz,1H)3.49(sept,J=6.4Hz,1H)3.98−4.06(m,3H)4.13−4.21(m,2H)4.29(d,J=5.2Hz,2H)4.99(br,1H)6.75(d,J=8.4Hz,1H)7.14(d,J=8.8Hz,1H)7.14(s,1H)
実施例93b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.45(t,J=7.2Hz,3H)2.92(dd,J=8.0,14.0Hz,1H)3.07(dd,J=4.4,14.0Hz,1H)3.58(sept,J=6.0Hz,1H)4.06−4.15(m,3H)4.64(d,J=6.0Hz,2H)6.81(d,J=8.4Hz,1H)6.88(br,1H)7.15(dd,J=2.4,8.4Hz,1H)7.27(d,J=8.4Hz,2H)7.42(d,J=2.4Hz,1H)7.68(d,J=8.4Hz,1H)
MS m/e(ESI)454(MH
実施例94
製造例94a)
Figure 2002080899
製造例93と同様の方法により、3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−プロポキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.05(t,J=6.8Hz,3H)1.15(d,J=6.0Hz,3H)1.25(t,J=6.8Hz,3H)1.44(s,9H)1.78−1.86(m,2H)2.86(dd,J=8.4,14.0Hz,1H)2.93(dd,J=4.8,14.0Hz,1H)3.50(sept,J=6.4Hz,1H)3.93(t,J=6.4Hz,2H)4.00(dd,J=4.8,8.4Hz,1H)4.14−4.21(m,2H)4.30(d,J=5.2Hz,2H)4.98(br,1H)6.75(d,J=8.4Hz,1H)7.09(dd,J=2.0,8.4Hz,1H)7.13(s,1H)
実施例94b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−プロポキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−プロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.05(t,J=7.2Hz,3H)1.06(d,J=6.6Hz,3H)1.18(d,J=6.0Hz,3H)1.80−1.87(m,2H)2.91(dd,J=8.0,14.0Hz,1H)3.07(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.97(t,J=7.2Hz,2H)4.12(dd,J=4.4,8.0Hz,1H)4.65(d,J=6.0Hz,2H)6.81−6.84(m,2H)7.15(dd,J=2.4,8.4Hz,1H)7.25(d,J=2.4Hz,1H)7.28−7.33(m,1H)7.42(d,J=2.4Hz,1H)7.67(d,J=9.6Hz,1H)
MS m/e(ESI)470(MH
実施例95
製造例95a)
Figure 2002080899
製造例93と同様の方法により、3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=6.8Hz,3H)1.33(d,J=6.0Hz,6H)1.44(s,9H)1.78−1.86(m,2H)2.86(dd,J=8.4,14.0Hz,1H)2.92(dd,J=4.8,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)4.00(dd,J=4.8,8.4Hz,1H)4.13−4.21(m,2H)4.26(d,J=5.2Hz,2H)4.54(sept,J=6.0Hz,1H)4.96(br,1H)6.77(d,J=8.4Hz,1H)7.08(dd,J=2.4,8.4Hz,1H)7.13(s,1H)
実施例95b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)470(MH
実施例96
製造例96a)
Figure 2002080899
製造例93と同様の方法により、3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=6.8Hz,3H)1.44(s,9H)1.63−1.65(m,2H)1.75−1.90(m,6H)2.85(dd,J=8.4,14.0Hz,1H)2.92(dd,J=4.8,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)4.00(dd,J=4.8,8.4Hz,1H)4.10−4.21(m,2H)4.25(d,J=5.2Hz,2H)4.76−4.79(m,1H)4.95(br,1H)6.75(d,J=8.4Hz,1H)7.07(d,J=8.4Hz,1H)7.12(s,1H)
実施例96b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)494(MH
実施例97
製造例97a)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル329mgをトルエン4mlに溶解し、4−フルオロフェニルボロン酸110mg、テトラキストリフェニルフォスフィンパラジウム74mg、炭酸カリウム440mgを加え、窒素雰囲気下100℃にて終夜攪拌した。反応混合物を酢酸エチルで希釈し、セライト濾過、濾液を減圧濃縮し残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(6:1)溶出分画より3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(4−フルオロフェニル)フェニルプロポキシプロピオン酸エチルエステル262mgを得た。
H−NMR(CDCl)δ:1.01(d,J=6.4Hz,3H)1.18(d,J=6.4Hz,3H)1.26(t,J=7.2Hz,3H)1.43(s,9H)2.99(dd,J=8.8,13.6Hz,1H)3.04(dd,J=5.6,13.2Hz,1H)3.56(sept,J=6.4Hz,1H)4.08−4.24(m,5H)4.60(br 1H)7.05−7.15(m,4H)7.19−7.30(m,3H)
実施例97b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(4−フルオロフェニル)フェニルプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(4−フルオロフェニル)フェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)504(MH
実施例98
製造例98a)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル501mgをピリジン7mlに溶解し、氷冷下、トリフルオロメタンスルホン酸無水物270μlを加えた。室温にて1時間攪拌した後、トリフルオロメタンスルホン酸無水物100μlを追加した。更に2時間攪拌し、反応混合物を酢酸エチルで希釈し、有機層を1N−塩酸、水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル663mgを得た。
H−NMR(CDCl)δ:0.92(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.24(t,J=6.8Hz,3H)1.46(s,9H)2.91−3.04(m,2H)3.51(sept,J=6.4Hz,1H)4.02(dd,J=4.4,8.8Hz,1H)4.16−4.23(m,2H)4.40(d,J=6.0Hz,2H)4.95(br,1H)7.17−7.20(m,1H)7.24−7.25(m,1H)7.40(s,1H)
製造例98b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル334mgをジオキサン4mlに溶解し、2−トリブチルスタニルフラン280mg、テトラキストリフェニルフォスフィンパラジウム75mg、塩化リチウム83mgを加え窒素雰囲気下80℃にて終夜攪拌した。反応混合物を濃縮し、残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(7:1)溶出分画より3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(2−フリル)プロポキシプロピオン酸エチルエステル180mgを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.16(d,J=6.4Hz,3H)1.26(t,J=6.8Hz,3H)1.46(s,9H)2.95(dd,J=8.8,13.6Hz,1H)3.02(dd,J=4.8,14.0Hz,1H)3.51(sept,J=6.4Hz,1H)4.06(dd,J=4.8,8.8Hz,1H)4.19(q,J=6.8Hz,2H)4.47(s,2H)4.95(br 1H)6.52(d,J=20Hz,2H)6.98(s,1H)7.21(d,J=8.4Hz,1H)7.32(s,1H)7.51−7.53(m,2H)
実施例98c)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(2−フリル)プロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(2−フリル)フェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)476(MH
実施例99
製造例99a)
Figure 2002080899
2−メトキシ−3−ヒドロキシメチルピリジン7.4gをトルエン100mlに溶解し、アジ化ジフェニルホスホリル13.8mlおよびジアザビシクロ[5.4.0]ウンデセン9.5mlを加え、室温で終夜撹拌した。反応物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、[(2−メトキシ−3−ピリジル)メチル]アジド9.5gを得た。
H−NMR(CDCl)δ:4.00(s,3H)4.35(s,2H)6.89−6.92(m,1H)7.55−7.57(m,1H)8.15−8.16(m,1H)
製造例99b)
Figure 2002080899
[(2−メトキシ−3−ピリジル)メチル]アジド9.5gを酢酸エチル100mlに溶解し、第三ブチルジカーボネート13g、10%パラジウム炭素3gを加え、水素雰囲気下、室温にて3時間攪拌した。反応混合物をセライト濾過し、濾液を濃縮し、残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(5:1→4:1)溶出分画より第三ブチル N−[(2−メトキシ−3−ピリジル)メチル]カーバマート6.84gを得た。この粗生成物2.916gをアセトニトリル30mlに溶解し、N−ブロモスクシイミド2.19gをくわえた。室温にて3日間攪拌した後、溶媒を減圧留去した。残査を酢酸エチルに溶解し、有機層を水、飽和食塩水にて順次洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残査をジエチルエーテル、酢酸エチル、ヘキサンの混液で洗浄し、N−[(5−ブロモ−2−メトキシ−3−ピリジル)メチル]カーバマート1.185gを得た。
H−NMR(CDCl)δ:1.44(s,9H)3.94(s,3H)4.22(d,J=6.0Hz,2H)5.02(br,1H)7.62(s,1H)8.01(s,1H)
製造例99c)
Figure 2002080899
N−[(5−ブロモ−2−メトキシ−3−ピリジル)メチル]カーバマート1.009g、ジクロロビストリフェニルフォスフィンパラジウム45mg、ギ酸ナトリウム325mg、トリフェニルフォスフィン17mgを無水N,N−ジメチルホルムアミド3mlに溶解し、一酸化炭素雰囲気下で110℃にて2.5時間攪拌した。反応混合物を酢酸エチルで希釈し、有機層を水、飽和重炭酸ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(3.5:1)溶出分画より第三ブチル N−[(5−ホルミル−2−メトキシ−3−ピリジル)メチル]カーバマート401mgを得た。
H−NMR(CDCl)δ:1.46(s,9H)4.08(s,3H)4.31(d,J=6.0Hz,2H)5.02(br,1H)8.01(d,J=2.4Hz,1H)8.54(d,J=2.0Hz,1H)
製造例99d)
Figure 2002080899
エチル 2−イソプロポキシホスホノ酢酸ジエチル510mgをテトラヒドロフラン5mlに溶解し、水素化ナトリウム70mgを加えた。室温にて15分攪拌し、N−[(5−ホルミル−2−メトキシ−3−ピリジル)メチル]カーバマート401mgのN,N−ジメチルホルムアミド2ml溶液を加えた。室温にて15分攪拌し、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣を酢酸エチル8ml、エタノール2mlに溶解し10%パラジウム炭素200mgを加え、水素雰囲気下、室温にて終夜攪拌した。反応混合物をセライト濾過し、濾液を濃縮し、残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(4:1→2.5:1)溶出分画より3−(5−[(第三ブトキシカルボニル)アミノ]メチル−6−メトキシ−3−ピリジル)−2−イソプロポキシプロピオン酸エチルエステル514mgを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.27(t,J=7.2Hz,3H)1.45(s,9H)2.85(dd,J=8.4,14.0Hz,1H)2.92(dd,J=4.8,14.0Hz,1H)3.52(sept,J=6.0Hz)3.96(s,3H)3.99(dd,J=4.8,8.4Hz,1H)4.17−4.24(m,4H)5.03(br,1H)7.47(s,1H)7.93(d,J=2.0Hz,1H)
実施例99e)
Figure 2002080899
3−(5−[(第三ブトキシカルボニル)アミノ]メチル−6−メトキシ−3−ピリジル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(5−[(2,4−ジクロロベンゾイル)アミノ]メチル−6−メトキシ−3−ピリジル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)441(MH
実施例100
製造例100a)
Figure 2002080899
3−(3−ブロモ−5−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル253mgをアセトニトリル3mlに溶解し、N−イオドスクシイミド157mgを加えた。室温にて2.5日攪拌したのち、反応混合物を酢酸エチルで希釈し、有機層を水、飽和チオ硫酸ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(4:1)溶出分画より3−(3−イオド−5−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル100mgを得た。
H−NMR(CDCl)δ:0.99(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.24(t,J=6.8Hz,3H)1.44(s,9H)2.80(dd,J=8.0,13.6Hz,1H)2.86(dd,J=5.6,13.6Hz,1H)3.50(sept,J=6.4Hz,1H)3.96(dd,J=5.2,8.8Hz,1H)4.15−4.23(m,5H)6.96(d,J=1.6Hz,1H)7.58(d,J=1.6Hz,1H)
製造例100b)
Figure 2002080899
3−(3−イオド−5−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシフェニル)−2−イソプロポキシプロピオン酸エチルエステル305mgをN,N−ジメチルホルムアミド3mlに溶解し、トリメチルシリルアセチレン120mg、テトラキストリフェニルフォスフィンパラジウム70mg、よう化銅11.5mg、トリエチルアミン0.5mlを加え、室温にて終夜攪拌した。反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化アンモニウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(6:1)溶出分画より3−3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシ−5−[2−(1,1,1−トリメチルシリル)−1−エチニル]フェニル−2−イソプロポキシプロピオン酸エチルエステル165mgを得た。
H−NMR(CDCl)δ:0.27(s,9H)0.96(d,J=6.0Hz,3H)1.15(d,J=6.4Hz,3H)1.24(t,J=7.2Hz,3H)1.44(s,9H)2.80(dd,J=9.2,14.4Hz,1H)2.88(dd,J=5.2,14.0Hz,1H)3.49(sept,J=6.4Hz,1H)3.96(dd,J=4.8,8.8Hz,1H)4.13−4.21(m,3H)4.24(d,J=6.0Hz,2H)5.11(br,1H)7.05(d,J=1.6Hz,1H)7.19(d,J=2.4Hz,1H)
製造例100c)
Figure 2002080899
3−3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシ−5−[2−(1,1,1−トリメチルシリル)−1−エチニル]フェニル−2−イソプロポキシプロピオン酸エチルエステル165mgをテトラヒドロフラン2mlに溶解し、酢酸40μl、テトラブチルアンモニウムフルオリド(1Mテトラヒドロフラン溶液)0.5mlを加え、室温にて1時間攪拌した。反応混合物を酢酸エチルで希釈し、有機層を水、飽和重曹水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(3:1)溶出分画より3−3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシ−5−(1−エチニル)フェニル−2−イソプロポキシプロピオン酸エチルエステル122mgを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.4Hz,3H)1.26(t,J=7.2Hz,3H)1.44(s,9H)2.81(dd,J=9.2,14.4Hz,1H)2.88(dd,J=5.2,14.0Hz,1H)3.36(s,1H)3.50(sept,J=6.4Hz,1H)3.97(dd,J=4.8,8.8Hz,1H)4.15−4.22(m,2H)4.23(d,J=6.8Hz,2H)7.04(s,1H)7.20(s,1H)
製造例100d)
Figure 2002080899
3−3−[(第三ブトキシカルボニル)アミノ]メチル−4−ヒドロキシ−5−(1−エチニル)フェニル−2−イソプロポキシプロピオン酸エチルエステル121mgをN,N−ジメチルホルムアミド2mlに溶解し、炭酸カリウム50mgを加えた。60−70℃にて終夜攪拌したのち、反応混合物を酢酸エチルで希釈し、有機層を水、飽和塩化ナトリウム水、にて洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトにて精製し、ヘキサン−酢酸エチル(6:1)溶出分画より3−(7−[(第三ブトキシカルボニル)アミノ]メチルベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸エチルエステル57mgを得た。
H−NMR(CDCl)δ:0.94(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23(t,J=6.8Hz,3H)1.46(s,9H)3.01(dd,J=8.8,14.0Hz,1H)3.08(dd,J=5.2,14.0Hz,1H)3.49(sept,J=6.4Hz,1H)4.07(dd,J=5.2,8.4Hz,1H)4.12−4.19(m,2H)4.60(brs,2H)5.01(br,1H)6.72(s,1H)7.13(s,1H)7.39(d,J=1.6Hz,1H)7.61(d,J=2.0Hz,1H)
実施例100e)
Figure 2002080899
3−(7−[(第三ブトキシカルボニル)アミノ]メチルベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(7−[(2,4−ジクロロベンゾイル)アミノ]メチルベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)451(MH
実施例101
製造例101a)
Figure 2002080899
3−(7−[(第三ブトキシカルボニル)アミノ]メチルベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸エチルエステル29mgをエタノールに溶解し、10%パラジウム炭素30mgを加え、水素雰囲気下、室温にて3日攪拌した。反応混合物をセライト濾過し、濾液を濃縮し、3−(7−[(第三ブトキシカルボニル)アミノ]メチル−2,3−ジヒドロベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸エチルエステル27mgを得た。
H−NMR(CDCl)δ:0.99(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.25(t,J=6.8Hz,3H)1.45(s,9H)2.85(dd,J=8.4,14.0Hz,1H)2.92(dd,J=4.8,14.0Hz,1H)3.17(t,J=5.2Hz,2H)3.50(sept,J=6.0Hz,1H)3.98(dd,J=4.8,8.4Hz,1H)4.13−4.20(m,2H)4.24(brs,2H)4.57(t,J=5.2Hz,2H)4.97(br,1H)6.91(s,1H)7.00(s,1H)
実施例101b)
Figure 2002080899
3−(7−[(第三ブトキシカルボニル)アミノ]メチル−2,3−ジヒドロベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸エチルエステルを用いて実施例38と同様の方法で処理し、3−(7−[(2,4−ジクロロベンゾイル)アミノ]メチル−2,3−ジヒドロベンゾ[b]フラン−5−イル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)481(MH
実施例102
Figure 2002080899
実施例87と同様の方法で処理し、3−[2,4−ジメトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)499(MH
実施例103
Figure 2002080899
実施例88と同様の方法で処理し、3−[2,4−ジメトキシ−5−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)499(MH
実施例104
Figure 2002080899
実施例89と同様の方法で処理し、3−[3,4−ジメトキシ−5−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)499(MH
実施例105
Figure 2002080899
実施例90と同様の方法で処理し、3−[3−ブロモ−4−メトキシ−5−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)548(MH
実施例106
Figure 2002080899
実施例91と同様の方法で処理し、3−[3−シアノ−4−メトキシ−5−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)494(MH
実施例107
Figure 2002080899
実施例92と同様の方法で処理し、2−イソプロポキ−3−[3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]]プロピオン酸を得た。
MS m/e(ESI)439(MH
実施例108
Figure 2002080899
実施例93と同様の方法で処理し、3−[4−エトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)483(MH
実施例109
Figure 2002080899
実施例94と同様の方法で処理し、3−[4−プロポキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)497(MH
実施例110
Figure 2002080899
実施例95と同様の方法で処理し、3−[4−イソプロポキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)497(MH
実施例111
Figure 2002080899
実施例96と同様の方法で処理し、3−[4−シクロペンチルオキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)523(MH
実施例112
Figure 2002080899
実施例97と同様の方法で処理し、3−[4−(4−フルオロフェニル)−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)533(MH
実施例113
Figure 2002080899
実施例98と同様の方法で処理し、3−[4−(4−フリル)−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)505(MH
実施例114
Figure 2002080899
実施例99と同様の方法で処理し、2−イソプロポキシ−3−[6−メトキシ−5−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)−3−ピリジル]プロピオン酸を得た。
MS m/e(ESI)470(MH
実施例115
Figure 2002080899
実施例100と同様の方法で処理し、2−イソプロポキシ−3−[7−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)ベンゾ[b]フラン−5−イル]プロピオン酸を得た。
MS m/e(ESI)479(MH
実施例116
Figure 2002080899
実施例101と同様の方法で処理し、2−イソプロポキシ−3−[7−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)−2,3−ジヒドロベンゾ[b]フラン−5−イル]プロピオン酸を得た。
MS m/e(ESI)480(MH
実施例117
Figure 2002080899
実施例93と同様の方法で処理し、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)498(MH
実施例118
Figure 2002080899
実施例93と同様の方法で処理し、3−(3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.34(d,J=6.0Hz,6H)1.43(t,J=7.2Hz,3H)2.90(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)4.06(q,J=7.2Hz,2H)4.11(dd,J=4.4,8.0Hz,1H)4.56(sept,J=6.0Hz,1H)4.62(d,J=5.6Hz,2H)6.79(d,J=8.8Hz,1H)6.81(dd,J=2.4,8.4Hz,1H)6.87(d,J=2.8Hz,1H)7.07(br,1H)7.12(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.4Hz,1H)7.74(d,J=8.4Hz,1H)
MS m/e(ESI)478(MH
実施例119
Figure 2002080899
実施例93と同様の方法で処理し、3−(3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−エトキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.43(t,J=7.2Hz,3H)1.61−1.65(m,2H)1.74−1.94(m,6H)2.90(dd,J=8.0,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)4.06(q,J=7.2Hz,2H)4.10(dd,J=4.4,8.0Hz,1H)4.62(d,J=5.6Hz,2H)4.74−4.77(m,1H)6.78(d,J=8.0Hz,1H)6.80(dd,J=2.4,8.4Hz,1H)6.86(d,J=2.4Hz,1H)7.08(brt,J=5.6Hz,1H)7.12(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.4Hz,1H)7.73(d,J=8.4Hz,1H)
MS m/e(ESI)504(MH
実施例120
Figure 2002080899
実施例93と同様の方法で処理し、3−3−[([2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−エトキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.48(t,J=7.2Hz,3H)2.04(s,3H)2.71(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)4.08−4.13(m,3H)4.59(d,J=5.6Hz,2H)4.74−4.77(m,1H)6.53(brt,J=6.4Hz,1H)6.81(d,J=8.4Hz,1H)7.13(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.24(d,J=8.0Hz,2H)7.80(d,J=8.4Hz,2H)
MS m/e(ESI)497(MH
実施例121
Figure 2002080899
実施例93と同様の方法で処理し、3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−エトキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.48(t,J=7.2Hz,3H)2.75(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)4.08−4.13(m,3H)4.60(d,J=6.0Hz,2H)6.61(brt,J=6.4Hz,1H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.4,8.4Hz,1H)7.22(d,J=2.4Hz,1H)7.35−7.40(m,1H)7.48−7.51(m,1H)8.24−8.27(m,1H)
MS m/e(ESI)516(MH
実施例122
Figure 2002080899
実施例93と同様の方法で処理し、3−3−[([2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−エトキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.48(t,J=7.2Hz,3H)2.71(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)4.08−4.13(m,3H)4.59(d,J=6.0Hz,2H)6.54(brt,J=5.6Hz,1H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.41(d,J=8.8Hz,2H)7.86(d,J=8.8Hz,2H)
MS m/e(ESI)516(MH
実施例123
Figure 2002080899
実施例93と同様の方法で処理し、3−3−[([2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−エトキシフェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)551(MH
実施例124
Figure 2002080899
実施例93と同様の方法で処理し、3−4−エトキシ−3−[([4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.47(t,J=7.2Hz,3H)2.05(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)4.08−4.13(m,3H)4.58(d,J=5.6Hz,2H)6.50(br,1H)6.82(d,J=8.0Hz,1H)7.09(dd,J=3.6,5.2Hz,1H)7.13(dd,J=2.4,8.0Hz,1H)7.21(d,J=2.0Hz,1H)7.48(ddd,J=1.2,5.2,33.6Hz,1H)
MS m/e(ESI)489(MH
実施例125
Figure 2002080899
実施例94と同様の方法で処理し、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−プロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)492(MH
実施例126
Figure 2002080899
実施例94と同様の方法で処理し、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.05(t,J=7.2Hz,3H)1.16(d,J=6.0Hz,3H)1.33(d,J=6.0Hz,6H)1.79−1.87(m,2H)2.90(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.95(t,J=7.2Hz,2H)4.11(dd,J=4.4,8.0Hz,1H)4.56(sept,J=6.0Hz,1H)4.63(d,J=7.0Hz,2H)6.79(d,J=8.8Hz,1H)6.81(dd,J=2.4,8.8Hz,1H)6.86(d,J=2.8Hz,1H)6.99(br,1H)7.11(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.0Hz,1H)7.72(d,J=8.4Hz,1H)
MS m/e(ESI)492(MH
実施例127
Figure 2002080899
実施例94と同様の方法で処理し、3−(3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−プロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)518(MH
実施例128
Figure 2002080899
実施例94と同様の方法で処理し、3−3−[([2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−プロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.09(t,J=7.2Hz,3H)1.17(d,J=6.0Hz,3H)1.82−1.91(m,2H)2.40(s,3H)2.71(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.99(t,J=6.8Hz,2H)4.12(dd,J=4.4,8.0Hz,1H)4.59(d,J=6.0Hz,2H)6.46(brt,J=6.4Hz,1H)6.82(d,J=8.2Hz,1H)7.14(dd,J=2.4,8.8Hz,1H)7.22(d,J=2.4Hz,1H)7.24(d,J=8.0Hz,2H)7.80(d,J=8.4Hz,2H)
MS m/e(ESI)511(MH
実施例129
Figure 2002080899
実施例94と同様の方法で処理し、3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−プロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.09(t,J=7.6Hz,3H)1.17(d,J=6.0Hz,3H)1.85−1.91(m,2H)2.74(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.99(t,J=6.4Hz,2H)4.12(dd,J=4.4,8.0Hz,1H)4.60(d,J=6.0Hz,2H)6.57(brt,J=6.4Hz,1H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.4,8.4Hz,1H)7.22(d,J=2.4Hz,1H)7.35−7.40(m,2H)7.48−7.51(m,1H)8.24−8.27(m,1H)
MS m/e(ESI)531(MH
実施例130
Figure 2002080899
実施例94と同様の方法で処理し、3−3−[([2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−プロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.08(t,J=7.6Hz,3H)1.17(d,J=6.0Hz,3H)1.84−1.89(m,2H)2.70(s,3H)2.92(dd,J=8.0,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.99(t,J=6.4Hz,2H)4.12(dd,J=4.4,8.0Hz,1H)4.59(d,J=5.6Hz,2H)6.49(brt,J=6.4Hz,1H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.41(d,J=8.8Hz,2H)7.85(d,J=8.8Hz,2H)
MS m/e(ESI)531(MH
実施例131
Figure 2002080899
実施例94と同様の方法で処理し、3−3−[([2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−プロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.07(t,J=7.2Hz,3H)1.17(d,J=6.0Hz,3H)1.83−1.92(m,2H)2.73(s,3H)2.92(dd,J=7.2,14.0Hz,1H)3.06(dd,J=4.0,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.99(t,J=6.4Hz,2H)4.12(dd,J=4.4,8.0Hz,1H)4.60(d,J=5.6Hz,2H)6.55(brt,J=6.4Hz,1H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.4,8.4Hz,1H)7.22(d,J=2.4Hz,1H)7.36(dd,J=2.4,8.8Hz,1H)7.51(d,J=2.0Hz,1H)8.26(d,J=8.4Hz,1H)
MS m/e(ESI)565(MH
実施例132
Figure 2002080899
実施例94と同様の方法で処理し、3−4−プロポキシ−3−[([4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)503(MH
実施例133
Figure 2002080899
実施例95と同様の方法で処理し、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.03(t,J=7.2Hz,3H)1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.35(d,J=6.0Hz,6H)1.78−1.83(m,2H)2.90(dd,J=7.2,14.0Hz,1H)3.05(dd,J=4.0,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.92(t,J=6.4Hz,2H)4.10(dd,J=4.0,7.2Hz,1H)4.56−4.61(m,3H)6.80(d,J=8.4Hz,1H)6.83(dd,J=2.4,8.4Hz,1H)6.89(d,J=2.4Hz,1H)7.04(brt,J=5.2Hz,1H)7.11(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.4Hz,1H)7.74(d,J=8.8Hz,1H)
MS m/e(ESI)492(MH
実施例134
Figure 2002080899
実施例95と同様の方法で処理し、3−(3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)492(MH
実施例135
Figure 2002080899
実施例95と同様の方法で処理し、3−(3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−イソプロポキシフェニル)−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.35(d,J=6.0Hz,6H)1.61−1.65(m,2H)1.75−1.94(m,6H)2.90(dd,J=7.2,14.0Hz,1H)3.05(dd,J=4.0,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)4.10(dd,J=4.0,7.2Hz,1H)4.60(d,J=5.6Hz,3H)4.76(sept,J=6.0Hz,1H)6.80(d,J=8.8Hz,1H)6.81(d,J=8.8Hz,1H)6.86(d,J=2.4Hz,1H)7.05(brt,J=5.6Hz,1H)7.11(dd,J=2.4,8.4Hz,1H)7.23(d,J=2.0Hz,2H)7.73(d,J=8.8Hz,2H)
MS m/e(ESI)518(MH
実施例136
Figure 2002080899
実施例95と同様の方法で処理し、3−3−[([2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−イソプロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.39(d,J=6.0Hz,6H)2.40(s,3H)2.71(s,3H)2.91(dd,J=7.2,14.0Hz,1H)3.05(dd,J=4.0,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)4.11(dd,J=4.0,7.2Hz,1H)4.56(d,J=5.6Hz,2H)4.63(sept,J=6.0Hz,1H)6.53(brt,J=5.6Hz,1H)6.83(d,J=8.4Hz,1H)7.13(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.24(d,J=8.4Hz,2H)7.80(d,J=8.4Hz,2H)
MS m/e(ESI)511(MH
実施例137
Figure 2002080899
実施例95と同様の方法で処理し、3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−イソプロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.40(d,J=6.0Hz,6H)2.75(s,3H)2.92(dd,J=7.2,14.0Hz,1H)3.05(dd,J=4.0,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)4.12(dd,J=4.0,7.2Hz,1H)4.58(d,J=5.6Hz,2H)4.64(sept,J=6.0Hz,1H)6.63(brt,J=5.6Hz,1H)6.83(d,J=8.4Hz,1H)7.13(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.35−7.39(m,2H)7.48−7.50(m,1H)8.25−8.27(m,1H)
MS m/e(ESI)531(MH
実施例138
Figure 2002080899
実施例95と同様の方法で処理し、3−3−[([2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−イソプロポキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.40(d,J=6.0Hz,6H)2.74(s,3H)2.92(dd,J=7.2,14.0Hz,1H)3.05(dd,J=4.0,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)4.12(dd,J=4.0,7.2Hz,1H)4.56(d,J=5.6Hz,2H)4.64(sept,J=6.0Hz,1H)6.63(brt,J=5.6Hz,1H)6.83(d,J=8.4Hz,1H)7.13(dd,J=2.4,8.4Hz,1H)7.21(d,J=2.4Hz,1H)7.36(dd,J=2.0,8.4Hz,1H)7.51(d,J=2.4Hz,1H)7.26(d,J=8.8Hz,2H)
MS m/e(ESI)565(MH
実施例139
Figure 2002080899
実施例95と同様の方法で処理し、3−4−イソプロポキシ−3−[([4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)503(MH
実施例140
Figure 2002080899
実施例96と同様の方法で処理し、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)513(MH
実施例141
Figure 2002080899
実施例96と同様の方法で処理し、3−(3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)518(MH
実施例142
Figure 2002080899
実施例96と同様の方法で処理し、3−(3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−シクロペンチルオキシフェニル)−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)544(MH
実施例143
Figure 2002080899
実施例96と同様の方法で処理し、3−3−[([2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−シクロペンチルオキシフェニル−2−イソプロポキシプロピオン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.65−1.69(m,2H)1.77−2.10(m,6H)2.40(s,3H)2.71(s,3H)2.91(dd,J=7.2,14.0Hz,1H)3.06(dd,J=4.0,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)4.11(dd,J=4.0,7.2Hz,1H)4.54(d,J=5.6Hz,2H)4.82−4.85(m,1H)6.44(br,1H)6.82(d,J=8.4Hz,1H)7.12(dd,J=2.4,8.4Hz,1H)7.20(d,J=2.4Hz,1H)7.24(d,J=7.2Hz,2H)7.80(d,J=8.0Hz,2H)
MS m/e(ESI)537(MH
実施例144
Figure 2002080899
実施例96と同様の方法で処理し、3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−シクロペンチルオキシフェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)557(MH
実施例145
Figure 2002080899
実施例96と同様の方法で処理し、3−3−[([2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−シクロペンチルオキシフェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)557(MH
実施例146
Figure 2002080899
実施例96と同様の方法で処理し、3−3−[([2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−シクロペンチルオキシフェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)591(MH
実施例147
Figure 2002080899
実施例96と同様の方法で処理し、3−4−シクロペンチルオキシ−3−[([4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)529(MH
実施例148
Figure 2002080899
実施例98と同様の方法で処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(2−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)500(MH
実施例149
Figure 2002080899
実施例98と同様の方法で処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(2−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)500(MH
実施例150
Figure 2002080899
実施例98と同様の方法で処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(2−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)526(MH
実施例151
Figure 2002080899
実施例98と同様の方法で処理し、3−4−(2−フリル)−3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)519(MH
実施例152
Figure 2002080899
実施例98と同様の方法で処理し、3−4−(2−フリル)−3−[([4−メチル−2−(2−クロロフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)539(MH
実施例153
製造例153a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(2−チエニル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.01(d,J=6.0Hz,3H)1.18(d,J=6.4Hz,3H)1.27(t,J=7.2Hz,3H)1.46(s,9H)2.91−3.06(m,2H)3.51(sept,J=6.4Hz,1H)4.10(dd,J=4.8,8.8Hz,1H)4.16−4.24(m,2H)4.40(d,J=5.6Hz,2H)4.69(br 1H)7.01(d,J=6.0Hz,1H)7.08(d,J=5.2Hz,1H)7.13−7.20(m,2H)7.24−7.35(m,2H)
実施例153b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(2−チエニル)プロポキシプロピオン酸エチルエステルを用いて、実施例98と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)492(MH
実施例154
Figure 2002080899
実施例153と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)516(MH
実施例155
Figure 2002080899
実施例153と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)516(MH
実施例156
製造例156a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(5−メチル−2−チエニル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.01(d,J=6.0Hz,3H)1.17(d,J=6.4Hz,3H)1.25(t,J=7.2Hz,3H)1.46(s,9H)2.51(s,3H)2.91−3.05(m,2H)3.51(sept,J=6.4Hz,1H)4.07(dd,J=4.8,8.8Hz,1H)4.18−4.29(m,2H)4.40(br,2H)4.70(br 1H)6.73(s,1H)7.11−7.19(m,2H)7.23−7.30(m,2H)
実施例156b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(5−メチル−2−チエニル)プロポキシプロピオン酸エチルエステルを用いて実施例153と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(5−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)506(MH
実施例157
Figure 2002080899
実施例156と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(5−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)530(MH
実施例158
Figure 2002080899
実施例156と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(5−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)530(MH
実施例159
製造例159a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(5−クロロ−2−チエニル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.00(d,J=6.0Hz,3H)1.17(d,J=6.4Hz,3H)1.25(t,J=7.2Hz,3H)1.45(s,9H)2.51(s,3H)2.91−3.05(m,2H)3.50(sept,J=6.0Hz,1H)4.08(dd,J=4.8,8.8Hz,1H)4.21−4.24(m,2H)4.38−4.41(m,2H)4.69(br 1H)6.78(d,J=3.6Hz,1H)7.17−7.20(m,2H)7.25(d,J=8.0Hz,1H)7.31(s,1H)
実施例159b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(5−クロロ−2−チエニル)プロポキシプロピオン酸エチルエステルを用いて実施例153と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(5−クロロ−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)526(MH
実施例160
Figure 2002080899
実施例159と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(5−クロロ−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)550(MH
実施例161
Figure 2002080899
実施例159と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(5−クロロ−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)550(MH
実施例162
製造例162a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(4−メチル−2−チエニル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.00(d,J=6.0Hz,3H)1.17(d,J=6.4Hz,3H)1.26(t,J=7.2Hz,3H)1.45(s,9H)2.29(s,3H)2.94−3.05(m,2H)3.54(sept,J=6.0Hz,1H)4.08(dd,J=4.8,8.8Hz,1H)4.12−4.24(m,2H)4.40(br,2H)4.70(br 1H)6.82(s,1H)7.14−7.19(m,2H)7.28(d,J=9.6Hz,1H)7.31(s,1H)
実施例162b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(4−メチル−2−チエニル)プロポキシプロピオン酸エチルエステルを用いて実施例153と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(4−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)506(MH
実施例163
Figure 2002080899
実施例162と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(4−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)530(MH
実施例164
Figure 2002080899
実施例162と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(4−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)530(MH
実施例165
製造例165a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(3−チエニル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.01(d,J=6.0Hz,3H)1.17(d,J=6.4Hz,3H)1.27(t,J=7.2Hz,3H)1.44(s,9H)2.95−3.06(m,2H)3.55(sept,J=6.0Hz,1H)4.09(dd,J=4.8,8.8Hz,1H)4.14−4.25(m,2H)4.32(d,J=5.6Hz,2H)4.64(br 1H)7.10−7.11(m,1H)7.18−7.25(m,3H)7.30(s,1H)7.37(dd,J=2.1,5.2Hz,1H)
実施例165b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(3−チエニル)プロポキシプロピオン酸エチルエステルを用いて実施例153と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(3−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)492(MH
実施例166
Figure 2002080899
実施例165と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(3−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)516(MH
実施例167
Figure 2002080899
実施例165と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(3−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)516(MH
実施例168
製造例168a)
Figure 2002080899
製造例97と同様の方法で3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(3−フリル)プロポキシプロピオン酸エチルエステルを得た。
H−NMR(CDCl)δ:1.00(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)1.27(t,J=7.2Hz,3H)1.45(s,9H)2.93−3.04(m,2H)3.54(sept,J=6.0Hz,1H)4.08(dd,J=6.8,8.0Hz,1H)4.18−4.26(m,2H)4.30−4.41(m,2H)4.67(br 1H)6.52(d,J=4.0Hz,1H)7.13−7.19(m,2H)7.25−7.28(m,2H)7.49(d,J=4.0Hz,1H)
実施例168b)
Figure 2002080899
3−(3−[(第三ブトキシカルボニル)アミノ]メチル−4−[(トリフルオロメチル)スルフォニル]オキシフェニル)−2−(3−フリル)プロポキシプロピオン酸エチルエステルを用いて実施例153)と同様に処理し、3−[3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−(3−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)476(MH
実施例169
Figure 2002080899
実施例168と同様に処理し、3−[3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−(3−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)500(MH
実施例170
Figure 2002080899
実施例168と同様に処理し、3−[3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−(3−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)500(MH
実施例171
Figure 2002080899
実施例153と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)510(MH
実施例172
Figure 2002080899
実施例153と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)542(MH
実施例173
Figure 2002080899
実施例153と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(2−チエニル)フェニル]プロピオン酸を得た。
MS m/e(ESI)535(MH
実施例174
Figure 2002080899
実施例156と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(5−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)524(MH
実施例175
Figure 2002080899
実施例156と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(5−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)556(MH
実施例176
Figure 2002080899
実施例156と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(5−メチル−2−チエニル)フェニル]プロピオン酸を得た。
MS m/e(ESI)549(MH
実施例177
Figure 2002080899
実施例159と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(5−クロロ−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)544(MH
実施例178
Figure 2002080899
実施例159と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(5−クロロ−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)576(MH
実施例179
Figure 2002080899
実施例159と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(5−クロロ−2−チエニル)フェニル]プロピオン酸を得た。
MS m/e(ESI)569(MH
実施例180
Figure 2002080899
実施例162と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(4−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)524(MH
実施例181
Figure 2002080899
実施例162)と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(4−メチル−2−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)556(MH
実施例182
Figure 2002080899
実施例162と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(4−メチル−2−チエニル)フェニル]プロピオン酸を得た。
MS m/e(ESI)549(MH
実施例183
Figure 2002080899
実施例165と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(3−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)510(MH
実施例184
Figure 2002080899
実施例165と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(3−チエニル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)542(MH
実施例185
Figure 2002080899
実施例165と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(3−チエニル)フェニル]プロピオン酸を得た。
MS m/e(ESI)535(MH
実施例186
Figure 2002080899
実施例168と同様に処理し、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−(3−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)494(MH
実施例187
Figure 2002080899
実施例168と同様に処理し、3−[3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−(3−フリル)フェニル]−2−イソプロポキシプロピオン酸を得た。
MS m/e(ESI)526(MH
実施例188
Figure 2002080899
実施例168と同様に処理し、2−イソプロポキシ−3−[3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−(3−フリル)フェニル]プロピオン酸を得た。
MS m/e(ESI)519(MH
実施例189
製造例189a)
Figure 2002080899
ベンジル 5−ホルミル−2−メトキシベンゾエート2.95gとトリフェニルホスホラニリデンアセトアルデヒド5gをトルエン中で混合し、80℃で7時間撹拌した。溶媒を減圧下留去し残渣をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)で精製し、ベンジル 2−メトキシ−5−(−3−オキソ−1−プロペニル)ベンゾエート(E−Z mixture)2.0gを黄色固体として得た。
H−NMR(CDCl)δ:3.95+3.97(s,3H)5.37(s,2H)6.61+6.64(s,J=8.0Hz,1H)6.90−7.07(m,2H)7.33−7.47(m,5H)7.62+7.70(dd,J=2.0,8.0Hz,1H)7.95+8.02(d,J=2.0Hz,1H)
実施例189b)
Figure 2002080899
トリエチル−2−ホスホノブチレート0.77gをN,N−ジメチルホルムアミドに溶解し、水素化ナトリウム115mgを加え室温で1時間撹拌した。ベンジル 2−メトキシ−5−(−3−オキソ−1−プロペニル)ベンゾエート(E−Z mixture)0.6gをN,N−ジメチルホルムアミドに溶解したものを加え、室温で2時間撹拌した。反応液に水と塩化アンモニウム溶液を加え、酢酸エチルで抽出した。有機層を飽和食塩水で抽出し、無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製した(ヘキサン:酢酸エチル=8:1)。得られたものをエタノールに溶解し、10%パラジウム炭素を加え、水素置換し、室温で7時間撹拌した。パラジウム炭素を濾過し、溶媒を減圧下留去し、5−[4−(エトキシカルボニル)ヘキシル]−2−メトキシ安息香酸0.47gを無色油状物として得た。
H−NMR(CDCl)δ:0.50(t,J=8.0Hz,3H)1.17(t,J=8.0Hz,3H)1.38−1.58(m,6H)2.20(m,1H)2.54(t,J=8.0Hz,2H)3.99(s,3H)4.07(q,J=8.0Hz,2H)7.90(d,J=8.0Hz,1H)7.29(dd,J=2.0,8.0Hz,1H)7.91(d,J=2.0Hz,1H)
実施例189c)
Figure 2002080899
5−[4−(エトキシカルボニル)ヘキシル]−2−メトキシ安息香酸0.47gと4−(トリフルオロメチル)ベンジルアミン0.27gを用い、実施例1c)d)と同様の方法で反応を行うことにより、2−エチル−5−[4−メトキシ−3−([4−(トリフルオロメチル)ベンジル]アミノカルボニル)フェニル]ペンタン酸0.21gを無色非晶質として得た。
H−NMR(CDCl)δ:0.85(t,J=8.0Hz,3H)1.42−1.59(m,6H)2.27(m,1H)2.53(m,2H)3.85(s,3H)4.66(d,J=6.0Hz,2H)6.90(d,J=7.0Hz,1H)7.26(m,1H)7.47(d,J=8.0Hz,2H)7.59(d,J=8.0Hz,2H)8.04(d,J=2.0Hz,1H)8.34(bs,1H)
実施例190
製造例190a)
Figure 2002080899
製造例189a)、実施例189a)と同様の方法により、5−(5−エトキシ−4−イソプロポキシ−5−オキソペンチル)−2−メトキシ安息香酸を得た。
H−NMR(CDCl)δ:1.13(d,J=6.0Hz,3H)1.19(d,J=6.0Hz,3H)1.27(t,J=8.0Hz,3H)1.54−1.74(m,4H)2.62(t,J=8.0Hz,2H)3.58(sept,J=6.0Hz,1H)3.88(m,1H)4.05(s,3H)4.18(q,J=8.0Hz,2H)6.98(d,J=8.0Hz,1H)7.37(dd,J=2.0,8.0Hz,1H)8.00(d,J=2.0Hz,1H)
実施例190b)
Figure 2002080899
5−(5−エトキシ−4−イソプロポキシ−5−オキソペンチル)−2−メトキシ安息香酸0.35gと4−(トリフルオロメチル)ベンジルアミン0.18gを用い、実施例1c)d)と同様の方法で反応を行うことにより、5−3−[(ベンジルアミノ)カルボニル]−4−メトキシフェニル−1−イソプロポキシペンタン酸0.18gを無色非晶質として得た。
H−NMR(CDCl)δ:1.20(d,J=6.0Hz,3H)1.21(d,J=6.0Hz,3H)1.67−1.80(m,4H)2.63(t,J=8.0Hz,2H)3.69(sept,J=6.0Hz,1H)3.92(s,3H)3.96(m,1H)4.70(d,J=6.0Hz,2H)6.98(d,J=8.0Hz,1H)7.26(m,1H)7.47(d,J=8.0Hz,1H)7.59(d,J=8.0Hz,2H)8.04(d,J=2.0Hz,1H)8.33(bs,1H)
実施例191
Figure 2002080899
実施例17と同様の方法により2−(4−メトキシ−3−{[2−(2.4−ジクロロフェニル)アセチル]アミノ}ベンジル)ブタン酸を得た。
H−NMR(CDCl)δ:0.93(t,J=8.0Hz,3H)1.55−1.64(m,2H)2.58(m,1H)2.68(dd,J=4.5,14.0Hz,1H)2.89(dd,J=7.0,14.0Hz,1H)3.78(s,3H)3.82(s,2H)6.73(d,J=8.0Hz,1H)6.84(dd,J=2.0,8.0Hz,1H)7.26(m,1H)7.35(d,J=8.0Hz,2H)7.45(d,2.0Hz,1H)7.88(s,1H)8.19(d,J=2.0Hz,1H)
実施例192
Figure 2002080899
実施例14と同様の方法により2−イソプロポキシ−3−(4−メトキシ−3−{[2−(3−フルオロ)−4−トリフルオロメチル)フェニル]アセチル}アミノ)フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.65(d,J=6.0Hz,3H)2.90(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0Hz,1H)3.58(sept,J=6.0Hz,1H)3.78(s,2H)3.80(s,3H)4.13(m,1H)6.77(d,J=8.0Hz,1H)6.92(dd,J=2.0,8.0Hz,1H)7.25(m,2H)7.61(t,J=8.0Hz,1H)7.76(s,1H)8.24(d,J=2.0Hz,1H)
実施例193
Figure 2002080899
実施例14と同様の方法により2−イソプロポキシ−3−(4−メトキシ−3−{[2−(2,4−ジクロロフェニル]アセチル}アミノ)フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.88(dd,J=7.0,14.0Hz,1H)3.05(dd,J=4.5,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.80(s,3H)3.83(s,2H)4.12(m,1H)6.76(d,J=8.0Hz,1H)6.90(dd,J=2.0,8.0Hz,1H)7.27(dd,J=2.0,8.0Hz,1H)7.36(d,J=8.0Hz,1H)7.46(d,J=2.0Hz,1H)7.86(s,1H)8.26(d,J=2.0Hz,1H)
実施例194
Figure 2002080899
実施例22と同様の方法により2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジフルオロアニリノ]エチル}ベンジル)ブタン酸を得た。
H−NMR(CDCl)δ:0.95(t,J−8.0Hz,3H)1.57−1.66(m,2H)2.57(m,1H)2.70(dd,J=7.0,14.0Hz,1H)2.89(dd,J=4.5,14.0Hz,1H)3.69(s,2H)3.92(s,3H)6.76−6.87(m,3H)7.09−7.12(m,2H)8.22−8.29(m,2H)
実施例195
Figure 2002080899
実施例22と同様の方法により2−(4−メトキシ−3−{2−オキソ−2−[2−メチル−4−(トリフルオロメチル)アニリノ]エチル}ベンジル)ブタン酸を得た。
H−NMR(CDCl)δ:0.96(t,J−8.0Hz,3H)1.55−1.70(m,2H)2.10(m,1H)2.57(dd,J=4.5,14.0Hz,1H)2.89(dd,J=7.0,14.0Hz,1H)3.73(s,3H)3.89(s,2H)6.88(d,J=8.0Hz,1H)7.12−7.15(m,2H)7.26(t,J=8.0Hz,1H)7.39(d,J=8.0Hz,2H)7.63(s,1H)8.03(d,J=8.0Hz,1H)
実施例196
実施例196a)
Figure 2002080899
実施例22a)−c)と同様の方法によりエチル 2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}フェニル)−2−プロペノエートを得た。
H−NMR(CDCl)δ:1.17(t,J=8.0Hz,3H)1.34(t,J=8.0Hz,3H)2.56(q,J=8.0Hz,2H)3.77(s,3H)3.96(s,3H)4.26(q,J=8.0Hz,2H)6.98(d,J=8.0Hz,1H)7.22(dd,J=2.0,8.0Hz,1H)7.31(d,J=8.0Hz,1H)7.37(dd,J=2.0,8.0Hz,1H)7.58(s,1H)8.22(bs,1H)8.37(d,J=8.0Hz,1H)
実施例196b)
Figure 2002080899
2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}フェニル)−2−プロペノエート0.9gをエタノール15ml,酢酸エチル15mlに溶解し、エチレンジアミンで被毒したパラジウム炭素0.6gを加えた。反応液を水素雰囲気下室温で5時間撹拌した後パラジウム炭素を濾過し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し、エチル 2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}ベンジル)ブタノエート0.44gを無色油状物として得た。
H−NMR(CDCl)δ:0.90(t,J−8.0Hz,3H)1.14(t,J−8.0Hz,3H)1.50−1.68(m,2H)2.54(m,2H)2.68(dd,J=4.5,14.0Hz,1H)2.86(dd,J=4.5,14.0Hz,1H)3.72(s,2H)3.88(s,3H)4.05(q,J=8.0Hz,2H)6.85(d,J=8.0Hz,1H)7.10(m,2H)7.20(d,J=8.0Hz,1H)7.26(d,J=8.0Hz,1H)8.30(bs,1H)8.37(d,J=8.0Hz,1H)
実施例196c)
Figure 2002080899
エチル 2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}ベンジル)ブタノエート0.27gをエタノール10mlに溶解し、5N水酸化ナトリウム1mlを加えた。反応液を室温で24時間撹拌した後、水を加え、水層をジエチルエーテルで抽出した。水層を塩酸で酸性にし、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する事により2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}ベンジル)ブタン酸を無色油状物として得た。
H−NMR(CDCl)δ:0.89(t,J−8.0Hz,3H)1.49−1.62(m,2H)2.50(m,2H)2.64(dd,J=4.5,14.0Hz,1H)2.84(dd,J=4.5,14.0Hz,1H)3.72(s,2H)3.88(s,3H)6.80(d,J=8.0Hz,1H)7.06(m,2H)7.12(dd,J=2.0,8.0Hz,1H)7.22(d,J=8.0Hz,1H)8.23(s,1H)8.28(d,J=8.0Hz,1H)
実施例197
製造例197a)
Figure 2002080899
水素化ナトリウム1gをテトラヒドロフランに懸濁し、テトラヒドロフランに溶解したアセトフェノン3gを加え室温で30分間撹拌した。更にジエチルオキザレート3.7gを加え、1時間加熱還流した。反応液を氷冷し、水、塩化アンモニウム溶液を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣にジイソプロピルエーテルを加え、結晶を濾過し、エチル−(Z)−4−ヒドロキシ−2−オキソ−4−フェニル−3−ブタノエート2.37gを得た。
H−NMR(DMSO−d)δ:1.15(t,J=8.0Hz,3H)4.18(q,J=8.0Hz,2H)6.55(s,1H)7.35−7.48(m,3H)7.80(m,2H)
製造例197b)
エチル−(Z)−4−ヒドロキシ−2−オキソ−4−フェニル−3−ブタノエート0.67gを酢酸10mlに溶解し、メチルヒドラジン0.17gを加えた。反応液を2時間加熱還流した後、酢酸を減圧下留去した。残渣に酢酸エチル、テトラヒドロフランを加えて溶解し、炭酸水素ナトリウム溶液、飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、ヘキサン:酢酸エチル9:1でエチル 1−メチル−3−フェニル−1H−5−ピラゾールカルボキシレート0.12g、ヘキサン:酢酸エチル4:1でエチル 1−メチル−5−フェニル−1H−3−ピラゾールカルボキシレート0.55gを得た。
Figure 2002080899
エチル 1−メチル−3−フェニル−1H−5−ピラゾールカルボキシレート
H−NMR(CDCl)δ:1.42(t,J=8.0Hz,3H)4.21(s,3H)4.38(q,J=8.0Hz,2H)7.11(s,1H)7.32(t,J=8.0Hz,1H)7.40(t,J=8.0Hz,2H)8.79(d,J=8.0Hz,2H)
Figure 2002080899
エチル 1−メチル−5−フェニル−1H−3−ピラゾールカルボキシレート
H−NMR(CDCl)δ:1.41(t,J=8.0Hz,3H)3.95(s,3H)4.43(q,J=8.0Hz,2H)6.85(s,1H)7.40−7.53(m,5H)
製造例197c)
Figure 2002080899
エチル 1−メチル−3−フェニル−1H−5−ピラゾールカルボキシレート0.12gをエタノール5mlに溶解し、5N水酸化ナトリウム溶液1mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、1−メチル−3−フェニル−1H−5−ピラゾールカルボン酸0.11gを得た。
H−NMR(CDCl)δ:4.22(s,3H)7.22(s,1H)7.33(t,J=8.0Hz,1H)7.40(t,J=8.0Hz,2H)8.80(d,J=8.0Hz,2H)
実施例197d)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(1−メチル−3−フェニル−1H−5−ピラゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.06(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.94(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0,1H)3.88(s,3H)4.12(dd,J=4.0,7.0Hz,1H)4.20(s,3H)4.57(d,J=6.0Hz,3H)6.57(bs,1H)6.73(s,1H)6.84(d,J=2.0Hz,1H)7.16(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.32(d,J=8.0Hz,1H)7.39(m,2H)7.76(m,2H)
実施例198
製造例198a)
Figure 2002080899
エチル 1−メチル−5−フェニル−1H−3−ピラゾールカルボキシレート0.55gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液2mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、1−メチル−5−フェニル−1H−3−ピラゾールカルボン酸0.5gを得た。
H−NMR(CDCl)δ:3.91(s,3H)6.82(s,1H)7.34−7.45(m,5H)
実施例198b)
Figure 2002080899
実施例19d)e)と同様の方法により、2−イソプロポキシ−3−[4−メトキシ−3−([(1−メチル−5−フェニル−1H−3−ピラゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)2.90(dd,J=7.0,14.0Hz,1H)3.04(dd,J=4.5,14.0,1H)3.55(sept,J=6.0Hz,1H)3.86(s,3H)3.88(s,3H)4.09(dd,J=4.0,7.0Hz,1H)4.60(d,J=6.0Hz,3H)6.80(d,J=6.0Hz,1H)6.84(s,1H)7.12(dd,J=2.0,8.0Hz,1H)7.23(d,J=2.0Hz,1H)7.32(bs,1H)7.39−7.57(m,5H)
実施例199
製造例199a)
Figure 2002080899
フェニルアセチレン1gと2−クロロ−2−ヒドロキシイミノ酢酸エチルエステル1.48gをクロロホルム20mlに溶解し、炭酸カリウム1.4gを加え、室温で16時間撹拌した。反応液に水、塩化アンモニウム溶液を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル9:1)、エチル5−フェニル−4−イソキサゾールカルボキシレート1.2gを得た。
H−NMR(CDCl)δ:1.35(t,J=8.0Hz,3H)4.40(q,J=8.0Hz,2H)6.85(s,1H)7.36−7.50(m,3H)7.68−7.80(m,2H)
製造例199b)
Figure 2002080899
エチル 5−フェニル−4−イソキサゾールカルボキシレート0.4gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液2mlを加え、室温で1時間撹拌した。反応液を2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、5−フェニル−3−イソキサゾールカルボン酸0.25gを得た。
H−NMR(DMSO−d)δ:7.32(s,1H)7.48−7.57(m,3H)7.92(m,2H)
実施例199c)
Figure 2002080899
実施例19d)e)と同様の方法により、2−イソプロポキシ−3−[4−メトキシ−3−([(5−フェニル−3−イソキサゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.5Hz,3H)1.16(d,J=6.5Hz,3H)2.90(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.87(s,3H)4.10(dd,J=4.5,7.0Hz,1H)4.61(d,J=6.0Hz,2H)6.82(d,J=8.0Hz,1H)6.96(s,1H)7.15(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.36(bs,1H)7.47(m,3H)7.78(m,2H)
実施例200
製造例200a)
Figure 2002080899
製造例197a)b)198と同様の方法で1−メチル−5−(2−ピリジル)−1H−3−ピラゾールカルボン酸を得た。
H−NMR(DMSO−d)δ:4.18(s,3H)7.22(s,1H)7.40(t,J=6.0Hz,1H)7.85−7.94(m,2H)8.68(d,J=4.0Hz,1H)12.75(s,1H)
実施例200b)
Figure 2002080899
実施例19d)e)と同様の方法により、2−イソプロポキシ−3−4−メトキシ−3−[([1−メチル−5−(2−ピリジル)−1H−3−ピラゾリル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.03(d,J=6.5Hz,3H)1.34(d,J=6.5Hz,3H)2.90(dd,J=7.0,14.0Hz,1H)3.05(dd,J=4.5,14.0Hz,1H)3.55(sept,J=6.0Hz,1H)3.87(s,3H)4.09(dd,J=4.5,7.0Hz,1H)4.24(s,3H)4.60(d,J=6.0Hz,2H)6.81(d,J=8.0Hz,1H)7.14(m,2H)7.23(m,2H)7.34(bs,1H)7.64(d,J=8.0Hz,1H)7.85(bs,1H)8.70(d,J=4.0Hz,1H)
実施例201
製造例201a)
Figure 2002080899
製造例197a)−c)と同様の方法で1−メチル−3−(2−ピリジル)−1H−5−ピラゾールカルボン酸を得た。
H−NMR(DMSO−d)δ:4.13(s,3H)7.26(s,1H)7.32(dd,J=4.0,8.0Hz,1H)7.82(t,J=8.0Hz,1H)7.91(d,J=8.0Hz,1H)8.57(d,J=4.0Hz,1H)
実施例201b)
Figure 2002080899
実施例19d)e)と同様の方法により、2−イソプロポキシ−3−4−メトキシ−3−[([1−メチル−3−(2−ピリジル)−1H−5−ピラゾリル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.03(d,J=6.5Hz,3H)1.10(d,J=6.5Hz,3H)2.75−3.00(m,2H)3.57(sept,J=6.0Hz,1H)3.81(s,3H)4.05(dd,J=4.5,7.0Hz,1H)4.21(s,3H)4.52(d,J=6.0Hz,2H)6.75(d,J=8.0Hz,1H)7.08(m,2H)7.15(bs,1H)7.45(bs,1H)7.84(s,1H)8.04(t,J=8.0Hz,1H)8.24(d,J=8.0Hz,1H)8.70(d,J=4.0Hz,1H)
実施例202
製造例202a)
Figure 2002080899
エチル 2−クロロアセト酢酸2.33mlとチオプロピオンアミド1.5gをエタノール30mlに溶解し、室温で16時間撹拌した。反応液を氷冷し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル14:1)エチル 2−エチル−4−メチル−1,3−チアゾール−5−カルボキシレート0.8gを得た。
H−NMR(CDCl)δ:1.34−1.60(m,6H)2.98(q,J=8.0Hz,2H)3.70(s,3H)4.29(q,J=8.0Hz,2H)
製造例202b)
Figure 2002080899
エチル 2−エチル−4−メチル−1,3−チアゾール−5−カルボキシレート0.8gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液2mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、2−エチル−4−メチル−1,3−チアゾール−5−カルボン酸0.8gを得た。
H−NMR(CDCl)δ:1.40(t,J=8.0Hz,3H)3.74(s,3H)4.03(q,J=8.0Hz,2H)
実施例202c)
Figure 2002080899
実施例19d)e)と同様の方法により、3−[3−([(2−エチル−4−メチル−1,3−チアゾール−5−イル)カルボニル]アミノエチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:0.98(d,J=6.5Hz,3H)1.10(d,J=6.5Hz,3H)1.30(t,J=8.0Hz,3H)2.56(s,3H)2.82−3.01(m,4H)3.51(sept,J=6.0Hz,1H)3.80(s,3H)4.04(dd,J=4.5,7.0Hz,1H)4.48d,J=6.0Hz,2H)6.31(bs,1H)6.75(d,J=8.0Hz,1H)6.08(dd,J=2.0,8.0Hz,1H)7.13(d,J=2.0Hz,1H)
実施例203
製造例203a)
Figure 2002080899
エチル 2−クロロアセト酢酸10mlとチオベンズアミド10gをエタノール100mlに溶解し、4時間加熱還流した。反応液を氷冷し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル14:1)エチル 4−メチル−2−フェニル−1,3−チアゾール−5−カルボキシレート17gを得た。
H−NMR(CDCl)δ:1.39(t,J=8.0Hz,3H)2.78(s,3H)4.35(q,J=8.0Hz,2H)7.45(m,3H)7.95(m,2H)
製造例203b)
Figure 2002080899
エチル 4−メチル−2−フェニル−1,3−チアゾール−5−カルボキシレート0.8gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液2mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、4−メチル−2−フェニル−1,3−チアゾール−5−カルボン酸0.8gを得た。
H−NMR(DMSO−d)δ:2.66(s,3H)7.52(m,3H)7.96(m,2H)
実施例203c)
Figure 2002080899
実施例19d)e)と同様の方法により、2−イソプロポキシ−3−[4−メトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:0.99(d,J=6.5Hz,3H)1.10(d,J=6.5Hz,3H)2.65(s,3H)2.86(dd,J=7.0,14.0Hz,1H)3.00(dd,J=4.5,14.0Hz,1H)3.52(sept,J=6.0Hz,1H)3.82(s,3H)4.05(dd,J=4.5,7.0Hz,1H)4.51(d,J=6.0Hz,2H)6.42(bs,1H)6.77(d,J=8.0Hz,1H)7.09(dd,J=2.0,8.0Hz,1H)7.16(d,J=2.0Hz,1H)7.37(m,3H)7.85(m,2H)
実施例204
実施例204a)
Figure 2002080899
N−(2,4−ジクロロフェニル)−2−(5−ホルミル−2−メトキシフェニル)アセトアミド3.1gとエチル 2−(ジエチルホスホリル)−2−エチルアセテート3.3gを実施例1a)と同様の方法で処理し、2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}フェニル)−2−プロペノエート2.6gを得た。
H−NMR(CDCl)δ:1.26(d,J=6.0Hz,6H)1.35(t,J=8.0Hz,3H)3.75(s,2H)3.94(s,3H)4.27(q,J=8.0Hz,2H)4.41(sept,J=6.0Hz,1H)6.95(m,2H)7.20(d,J=8.0Hz,1H)7.30(d,J=8.0Hz,1H)7.79(d,J=2.0Hz,1H)7.85(dd,J=2.0,8.0Hz,1H)8.18(bs,1H)8.38(d,J=8.0Hz,1H)
実施例204b)
Figure 2002080899
実施例196b)と同様の方法により、2−エチル−3−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}フェニル)−2−プロペノエート2gよりエチル 2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}ベンジル)ブタノエート0.3gを得た。
H−NMR(CDCl)δ:0.88(d,J=6.0Hz,3H)1.06(d,J=6.0Hz,3H)1.15(t,J=8.0Hz,3H)2.85(m,2H)3.43(sept,J=6.0Hz,1H)3.65(s,3H)3.82(s,3H)3.94(dd,J=4.0,8.0Hz,1H)4.09(q,J=8.0Hz,2H)6.80(d,J=8.0Hz,1H)7.13(m,3H)7.23(d,J=8.0Hz,1H)8.22(s,1H)8.28(d,J=8.0Hz,1H)
実施例204c)
Figure 2002080899
エチル 2−(4−メトキシ−3−{2−オキソ−2−[2,4−ジクロロアニリノ]エチル}ベンジル)ブタノエート0.3gをエタノール10mlに溶解し、5N水酸化ナトリウム1mlを加えた。反応液を10分間加熱還流した後、氷冷下1N塩酸で酸性にした。水層を酢酸エチルで抽出し、飽和食塩水で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧留去する事により、2−(4−メトキシ−3−{2−オキソ−2−[4−(トリフルオロメチル)アニリノ]エチル}ベンジル)ブタン酸0.19gを得た。
H−NMR(CDCl)δ:0.95(d,J=6.0Hz,3H)1.08(d,J=6.0Hz,3H)2.86(dd,J=7.0,14.0Hz,1H)3.00(dd,J=4.5,14.0Hz,1H)3.49(sept,J=6.0Hz,1H)3.67(s,3H)3.84(s,3H)4.04(dd,J=4.5,7.0Hz,1H)6.82(d,J=8.0Hz,1H)7.12(m,3H)7.23(d,J=8.0Hz,1H)8.20(s,1H)8.28(d,J=8.0Hz,1H)
実施例205
製造例205a)
Figure 2002080899
製造例199と同様の方法により5−(2−クロロフェニル)−4−イソキサゾールカルボン酸を得た。
H−NMR(CDCl)δ:7.40(s,1H)7.43(m,2H)7.56(m,1H)8.00(dd,J=2.0,8.0Hz,1H)
実施例205b)
Figure 2002080899
実施例19d)e)と同様の方法により3−3−[([5−(2−クロロフェニル)−3−イソキサゾリル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:0.98(d,J=6.0Hz,3H)1.09(d,J=6.0Hz,3H)2.84(dd,J=7.0,14.0Hz,1H)3.00(dd,J=4.5,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)3.81(s,3H)4.05(dd,J=4.5,7.0Hz,1H)4.46(d,J=7.0Hz,2H)6.76(d,J=8.0Hz,1H)7.08(dd,J=2.0,8.0Hz,1H)7.16(d,J=2.0Hz,1H)7.29−7.35(m,2H)7.46(dd,J=4.0,7.5Hz,1H)7.85(dd,J=4.0,7.5Hz,1H)
実施例206
製造例206a)
エチル 2,4−ジオキソバレレート2mlとフェニルヒドラジン1.2gを酢酸20mlに溶解し、100℃で2時間撹拌した。酢酸を減圧留去した後残渣に酢酸エチルを加え、炭酸水素ナトリウム溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン:酢酸エチル14:1でエチル 3−メチル−1−フェニル−1H−5−ピラゾールカルボキシレート0.37g、ヘキサン:酢酸エチル9:1でエチル 5−メチル−1−フェニル−1H−3−ピラゾールカルボキシレート0.46gを得た。
Figure 2002080899
エチル 3−メチル−1−フェニル−1H−5−ピラゾールカルボキシレート
H−NMR(CDCl)δ:1.22(t,J=8.0Hz,3H)2.35(s,3H)4.22(q,J=8.0Hz,2H)6.80(s,1H)7.42(m,5H)
Figure 2002080899
エチル 5−メチル−1−フェニル−1H−3−ピラゾールカルボキシレート
H−NMR(CDCl)δ:1.39(t,J=8.0Hz,3H)2.34(s,3H)4.41(q,J=8.0Hz,2H)6.74(s,1H)7.40−7.50(m,5H)
製造例206b)
Figure 2002080899
エチル 3−メチル−1−フェニル−1H−5−ピラゾールカルボキシレート0.37gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液1mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、3−メチル−1−フェニル−1H−5−ピラゾールカルボン酸0.26gを得た。
H−NMR(CDCl)δ:2.35(s,3H)6.87(s,1H)7.40(m,5H)
実施例206
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(3−メチル−1−フェニル−1H−5−ピラゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:0.98(d,J=6.0Hz,3H)1.09(d,J=6.0Hz,3H)2.62(s,3H)2.84(dd,J=7.0,14.0Hz,1H)2.96(dd,J=4.5,14.0Hz,1H)3.51(sept,J=6.0Hz,1H)3.64(s,3H)4.03(dd,J=4.5,7.0Hz,1H)4.38(d,J=7.0Hz,2H)6.23(bs,1H)6.67(d,J=8.0Hz,1H)7.05−7.08(m,2H)7.24−7.32(m,5H)
実施例207
製造例207a)
Figure 2002080899
製造例206b)と同様の方法により5−メチル−1−フェニル−1H−3−ピラゾールカルボン酸を得た。
H−NMR(CDCl)δ:2.35(s,3H)6.79(s,1H)7.42−7.52(m,5H)
実施例207b)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(5−メチル−1−フェニル−1H−3−ピラゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.96(d,J=6.0Hz,3H)1.09(d,J=6.0Hz,3H)2.60(s,3H)2.82(dd,J=7.0,14.0Hz,1H)2.97(dd,J=4.5,14.0Hz,1H)3.47(sept,J=6.0Hz,1H)3.76(s,3H)4.01(dd,J=4.5,7.0Hz,1H)4.51(d,J=7.0Hz,2H)6.67(s,1H)6.71(d,J=8.0Hz,1H)7.04(dd,J=8.0,2.0Hz,1H)7.15(d,J=2.0Hz,1H)7.27(bs,1H)7.35−7.38(m,3H)7.41−7.46(m,2H)
実施例208
実施例208a)
Figure 2002080899
実施例28a)−c)と同様の方法により、N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−2−フルオロ−4−クロロベンズアミドを得た。
H−NMR(DMSO−d)δ:3.74(s,2H)3.85(s,3H)7.12(d,J=8.0Hz,1H)7.23(d,J=8.0Hz,1H)7.44(bs,1H)7.50(t,J=8.0Hz,1H)7.66(s,1H)7.90(t,J=8.0Hz,1H)9.98(s,1H)
実施例208b)
Figure 2002080899
N1−{5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジル}−2−フルオロ−4−クロロベンズアミド0.3gをメタノール20mlに溶解し、20mgのヨウ素を加えた。反応液を加熱還流しながらマグネシウム400mgを10分おきに10回に分けて加えた。反応液を氷冷し、2N塩酸で酸性にした後ジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後減圧下濃縮した。残渣にジイソプロピルエーテルを加え、結晶を濾過することによりN1−(4−クロロ−2−フルオロフェニル)−2−2−メトキシ−5−[(2−メチレン−4−オキソ−1,3−チアゾラン−5−イル)メチル]フェニルアセトアミド80mgを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=10.0,14.0Hz,1H)3.27(m,1H)3.65(s,2H)3.73(s,3H)4.81(m,1H)6.91(d,J=8.0Hz,1H)7.08−7.11(m,2H)7.22(m,1H)7.47(m,1H)7.89(m,1H)9.84(s,1H)
実施例209
製造例209a)
Figure 2002080899
製造例203と同様の方法により4−メチル−2−(3−ピリジル)−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.67(s,3H)7.54(dd,J=4.0,8.0Hz,1H)8.31(d,J=8.0Hz,1H)8.70(d,J=4.0Hz,1H)9.51(s,1H)
実施例209b)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−4−メトキシ−3−[([4−メチル−2−(3−ピリジル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.01(d,J=6.0Hz,3H)1.11(d,J=6.0Hz,3H)2.66(s,3H)2.87(dd,J=7.0,14.0Hz,1H)2.99(dd,J=4.5,14.0Hz,1H)3.55(sept,J=6.0Hz,1H)3.83(s,3H)4.06(dd,J=4.5,7.0Hz,1H)4.52(d,J=7.0Hz,2H)6.59(bs,1H)6.78(d,J=8.0Hz,1H)6.91(s,1H)7.09−7.26(m,2H)7.40(m,1H)7.60(m,1H)8.56(d,J=7.0Hz,1H)
実施例210
製造例210a)
Figure 2002080899
1−メチル−3−フェニルイミダゾール3.7gをテトラヒドロフランに溶解し、−50℃で冷却下n−ブチルリチウム(1.5mol/lヘキサン溶液)18.7mlを滴下した。反応温度を−20℃まで上昇させた後再び−50℃に冷却した。N,N−ジメチルホルムアミド3.6mlを加えた後冷却装置をはずし、反応温度を室温まで上昇させた。反応液に塩化アンモニウム溶液を加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=3:1)、1−メチル−5−フェニル−1H−2−イミダゾールカルボキシアルデヒド1.9gを得た。
H−NMR(DMSO−d)δ:3.98(s,3H)7.28(t,J=8.0Hz,1H)7.40(t,J=8.0Hz,2H)8.82(d,J=8.0Hz,2H)8.10(s,1H)9.75(s,1H)
製造例210b)
Figure 2002080899
1−メチル−5−フェニル−1H−2−イミダゾールカルボキシアルデヒド1gを15mlのジメチルスルホキシドに溶解し、リン酸水素カリウム(1mol/l)3mlを加えた。亜塩素酸ナトリウム1.5gの水溶液を加え、室温で20分間撹拌した。反応液に水を加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=3:1→1:4→酢酸エチル:メタノール=3:1)、1−メチル−5−フェニル−1H−2−イミダゾールカルボン酸90mgを得た。
H−NMR(DMSO−d)δ:4.00(s,3H)7.26(t,J=8.0Hz,1H)7.42(t,J=8.0Hz,2H)7.75(s,1H)8.82(d,J=8.0Hz,2H)
実施例210c)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(1−メチル−5−フェニル−1H−2−イミダゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.06(d,J=6.0Hz,3H)2.84(dd,J=7.0,14.0Hz,1H)2.97(dd,J=4.5,14.0Hz,1H)3.48(sept,J=6.0Hz,1H)3.81(s,3H)4.02(m,1H)4.03(s,3H)4.52(d,J=7.0Hz,2H)6.75(d,J=8.0Hz,1H)6.91(s,1H)7.06(dd,J=2.0,8.0Hz,1H)7.16(m,2H)7.21(m,1H)7.31(t,J=7.5Hz,2H)7.68(d,J=7.5Hz,2H)
実施例211
Figure 2002080899
実施例28a)−c),208a),b)と同様の方法により、N1−(2,4−ジクロロフェニル)−2−2−メトキシ−5−[(2−メチレン−4−オキソ−1,3−チアゾラン−5−イル)メチル]フェニルアセトアミドを得た。
H−NMR(DMSO−d)δ:3.00(dd,J=10.0,14.0Hz,1H)3.32(m,1H)3.65(s,2H)3.76(s,3H)4.82(dd,J=4.5,10.0Hz,1H)6.93(d,J=8.0Hz,1H)7.11(m,2H)7.38(dd,J=2.5,8.0Hz,1H)7.64(d,J=2.5Hz,1H)7.80(d,J=8.0Hz,1H)9.42(s,1H)
実施例212
製造例212a)
Figure 2002080899
製造例203と同様の方法により2−(2−エチル−4−ピリジル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:1.23(t,J=8.0Hz,3H)2.69(s,3H)2.83(q,J=8.0Hz,2H)7.70(d,J=6.0Hz,1H)7.78(s,1H)8.60(d,J=6.0Hz,1H)
実施例212b)
Figure 2002080899
実施例19d)e)と同様の方法により3−3−[([2−(2−エチル−4−ピリジル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.18(d,J=6.0Hz,3H)1.37(d,J=7.5Hz,3H)2.72(s,3H)2.94(m,3H)3.06(dd,J=4.5,14.0Hz,1H)3.61(sept,J=6.0Hz,1H)3.89(s,3H)4.12(dd,J=4.5,7.0Hz,1H)4.59(d,J=7.0Hz,2H)6.55(bs,1H)6.84(d,J=7.0Hz,1H)7.18(d,J=7.0Hz,1H)7.22(s,1H)7.63(m,1H)7.72(s,1H)8.62(d,J=5.0Hz,1H)
実施例213
製造例213a)
Figure 2002080899
ベンズアミドキシム6.7gとエチルプロピオレート5mlをメタノールに溶解し、3時間加熱還流した。溶媒を減圧下留去し、残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=10:1)、エチル(Z)−3−([(Z)−1−アミノ−1−フェニルメチリデン]アミノオキシ)−2−プロペノエート4.5gを得た。
H−NMR(CDCl)δ:1.30(t,J=8.0Hz,3H)4.17(q,J=8.0Hz,2H)4.90(d,J=6.0Hz,1H)5.25(bs,2H)7.38(d,J=6.0Hz,1H)7.40−7.50(m,3H)7.65(m,2H)
製造例213b)
Figure 2002080899
(Z)−3−([(Z)−1−アミノ−1−フェニルメチリデン]アミノオキシ)−2−プロペノエート4.5gをジフェニルエーテル30mlに溶解し、200℃で5時間加熱した。反応混合物にヘキサンを加え、固体を濾過した。その固体を残渣をシリカゲルカラムクロマトグラフィーで精製しヘキサン:酢酸エチル=1:1→ジクロロメタン:メタノール=50:1)、エチル 2−フェニル−1H−5−イミダゾールカルボキシレート3.5gを得た。
H−NMR(CDCl)δ:1.39(t,J=8.0Hz,3H)4.38(q,J=8.0Hz,2H)7.43(m,3H)7.78(s,1H)7.90(m,2H)
製造例213c)
エチル 2−フェニル−1H−5−イミダゾールカルボキシレート3.5gをN,N−ジメチルホルムアミド30mlに溶解し、氷冷下水素化ナトリウム0.71gを加え、室温で1時間撹拌した。反応液を再び氷冷し、ヨウ化メチル1.5mlを加え、室温で30分間撹拌した。反応液に水、塩化アンモニウム溶液を加え、酢酸エチルで抽出した。酢酸エチル層を飽和食塩水で洗浄後無水硫酸マグネシウムで乾燥し、減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、ヘキサン:酢酸エチル=8:1でエチル 1−メチル−2−フェニル−1H−4−イミダゾールカルボキシレート0.6gを、ヘキサン:酢酸エチル=1:1でエチル 1−メチル−2−フェニル−1H−5−イミダゾールカルボキシレート2.2gを得た。
Figure 2002080899
エチル 1−メチル−2−フェニル−1H−4−イミダゾールカルボキシレート
H−NMR(CDCl)δ:1.37(t,J=8.0Hz,3H)3.94(s,3H)4.34(q,J=8.0Hz,2H)7.46(m,3H)7.60(m,2H)7.83(s,1H)
Figure 2002080899
エチル 1−メチル−2−フェニル−1H−5−イミダゾールカルボキシレート
H−NMR(CDCl)δ:1.39(t,J=8.0Hz,3H)3.77(s,3H)4.39(q,J=8.0Hz,2H)7.45(m,3H)7.64(m,2H)7.68(s,1H)
製造例213d)
Figure 2002080899
エチル 1−メチル−2−フェニル−1H−5−イミダゾールカルボキシレート2.2gをエタノール20mlに溶解し、5N水酸化ナトリウム溶液2mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチル、テトラヒドロフラン混合溶媒で抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、1−メチル−2−フェニル−1H−5−イミダゾールカルボン酸1.1gを得た。
H−NMR(CDCl)δ:3.77(s,3H)7.52(m,3H)7.71(m,2H)8.06(s,1H)
実施例213e)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(1−メチル−2−フェニル−1H−5−イミダゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:0.82(d,J=6.0Hz,3H)0.97(d,J=6.0Hz,3H)2.66(dd,J=7.0,14.0Hz,1H)2.79(dd,J=4.5,14.0Hz,1H)3.41(sept,J=6.0Hz,1H)3.76(s,3H)3.78(s,3H)3.91(dd,J=4.5,7.0Hz,1H)4.37(d,J=7.0Hz,2H)6.87(d,J=8.0Hz,1H)7.05−7.08(m,2H)7.46−7.53(m,3H)7.72(d,J=6.5Hz,1H)7.82(s,1H)8.13(bs,1H)
実施例214
製造例214a)
Figure 2002080899
エチル 1−メチル−2−フェニル−1H−4−イミダゾールカルボキシレート0.6gをエタノール10mlに溶解し、5N水酸化ナトリウム溶液1mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチル、テトラヒドロフランで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、1−メチル−2−フェニル−1H−4−イミダゾールカルボン酸0.5gを得た。
H−NMR(CDCl)δ:3.86(s,3H)7.52(m,3H)7.68(m,2H)7.83(s,1H)
実施例214b)
Figure 2002080899
実施例19d)e)と同様の方法により2−イソプロポキシ−3−[4−メトキシ−3−([(1−メチル−2−フェニル−1H−4−イミダゾリル)カルボニル]アミノエチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:0.84(d,J=6.0Hz,3H)0.99(d,J=6.0Hz,3H)2.70(dd,J=7.0,14.0Hz,1H)2.84(dd,J=4.5,14.0Hz,1H)3.44(sept,J=6.0Hz,1H)3.79(s,3H)3.90(s,3H)3.96(dd,J=4.5,7.0Hz,1H)4.40(d,J=7.0Hz,2H)6.90(d,J=8.0Hz,1H)7.11(m,2H)7.56−7.64(m,3H)7.70−7.76(m,1H)8.10(s,1H)8.97(bs,1H)
実施例215
製造例215a)
Figure 2002080899
製造例203と同様の方法で2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.68(s,3H)7.48−7.55(m,2H)7.65(d,J=8.0Hz,1H)8.24(dd,J=2.0,8.0Hz,1H)13.50(bs,1H)
実施例215b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.74(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.07(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.89(s,3H),4.13(dd,J=4.5,7.0Hz,1H)4.59(d,J=7.0Hz,2H)6.84(d,J=8.0Hz,1H)7.16(dd,J=2.0,8.0Hz,1H)7.23(d,J=2.0Hz,1H)7.35−7.38(m,2H)7.48−7.51(m,1H)8.23−8.26(m,1H)
実施例216
製造例216a)
Figure 2002080899
製造例203と同様の方法で2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.66(s,3H)7.56(d,J=8.0Hz,2H)7.98(d,J=8.0Hz,2H)
実施例216b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.70(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.90(s,3H)4.13(dd,J=4.5,7.0Hz,1H)4.58(d,J=7.0Hz,2H)6.52(bs,1H)6.84(d,J=8.0Hz,1H)7.16(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.41(d,J=9.0Hz,2H)7.86(d,J=9.0Hz,2H)
実施例217
製造例217a)
Figure 2002080899
製造例203と同様の方法で4−メチル−2−(2−チエニル)−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.60(s,3H)7.08(dd,J=4.0,5.0Hz,1H)7.77(d,J=8.0Hz,1H)7.80(d,J=5.0Hz,1H)13.38(bs,1H)
実施例217b)
Figure 2002080899
実施例38と同様の方法により2−イソプロポキシ−3−4−メトキシ−3−[([4−メチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
H−NMR(CDCl)δ:1.05(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.67(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.89(s,3H)4.11(dd,J=4.5,7.0Hz,1H)4.57(d,J=7.0Hz,2H)6.49(bs,1H)6.83(d,J=8.0Hz,1H)7.08(dd,J=4.0,5.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.43(dd,J=1.0,5.0Hz,1H)7.52(dd,J=1.0,4.0Hz,1H)
実施例218
製造例218a)
Figure 2002080899
(±)−Z−α−ホスホノグリシントリメチルエステル20.6gをジクロロメタン200mlに溶解し、1,8−ジアザビシクロ[5.4.0]−7−ウンデセン8.9mlを加えた。反応液を室温で15分間撹拌した後tert−ブチル−N−(5−ホルミル−2−メトキシベンジル)カルバメートをジクロロメタン50mlに溶解して加え、室温で16時間撹拌した。反応液を氷冷し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=3:1)、メチル(Z)−2−[(ベンジルオキシ)カルボニル]アミノ−3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−プロペノエート21gを得た。
H−NMR(CDCl)δ:1.44(s,9H)3.80(s,3H)3.86(s,3H)4.25(s,2H)4.90(bs,1H)5.13(s,2H)6.78(d,J=8.0Hz,1H)7.35(m,5H)7.42(m,1H)7.49(m,1H)
製造例218b)
Figure 2002080899
メチル(Z)−2−[(ベンジルオキシ)カルボニル]アミノ−3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)−2−プロペノエート5gをメタノールに溶解し、10%パラジウム炭素0.7gを加え、水素雰囲気下で16時間撹拌した。反応液を濾過し、減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製することによって(酢酸エチル)メチル 2−アミノ−3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)プロパノエート3.4gを得た。
H−NMR(CDCl)δ:1.43(s,9H)2.80(dd,J=7.0,14.0Hz,1H)3.69(dd,J=4.5,14.0Hz,1H)3.72(s,3H)3.82(s,3H)4.27(d,J=6.0Hz,2H)5.00(bs,1H)6.79(d,J=8.0Hz,1H)7.06(m,2H)
製造例218c)
Figure 2002080899
メチル 2−アミノ−3−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシフェニル)プロパノエート3.4gをクロロホルム30mlに溶解し、酢酸1.7mlと亜硝酸イソアミル1.35mlを加え、60℃で20分間撹拌した。反応液を氷冷し、水を加えジクロロメタンで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した後減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=9:1)、1−[1−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシベンジル)−2−メトキシ−2−オキソエチル]−1−ジアジン−1イウム2.5gを得た。
H−NMR(CDCl)δ:1.43(s,9H)3.78(s,3H)3.82(s,3H)4.27(d,J=6.0Hz,1H)5.00(bs,1H)6.79(d,J=8.0Hz,1H)7.11(m,2H)
実施例218d)
Figure 2002080899
1−[1−(3−[(tert−ブトキシカルボニル)アミノ]メチル−4−メトキシベンジル)−2−メトキシ−2−オキソエチル]−1−ジアジン−1イウム2gをn−プロパノール30mlに溶解し、酢酸ロジウム(II)25mgを加えた。室温で1時間撹拌した後減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製した(ヘキサン:酢酸エチル=9:1)。得られたものを実施例38と同様の方法で処理することにより、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−プロポキシプロパン酸を得た。
H−NMR(CDCl)δ:0.87(d,J=8.0Hz,3H)1.58(q,J=8.0Hz,2H)2.97(dd,J=7.0,14.0Hz,1H)3.09(dd,J=4.5,14.0Hz,1H)3.38(m,1H)3.52(m,1H)3.85(s,3H)4.07(dd,J=4.5,7.0Hz,1H)4.60(d,J=7.0Hz,2H)6.82(m,2H)7.16(dd,J=2.0,8.0Hz,1H)7.30(dd,J=2.0,8.0Hz,1H)7.40(d,J=2.0Hz,1H)7.40(d,J=2.0Hz,1H)7.65(d,J=8.0Hz,1H)
実施例219
製造例219a)
Figure 2002080899
製造例203と同様の方法で2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.40(s,3H)2.77(s,3H)7.25(d,J=8.0Hz,2H)7.85(d,J=8.0Hz,2H)
実施例219b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.40(s,3H)2.70(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.07(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.89(s,3H)4.13(dd,J=4.5,7.0Hz,1H)4.58(d,J=7.0Hz,2H)6.49(bs,1H)6.84(d,J=8.0Hz,1H)7.16(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.24(d,J=8.0Hz,2H)7.81(d,J=8.0Hz,2H)
実施例220
製造例220a)
Figure 2002080899
製造例203と同様の方法で2−(3−クロロ−4−フルオロフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.80(s,3H)7.23(d,J=8.0Hz,1H)7.84(m,1H)8.09(dd,J=2.0,8.0Hz,1H)
実施例220b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−クロロ 4−フルオロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.18(d,J=6.0Hz,3H)2.70(s,3H)2.94(dd,J=7.0,14.0Hz,1H)3.07(dd,J=4.5,14.0Hz,1H)3.61(sept,J=6.0Hz,1H)3.89(s,3H)4.13(dd,J=4.5,7.0Hz,1H)4.58(d,J=7.0Hz,2H)6.52(bs,1H)6.84(d,J=8.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.21−7.23(m,2H)7.76−7.80(m,1H)8.02(dd,J=2.0,8.0Hz,1H)
実施例221
製造例221a)
Figure 2002080899
製造例203と同様の方法で2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.67(s,3H)7.60(dd,J=2.0,8.0Hz,1H)7.86(d,J=2.0Hz,1H)8.28(d,J=8.0Hz,1H)
実施例221b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2,4−ジクロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.72(s,3H)2.94(dd,J=7.0,14.0Hz,1H)3.07(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.89(s,3H)4.13(dd,J=4.5,7.0Hz,1H)4.59(d,J=7.0Hz,2H)6.52(bs,1H)6.84(d,J=8.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.23(d,J=2.0Hz,1H)7.36(dd,J=2.0,8.0Hz,1H)7.51(d,J=2.0Hz,1H)8.24(d,J=8.0Hz,1H)
実施例222
製造例222a)
Figure 2002080899
製造例203と同様の方法で2−(2−メチルフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.61(s,3H)2.82(s,3H),7.27−7.33(m,2H)7.37(d,J=8.0Hz,1H)7.80(d,J=8.0Hz,1H)
実施例222b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.57(s,3H)2.72(s,3H)2.94(dd,J=7.0,14.0Hz,1H)3.07(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.89(s,3H)4.12(dd,J=4.5,7.0Hz,1H)4.59(d,J=7.0Hz,2H)6.51(bs,1H)6.84(d,J=8.0Hz,1H)7.16(dd,J=2.0,8.0Hz,1H)7.24(d,J=2.0Hz,1H)7.26−7.38(m,3H)7.70(dd,J=2.0,8.0Hz,1H)
実施例223
製造例223a)
Figure 2002080899
製造例203と同様の方法で2−(4−メトキシフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.63(s,3H)3.80(s,3H)7.04(d,J=8.0Hz,2H)7.90(d,J=8.0Hz,2H)
実施例223b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−メトキシフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.05(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.69(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.05(dd,J=4.5,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.86(s,3H)3.89(s,3H)4.12(dd,J=4.5,7.0Hz,1H)4.58(d,J=7.0Hz,2H)6.49(bs,1H)6.83(d,J=8.0Hz,1H)6.94(d,J=8.0Hz,2H)7.17(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.86(d,J=8.0Hz,2H)
実施例224
製造例224a)
Figure 2002080899
製造例203と同様の方法で2−(3−メチルフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.42(s,3H)2.81(s,3H)7.32(m,2H)7.76(dd,J=2.0,8.0Hz,1H)7.82(d,J=2.0Hz,1H)
実施例224b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3 メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
H−NMR(CDCl)δ:1.07(d,J=6.0Hz,3H)1.17(d,J=6.0Hz,3H)2.41(s,3H)2.71(s,3H)2.93(dd,J=7.0,14.0Hz,1H)3.06(dd,J=4.5,14.0Hz,1H)3.60(sept,J=6.0Hz,1H)3.89(s,3H)4.12(dd,J=4.5,7.0Hz,1H)4.58(d,J=7.0Hz,2H)6.49(bs,1H)6.84(d,J=8.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.23(d,J=2.0Hz,1H)7.25−7.34(m,2H)7.70(d,J=8.0Hz,2H)7.76(bs,1H)
実施例225
製造例225a)
Figure 2002080899
製造例203と同様の方法で2−(4−フルオロフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.85(s,3H)7.16(t,J=8.0Hz,1H)7.87(t,J=8.0Hz,1H)
実施例225b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−フルオロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)(MH)487
実施例226
製造例226a)
Figure 2002080899
ジクロロ酢酸メチル20gとアセトアルデヒド8gを無水ジエチルエーテル50mlに溶解し、氷冷下28%ナトリウムメチラート25gを滴下した。反応液を氷冷下で2時間撹拌した後水、飽和食塩水を加え、ジエチルエーテルで抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮した。残渣をメタノール60mlに溶解し、チオ尿素8.5gを加え、4時間加熱還流した。反応液を氷冷し、水、アンモニア水を加えてpH9にして、ジクロロメタンを加え抽出した。有機層を無水硫酸マグネシウムで乾燥後、減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=4:1→1:1)、メチル 2−アミノ−5−メチル−1,3−チアゾール−4−カルボキシレート2.8gを得た。
H−NMR(CDCl)δ:2.61(s,3H)3.88(s,3H)5.02(bs,2H)
製造例226b)
Figure 2002080899
メチル 2−アミノ−5−メチル−1,3−チアゾール−4−カルボキシレート2.8gをメタノール30mlと臭化水素酸7mlに溶解し、氷冷下、亜硝酸ナトリウム1.2gの水溶液を滴下した。反応液を30分間氷冷下撹拌したのち、あらかじめ60℃に加熱しておいた臭化第一銅1.3gの臭化水素酸7ml溶液中に加え、60℃で1時間撹拌した。反応液を氷冷し、水を加え、ジエチルエーテルで抽出した。有機層を飽和食塩水で抽出し、無水硫酸マグネシウムで乾燥し、減圧下濃縮することによりメチル 2−ブロモ−5−メチル−1,3−チアゾール−4−カルボキシレート0.47gを得た。
H−NMR(CDCl)δ:2.74(s,3H)3.93(s,3H)
製造例226c)
Figure 2002080899
メチル 2−ブロモ−5−メチル−1,3−チアゾール−4−カルボキシレート0.3gと3−クロロフェニルボロン酸0.2gをトルエンに溶解し、テトラキストリフェニルホスフィンパラジウム0.15gと炭酸カリウム0.7gを加えた。反応液を窒素雰囲気下4時間加熱還流した。反応液を冷却し、セライト濾過した後減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、メチル 2−(3−メチルフェニル)−5−メチル−1,3−チアゾール−4−カルボキシレート0.2gを得た。
H−NMR(CDCl)δ:2.83(s,3H)3.97(s,3H)7.38(m,2H)7.77(dd,J=2.0,8.0Hz,1H)7.94(d,J=2.0Hz,1H)
製造例226d)
Figure 2002080899
メチル 2−(3−メチルフェニル)−5−メチル−1,3−チアゾール−4−カルボキシレート0.2gをメタノール10mlに溶解し、5N水酸化ナトリウム溶液1mlを加え、1時間加熱還流した。反応液を氷冷し、2N塩酸で中和した後酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、2−(3−メチルフェニル)−5−メチル−1,3−チアゾール−4−カルボン酸0.2gを得た。
H−NMR(DMSO−d)δ:2.73(s,3H)7.55(m,2H)7.83(d,J=8.0Hz,1H)7.93(d,J=2.0Hz,1H)
実施例226e)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−メチルフェニル)−5−メチル−1,3−チアゾール−4−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)503(MH
実施例227
製造例227a)
Figure 2002080899
製造例226と同様の方法により2−(3−5−ジクロロフェニル)−5−メチル−1,3−チアゾール−4−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.74(s,3H)8.75(s,1H)8.90(s,2H)
実施例227b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−5−ジクロロフェニル)−5−メチル−1,3−チアゾール−4−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)537(MH
実施例228
製造例228a)
Figure 2002080899
製造例226と同様の方法により5−メチル−2−(5−メチル−2−チエニル)−1,3−チアゾール−4−カルボン酸を得た。
H−NMR(CDCl)δ:2.53(s,3H)2.81(s,3H)6.74(d,J=5.0Hz,1H)7.28(d,J=5.0Hz,1H)
実施例228b)
Figure 2002080899
実施例38と同様の方法により2−イソプロポキシ−3−4−メトキシ−3−[([5−メチル−2−(5−メチル−2−チエニル)−1,3−チアゾール−4−イル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
MS m/e(ESI)489(MH
実施例229
製造例229a)
Figure 2002080899
製造例226と同様の方法により5−メチル−2−(3−チエニル)−1,3−チアゾール−4−カルボン酸を得た。
H−NMR(CDCl)δ:2.84(s,3H)7.41(dd,J=1.0,5.0Hz,1H)7.50(d,J=1.0Hz,1H)7.81(d,J=5.0Hz,1H)
実施例229b)
Figure 2002080899
実施例38と同様の方法により2−イソプロポキシ−3−4−メトキシ−3−[([5−メチル−2−(3−チエニル)−1,3−チアゾール−4−イル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
MS m/e(ESI)475(MH
実施例230
製造例230a)
Figure 2002080899
製造例226と同様の方法により2−(5−クロロ−2−チエニル)−5−メチル−1,3−チアゾール−4−カルボン酸を得た。
H−NMR(CDCl)δ:2.83(s,3H)6.92(d,J=5.0Hz,1H)7.24(d,J=5.0Hz,1H)
実施例230b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(5−クロロ−2−チエニル)−5−メチル−1,3−チアゾール−4−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)509(MH
実施例231
製造例231a)
Figure 2002080899
1−シクロペンタンカルボキサミド2gをテトラヒドロフランに溶解し、ローソン試薬4.3gを加えて室温で16時間撹拌した。反応液を減圧下濃縮した後残渣をシリカゲルカラムクロマトグラフィーで精製し、1−シクロペンタンカルボチオアミド1.8gを得た。
H−NMR(CDCl)δ:1.64(m,2H)1.78−1.94(m,4H)2.00(m,2H)2.95(qui,J=6.0Hz,1H)6.86(bs,1H)7.50(bs,1H)
製造例231b)
Figure 2002080899
エチル 2−クロロアセト酢酸と1−シクロペンタンカルボチオアミドを原料として製造例203と同様の方法で処理することにより2−シクロペンチル−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:1.70−1.88(m,6H)2.20(m,2H)2.72(s,3H)3.42(qui,J=6.0Hz,1H)
実施例231c)
Figure 2002080899
実施例38と同様の方法により3−[3−([(2−シクロペンチル−4−メチル−1,3−チアゾール−5−イル)カルボニル]アミノメチル 1)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)461(MH
実施例232
製造例232a)
Figure 2002080899
製造例231と同様の方法により2−シクロヘキシル−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:1.25−1.55(m,5H)1.75(m,1H)1.86(m,2H).213(m,2H)2.72(s,3H)2.96(qui,J=6.0Hz,1H)
実施例232b)
Figure 2002080899
実施例38と同様の方法により3−[3−([(2−シクロヘキシル−4−メチル−1,3−チアゾール−5−イル)カルボニル]アミノメチル 1)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)(MH)475
実施例233
製造例233a)
Figure 2002080899
製造例231と同様の方法により2−(2−メチルフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:2.61(s,3H)2.82(s,3H)7.30(m,2H)7.37(d,J=8.0Hz,1H)7.80(dd,J=2.0,8.0Hz,1H)
実施例233b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2−メチルフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)482(MH
実施例234
製造例234a)
Figure 2002080899
製造例231と同様の方法により2−(2−メトキシフェニル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.66(s,3H)4.02(s,3H)7.10(t,J=8.0Hz,1H)7.25(d,J=8.0Hz,1H)7.55(t,J=8.0Hz,1H)828(d,J=8.0Hz,1H)
実施例234b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2−メトキシフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)498(MH
実施例235
製造例235a)
Figure 2002080899
2−シアノ−3−メチルピリジン2gをピリジン30ml、トリエチルアミン12mlに溶解し、硫化水素ガスを2時間バブリングした。反応液を封管中50℃で2時間撹拌した後減圧下濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し(ヘキサン:酢酸エチル=1:1)、3−メチル−2−ピリジンカルボチオアミド2.6gを得た。
H−NMR(CDCl)δ:2.76(s,3H)7.28(m,1H)7.62(d,J=8.0Hz,1H)8.37(d,J=4.0Hz,1H)
製造例235b)
Figure 2002080899
エチル 2−クロロアセト酢酸と3−メチル−2−ピリジンカルボチオアミドを原料として製造例203と同様の方法で処理することにより4−メチル−2−(3−メチル−2−ピリジル)−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.66(s,3H)2.71(s,3H)7.42(dd,J=4.0,8.0Hz,1H)7.80(d,J=8.0Hz,1H)8.44(d,J=4.0Hz,1H)
実施例235c)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−メチル−2−ピリジル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)484(MH
実施例236
製造例236a)
Figure 2002080899
3−ピコリン2gをジクロロメタン30mlに溶解し、m−クロロ過安息香酸5.6gを加え、室温で16時間撹拌した。反応液を減圧下濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製し(酢酸エチル:メタノール=4:1)、3−ピリジンN−オキシド2.4gを得た。
H−NMR(CDCl)δ:2.31(s,3H)7.10(d,J=8.0Hz,1H)7.17(dd,J=4.0,8.0Hz,1H)8.07(m,2H)
製造例236b)
Figure 2002080899
3−ピリジンN−オキシド2.4gをアセトニトリル30mlに溶解し、トリメチルシリルシアニド3.5mlとジメチルカルバモイルクロリド2.4mlを加え、2時間加熱還流した。反応液を氷冷し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄、無水硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をシリカゲルカラムクロマトグラフィーで精製した(ヘキサン:酢酸エチル=1:1)。成績体を製造例235a)に従って処理し、5−メチル−2−ピリジンカルボチオアミド0.2gを得た。
H−NMR(CDCl)δ:2.41(s,3H)7.63(d,J=8.0Hz,1H)8.34(bs,1H)8.60(d,J=8.0Hz,1H)
製造例236c)
Figure 2002080899
2−クロロアセト酢酸と5−メチル−2−ピリジンカルボチオアミドを原料として製造例203と同様の方法で処理することにより2−(5−エチル−2−ピリジル)−4−メチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:2.35(s,3H)2.65(s,3H)7.78(dd,J=2.0,8.0Hz,1H)8.02(d,J=8.0Hz,1H)8.48(d,J=2.0Hz,1H)
実施例236d)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(5−メチル−2−ピリジル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)484(MH
実施例237
製造例237a)
Figure 2002080899
製造例203と同様の方法により2−(2−クロロフェニル)−4−エチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:1.37(t,J=8.0Hz,3H)3.24(q,H=8.0Hz,2H)7.40(m,2H)7.52(m,1H)8.35(m,1H)
実施例237b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(2−クロロフェニル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)517(MH
実施例238
製造例238a)
Figure 2002080899
製造例203と同様の方法により2−(4−クロロフェニル)−4−エチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:1.23(t,J=8.0Hz,3H)3.08(q,H=8.0Hz,2H)7.57(d,J=8.0Hz,2H)8.00(d,J=8.0Hz,2H)
実施例238b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−クロロフェニル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)517(MH
実施例239
製造例239a)
Figure 2002080899
製造例203と同様の方法により2−(4−メチルフェニル)−4−エチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:1.23(t,J=8.0Hz,3H)2.35(s,3H)3.07(q,H=8.0Hz,2H)7.30(d,J=8.0Hz,2H)7.86(d,J=8.0Hz,2H)
実施例239b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(4−メチルフェニル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)497(MH
実施例240
製造例240a)
Figure 2002080899
製造例235と同様の方法により4−エチル−2−(3−メチル−2−ピリジル)−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:1.27(t,J=8.0Hz,3H)2.74(s,3H)3.10(q,H=8.0Hz,2H)7.42(dd,J=4.0,8.0Hz,1H)7.81(d,J=8.0Hz,1H)8.48(d,J=4.0Hz,1H)
実施例240b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−メチル−2−ピリジル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)498(MH
実施例241
製造例241a)
Figure 2002080899
製造例236a−c)と同様の方法により2−(5−メチル−2−ピリジル)−4−エチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(DMSO−d)δ:1.24(t,J=8.0Hz,3H)2.35(s,3H)3.09(q,H=8.0Hz,2H)7.79(d,J=8.0Hz,1H)7.81(d,J=8.0Hz,1H)8.49(s,1H)
実施例241b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(5−メチル−2−ピリジル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)498(MH
実施例242
製造例242a)
Figure 2002080899
製造例203と同様の方法により2−(3−クロロ−4−フルオロフェニル)−4−エチル−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:1.35(t,J=8.0Hz,3H)3.20(q,H=8.0Hz,2H)7.21(d,J=8.0Hz,1H)7.83(m,1H)8.10(dd,J=2.0,8.0Hz,1H)
実施例242b)
Figure 2002080899
実施例38と同様の方法により3−3−[([2−(3−クロロ4−フルオロフェニル)−4−エチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシカルボン酸を得た。
MS m/e(ESI)535(MH
実施例243
製造例243a)
Figure 2002080899
製造例203と同様の方法で4−エチル−2−(2−チエニル)−1,3−チアゾール−5−カルボン酸を得た。
H−NMR(CDCl)δ:1.33(t,J=8.0Hz,3H)3.18(q,H=8.0Hz,2H)7.10(dd,J=4.0,5.0Hz,1H)7.47(d,J=4.0Hz,1H)7.60(d,J=5.0Hz,1H)
実施例243b)
Figure 2002080899
実施例38と同様の方法により2−イソプロポキシ−3−4−メトキシ−3−[([4−エチル−2−(2−チエニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニルプロパン酸を得た。
MS m/e(ESI)489(MH
実施例244
実施例244a)
Figure 2002080899
4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンズアルデヒドを用いて、製造例1a)に続き、製造例1b)と同様の方法により、エチル 2−イソプロポキシ−3−(4−メトキシ−3−2−[4−(トリフルオロメチル)フェノキシ]エチルフェニル)プロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23(t,J=7.2Hz,3H)2.79(dd,J=8.4,14.0Hz,1H)2.95(dd,J=4.8,14.0Hz,1H)3.08(t,J=7.6Hz,2H)3.50(sept,J=6.0Hz,1H)3.82(s,3H)4.00(dd,J=4.8,8.4Hz,1H)4.15−4.20(m,4H)6.78(d,J=8.0Hz,1H)6.96(d,J=8.8Hz,2H)7.09(s,1H)7.10(d,J=8.0Hz,1H)7.52(d,J=8.8Hz,2H)
実施例244b)
Figure 2002080899
エチル 2−イソプロポキシ−3−(4−メトキシ−3−2−[4−(トリフルオロメチル)フェノキシ]エチルフェニル)プロパノエートを実施例1e)と同様に処理し、2−イソプロポキシ−3−(4−メトキシ−3−2−[4−(トリフルオロメチル)フェノキシ]エチルフェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.89(dd,J=7.6,14.0Hz,1H)3.07(dd,J=4.0,14.0Hz,1H)3.09(t,J=7.6Hz,2H)3.56(sept,J=6.0Hz,1H)3.83(s,3H)4.10(dd,J=4.0,7.6Hz,1H)4.17(t,J=7.6Hz,2H)6.80(d,J=8.0Hz,1H)6.96(d,J=8.8Hz,2H)7.09(s,1H)7.09(d,J=8.0Hz,1H)7.52(d,J=8.8Hz,2H)
実施例245
実施例245a)
Figure 2002080899
4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンズアルデヒドを用いて、製造例1a)に続き、製造例1b)と同様の方法で、エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(トリフルオロメチル)ベンジル]オキシメチル)フェニル]プロパノエートを得た。
H−NMR(CDCl)δ:0.96(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.23(t,J=7.2Hz,3H)2.79(dd,J=8.4,14.0Hz,1H)2.95(dd,J=4.8,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)3.82(s,3H)4.00(dd,J=4.8,8.4Hz,1H)4.15−4.20(m,2H)4.58(s,2H)4.64(s,2H)6.79(d,J=8.0Hz,1H)7.16(dd,J=2.4,8.0Hz,1H)7.28(d,J=2.4Hz,1H)7.49(d,J=8.0Hz,2H)7.60(d,J=8.4Hz,2H)
実施例245b)
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(トリフルオロメチル)ベンジル]オキシメチル)フェニル]プロパノエートを実施例1e)と同様に処理し、2−イソプロポキシ−3−[4−メトキシ−3−([4−(トリフルオロメチル)ベンジル]オキシメチル)フェニル]プロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.92(dd,J=7.6,14.0Hz,1H)3.09(dd,J=4.0,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.81(s,3H)4.12(dd,J=4.0,7.6Hz,1H)4.59(s,2H)4.64(s,2H)6.80(d,J=8.0Hz,1H)7.14(dd,J=2.4,8.0Hz,1H)7.28(d,J=2.4Hz,1H)7.50(d,J=8.4Hz,2H)7.60(d,J=8.4Hz,2H)
実施例246
Figure 2002080899
水素化ナトリウム40mgをテトラヒドロフラン2mlに溶解し、氷冷下エチル 3−[3−(ヒドロキシメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート0.51gのテトラヒドロフラン溶液(1ml)および4−クロロベンジルブロミド0.25mgをこの順に加え、室温で15時間撹拌した。反応液を氷冷した後、1N塩酸で中和し、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1)溶出分画より0.19gを得た。得られた0.19gを実施例1e)と同様に処理し、3−(3−[(4−クロロメチル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸0.17gを得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.92(dd,J=7.6,14.0Hz,1H)3.09(dd,J=4.0,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.81(s,3H)4.12(dd,J=4.0,7.6Hz,1H)4.59(s,2H)4.60(s,2H)6.80(d,J=8.0Hz,1H)7.13(dd,J=2.4,8.0Hz,1H)7.27(d,J=2.4Hz,1H)7.32(s,4H)
実施例247
製造例247a)
Figure 2002080899
エチル 3−[3−(ヒドロキシメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート2.2gをジメトキシエタン15mlに溶解し、氷冷下で三臭化リン1.2mlを加え、室温で4時間撹拌した。反応液をエーテルで希釈し、水で洗浄した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(4:1)溶出分画よりエチル 3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート2.6gを得た。
H−NMR(CDCl)δ:0.97(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.24(t,J=7.2Hz,3H)2.88(dd,J=8.4,14.0Hz,1H)2.95(dd,J=5.2,14.0Hz,1H)3.50(sept,J=6.0Hz,1H)3.87(s,3H)4.00(dd,J=5.2,8.4Hz,1H)4.11−4.21(m,2H)4.53(d,J=2.4Hz,2H)6.79(d,J=8.8Hz,1H)7.08(d,J=8.8Hz,1H)7.12(s,1H)
製造例247b)
Figure 2002080899
水素化リチウムアルミニウム87mgをテトラヒドロフラン7.5mlに溶解し、氷冷下0.50gのエチル 5−メチル−2−フェニル−1,3−チアゾール−5−カルボキシレートのテトラヒドロフラン溶液(2.5ml)を加え、室温で3時間撹拌した。反応液を氷冷した後、水および1N塩酸を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画より(4−メチル−2−フェニル−1,3−チアゾール−5−イル)メタノール0.42gを得た。
H−NMR(CDCl)δ:2.46(s,3H)4.82(s,2H)7.50−7.53(m,3H)7.88−7.91(m,2H)
実施例247c)
Figure 2002080899
水素化ナトリウム24mgをテトラヒドロフラン2mlに溶解し、氷冷下3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエート0.19gのテトラヒドロフラン溶液(1ml)および(4−メチル−2−フェニル−1,3−チアゾール−5−イル)メタノール0.12mgのテトラヒドロフラン溶液(1ml)をこの順に加え、室温で15時間撹拌した。反応液に1N水酸化ナトリウム水溶液2mlを加え、室温で2時間撹拌した。反応液を氷冷した後、1N塩酸で中和し、酢酸エチルで抽出した。有機層を濃縮した後、逆相系のカラムで溶出溶媒として水−アセトニトリル−トリフルオロ酢酸系を用いたHPLCにて精製し、2−イソプロポキシ−3−(4−メトキシ−3−[(4−メチル−2−フェニル−1,3−チアゾール−5−イル)メトキシ]メチルフェニル)プロパン酸0.13gを得た。
MS m/e(ESI)454(MH
実施例248
製造例248a)
Figure 2002080899
フサル酸を用い、製造例247b)と同様の方法で、(5−ブチル−2−ピリジル)メタノールを得た。
H−NMR(CDCl)δ:0.93(t,J=8.0Hz,3H)1.31−1.40(m,2H)1.56−1.65(m,2H)2.63(t,J=8.0Hz,2H)4.73(s,2H)7.14(d,J=8.0Hz,1H)7.50(d,J=8.0Hz,1H)8.39(s,1H)
実施例248b)
Figure 2002080899
(5−ブチル−2−ピリジル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(5−ブチル−2−ピリジル)メトキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)416(MH
実施例249
製造例249a)
Figure 2002080899
4−イソプロポキシ安息香酸を用い、製造例247b)と同様の方法で、(4−イソプロポキシフェニル)メタノールを得た。
H−NMR(CDCl)δ:1.34(d,J=6.4Hz,6H)4.55(sept,J=6.4Hz,1H)4.62(s,2H)6.87(d,J=8.8Hz,2H)7.22(d,J=8.8Hz,2H)
実施例249b)
Figure 2002080899
(4−イソプロポキシフェニル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、2−イソプロポキシ−3−(3−[(4−イソプロポキシベンジル)オキシ]メチル−4−メトキシ)プロパン酸を得た。
MS m/e(ESI)417(MH
実施例250
製造例250a)
Figure 2002080899
4−クロロ−2−メトキシ安息香酸を用い、製造例247b)と同様の方法で、(4−クロロ−2−メトキシフェニル)メタノールを得た。
H−NMR(CDCl)δ:3.83(s,3H)4.62(s,2H)6.85(s,1H)6.94(d,J=8.0Hz,1H)7.20(d,J=8.0Hz,1H)
実施例250b)
Figure 2002080899
(4−クロロ−2−メトキシフェニル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(4−クロロ−2−メトキシベンジル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)423(MH
実施例251
製造例251a)
Figure 2002080899
2−クロロ−4−メトキシ安息香酸を用い、製造例247b)と同様の方法で、(2−クロロ−4−メトキシフェニル)メタノールを得た。
H−NMR(CDCl)δ:3.80(s,3H)4.70(s,2H)6.80(d,J=8.0Hz,1H)6.95(s,1H)7.37(d,J=8.0Hz,1H)
実施例251b)
Figure 2002080899
(2−クロロ−4−メトキシフェニル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(2−クロロ−4−メトキシベンジル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)423(MH
実施例252
製造例252a)
Figure 2002080899
2−メトキシ−4−(トリフルオロメチル)安息香酸を用い、製造例247b)と同様の方法で、[2−メトキシ−4−(トリフルオロメチル)フェニル]メタノールを得た。
H−NMR(CDCl)δ:3.92(s,3H)4.72(s,2H)7.08(s,1H)7.22(d,J=8.0Hz,1H)7.42(d,J=8.0Hz,1H)
実施例252b)
Figure 2002080899
(2−クロロ−4−メトキシフェニル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンジル]オキシメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)457(MH
実施例253
製造例253a)
Figure 2002080899
4−フェノキシ安息香酸を用い、製造例247b)と同様の方法で、(4−フェノキシフェニル)メタノールを得た。
H−NMR(CDCl)δ:4.72(s,2H)7.00−7.02(m,4H)7.12(t,J=8.0Hz,1H)7.30−7.38(m,4H)
実施例253b)
Figure 2002080899
(4−フェノキシフェニル)メタノールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、2−イソプロポキシ−3−(4−メトキシ−3−[(4−フェノキシベンジル)オキシ]メチルフェニル)プロパン酸を得た。
MS m/e(ESI)451(MH
実施例254
Figure 2002080899
2,4−ジクロロベンジルアルコールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(2,4−ジクロロベンジル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)427(MH
実施例255
Figure 2002080899
2−フルオロ−4−(トリフルオロメチル)ベンジルアルコールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンジル]オキシメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)445(MH
実施例256
Figure 2002080899
4−クロロ−2−フルオロベンジルアルコールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(4−クロロ−2−フルオロベンジル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)411(MH
実施例257
Figure 2002080899
3,4−ジクロロベンジルアルコールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、3−(3−[(3,4−ジクロロベンジル)オキシ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)427(MH
実施例258
Figure 2002080899
4−イソプロピルベンジルアルコールおよび3−[3−(ブロモメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例247)と同様の方法で、2−イソプロポキシ−3−(3−[(4−イソプロピルベンジル)オキシ]メチル−4−メトキシフェニル)プロパン酸を得た。
MS m/e(ESI)401(MH
実施例259
Figure 2002080899
4−メトキシ−3−{2−[4−(トリフルオロメチル)フェノキシ]エチル}ベンズアルデヒドおよび2,4−チアゾリジンジオンを用い、製造例27c)に続き実施例29)と同様の方法で、5−(4−メトキシ−3−2−[4−(トリフルオロメチル)フェノキシ]エチルベンジル)−1,3−チアゾラン−2,4−ジオンを得た。
H−NMR(DMSO−d)δ:3.09(t,J=7.2Hz,2H)3.10(dd,J=9.2,14.0Hz,1H)3.45(dd,J=4.0,14.0Hz,1H)3.83(s,3H)4.17(t,J=7.6Hz,2H)4.49(dd,J=4.0,9.2Hz,1H)6.82(d,J=8.0Hz,1H)6.96(d,J=8.8Hz,2H)7.08−7.10(m,2H)7.52(d,J=8.8Hz,2H)8.37(brs,1H)
実施例260
Figure 2002080899
4−メトキシ−3−({[4−(トリフルオロメチル)ベンジル]オキシ}メチル)ベンズアルデヒドおよび2,4−チアゾリジンジオンを用い、製造例27c)に続き実施例29)と同様の方法で、5−[4−メトキシ−3−([4−(トリフルオロメチル)ベンジル]オキシメチル)ベンジル]−1,3−チアゾラン−2,4−ジオンを得た。
H−NMR(DMSO−d)δ:3.11(dd,J=10.0,14.0Hz,1H)3.47(dd,J=4.0,14.0Hz,1H)3.82(s,3H)4.51(dd,J=4.0,9.2Hz,1H)4.58(s,2H)4.66(s,2H)6.82(d,J=8.0Hz,1H)7.12(dd,J=2.4,8.0Hz,1H)7.24−7.28(m,1H)7.50(d,J=8.0Hz,2H)7.61(d,J=8.0Hz,2H)8.10(brs,1H)
実施例261
製造例261a)
Figure 2002080899
tert−ブチル N−(5−ホルミル−2−メトキシベンジル)カルバメート7.7gおよび2,4−チアゾリジンジオン3.4gをトルエン100mlに溶解し、ピペリジン0.28gおよび酢酸0.24gを加え、ディーンスターク装置を付して3時間加熱還流した。反応液を室温まで冷却した後、析出した結晶を濾取し、トルエンで洗浄した後、減圧下乾燥し、tert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジルカルバメートを得た。次いで得られたtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イリデン)メチル]−2−メトキシベンジルカルバメートをジメチルホルムアミド80mlに溶解し、10%パラジウム炭素8.0gを加え、50度、15kg/cmに水素加圧下で20時間撹拌した。触媒を濾過し溶媒を減圧留去した後、水を加え酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(1:1)溶出分画よりtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルカルバメート8.2gを得た。
H−NMR(CDCl)δ:1.45(s,9H)3.11(dd,J=9.2,14.0Hz,1H)3.42(dd,J=3.6,14.0Hz,1H)3.83(s,3H)4.26(d,J=6.0Hz,2H)4.50(dd,J=3.6,9.2Hz,1H)5.00−5.08(m,1H)6.79(d,J=8.0Hz,1H)7.09−7.13(m,2H)8.28−8.33(m,1H)
実施例261b)
Figure 2002080899
tert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルカルバメート8.2gに4M HCl−dioxane 40mlを加え、1時間撹拌した。反応液を濃縮した後、減圧下乾燥し、tert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩6.0gを得た。次いで得られたtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩0.20gおよび2−メトキシ−4−(トリフルオロメチル)安息香酸0.15gをジメチルホルムアミド2.5mlに溶解し、氷冷下シアノホスホン酸ジエチル0.11ml、トリエチルアミン0.10mlを加えた。室温で16時間撹拌した後、反応液を水で希釈し、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画よりN1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2−メトキシ−4−(トリフルオロメチル)ベンズアミド0.18gを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)3.97(s,3H)4.42(d,J=6.0Hz,2H)4.79(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.08−7.13(m,2H)7.37(d,J=8.0Hz,1H)7.42(s,1H)7.84(d,J=8.0Hz,1H)8.64(t,J=6.0Hz,1H)12.02(brs,1H)
実施例262
Figure 2002080899
2−クロロ−4−メトキシ安息香酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2−クロロ−4−メトキシベンズアミドを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.78(s,3H)3.79(s,3H)4.42(d,J=6.0Hz,2H)4.79(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)6.94−6.96(m,1H)7.06(d,J=2.4Hz,1H)7.08−7.13(m,2H)7.43(d,J=8.0Hz,1H)8.64(t,J=6.0Hz,1H)12.02(brs,1H)
実施例263
Figure 2002080899
フサル酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N2−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−5−ブチル−2−ピリジンカルボキシアミドを得た。
H−NMR(DMSO−d)δ:0.89(t,J=7.2Hz,3H)1.25−1.33(m,2H)1.53−1.60(m,2H)2.67(t,J=8.0Hz,2H)2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)4.42(d,J=6.0Hz,2H)4.77(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.03(d,J=2.4Hz,1H)7.10(dd,J=2.4,8.4Hz,1H)7.81(dd,J=2.0,8.0Hz,1H)7.95(d,J=8.0Hz,1H)8.49(d,J=2.0Hz,1H)8.89(t,J=6.0Hz,1H)12.02(brs,1H)
実施例264
Figure 2002080899
4−イソプロポキシ安息香酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−4−イソプロポキシベンズアミドを得た。
H−NMR(DMSO−d)δ:1.26(d,J=6.0Hz,6H)2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)4.42(d,J=6.0Hz,2H)4.69(sept,J=6.0Hz,1H)4.79(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)6.95(d,J=8.4Hz,2H)7.03(s,1H)7.08(d,J=8.4Hz,1H)7.84(d,J=8.4Hz,2H)8.63(t,J=6.0Hz,1H)12.02(brs,1H)
実施例265
Figure 2002080899
4−メチル−2−フェニル−1,3−チアゾール−5−カルボン酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N4−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−4−メチル−2−フェニル−1,3−チアゾール−5−カルボキシアミドを得た。
H−NMR(DMSO−d)δ:2.61(s,3H)2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)4.37(m,2H)4.77(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.08−7.13(m,2H)7.46−7.52(m,3H)7.90−7.95(m,2H)8.61(m,1H)12.02(brs,1H)
実施例266
Figure 2002080899
4−フェニル安息香酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−4−フェニルベンズアミドを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)4.42(d,J=6.0Hz,2H)4.77(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.08−7.13(m,2H)7.39(t,J=7.2Hz,1H)7.48(t,J=7.6Hz,2H)7.72(d,J=7.6Hz,2H)7.76(d,J=8.0Hz,2H)7.99(d,J=8.0Hz,2H)8.87(t,J=6.0Hz,1H)12.02(brs,1H)
実施例267
Figure 2002080899
4−フェノキシ安息香酸およびtert−ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジルアミン塩酸塩を用い、実施例261)と同様の方法で、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−4−フェノキシベンズアミドを得た。
H−NMR(DMSO−d)δ:2.99(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.79(s,3H)4.42(d,J=6.0Hz,2H)4.77(dd,J=4.0,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.02(d,J=8.8Hz,2H)7.05−7.10(m,4H)7.20(t,J=8.0Hz,1H)7.43(t,J=8.0Hz,2H)7.92(d,J=8.8Hz,2H)8.76(t,J=6.0Hz,1H)12.02(brs,1H)
実施例268
Figure 2002080899
フサル酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、3−[3−([(5−ブチル−2−ピリジル)カルボニル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:0.93(t,J=8.0Hz,3H)1.00(d,J=6.0Hz,3H)1.12(d,J=6.0Hz,3H)1.31−1.40(m,2H)1.56−1.65(m,2H)2.66(t,J=8.0Hz,2H)2.88(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.53(sept,J=6.0Hz,1H)3.87(s,3H)4.08(dd,J=4.4,8.0Hz,1H)4.63(d,J=6.4Hz,2H)6.80(d,J=8.0Hz,1H)7.12(dd,J=2.4,8.0Hz,1H)7.22(d,J=2.4Hz,1H)7.63(dd,J=1.6,8.0Hz,1H)8.10(d,J=8.0Hz,1H)8.35(d,J=1.6Hz,1H)
実施例269
Figure 2002080899
4−イソプロポキシ安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、2−イソプロポキシ−3−(3−[(4−イソプロポキシベンゾイル)アミノ]メチル−4−メトキシフェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.34(d,J=6.4Hz,6H)2.90(dd,J=8.0,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.86(s,3H)4.10(dd,J=4.4,8.0Hz,1H)4.58(d,J=6.0Hz,2H)4.59−4.61(m,1H)6.55−6.61(m,1H)6.80(d,J=8.0Hz,1H)6.87(d,J=8.8Hz,2H)7.13(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.69(d,J=8.8Hz,2H)
実施例270
Figure 2002080899
4−フェニル安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、2−イソプロポキシ−3−(4−メトキシ−3−[(4−フェニルベンゾイル)アミノ]メチルフェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.03(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.92(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.58(sept,J=6.0Hz,1H)3.88(s,3H)4.11(dd,J=4.4,8.0Hz,1H)4.63(d,J=6.4Hz,2H)6.68−6.73(m,1H)6.82(d,J=8.0Hz,1H)7.15(dd,J=2.0,8.0Hz,1H)7.24(d,J=2.0Hz,1H)7.35−7.40(m,1H)7.46(t,J=7.2Hz,2H)7.59(d,J=7.2Hz,2H)7.64(d,J=8.0Hz,2H)7.82(d,J=8.0Hz,2H)
実施例271
Figure 2002080899
4−フェノキシ安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、2−イソプロポキシ−3−(4−メトキシ−3−[(4−フェノキシベンゾイル)アミノ]メチルフェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.91(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.86(s,3H)4.10(dd,J=4.4,8.0Hz,1H)4.59(d,J=6.0Hz,2H)6.60−6.65(m,1H)6.81(d,J=8.0Hz,1H)6.98(d,J=8.0Hz,2H)7.03(d,J=8.0Hz,2H)7.13−7.18(m,2H)7.22(d,J=2.0Hz,1H)7.37(t,J=8.0Hz,2H)7.72(d,J=8.0Hz,2H)
実施例272
Figure 2002080899
4−イソプロピル安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、2−イソプロポキシ−3−(3−[(4−イソプロピルベンゾイル)アミノ]メチル−4−メトキシフェニル)プロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.25(d,J=6.0Hz,6H)2.90(dd,J=8.0,14.0Hz,1H)2.92(sept,J=6.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.86(s,3H)4.10(dd,J=4.4,8.0Hz,1H)4.60(d,J=6.0Hz,2H)6.66−6.70(m,1H)6.81(d,J=8.0Hz,1H)7.14(dd,J=2.0,8.0Hz,1H)7.23(d,J=2.0Hz,1H)7.26(d,J=8.0Hz,2H)7.68(d,J=8.0Hz,2H)
実施例273
Figure 2002080899
2,4−ジメトキシ安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)に続き実施例19e)と同様の方法で、3−(3−[(2,4−ヂメトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.90(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.85(s,3H)3.88(s,3H)3.92(s,3H)4.09(dd,J=4.4,8.0Hz,1H)4.61−4.63(m,2H)6.47(d,J=2.0Hz,1H)6.59(dd,J=2.0,8.8Hz,1H)6.81(d,J=8.0Hz,1H)7.13(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)8.19(d,J=8.8Hz,1H)8.34−8.39(m,1H)
実施例274
Figure 2002080899
4−シクロヘキシル安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(4−シクロヘキシルベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)454(MH
実施例275
Figure 2002080899
4−(4’−エチルフェニル)安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([4−(4’−エチルフェニル)ベンゾイル]アミノ)メチルフェニル]プロパン酸を得た。
MS m/e(ESI)476(MH
実施例276
Figure 2002080899
2−ナフタレンカルボン酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、2−イソプロポキシ−3−(4−メトキシ−3−[(2−ナフチルカルボニル)アミノ]メチルフェニル)プロパン酸を得た。
MS m/e(ESI)422(MH
実施例277
製造例277a)
Figure 2002080899
2−クロロ−4−ヒドロキシ安息香酸1.9gをジメチルホルムアミド20mlに溶解し、ヨウ化メチル1.8gおよび炭酸水素カリウム1.2gを加え、室温で3時間撹拌した。反応液を水で希釈した後、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(3:1)溶出分画より2−クロロ−4−ヒドロキシ安息香酸メチル1.7gを得た。
製造例277b)
Figure 2002080899
2−クロロ−4−ヒドロキシ安息香酸メチル0.25gをジメチルホルムアミド10mlに溶解し、ヨウ化エチル0.23gおよび炭酸カリウム0.21gを加え、で8時間撹拌した。反応液を水で希釈した後、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をメタノール6mlに溶解し、1N水酸化ナトリウム3mlを加え、室温で6時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−クロロ−4−エトキシ安息香酸1.7gを得た。
H−NMR(CDCl)δ:1.43(t,J=7.2Hz,3H)4.10(q,J=7.2Hz,2H)6.84(dd,J=2.8,8.8Hz,1H)6.99(d,J=2.8Hz,1H)8.03(d,J=8.8Hz,1H)
実施例277c)
Figure 2002080899
2−クロロ−4−エトキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−クロロ−4−エトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)450(MH
実施例278
製造例278a)
Figure 2002080899
2−クロロ−4−ヒドロキシ安息香酸メチルおよびヨウ化プロピルを用い、製造例277b)と同様の方法で、2−クロロ−4−プロポキシ安息香酸を得た。
H−NMR(CDCl)δ:1.05(t,J=7.2Hz,3H)1.80−1.86(m,2H)3.98(t,J=6.4Hz,2H)6.84(dd,J=2.8,8.8Hz,1H)6.99(d,J=2.8Hz,1H)8.03(d,J=8.8Hz,1H)
実施例278b)
Figure 2002080899
2−クロロ−4−プロポキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−クロロ−4−プロポキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.03(t,J=7.2Hz,3H)1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)1.76−1.85(m,2H)2.91(dd,J=8.0,14.0Hz,1H)3.06(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.85(s,3H)3.92(t,J=6.4Hz,2H)4.10(dd,J=4.4,8.0Hz,1H)4.61(d,J=6.0Hz,2H)6.80−6.89(m,3H)6.95−7.02(m,1H)7.14(dd,J=2.0,8.0Hz,1H)7.24(d,J=2.0Hz,1H)7.74(d,J=8.8Hz,1H)
実施例279
製造例279a)
Figure 2002080899
2−クロロ−4−ヒドロキシ安息香酸メチルおよびヨウ化イソプロピルを用い、製造例277b)と同様の方法で、2−クロロ−4−イソプロポキシ安息香酸を得た。
H−NMR(CDCl)δ:1.37(d,J=6.0Hz,6H)4.62(sept,J=6.0Hz,1H)6.81(dd,J=2.8,8.8Hz,1H)6.99(d,J=2.8Hz,1H)8.02(d,J=8.8Hz,1H)
実施例279b)
Figure 2002080899
2−クロロ−4−イソプロポキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−クロロ−4−イソプロポキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)464(MH
実施例280
製造例280a)
Figure 2002080899
2−クロロ−4−ヒドロキシ安息香酸メチルおよび臭化シクロペンチルを製造例277b)と同様の方法で、2−クロロ−4−シクロペンチルオキシ安息香酸を得た。
H−NMR(CDCl)δ:1.76−1.98(m,8H)4.78−4.82(m,1H)6.81(dd,J=2.8,8.8Hz,1H)6.99(d,J=2.8Hz,1H)8.02(d,J=8.8Hz,1H)
実施例280b)
Figure 2002080899
2−クロロ−4−シクロペンチルオキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−クロロ−4−シクロペンチルオキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
H−NMR(CDCl)δ:1.03(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)1.72−1.95(m,8H)2.91(dd,J=8.0,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.85(s,3H)4.10(dd,J=4.4,8.0Hz,1H)4.60(d,J=6.0Hz,2H)4.74−4.77(m,1H)6.79−6.86(m,3H)6.95−7.01(m,1H)7.14(dd,J=2.0,8.0Hz,1H)7.24(d,J=2.0Hz,1H)7.73(d,J=8.8Hz,1H)
実施例281
製造例281a)
Figure 2002080899
4−クロロ−2−ヒドロキシ安息香酸5.0gをジメチルホルムアミド25mlに溶解し、ヨウ化エチル14.5gおよび炭酸カリウム12gを加え、70℃で8時間撹拌した。反応液を水で希釈した後、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出分画より、4−クロロ−2−エトキシ安息香酸エチル3.8gを得た。
H−NMR(CDCl)δ:1.48(t,J=7.2Hz,3H)1.59(t,J=7.2Hz,3H)4.10(q,J=7.2Hz,2H)4.33(q,J=7.2Hz,2H)6.92(d,J=2.0Hz,1H)6.94(dd,J=2.0,8.8Hz,1H)7.73(d,J=8.8Hz,1H)
製造例281b)
Figure 2002080899
4−クロロ−2−エトキシ安息香酸エチル0.2gをメタノール5mlに溶解し、1N水酸化ナトリウム2mlを加え、室温で6時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して4−クロロ−2−エトキシ安息香酸0.20gを得た。
H−NMR(CDCl)δ:1.59(t,J=7.2Hz,3H)4.33(q,J=7.2Hz,2H)7.04(d,J=2.0Hz,1H)7.13(dd,J=2.0,8.8Hz,1H)8.13(d,J=8.8Hz,1H)
実施例281c)
Figure 2002080899
4−クロロ−2−エトキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(4−クロロ−2−エトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)450(MH
実施例282
製造例282a)
Figure 2002080899
2,4−ジヒドロキシ安息香酸およびヨウ化エチルを製造例281a)に続き、製造例281b)と同様の方法で、2,4−ジエトキシ安息香酸を得た。
H−NMR(CDCl)δ:1.45(t,J=7.2Hz,3H)1.56(t,J=7.2Hz,3H)4.10(q,J=7.2Hz,2H)4.28(q,J=7.2Hz,2H)6.51(d,J=2.0Hz,1H)6.62(dd,J=2.0,8.8Hz,1H)8.12(d,J=8.8Hz,1H)
実施例282b)
Figure 2002080899
2,4−ジエトキシ安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2,4−ジエトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)460(MH
実施例283
製造例283a)
Figure 2002080899
2−ヒドロキシ−4−(トリフルオロメチル)ベンズアルデヒド0.80gをジメチルホルムアミド8mlに溶解し、ヨウ化エチル0.78gおよび炭酸カリウム0.69gを加え、70℃で2時間撹拌した。反応液を水で希釈した後、酢酸エチルで抽出した。有機層を1N塩酸、飽和食塩水の順番で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(5:1)溶出分画より、2−エトキシ−4−(トリフルオロメチル)ベンズアルデヒド0.60gを得た。
H−NMR(CDCl)δ:1.57(t,J=7.2Hz,3H)4.22(q,J=7.2Hz,2H)7.22(s,1H)7.29(d,J=8.0Hz,1H)7.93(d,J=8.0Hz,1H)10.50(s,1H)
製造例283b)
Figure 2002080899
2−エトキシ−4−(トリフルオロメチル)ベンズアルデヒド0.60gをジメチルスルホキシド5mlとリン酸二水素ナトリウム67mg水溶液(1ml)に溶解し、亜塩素酸ナトリウム0.35g水溶液(3ml)を滴下した。室温で12時間撹拌後、水を加え、酢酸エチルで抽出した。飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥後、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(2:1)溶出画分より2−エトキシ−4−(トリフルオロメチル)安息香酸0.55gを得た。
H−NMR(CDCl)δ:1.61(t,J=7.2Hz,3H)4.40(q,J=7.2Hz,2H)7.28(s,1H)7.40(d,J=8.0Hz,1H)8.30(d,J=8.0Hz,1H)
実施例283c)
Figure 2002080899
2−エトキシ−4−(トリフルオロメチル)安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−[3−([2−エトキシ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)484(MH
実施例284
製造例284a)
Figure 2002080899
2−ヒドロキシ−4−(トリフルオロメチル)ベンズアルデヒドおよびヨウ化プロピルを用い、製造例283a)と同様の方法で、2−プロポキシ−4−(トリフルオロメチル)ベンズアルデヒドを得た。
H−NMR(CDCl)δ:1.11(t,J=7.2Hz,3H)1.88−1.96(m,2H)4.10(t,J=7.2Hz,2H)7.22(s,1H)7.29(d,J=8.0Hz,1H)7.93(d,J=8.0Hz,1H)10.50(s,1H)
製造例284b)
Figure 2002080899
2−プロポキシ−4−(トリフルオロメチル)ベンズアルデヒドを用い、製造例283b)と同様の方法で、2−プロポキシ−4−(トリフルオロメチル)安息香酸を得た。
H−NMR(CDCl)δ:1.15(t,J=7.2Hz,3H)1.94−2.04(m,2H)4.30(t,J=7.2Hz,2H)7.28(s,1H)7.40(d,J=8.0Hz,1H)8.30(d,J=8.0Hz,1H)
実施例284c)
Figure 2002080899
2−プロポキシ−4−(トリフルオロメチル)安息香酸および3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−([2−プロポキシ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)フェニル]プロパン酸を得た。
MS m/e(ESI)498(MH
実施例285
製造例285a)
Figure 2002080899
4−ブロモ安息香酸およびエチル 3−[3−(アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例19d)と同様の方法で、エチル 3−[−3−([4−ブロモベンゾイル]アミノ)メチル]−4−メトキシフェニル)−2−イソプロポキシプロパノエートを得た。次いで、得られたエチル 3−[−3−([4−ブロモベンゾイル]アミノ)メチル]−4−メトキシフェニル)−2−イソプロポキシプロパノエート1.1g、ビス(ピナコラート)ジボロン0.64g、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム56mgおよび酢酸カリウム0.68gをジメチルスルホキシド20mlに溶解し、窒素雰囲気下80℃で1時間撹拌した。反応液を室温まで冷却した後、酢酸エチルおよび水を加え、セライト濾過し、母液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(1:1)溶出分画よりエチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエート1.23gを得た。
H−NMR(CDCl)δ:0.96(t,J=6.4Hz,3H)1.14(d,J=6.4Hz,3H)1.21−1.27(m,3H)1.35(s,12H)2.88(dd,J=8.4,14.0Hz,1H)2.94(dd,J=4.8,14.0Hz,1H)3.50(sept,J=6.4Hz,1H)3.86(s,3H)4.02(dd,J=4.8,8.4Hz,1H)4.14−4.19(m,2H)4.62(d,J=5.6Hz,2H)6.65−6.70(m,1H)6.81(d,J=8.4Hz,1H)7.16(dd,J=2.4,8.4Hz,1H)7.22(d,J=2.4Hz,1H)7.73(d,J=8.0Hz,2H)7.85(d,J=8.0Hz,2H)
実施例285b)
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエート53mg、4−ブロモフルオロベンゼン21mg、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム5.7mgおよび炭酸カリウム55mgをジメトキシエタン1.5mlに溶解し、窒素雰囲気下80℃で2時間撹拌した。反応液を室温まで冷却した後、セライト濾過し、母液を減圧留去した。残渣をエタノール2mlに溶解し、1N水酸化ナトリウム1mlを加え、室温で6時間撹拌した。反応液を1N塩酸で中和し、酢酸エチルで抽出した。有機層を濃縮した後、逆相系のカラムで溶出溶媒として水−アセトニトリル−トリフルオロ酢酸系を用いたHPLCにて精製し2−イソプロポキシ−3−4−[メトキシ−3−([4−(4’−フルオロフェニル)ベンゾイル]アミノ)メチルフェニル]プロパン酸19mgを得た。
MS m/e(ESI)466(MH
実施例286
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび4−ブロモクロロベンゼンを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−4−[メトキシ−3−([4−(4’−クロロフェニル)ベンゾイル]アミノ)メチルフェニル]プロパン酸を得た。
MS m/e(ESI)482(MH
実施例287
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび2−ブロモクロロベンゼンを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−4−[メトキシ−3−([4−(2’−クロロフェニル)ベンゾイル]アミノ)メチルフェニル]プロパン酸を得た。
MS m/e(ESI)482(MH
実施例288
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび4−ブロモアニソールを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−4−[メトキシ−3−([4−(4’−メトキシフェニル)ベンゾイル]アミノ)メチルフェニル]プロパン酸を得た。
MS m/e(ESI)478(MH
実施例289
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび4−ブロモベンゾトリフルオリドを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−4−(メトキシ−3−[(4−[4’−(トリフルオロメチル)フェニル]ベンゾイル)アミノ]メチルフェニル)プロパン酸を得た。
MS m/e(ESI)516(MH
実施例290
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび2−ブロモチアゾールを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−[([4−(1,3−チアゾール−2−イル)ベンゾイル]アミノ)メチル]フェニル)プロパン酸を得た。
MS m/e(ESI)455(MH
実施例291
Figure 2002080899
エチル 2−イソプロポキシ−3−[4−メトキシ−3−([4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾイル]アミノメチル)フェニル]プロパノエートおよび2−ブロモピリジンを用い、実施例285)と同様の方法で、2−イソプロポキシ−3−[4−メトキシ−3−[([4−(2−ピリジル)ベンゾイル]アミノ)メチル]フェニル)プロパン酸を得た。
MS m/e(ESI)449(MH
実施例292
製造例292a)
Figure 2002080899
4−ブロモ−2−クロロ安息香酸1.0gを用い、製造例277a)に続き、製造例285)と同様の方法で、メチル 2−クロロ−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾエート0.91gを得た。
H−NMR(CDCl)δ:1.25(s,6H)1.36(s,6H)1.14(d,J=6.4Hz,3H)3.94(s,3H)7.70(d,J=8.0Hz,1H)7.79(d,J=8.0Hz,1H)7.84(s,1H)
製造例292b)
Figure 2002080899
メチル 2−クロロ−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾエート0.30g、ブロモベンゼン0.19g、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロパラジウム57mgおよび炭酸カリウム0.55gをジメトキシエタン15mlに溶解し、窒素雰囲気下1時間加熱還流した。反応液を室温まで冷却した後、酢酸エチルおよび水を加え、セライト濾過し、母液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(5:1)溶出分画より2−クロロ−4−フェニル安息香酸メチルを得た。次いで得られた2−クロロ−4−フェニル安息香酸メチルをメタノール4mlに溶解し、1N水酸化ナトリウム2mlを加え、室温で6時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−クロロ−4−フェニル安息香酸0.12gを得た。
H−NMR(CDCl)δ:7.44−7.52(m,3H)7.56−7.63(m,3H)7.73(d,J=1.6Hz,3H)8.05(d,J=8.0Hz,1H)
実施例292c)
Figure 2002080899
2−クロロ−4−フェニル安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−クロロ−4−フェニルベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)482(MH
実施例293
製造例293a)
Figure 2002080899
メチル 2−クロロ−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾエートおよび4−ブロモクロロベンゼンを用い、製造例292b)と同様の方法で、2−クロロ−4−(4’−クロロフェニル)安息香酸を得た。
H−NMR(DMSO−d)δ:7.54(d,J=8.8Hz,2H)7.72(dd,J=1.6,8.0Hz,2H)7.78(d,J=8.8Hz,2H)7.84(d,J=1.6Hz,2H)7.87(d,J=8.0Hz,1H)
実施例293b)
Figure 2002080899
2−クロロ−4−(4’−クロロフェニル)安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[2−クロロ−4−(4’−クロロフェニル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)516(MH
実施例294
製造例294a)
Figure 2002080899
メチル 2−クロロ−4−(4,4,5,5−テトラメチル−1,3,2−ジオキサボロラン−2−イル)ベンゾエートおよび4−ブロモトルエンを用い、製造例292b)と同様の方法で、2−クロロ−4−(4’−メチルフェニル)安息香酸を得た。
H−NMR(CDCl)δ:2.42(s,3H)7.29(d,J=8.0Hz,2H)7.52(d,J=8.0Hz,2H)7.56(dd,J=1.6,8.4Hz,1H)7.71(d,J=1.6Hz,1H)8.09(d,J=8.4Hz,1H)
実施例294b)
Figure 2002080899
2−クロロ−4−(4’−メチルフェニル)安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[2−クロロ−4−(4’−メチルフェニル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)496(MH
実施例295
製造例295a)
Figure 2002080899
4−クロロ−2−エトキシ安息香酸エチル0.50g、フェニルボロン酸0.31g、1,1−ビス(ジフェニルホスフィノ)フェロセンジクロロニッケル85mgおよびリン酸カリウム1.4gをジオクサン8mlに溶解し、窒素雰囲気下95℃で1時間撹拌した。反応液を室温まで冷却した後、酢酸エチルおよび水を加え、セライト濾過し、母液を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(9:1)溶出分画より2−エトキシ−4−フェニル安息香酸エチルを得た。次いで得られた2−エトキシ−4−フェニル安息香酸エチルをエタノール4mlに溶解し、1N水酸化ナトリウム2mlを加え、室温で6時間撹拌した。反応混合物を氷冷し、1N塩酸で中和した後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥し、溶媒を減圧留去して2−エトキシ−4−フェニル安息香酸0.22gを得た。
H−NMR(CDCl)δ:1.61(t,J=7.2Hz,3H)4.42(q,J=7.2Hz,2H)7.21(d,J=1.6Hz,1H)7.36(dd,J=1.6,8.4Hz,1H)7.43−7.51(m,3H)7.59−7.61(m,1H)8.25(d,J=8.4Hz,1H)
実施例295b)
Figure 2002080899
2−エトキシ−4−フェニル安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[(2−エトキシ−4−フェニルベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)492(MH
実施例296
製造例296a)
Figure 2002080899
4−クロロ−2−エトキシ安息香酸エチルおよび4−フルオロベンゼンボロン酸を用い、製造例295)と同様の方法で、2−エトキシ−4−(4’−フルオロフェニル)安息香酸を得た。
H−NMR(CDCl)δ:1.61(t,J=7.2Hz,3H)4.42(q,J=7.2Hz,2H)7.15−7.20(m,3H)7.30(dd,J=1.6,8.0Hz,1H)7.55−7.59(m,2H)8.24(d,J=8.0Hz,1H)
実施例296b)
Figure 2002080899
2−エトキシ−4−(4’−フルオロフェニル)安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38)と同様の方法で、3−(3−[2−エトキシ−4−(4’−フルオロフェニル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)510(MH
実施例297
製造例297a)
Figure 2002080899
4−クロロ−2−エトキシ安息香酸エチルおよび4−メトキシベンゼンボロン酸を用い、製造例295と同様の方法で、2−エトキシ−4−(4’−メトキシフェニル)安息香酸を得た。
H−NMR(CDCl)δ:1.61(t,J=7.2Hz,3H)3.87(s,3H)4.41(q,J=7.2Hz,2H)7.01(d,J=8.0Hz,2H)7.17(d,J=1.6Hz,1H)7.31(dd,J=1.6,8.4Hz,1H)7.55(d,J=8.0Hz,2H)8.22(d,J=8.4Hz,1H)
実施例297b)
Figure 2002080899
2−エトキシ−4−(4’−メトキシフェニル)安息香酸およびエチル 3−[3−([(tert−ブトキシカルボニル)アミノ]メチル)−4−メトキシフェニル]−2−イソプロポキシプロパノエートを用い、実施例38と同様の方法で、3−(3−[2−エトキシ−4−(4’−メトキシフェニル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸を得た。
MS m/e(ESI)522(MH
実施例298
Figure 2002080899
実施例218と同様の方法で、3−[3−([2−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−プロポキシプロパン酸を得た。
H−NMR(CDCl)δ:0.86(t,J=7.2Hz,3H)1.51−1.61(m,2H)2.97(dd,J=8.0,14.0Hz,1H)3.07(dd,J=4.4,14.0Hz,1H)3.35(dt,J=6.4,8.8Hz,1H)3.50(dt,J=6.4,8.8Hz,1H)3.89(s,3H)4.04(dd,J=4.4,8.0Hz,1H)4.64(d,J=6.0Hz,2H)6.82(d,J=8.0Hz,1H)7.17(dd,J=2.0,8.0Hz,1H)7.22(d,J=2.0Hz,1H)7.38(d,J=12.0Hz,1H)7.37−7.45(m,1H)7.52(d,J=8.0Hz,1H)8.23(t,J=8.0Hz,1H)
実施例299
Figure 2002080899
実施例218と同様の方法で、3−(3−[(4−クロロ−2−フルオロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−プロポキシプロパン酸を得た。
MS m/e(ESI)424(MH
実施例300
Figure 2002080899
実施例218)と同様の方法で、3−[4−メトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]−2−プロポキシプロパン酸を得た。
MS m/e(ESI)469(MH
実施例301
Figure 2002080899
実施例218と同様の方法で、3−(3−[(2−クロロ−4−プロポキシ)アミノ]メチル−4−メトキシフェニル)−2−プロポキシプロパン酸を得た。
MS m/e(ESI)464(MH
実施例302
Figure 2002080899
実施例218と同様の方法で、3−[3−([2−クロロ−4−(シクロペンチルオキシ)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−プロポキシプロパン酸を得た。
MS m/e(ESI)490(MH
実施例303
Figure 2002080899
実施例218と同様の方法で、3−(3−[(4−シクロヘキシルベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−プロポキシプロパン酸を得た。
MS m/e(ESI)454(MH
実施例304
Figure 2002080899
実施例218)と同様の方法で、3−3−[([2−(2−クロロフェニル)−4−メチル−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−プロポキシプロパン酸を得た。
MS m/e(ESI)503(MH
実施例305
Figure 2002080899
実施例218)と同様の方法で、3−4−メトキシ−3−[([4−メチル−2−(4−メチルフェニル)−1,3−チアゾール−5−イル]カルボニルアミノ)メチル]フェニル−2−プロポキシプロパン酸を得た。
MS m/e(ESI)483(MH
実施例306
Figure 2002080899
実施例218と同様の方法で、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−エトキシプロパン酸を得た。
MS m/e(ESI)426(MH
実施例307
Figure 2002080899
実施例218)と同様の方法で、2−エトキシ−3−[4−メトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]プロパン酸を得た。
MS m/e(ESI)455(MH
実施例308
Figure 2002080899
実施例218と同様の方法で、3−(3−[(2,4−ジクロロベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソブトキシプロパン酸を得た。
MS m/e(ESI)454(MH
実施例309
Figure 2002080899
実施例218)と同様の方法で、2−イソブトキシ−3−[4−メトキシ−3−([(4−メチル−2−フェニル−1,3−チアゾール−5−イル)カルボニル]アミノメチル)フェニル]プロパン酸を得た。
MS m/e(ESI)483(MH
実施例310
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[4−メトキシ−3−([4−(トリフルオロメトキシ)ベンゾイル]アミノメチル)ベンジル]ブタノイックアシッドを得た。
δ:0.94(t,J=7.2Hz,3H)1.51−1.71(m,2H)2.51−2.58(m,1H)2.70(dd,J=5.8,14.0Hz,1H)2.88(dd,J=8.4,14.0Hz,1H)3.84(s,3H)4.57(d,J=5.6Hz,2H)6.75(t,J=5.6Hz,1H)6.80(d,J=8.4Hz,1H)7.09(dd,J=2.0,8.4Hz,1H)7.15(d,J=2.0Hz,1H)7.23(d,8.4Hz,2H)7.79(dt,J=2.0,8.4Hz,2H)
実施例311
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(4−メトキシ−3−[(2−ナフチルカルボニル)アミノ]メチルベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.96(t,J=7.2Hz,3H)2.53−2.62(m,1H)2.73(dd,J=5.8,14.0Hz,1H)2.89(dd,J=8.6,14.0Hz,1H)2.89(dd,J=8.6,14.0Hz,1H)3.87(s,3H)4.64(d,J=6.0Hz,2H)6.82(d,J=8.4Hz,1H)6.85(t,J=6.0Hz,1H)7.10(dd,2.2,8.4Hz,1H)7.22(d,J=2.2Hz,1H),7.4−7.58(m,2H)7.78−7.94(m,4H)8.27(s,1H)
実施例312
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[4−メトキシ−3−([(1−メチル−1H−2−インドリル)カルボニル]アミノメチル)ベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.95(t,J=7.2Hz,3H)1.51−1.62(m,2H)2.53−2.62(m,1H)2.72(dd,J=6.4,14.0Hz,1H)2.89(dd,J=4.4,14.0Hz,1H)3.86(s,3H)4.04(s,3H)4.57(d,J=5.6Hz,2H)6.77(t,J=5.6Hz,1H)6.79−6.83(m,2H)7.06−7.18(m,3H)7.27−7.33(m,1H)7.37(d,J=8.4Hz,1H)7.61(d,J=8.0Hz,1H)
実施例313
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(3−[(2,4−ジメトキシベンゾイル)アミノ]メチル−4−メトキシベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.94(t,J=7.2Hz,3H)1.50−1.71(m,2H)2.49−2.58(m,1H)2.70(dd,J=6.0,14.0Hz,1H)2.86(dd,J=4.4,14.0Hz,1H)3.84(s,3H)3.86(s,3H)3.90(s,3H)4.59(d,J=6.0Hz,1H)4.60(d,J=6.0Hz,1H)6.46(d,J=2.4Hz,1H)6.58(dd,J=2.4,8.8Hz,1H)6.78(d,J=8.4Hz,1H)7.05(dd,J=2.4,8.4Hz,1H)7.17(d,J=2.4Hz,1H)8.16(d,J=8.8Hz,1H)8.35(t,J=6.0Hz,1H)
実施例314
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[3−([(5−ブチル−2−ピリジル)カルボニル]アミノメチル)−4−メトキシベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.90−1.00(m,6H)1.30−1.42(m,2H)1.50−1.71(m,4H)2.50−2.59(m,1H)2.65(t,J=8.0Hz,2H)2.70(dd,J=6.4,14.0Hz,1H)2.86(dd,J=8.4,14.0Hz,1H)3.86(s,3H)4.61(d,J=6.4Hz,2H)6.78(d,J=8.4Hz,1H)7.06(dd,J=2.4,8.4Hz,1H)7.17(d,J=2.4Hz,1H)7.62(dd,J=2.0,8.0Hz,1H)8.10(d,J=8.0Hz,1H)8.35(d,J=2.0Hz,1H)8.42(t,J=6.4Hz,1H)
実施例315
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(4−メトキシ−3−[(2,4,5−トリメトキシベンゾイル)アミノ]メチルベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.93(t,J=7.6Hz,3H)1.50−1.70(m,2H)2.50−2.58(m,1H)2.69(dd,J=6.0,13.6Hz,1H)2.88(dd,J=8.4,13.6Hz,1H)3.86(s,3H)3.88(s,3H)3.91(s,3H)3.92(s,3H)4.60(d,J=6.0Hz,2H)6.49(s,1H)6.78(d,J=8.0Hz,1H)7.06(dd,J=2.0,8.0Hz,1H)7.17(d,J=2.0Hz,1H)7.75(s,1H)8.45(t,J=6.0Hz,1H)
実施例316
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(3−[(2,4−ジメチルベンゾイルアミノ]メチル−4−メトキシベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.94(t,J=7.2Hz,3H)1.50−1.71(m,2H)2.31(s,3H)2.36(s,3H)2.50−2.59(m,1H)2.70(dd,J=6.6,14.0Hz,1H)2.88(dd,J=8.4,14.0Hz,1H)3.81(s,3H)4.54(d,J=6.0Hz,1H)4.55(d,J=6.0Hz,1H)6.29(t,J=6.0Hz,1H)6.78(d,J=8.6Hz,1H)6.98(d,J=7.6Hz,1H)7.00(s,1H)7.08(dd,J=2.0,8.6Hz,1H)7.18(d,J=2.0Hz,1H)7.24(d,J=7.6Hz,1H)
実施例317
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[4−メトキシ−3−([(5−メチル−2−ピラジニル)カルボニル]アミノメチル)ベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.94(t,J=7.2Hz,3H)1.50−1.70(m,2H)2.50−2.58(m,1H)2.69(dd,J=6.8,14.0Hz,1H)2.88(dd,J=8.4,14.0Hz,1H)3.85(s,3H)4.61(d,J=6.0Hz,2H)6.79(d,J=8.4Hz,1H)7.08(dd,J=2.0,8.4Hz,1H)7.15(d,J=2.0Hz,1H)8.21(t,J=6.0Hz,1H)8.36(s,1H)9.26(s,1H)
実施例318
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(4−メトキシ−3−[(2−キノリルカルボニル)アミノ]メチルベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.93(t,J=7.2Hz,3H)1.50−1.70(m,2H)2.51−2.60(m,1H)2.70(dd,J=6.4,13.4Hz,1H)2.89(dd,J=8.6,13.4Hz,1H)3.87(s,3H)4.68(d,J=6.4Hz,2H)6.80(d,J=8.2Hz,1H)7.07(dd,J=2.2,8.2Hz,1H)7.21(d,J=2.2Hz,1H)7.69(t,J=8.0Hz,1H)7.76(t,J=8.0Hz,1H)7.97(d,J=8.0Hz,1H)8.01(d,J=8.0Hz,1H)8.62(s,1H)8.67(t,J=6.4Hz,1H)9.15(s,1H)
実施例319
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−(4−メトキシ−3−[(6−キノリルカルボニル)アミノ]メチルベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.91(t,J=7.6Hz,3H)1.47−1.70(m,2H)2.47−2.56(m,1H)2.69(dd,J=6.0,14.0Hz,1H)2.84(dd,J=8.8,14.0Hz,1H)3.79(s,3H)4.57(d,J=6.0Hz,2H)6.75(d,J=8.0Hz,1H)6.84(t,J=6.0Hz,1H)7.05(dd,J=2.0,8.0Hz,1H)7.17(d,J=2.0Hz,1H)7.34(dd,J=4.4,8.4Hz,1H)7.88(dd,J=2.0,8.8Hz,1H)7.96(t,J=8.8Hz,1H)8.06(d,J=8.4Hz,1H)8.10(s,1H)8.86(d,J=2.8Hz,1H)
実施例320
Figure 2002080899
2−(3−[(2,6−ジフルオロ−4−メトキシベンゾイル)アミノ]メチル−4−メトキシベンジル)ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.95(t,J=7.6Hz,3H)1.53−1.71(m,2H)2.52−2.59(m,1H)2.70(dd,J=6.6,14.0Hz,1H)2.88(dd,J=8.4,14.0Hz,1H)3.79(s,3H)3.83(s,3H)4.57(d,J=5.6Hz,1H)4.57(d,J=5.6Hz,1H)6.44(s,1H)6.46(s,1H)6.78(d,J=8.0Hz,1H)7.07(dd,J=2.0,8.0Hz,1H)7.17(d,J=2.0Hz,1H)
実施例321
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[4−メトキシ−3−([(5−メトキシピリジル−2−ピリジル)カルボニル]アミノメチル)ベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.93(t,J=7.2Hz,3H)1.48−1.70(m,2H)2.48−2.57(m,1H)2.69(dd,J=6.6,13.6Hz,1H)2.87(dd,J=8.4,13.6Hz,1H)3.85(s,3H)3.89(s,3H)4.59(d,J=6.0Hz,2H)6.78(d,J=8.0Hz,1H)7.06(dd,J=2.0,8.0Hz,1H)7.16(d,J=2.0Hz,1H)7.26(dd,J=3.2,8.4Hz,1H)8.14(d,J=8.4Hz,1H)8.19(d,J=3.2Hz,1H)8.30(t,J=6.0Hz,1H)
実施例322
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[3−([(3,5−ジクロロ−2−ピリジル)カルボニル]アミノメチル)−4−メトキシベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.94(t,J=7.2Hz,3H)1.51−1.70(m,2H)2.50−2.59(m,1H)2.69(dd,J=6.4,13.6Hz,1H)2.87(dd,J=8.4,13.6Hz,1H)3.85(s,3H)4.57(d,J=6.4Hz,2H)6.78(d,J=8.4Hz,1H)7.07(dd,J=2.2,8.4Hz,1H)7.16(s,1H)7.82(d,J=2.0Hz,1H)8.09(t,J=6.4Hz,1H)8.40(d,J=2.0Hz,1H)
実施例323
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−[3−([(4−クロロベンゾ[b]フラン−7−イル)カルボニル]アミノメチル)−4−メトキシベンジル]ブタノイックアシッドを得た。
H−NMR(CDCl)δ:0.94(t,J=7.2Hz,3H)1.50−1.71(m,2H)2.50−2.60(m,1H)2.71(dd,J=6.0,13.8Hz,1H)2.87(dd,J=8.8,13.8Hz,1H)3.89(s,3H)4.69(d,J=6.0Hz,1H)4.70(d,J=6.0Hz,1H)6.81(d,J=8.4Hz,1H)6.96(d,J=2.0Hz,1H)7.08(dd,J=2.0,8.4Hz,1H)7.20(d,J=2.0Hz,1H)7.33(d,J=8.0Hz,1H)7.71(d,J=2.0Hz,1H)8.01(t,J=6.0Hz,1H)8.04(d,J=8.0Hz,1H)
実施例324
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、3−(3−[(4−シアノベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.92(dd,J=7.2,14.0Hz,1H)3.03(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.86(s,3H)4.11(dd,J=4.4,7.2Hz,1H)4.60(d,J=6.0Hz,2H)6.77(br,1H)6.82(d,J=8.4Hz,1H)7.16(dd,J=2.0,8.4Hz,1H)7.21(d,J=2.0Hz,1H)7.70(d,J=8.0Hz,2H)7.84(d,J=8.0Hz,2H)
実施例325
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、3−[3−([3−フルオロ−4−(トリフルオロメチル)ベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.03(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.92(dd,J=7.4,14.0Hz,1H)3.03(dd,J=4.6,14.0Hz,1H)3.58(sept,J=6.0Hz,1H)3.87(s,3H)4.11(dd,J=4.6,7.4Hz,1H)4.60(d,J=6.0Hz,2H)6.75(br,1H)6.83(d,J=8.4Hz,1H)7.17(dd,J=2.0,8.4Hz,1H)7.21(d,J=2.0Hz,1H)7.56−7.70(m,3H)
実施例326
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、3−(3−[(2−フルオロ−4−メトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.00(d,J=6.0Hz,3H)1.14(d,J=6.0Hz,3H)2.89(dd,J=8.0,14.0Hz,1H)3.04(dd,J=4.0,14.0Hz,1H)3.54(sept,J=6.0Hz,1H)3.83(s,3H)3.86(s,3H)4.09(dd,J=4.0,8.0Hz,1H)4.62(d,J=6.0Hz,2H)6.59(dd,J=2.4,14.0Hz,1H)6.77(dd,J=2.4,8.8Hz,1H)6.81(d,J=8.0Hz,1H)7.13(dd,J=2.0,8.4Hz,1H)7.21(d,J=2.0Hz,1H)7.27−7.36(m,1H)8.05(t,J=8.8Hz,1H)
実施例327
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、3−(3−[(2−クロロ−4−メトキシベンゾイル)アミノ]メチル−4−メトキシフェニル)−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.90(dd,J=7.6,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.81(s,3H)3.84(s,3H)4.09(dd,J=4.4,7.6Hz,1H)4.61(d,J=5.6Hz,2H)6.59(dd,J=2.4,14.0Hz,1H)6.80(d,J=8.4Hz,1H)6.84(dd,J=2.8,8.8Hz,1H)6.88(d,J=2.8Hz,1H)6.97(t,J=5.6Hz,1H)7.14(dd,J=2.0,8.4Hz,1H)7.24(d,J=2.0Hz,1H)7.74(d,J=8.8Hz,1H)
実施例328
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−イソプロポキシ−3−(4−メトキシ−3−[(2,4,6−トリクロロベンゾイル)アミノ]メチルフェニル)プロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.91(dd,J=7.6,14.0Hz,1H)3.05(dd,J=4.4,14.0Hz,1H)3.57(sept,J=6.0Hz,1H)3.82(s,3H)4.11(dd,J=4.4,7.6Hz,1H)4.61(d,J=6.0Hz,2H)6.40(br,1H)6.80(d,J=8.4Hz,1H)7.16(dd,J=2.4,8.4Hz,1H)7.27(d,J=2.4Hz,1H)7.26(s,1H)7.32(s,1H)
実施例329
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、2−イソプロポキシ−3−4−メトキシ−3−[([6−(トリフルオロメチル)−3−ピリジル]カルボニルアミノ)メチル]フェニルプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.05(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.93(dd,J=7.2,14.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.59(sept,J=6.0Hz,1H)3.86(s,3H)4.10(dd,J=4.4,7.2Hz,1H)4.63(d,J=6.0Hz,2H)6.83(d,J=8.4Hz,1H)6.93(br,1H)7.17(dd,J=2.0,8.4Hz,1H)7.22(d,J=2.0Hz,1H)7.75(d,J=8.4Hz,1H)8.29(dd,J=1.2,8.4Hz,1H)9.02(s,1H)
実施例330
Figure 2002080899
3−3−[([3−クロロ−5−(トリフルオロメチル)−2−ピリジル]カルボニルアミノ)メチル]−4−メトキシフェニル−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.02(d,J=6.0Hz,3H)1.15(d,J=6.0Hz,3H)2.90(dd,J=7.6,14.0Hz,1H)3.04(dd,J=4.4,14.0Hz,1H)3.56(sept,J=6.0Hz,1H)3.86(s,3H)4.09(dd,J=4.4,7.6Hz,1H)4.61(d,J=6.0Hz,2H)6.82(d,J=8.2Hz,1H)7.15(dd,J=2.0,8.2Hz,1H)7.23(d,J=2.0Hz,1H)8.05(d,J=0.8Hz,1H)8.14(t,J=6.0Hz,1H)8.70(d,J=0.8Hz,1H)
実施例331
Figure 2002080899
実施例1d)、1e)と同様の方法で処理し、3−[3−([(2,4−ジメトキシ−5−ピリミジニル)カルボニル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパノイックアシッドを得た。
H−NMR(CDCl)δ:1.04(d,J=6.0Hz,3H)1.16(d,J=6.0Hz,3H)2.91(dd,J=7.4,14.0Hz,1H)3.04(dd,J=4.2,14.0Hz,1H)3.58(sept,J=6.0Hz,1H)3.89(s,3H)4.10(dd,J=4.2,7.4Hz,1H)4.60(d,J=6.0Hz,2H)6.82(d,J=8.4Hz,1H)7.14(dd,J=2.0,8.4Hz,1H)7.19(d,J=2.0Hz,1H)7.96(t,J=6.0Hz,1H)9.10(s,1H)
実施例332
製造例332a)
Figure 2002080899
3−ブロモ−4−フルオロベンズアルデヒド25gをメタノール300mlに溶解し、オルトギ酸トリメチル40g、パラトシル酸3gを加え、6時間加熱還流した。反応混合物を氷冷し重炭酸ナトリウム5gを加えた。減圧下濃縮し、残渣に酢酸エチルを加え有機層を水、飽和食塩水にて洗浄し、無水硫酸マグネシウムにて乾燥し、溶媒を減圧濃縮し、2−ブロモ−4−(ジメトキシメチル)ベンゼン30gを得た。この粗生成物をテトラヒドロフラン300mlに溶解し、窒素雰囲気下−78℃に冷却した。ブチルリチウム(2.47Mヘキサン溶液)60mlを加えた。1時間攪拌した後、N,N−ジメチルホルムアミド20mlを加え、室温まで昇温した。反応混合物に、水を加え、酢酸エチルにて抽出した。無水硫酸マグネシウムにて乾燥し、溶媒を減圧濃縮し、2−フルオロ−5−(ジメトキシメチル)ベンズアルデヒド25gを得た。この粗生成物をエタノール200mlに溶解し、氷冷下、水素化ホウ素ナトリウム3.3gを加えた。室温にて2時間攪拌し、水を加え、酢酸エチルにて抽出した。無水硫酸マグネシウムにて乾燥し、溶媒を減圧濃縮し、2−フルオロ−5−(ジメトキシメチル)ベンジルアルコール25gを得た。この粗生成物をトルエン400mlに溶解し、アジ化ジフェニルホスホリル32mlおよびジアザビシクロ[5.4.0]ウンデセン22mlを加え、室温で12時間撹拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。2−アジドメチル−4−(ジメトキシメチル)フルオロベンゼン30gを得た。この粗生成物をテトラヒドロフラン500mlに溶解し、水50mlおよびトリフェニルホスフィン45gを加え、50℃で3時間撹拌した。溶媒を減圧留去し、2−フルオロ−5−(ジメトキシメチル)ベンジルアミン70gを得た。粗生成物をN,N−ジメチルホルムアミド200mlに溶解し、第三ブチルジカーボネート55g、トリエチルエミン43mlを加え、室温にて4日間攪拌した。反応混合物に水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーに付し、ヘキサン−酢酸エチル(10:1→2:1)溶出分画より第三ブチル N−[5−(ジメトキシメチル)−2−フルオロベンジル]カーバマート30gを得た。
H−NMR(CDCl)δ:1.44(s,9H)3.30(s,6H)4.36(d,J=5.2Hz,2H)4.90(br,1H)5.34(s,1H)7.02(t,J=9.2Hz,1H)7.16−7.46(m,2H)
製造例332b)
Figure 2002080899
第三ブチル N−[5−(ジメトキシメチル)−2−フルオロベンジル]カーバマート30gをテトラヒドロフラン300mlに溶解し、1N−塩酸80mlを加え氷冷下20分攪拌した。飽和重炭酸ナトリウム水溶液を加え、酢酸エチルにて抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、溶媒を減圧留去し、第三ブチル N−(2−フルオロ−5−ホルミル)カーバマート25gを得た。
H−NMR(CDCl)δ:1.45(s,9H)4.43(d,J=5.6Hz,2H)4.98(br,1H)7.19(t,J=8.8Hz,1H)7.79−7.85(m,1H)7.90(dd,J=2.0,7.2Hz,1H)
製造例332c)
Figure 2002080899
第三ブチル N−(2−フルオロ−5−ホルミル)カーバマートを用いて、製造例261と同様の方法で処理し、第三ブチル N−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジルカーバマートを得た。
H−NMR(DMSO−d)δ:1.38(s,9H)3.06(dd,J=9.2,14.0Hz,1H)3.34(dd,J=4.0,14.0Hz,1H)4.12(d,J=5.6Hz,2H)4.81(dd,J=4.0,9.2Hz)7.05−7.20(m,2H)7.35(t,J=5.6Hz,1H)7.93(s,1H)
実施例332d)
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2,4−ジクロロベンズアミドを得た。
H−NMR(CDCl)δ:3.17(dd,J=8.4,14.4Hz,1H)3.26(dd,J=4.4,14.4Hz,1H)4.45(dd,J=4.4,8.4Hz)4.59(d,J=6.0Hz,2H)6.61(br,1H)6.96(t,J=9.2Hz,1H)7.04−7.11(m,1H)7.20−7.29(m,2H)7.36(d,J=2.0Hz,1H)7.80(d,J=8.4Hz,1H)
実施例333
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2−クロロ−4−メトキシベンズアミドを得た。
H−NMR(CDCl)δ:3.15(dd,J=8.6,14.0Hz,1H)3.32(dd,J=4.2,14.0Hz,1H)3.76(s,3H)4.44(dd,J=4.2,8.6Hz,1H)4.59(d,J=6.4Hz,2H)6.76−6.86(m,3H)6.95(t,J=8.4Hz,1H)7.03−7.08(m,1H)7.27(dd,J=2.0,7.2Hz,1H)7.69(d,J=8.4Hz,1H)8.46(br,1H)
実施例334
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−4−クロロ−2−メトキシベンズアミドを得た。
H−NMR(DMSO−d)δ:3.07(dd,J=8.8,14.0Hz,1H)3.34(dd,J=4.4,14.0Hz,1H)3.90(s,3H)4.47(d,J=6.0Hz,2H)4.82(dd,J=4.4,8.8Hz,1H)7.00−7.30(m,5H)7.70(d,J=8.0Hz,1H)8.63(t,J=5.6Hz,1H)12.03(s,1H)
実施例335
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2−メトキシニコチナミドを得た。
H−NMR(CDCl)δ:3.07(dd,J=9.6,14.0Hz,1H)3.34(dd,J=4.4,14.0Hz,1H)3.97(s,3H)4.50(d,J=6.0Hz,2H)4.83(dd,J=4.4,9.2Hz,1H)7.08−7.20(m,3H)8.07−8.14(m,1H)8.26−8.33(m,1H)8.74(t,J=6.0Hz,1H)12.03(s,1H)
実施例336
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2−メトキシ−6−メチルニコチナミドを得た。
H−NMR(CDCl)δ:2.43(3H,s)3.07(dd,J=9.4,14.0Hz,1H)3.40(dd,J=4.0,14.0Hz,1H)3.96(s,3H)4.49(d,J=5.6Hz,2H)4.82(dd,J=4.0,9.4Hz,1H)6.94−7.00(m,1H)7.10−7.30(m,3H)8.02−8.10(m,1H)8.64(t,J=5.6Hz,1H)12.02(s,1H)
実施例337
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2,6−ジメトキシニコチナミドを得た。
H−NMR(CDCl)δ:3.02−3.10(m,1H)3.27−3.36(m,1H)3.90(d,J=2.0Hz,3H)4.10(d,J=2.0Hz,3H)4.49(d,J=5.6Hz,2H)4.79−4.84(m,1H)6.48(d,J=8.0Hz,1H)7.08−7.27(m,3H)8.13(d,J=8.0Hz,1H)8.48(t,J=5.6Hz,1H)12.01(s,1H)
実施例338
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2−エトキシニコチナミドを得た。
H−NMR(DMSO−d)δ:1.33(t,J=7.2Hz,3H)3.07(dd,J=9.6,14.0Hz,1H)3.35(dd,J=4.4,14.0Hz,1H)4.43(q,J=7.2Hz,2H)4.49(d,J=5.6Hz,2H)4.85(dd,J=4.4,9.6Hz,1H)7.06−7.30(m,4H)8.12(dd,J=2.0,7.6Hz,1H)8.27(dd,J=2.0,4.8Hz,1H)8.63(t,J=5.6Hz,1H)
実施例339
Figure 2002080899
実施例261と同様の方法で処理し、N4−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−4−メチル−2−フェニル−1,3−チアゾール−5−カルボキサミドを得た。
H−NMR(DMSO−d)δ:2.61(s,3H)3.09(dd,J=9.6,14.0Hz,1H)3.35(dd,J=4.4,14.0Hz,1H)4.44(d,J=5.6Hz,2H)4.85(dd,J=4.4,9.6Hz,1H)7.10−7.29(m,3H)7.46−7.55(m,3H)7.90−7.96(m,2H)8.81(t,J=5.6Hz,1H)12.03(s,1H)
実施例340
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−4−イソプロピルベンズアミドを得た。
H−NMR(CDCl)δ:1.25(d,J=7.2Hz,6H)2.94(sept,J=7.2Hz,1H)3.19(dd,J=8.8,14.0Hz,1H)3.36(dd,J=4.4,14.0Hz,1H)4.50(dd,J=4.4,8.8Hz,1H)4.64(d,J=6.0Hz,2H)6.61(t,J=6.0Hz,1H)7.00(dd,J=8.6,9.6Hz,1H)7.08−7.14(m,1H)7.25−7.35(m,3H)7.68−7.74(m,2H)9.04(br,1H)
実施例341
Figure 2002080899
実施例261と同様の方法で処理し、N7−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−4−クロロベンゾ[b]フラン−7−カルボキサミドを得た。
H−NMR(CDCl)δ:3.19(dd,J=8.8,14.0Hz,1H)3.39(dd,J=4.4,14.0Hz,1H)4.50(dd,J=4.4,8.8Hz,1H)4.76(d,J=6.0Hz,2H)6.98(d,J=2.0Hz,1H)7.03(t,J=9.0Hz,1H)7.10−7.16(m,1H)7.30−7.42(m,2H)7.77(d,J=2.0Hz,1H)7.83(t,J=6.0Hz,1H)8.06(d,J=8.8Hz,1H)
実施例342
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−フルオロベンジル−2−フルオロ−4−(トリフルオロメチル)ベンズアミドを得た。
H−NMR(CDCl)δ:3.14(dd,J=8.8,14.0Hz,1H)3.33(dd,J=4.4,14.0Hz,1H)4.44(dd,J=4.4,8.8Hz,1H)4.62(d,J=5.6Hz,2H)6.97(t,J=9.0Hz,1H)7.04−7.16(m,2H)7.23(dd,J=2.2,7.2Hz,1H)7.35(d,J=11.6Hz,2H)7.48(d,J=8.0Hz,1H)8.17(t,J=8.0Hz,1H)
実施例343
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2,6−ジメトキシニコチナミドを得た。
H−NMR(DMSO−d)δ:3.00(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.4,14.0Hz,1H)3.84(s,3H)3.91(s,3H)4.03(s,3H)4.42(d,J=5.6Hz,2H)4.80(dd,J=4.0,9.6Hz,1H)6.49(d,J=8.4Hz,1H)6.95(d,J=8.4Hz,1H)7.06−7.15(m,2H)8.17(d,J=8.4Hz,1H)8.40(t,J=5.6Hz,1H)
実施例344
Figure 2002080899
実施例261と同様の方法で処理し、N3−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2−メトキシニコチナミドを得た。
H−NMR(DMSO−d)δ:3.03(dd,J=9.6,14.0Hz,1H)3.30(dd,J=4.0,14.0Hz,1H)3.87(s,3H)3.99(s,3H)4.43(d,J=6.0Hz,2H)4.80(dd,J=4.0,9.6Hz,1H)6.95(d,J=8.8Hz,1H)7.05−7.20(m,3H)8.13−8.20(m,1H)8.27−8.33(m,1H)8.63(t,J=6.0Hz,1H)12.01(br,1H)
実施例345
Figure 2002080899
実施例261と同様の方法で処理し、N2−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−6−メチル−2−ピリジンカルボキサミドを得た。
H−NMR(DMSO−d)δ:2.54(s,3H)2.98(dd,J=9.6,14.0Hz,1H)3.24−3.31(m,1H)3.82(s,3H)4.44(d,J=6.4Hz,2H)4.79(dd,J=4.4,9.6Hz,1H)6.95(d,J=8.4Hz,1H)7.05(d,J=1.6Hz,1H)7.11(dd,J=1.6,8.4Hz,1H)7.45(dd,J=1.6,6.8Hz,1H)7.80−7.90(m,2H)8.85(t,J=6.4Hz,1H)11.99(br,1H)
実施例346
Figure 2002080899
実施例261と同様の方法で処理し、N2−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−3,5−ジクロロ−2−ピリジンカルボキサミドを得た。
H−NMR(DMSO−d)δ:2.98(dd,J=9.6,14.0Hz,1H)3.30(dd,J=4.6,14.0Hz,1H)3.79(s,3H)4.38(d,J=6.0Hz,2H)4.78(dd,J=4.6,9.6Hz,1H)6.94(d,J=8.2Hz,1H)7.13(d,J=8.2Hz,1H)7.15(s,1H)8.35(d,J=2.0Hz,1H)8.64(s,1H)8.94(t,J=6.0Hz,1H)12.02(br,1H)
実施例347
Figure 2002080899
実施例261と同様の方法で処理し、N2−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−3,5−ジメチル−2−ピリジンカルボキサミドを得た。
H−NMR(DMSO−d)δ:2.31(s,3H)2.52(s,3H)2.97(dd,J=9.6,14.0Hz,1H)3.28(dd,J=3.8,14.0Hz,1H)3.80(s,3H)4.38(d,J=6.4Hz,2H)4.77(dd,J=3.8,9.6Hz,1H)6.93(d,J=8.4Hz,1H)7.06(s,1H)7.10(d,J=8.4Hz,1H)7.55(s,1H)8.28(s,1H)8.79(t,J=6.4Hz,1H)
実施例348
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−4−(トリフルオロメチル)−1−ベンゼンスルホナミドを得た。
H−NMR(DMSO−d)δ:3.03(dd,J=9.0,14.0Hz,1H)3.30(dd,J=4.0,14.0Hz,1H)3.69(s,3H)4.16(d,J=6.4Hz,2H)4.46(dd,J=4.0,9.6Hz,1H)5.59(t,J=6.4Hz,1H)6.63(d,J=8.4Hz,1H)6.95(d,J=2.0Hz,1H)7.03(dd,J=2.0,8.4Hz,1H)7.64(d,J=8.4Hz,2H)7.85(d,J=8.4Hz,2H)8.95(s,1H)
実施例349
Figure 2002080899
実施例261と同様の方法で処理し、N5−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2,4−ジメチル−5−ピリミジンカルボキサミドを得た。
H−NMR(DMSO−d)δ:3.14(s,6H)3.03(dd,J=9.6,14.0Hz,1H)3.30(dd,J=4.4,14.0Hz,1H)3.79(s,3H)4.36−4.40(m,2H)4.82(dd,J=4.4,9.6Hz,1H)6.94(d,J=8.8Hz,1H)7.06−7.16(m,2H)8.63(s,1H)8.88(t,J=5.6Hz,1H)12.00(br,1H)
実施例350
Figure 2002080899
実施例261と同様の方法で処理し、N5−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2,4−ジメトキシ−5−ピリミジンカルボキサミドを得た。
H−NMR(DMSO−d)δ:3.00(dd,J=9.6,14.0Hz,1H)3.28(dd,J=4.0,14.0Hz,1H)3.82(s,3H)3.94(s,3H)4.03(s,3H)4.40(d,J=6.0Hz,2H)4.79(dd,J=4.0,9.6Hz,1H)6.94(d,J=8.4Hz,1H)7.05−7.15(m,2H)8.36(t,J=6.0Hz,1H)8.72(s,1H)12.00(br,1H)
実施例351
Figure 2002080899
実施例261と同様の方法で処理し、N1−5−[(2,4−ジオキソ−1,3−チアゾラン−5−イル)メチル]−2−メトキシベンジル−2,4−ジクロロ−1−ベンゼンスルホナミドを得た。
H−NMR((DMSO−d)δ:2.96(dd,J=9.2,14.4Hz,1H)3.26(dd,J=4.0,14.4Hz,1H)3.79(s,3H)4.15(d,J=5.6Hz,2H)4.39(dd,J=4.0,9.2Hz,1H)5.82(t,J=5.6Hz,1H)6.67(d,J=8.4Hz,1H)6.70(s,1H)7.02(d,J=8.4Hz,1H)7.28(d,J=8.4Hz,1H)7.88(d,J=8.4Hz,1H)8.16(br,1H)Technical field
The present invention relates to a pharmaceutical comprising a novel carboxylic acid derivative, salt or ester thereof or hydrate thereof useful for the prevention / treatment of digestive organ diseases. More specifically, a pharmaceutical comprising a novel carboxylic acid derivative, salt or ester thereof, or a hydrate thereof useful for prevention or treatment of inflammatory digestive organ diseases such as ulcerative colitis, Crohn's disease, pancreatitis or gastritis About.
Conventional technology
In recent years, thiazolidine derivatives such as troglitazone, pioglitazone, and rosiglitazone have been called insulin sensitizers and improved insulin resistance without promoting insulin secretion from the pancreas (insulin) It is attracting attention as a therapeutic agent for diabetes with a novel mechanism that can enhance the action and reduce blood sugar.
These drugs having thiazolidine skeleton are involved in the differentiation of adipocytes and express their actions via PPARγ (peroxisome proliferator-activated receptor gamma), a nuclear receptor. (J. Biol. Chem., 270, p12953-12956, 1995). This preadipocyte differentiation increases immature small adipocytes with low secretion of TNFα, FFA and leptin, resulting in improved insulin resistance. Thiazolidine derivatives such as troglitazone, pioglitazone, and rosiglitazone also act as PPARγ agonists and express insulin resistance improving effects.
By the way, in addition to γ, several subtypes such as α and β have been discovered in PPAR, and all regulate the expression of genes related to lipid metabolism. These subtypes have higher homology between isomeric species of each subtype than homology within the same species, and γ is mostly localized in adipose tissue in terms of tissue distribution, whereas α is Each subtype was thought to have an independent function because it mainly exists in the liver and then in the heart and kidney. In recent years, PPARγ enhances the expression of genes such as LPL, acyl-CoA carboxyylase, GPDH, and mainly mediates lipid anabolism that stores sugar by converting it into lipid, whereas PPARα is involved in the incorporation of fatty acids into cells and It has been found to mediate lipid catabolism that regulates the expression of genes related to its oxidation and degrades lipids.
It is disclosed in US Pat. No. 5,925,657 that a thiazolidine derivative which is PPARγagonist suppresses the production of inflammatory cytokines of mononuclear cells.
WO98 / 43081 discloses that a thiazolidine derivative that is PPARγagonist can worsen colorectal cancer.
However, there is no example of a compound having a PPARγagonist action that has been put on the market as a therapeutic agent for gastrointestinal diseases or an anti-inflammatory agent. Furthermore, some drugs of PPARγagonist having a thiazolidine skeleton have been reported to have liver damage and need attention in use. There is speculation that the toxicity of such PPARγagonist is peculiar to the thiazolidine moiety, and if a compound that expresses the above action with other new structures can be found, the toxicity may be completely avoided and it is very useful. It is.
. Further, in the above patent publication, there is a report with a compound having only PPARγagonist action, there is no report on PAGγ and α dual agonist digestive diseases and inflammation, and even compounds with triple agonist action of γ, α and β. Is not known at all.
Furthermore, WO98 / 43081 (or Nature Medicine, 4, p1053-1057, 1998) discloses that the number of lesions in mice that genetically cause precancerous lesions in the large intestine is increased. In the study using human colorectal cancer-derived cell lines, the opposite results were obtained, and the consensus was not necessarily seen (Nature Medicine, 4, p1046-1052, 1998).
Under such circumstances, the development of an excellent drug that solves the above-described problems is awaited.
Disclosure of the invention
The present inventors have conducted intensive research for the purpose of providing a pharmaceutical effective for the prevention and treatment of digestive tract diseases satisfying these various points, particularly inflammatory digestive tract diseases. As a result, carboxylic acids having a novel structure have been obtained. The present inventors have found that the derivative has an excellent anti-inflammatory action in the digestive tract and completed the present invention.
That is, the present invention relates to 1) the general formula
Figure 2002080899
[In the formula, R1Is a hydrogen atom, a hydroxyl group, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a carbon number. 1 to 6 hydroxyalkyl group, 1 to 6 hydroxyalkoxy group, 1 to 6 hydroxyalkylthio group, 1 to 6 aminoalkyl group, 1 to 6 aminoalkoxy group, carbon number 1-6 aminoalkylthio groups, halogenated alkyl groups having 1-6 carbon atoms, halogenated alkoxy groups having 1-6 carbon atoms, halogenated alkylthio groups having 1-6 carbon atoms, alkoxyalkyl groups having 2-12 carbon atoms , An alkoxyalkoxy group having 2 to 12 carbon atoms, an alkoxyalkylthio group having 2 to 12 carbon atoms A cycloalkyl group having 3 to 7 carbon atoms, a cycloalkyloxy group having 3 to 7 carbon atoms, a cycloalkylthio group having 3 to 7 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyloxy group having 2 to 6 carbon atoms, Alkenylthio group having 2 to 6 carbon atoms, alkynyl group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkynylthio group having 2 to 6 carbon atoms, aryl group having 6 to 12 carbon atoms, carbon number An aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, an alkylaryloxy group having 7 to 18 carbon atoms, an alkylarylthio group having 7 to 18 carbon atoms, a carbon An aralkyl group having 7 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, or 7 to 18 carbon atoms An aralkylthio group; L is a single bond or a double bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or 2 carbon atoms, each optionally having one or more substituents; 1 to 6 alkynylene groups; M is a single bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or 2 to 6 carbon atoms, each optionally having one or more substituents; T is a single bond, or an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or an alkynylene having 2 to 3 carbon atoms, each of which may have one or more substituents. W represents 2,4-dioxothiazolidine-5-yl group, 2,4-dioxothiazolidine-5-ylidene group, carboxyl group, or -CON (Rw1) Rw2(Where Rw1, Rw2Are the same or different and each may have a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or 7 carbon atoms, each of which may have one or more substitutions. To 19 aromatic acyl groups, respectively). However, in the above definition, the case where T is a single bond and W is a 2,4-dioxothiazolidine-5-yl group or a 2,4-dioxothiazolidine-5-ylidene group is excluded. ;
Figure 2002080899
Represents a single bond or a double bond; X represents an oxygen atom, an alkenylene group having 2 to 6 carbon atoms which may have one or more substituents, or a hydroxymethylene group, or a group represented by the general formula —CQ— Q represents an oxygen atom or a sulfur atom), -CQNRx-(Where Q is the same group as defined above, RxIs a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or an aromatic group having 7 to 19 carbon atoms, each of which may have one or more substitutions Each represents an acyl group), -NRxCQ- (where Q, RxEach represents the same group as defined above), -SO2NRx-(Where RxAre the same as defined above), -NRxSO2-(RxAre the same groups as defined above), or -NRx1CQNRx2-(Where Q is the same group as defined above, Rx1Or Rx2Are the same or different and each may have a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or 7 carbon atoms, each of which may have one or more substitutions. To 19 aromatic acyl groups, respectively). However, in the above definition, the case where T is a single bond and X is an oxygen atom is excluded. Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms or an alicyclic group having 3 to 7 carbon atoms, which may have one or more substituents and may have one or more heteroatoms; The ring Z may further have a substituent of 0 to 4 and may have one or more heteroatoms, and each of an aromatic hydrocarbon group having 5 to 6 carbon atoms, Indication: general formula
Figure 2002080899
Wherein the symbols in the formula represent the same groups as defined above, and the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z via three atoms. ] A prophylactic / therapeutic agent for gastrointestinal diseases comprising as an active ingredient a carboxylic acid derivative represented by the formula: salt or ester thereof, or a hydrate thereof; 2) In the general formula (I), W is a carboxylic acid 1 3) a prophylactic / therapeutic agent for digestive tract diseases according to 3); in general formula (I),11) or 2) the preventive / therapeutic agent for gastrointestinal diseases according to 1) or 2), each of which may have one or more substituents, each of which is an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms; 4) The preventive / therapeutic agent for gastrointestinal diseases according to 1) or 2), wherein in formula (I), ring Z is a benzene ring optionally having 0 to 4 substituents; 5) general formula In (I), X is a general formula -CQNRx-(Where Q, RxAre the same as defined above) or —NRxCQ- (where Q, RxIs a group represented by the same definition as defined above) 1) or 2) preventive / therapeutic agent for digestive system diseases; 6) In general formula (I), Y has one or more substituents 1) or 2) the prophylactic / therapeutic agent for digestive tract diseases according to 1) or 2), which is an aromatic hydrocarbon group having 5 to 12 carbon atoms; 7) In the general formula (I), L or M has 1 carbon atom A prophylactic / therapeutic agent for gastrointestinal diseases according to 1) or 2) which is an alkylene group having 1 to 6; 8) 1) or 2) wherein T is an alkylene group having 1 to 3 carbon atoms in the general formula (I) (9) In general formula (I), R1Are each an alkyl group having 1 to 6 carbon atoms and an alkoxy group having 1 to 6 carbon atoms, which may have one or more substituents, and ring Z further has a substituent having 0 to 4 carbon atoms. A prophylactic / therapeutic agent for gastrointestinal diseases according to 1) or 2), which is a good benzene ring; 10) In the general formula (I), X represents a general formula -CQNRx-(Where Q, RxAre the same as defined above) or —NRxCQ- (where Q, Rx1 represents the same group as defined above), and Y is an aromatic hydrocarbon group having 5 to 12 carbon atoms which may have one or more substituents 1) or 9) 11) A prophylactic / therapeutic agent for gastrointestinal diseases: 11) The compound represented by the general formula (I) is (2S) -3- [3-([2,4-dichlorobenzoyl] aminomethyl) -4-methoxyphenyl]. -2-isopropoxypropanoic acid, a prophylactic / therapeutic agent for gastrointestinal diseases according to 1) to 10); 12) 1. Inflammatory diseases of the gastrointestinal tract 2. proliferative diseases of the gastrointestinal tract, and A prophylactic / therapeutic agent for gastrointestinal disease according to 1) to 11), which is one disease selected from ulcerative diseases of the gastrointestinal tract; 13) the gastrointestinal disease is an inflammatory disease of the gastrointestinal tract 1) to 12) 14) Preventive and therapeutic agents for gastrointestinal diseases; 14) Inflammatory diseases of the digestive tract are 1. Ulcerative colitis, Crohn's disease; 3. pancreatitis, and The prophylactic / therapeutic agent for gastrointestinal diseases according to 13), which is one disease selected from gastritis; 15) The prophylactic / therapeutic agent for gastrointestinal diseases, according to 14), wherein the inflammatory disease of the digestive tract is ulcerative colitis 16) The prophylactic / therapeutic agent for digestive tract disease according to 1) to 12), wherein the digestive tract disease is a proliferative disease of the digestive tract; 1. benign tumors of the gastrointestinal tract; 2. gastrointestinal polyps; 3. genetic polyposis syndrome; Colon cancer, 5. Rectal cancer, and 6. A prophylactic / therapeutic agent for gastrointestinal diseases according to 16), which is one disease selected from gastric cancer; 18) A prophylactic / therapeutic agent for gastrointestinal diseases according to 1) to 12), wherein the gastrointestinal diseases are ulcerative diseases of the digestive tract Agents: 19) Gastrointestinal ulcer disease is 1. 1. Duodenal ulcer, 2. 2. gastric ulcer; 3. Esophageal ulcers, 4. reflux esophagitis, 5. stress ulcers and erosions; 6. Erosion with drugs, and 18) a prophylactic / therapeutic agent for digestive organ disease according to 18), which is one disease selected from Zollinger-Ellison syndrome; 20) a pharmacologically effective amount of 1) the carboxylic acid derivative, salt or ester thereof, or their A pharmaceutical composition comprising a hydrate and a pharmacologically acceptable carrier; 21) a pharmaceutical composition according to 20) which is a preparation for rectal administration; 22) a general formula
Figure 2002080899
[In the formula, R1Is a hydrogen atom, a hydroxyl group, or an optionally substituted alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, or a carbon number. 1 to 6 hydroxyalkyl group, 1 to 6 hydroxyalkoxy group, 1 to 6 hydroxyalkylthio group, 1 to 6 aminoalkyl group, 1 to 6 aminoalkoxy group, carbon number 1-6 aminoalkylthio groups, halogenated alkyl groups having 1-6 carbon atoms, halogenated alkoxy groups having 1-6 carbon atoms, halogenated alkylthio groups having 1-6 carbon atoms, alkoxyalkyl groups having 2-12 carbon atoms , An alkoxyalkoxy group having 2 to 12 carbon atoms, an alkoxyalkylthio group having 2 to 12 carbon atoms A cycloalkyl group having 3 to 7 carbon atoms, a cycloalkyloxy group having 3 to 7 carbon atoms, a cycloalkylthio group having 3 to 7 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, an alkenyloxy group having 2 to 6 carbon atoms, Alkenylthio group having 2 to 6 carbon atoms, alkynyl group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkynylthio group having 2 to 6 carbon atoms, aryl group having 6 to 12 carbon atoms, carbon number An aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, an alkylaryloxy group having 7 to 18 carbon atoms, an alkylarylthio group having 7 to 18 carbon atoms, a carbon An aralkyl group having 7 to 18 carbon atoms, an aralkyloxy group having 7 to 18 carbon atoms, or 7 to 18 carbon atoms An aralkylthio group; L is a single bond or a double bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or 2 carbon atoms, each optionally having one or more substituents; 1 to 6 alkynylene groups; M is a single bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or 2 to 6 carbon atoms, each optionally having one or more substituents; T is a single bond, or an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or an alkynylene having 2 to 3 carbon atoms, each of which may have one or more substituents. W represents 2,4-dioxothiazolidine-5-yl group, 2,4-dioxothiazolidine-5-ylidene group, carboxyl group, or -CON (Rw1) Rw2(Where Rw1, Rw2Are the same or different and each may have a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or 7 carbon atoms, each of which may have one or more substitutions. To 19 aromatic acyl groups, respectively). However, in the above definition, the case where T is a single bond and W is a 2,4-dioxothiazolidine-5-yl group or a 2,4-dioxothiazolidine-5-ylidene group is excluded. ;
Figure 2002080899
Represents a single bond or a double bond; X represents an oxygen atom, an alkenylene group having 2 to 6 carbon atoms which may have one or more substituents, or a hydroxymethylene group, or a group represented by the general formula —CQ— Q represents an oxygen atom or a sulfur atom), -CQNRx-(Where Q is the same group as defined above, RxIs a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or an aromatic group having 7 to 19 carbon atoms, each of which may have one or more substitutions Each represents an acyl group), -NRxCQ- (where Q, RxEach represents the same group as defined above), -SO2NRx-(Where RxAre the same as defined above), -NRxSO2-(RxAre the same groups as defined above), or -NRx1CQNRx2-(Where Q is the same group as defined above, Rx1Or Rx2Are the same or different and each may have a hydrogen atom, a formyl group, or an alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or 7 carbon atoms, each of which may have one or more substitutions. To 19 aromatic acyl groups, respectively). However, in the above definition, the case where T is a single bond and X is an oxygen atom is excluded. Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms or an alicyclic group having 3 to 7 carbon atoms, which may have one or more substituents and may have one or more heteroatoms; The ring Z may further have a substituent of 0 to 4 and may have one or more heteroatoms, and each of an aromatic hydrocarbon group having 5 to 6 carbon atoms, Indication: general formula
Figure 2002080899
Wherein the symbols in the formula represent the same groups as defined above, and the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z via three atoms. ] A prophylactic / therapeutic agent for inflammatory diseases comprising as an active ingredient a carboxylic acid derivative represented by the formula: salt or ester thereof or hydrate thereof; 23) a compound represented by general formula (I) is (2S) -3- [3-([2,4-dichlorobenzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid, the preventive / therapeutic agent for inflammatory diseases according to 22); 24) inflammatory The disease is 1. 1. Rheumatoid arthritis, 2. multiple sclerosis; 3. immunodeficiency; Cachexia, 5; 5. Osteoarthritis, 6. Osteoporosis, Asthma disease, and 8. The present invention relates to the preventive / therapeutic agent for inflammatory diseases according to 22) or 23), which is one disease selected from allergic diseases.
The present invention also provides a digestive disease or inflammatory disease by administering to a patient a pharmacologically effective amount of the carboxylic acid derivative represented by the above formula (I), a salt or ester thereof, or a hydrate thereof. Provide a method for preventing and treating
Furthermore, the present invention uses the carboxylic acid derivative represented by the above formula (I), a salt or ester thereof, or a hydrate thereof for the production of a prophylactic / therapeutic agent for digestive organ diseases or inflammatory diseases. Provide usage.
In addition, the compound used for this invention is described in WO-A 01-25181 (published April 12, 2001).
The contents of the present invention will be described in detail below.
In the present specification, the structural formula of a compound may represent a certain isomer for convenience, but in the present invention, all geometrical isomers, optical isomers based on asymmetric carbons, stereo It includes all isomers such as isomers, tautomeric organisms and isomer mixtures, and is not limited to the description of formulas for convenience.
Next, terms used in this specification will be described in detail.
R1, W, Rx, Rx1And Rx2Represents an alkyl group having 1 to 6 carbon atoms which may have one or more substituents, the alkyl group represents a linear or branched alkyl group having 1 to 6 carbon atoms, Specifically, for example, methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group , Sec-pentyl group, t-pentyl group, neopentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethylpropyl group, n-hexyl group, i-hexyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1,3-dimethylbutyl group, 2,3-di Tylbutyl group, 3,3-dimethylbutyl group, 1-ethylbutyl group, 2-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group, 1-ethyl-1-methylpropyl group 1-ethyl-2-methylpropyl group, etc., preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t -Butyl group, n-pentyl group, i-pentyl group, sec-pentyl group, t-pentyl group, neopentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,1-dimethylpropyl group, 1,2-dimethyl A propyl group, an n-hexyl group, and an i-hexyl group, and more preferably a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an n-butyl group, and an i-butyl group. , Sec-butyl group, t-butyl group, n-pentyl group, i-pentyl group, sec-pentyl group, t-pentyl group, neopentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,1-dimethylpropyl Group, 1,2-dimethylpropyl group, more preferably methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group, t-butyl group And most preferably a methyl group, an ethyl group, an n-propyl group, or an i-propyl group.
Here, “may have a substituent” specifically means, for example, a hydroxyl group; a thiol group; a nitro group; a morpholino group; a thiomorpholino group; a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc. Nitrile group; azide group; formyl group; alkyl group such as methyl group, ethyl group, propyl group, isopropyl group and butyl group; alkenyl group such as vinyl group, allyl group and propenyl group; ethynyl group and butynyl group , Alkynyl groups such as propargyl group, alkoxy groups such as methoxy group, ethoxy group, propoxy group, butoxy group corresponding to lower alkyl group; halogenoalkyl such as fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group Group: hydride such as hydroxymethyl group, hydroxyethyl group, hydroxypropyl group, etc. Guanidino group; formimidoyl group; acetamidoyl group; carbamoyl group; thiocarbamoyl group; carbamoylalkyl group such as carbamoylmethyl group and carbamoylethyl group; alkylcarbamoyl group such as methylcarbamoyl group and dimethylcarbamoyl group; An alkanoyl group such as an acetyl group; an amino group; an alkylamino group such as a methylamino group, an ethylamino group or an isopropylamino group; a dialkylamino group such as a dimethylamino group, a methylethylamino group or a diethylamino group; Aminoalkyl group such as aminoethyl group and aminopropyl group; carboxy group; alkoxycarbonyl group such as methoxycarbonyl group, ethoxycarbonyl group and propoxycarbonyl group; methoxycarbonyl Alkoxycarbonylalkyl groups such as methyl group, ethoxycarbonylmethyl group, propoxycarbonylmethyl group, methoxycarbonylethyl group, ethoxycarbonylethyl group, propoxycarbonylethyl group; methyloxymethyl group, methyloxyethyl group, ethyloxymethyl group, ethyl Alkyloxyalkyl groups such as oxyethyl groups; alkylthioalkyl groups such as methylthiomethyl groups, methylthioethyl groups, ethylthiomethyl groups, and ethylthioethyl groups; aminoalkylaminoalkyl groups such as aminomethylaminomethyl groups and aminoethylaminomethyl groups Groups: alkylcarbonyloxy groups such as methylcarbonyloxy group, ethylcarbonyloxy group, isopropylcarbonyloxy group; oxymethyl group, benzyloxyethyloxy Arylalkoxyalkoxyalkyl groups such as ethyl group; hydroxyalkoxyalkyl groups such as hydroxyethyloxymethyl group and hydroxyethyloxyethyl group; arylalkoxyalkyl groups such as benzyloxymethyl group, benzyloxyethyl group and benzyloxypropyl group; trimethyl Quaternary ammonio groups such as ammonio group, methylethylmethylammonio group, triethylammonio group; cycloalkyl groups such as cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group; cyclopropenyl group, cyclobutenyl group, cyclopentenyl Group, cycloalkenyl group such as cyclohexenyl group; aryl group such as phenyl group, pyridinyl group, thienyl group, furyl group, pyrrolyl group; methylthio group, ethylthio group, Alkylthio groups such as pyrthio group and butylthio group; arylthio groups such as phenylthio group, pyridinylthio group, thienylthio group, furylthio group and pyrrolylthio group; aryl lower alkyl groups such as benzyl group, trityl group and dimethoxytrityl group; sulfonyl group and mesyl group A substituted sulfonyl group such as p-toluenesulfonyl group; an aryloyl group such as benzoyl group; a halogenoaryl group such as fluorophenyl group and bromophenyl group; and a substituted group such as oxyalkoxy group such as methylenedioxy group. Means good.
“May have one or more substituents” means that these groups may be arbitrarily combined and may have one or more, for example, a hydroxyl group, a thiol group, a nitro group, a morpholino Group, thiomorpholino group, halogen atom, nitrile group, azide group, formyl group, amino group, alkylamino group, dialkylamino group, carbamoyl group, alkyl group substituted with sulfonyl group, etc .; alkenyl group; alkynyl group; alkoxy group Etc. are also included in the present invention.
Hereinafter, in the present invention, “may have a substituent” and “may have one or more substituents” have the above-mentioned meanings.
R1Is an alkoxy group having 1 to 6 carbon atoms which may have one or more substituents, the alkoxy group represents a linear or branched alkoxy group having 1 to 6 carbon atoms, Specifically, those having an oxygen atom bonded to the terminal of the alkyl group correspond to, for example, methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, sec-butoxy group. Group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, sec-pentyloxy group, t-pentyloxy group, neopentyloxy group, 1-methylbutoxy group, 2-methylbutoxy group, 1, 1-dimethylpropoxy group, 1,2-dimethylpropoxy group, n-hexyloxy group, i-hexyloxy group, 1-methylpentyloxy group, 2-methylpentyloxy group 3-methylpentyloxy group, 1,1-dimethylbutoxy group, 1,2-dimethylbutoxy group, 2,2-dimethylbutoxy group, 1,3-dimethylbutoxy group, 2,3-dimethylbutoxy group, 3,3 -Dimethylbutoxy group, 1-ethylbutoxy group, 2-ethylbutoxy group, 1,1,2-trimethylpropoxy group, 1,2,2-trimethylpropoxy group, 1-ethyl-1-methylpropoxy group, 1-ethyl -2-methylpropoxy group and the like, preferably methoxy group, ethoxy group, n-propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, sec-butoxy group, t-butoxy group, n -Pentyloxy group, i-pentyloxy group, sec-pentyloxy group, t-pentyloxy group, neopentyloxy group, 1-methylbut Si group, 2-methylbutoxy group, 1,1-dimethylpropoxy group, 1,2-dimethylpropoxy group, n-hexyloxy group, i-hexyloxy group, more preferably methoxy group, ethoxy group, n- Propoxy group, i-propoxy group, n-butoxy group, i-butoxy group, sec-butoxy group, t-butoxy group, n-pentyloxy group, i-pentyloxy group, sec-pentyloxy group, t-pentyloxy group Group, neopentyloxy group, 1-methylbutoxy group, 2-methylbutoxy group, 1,1-dimethylpropoxy group, 1,2-dimethylpropoxy group, more preferably methoxy group, ethoxy group, n-propoxy group, i -Propoxy, n-butoxy, i-butoxy, sec-butoxy, t-butoxy, most preferably methoxy Si group, ethoxy group, n-propoxy group, i-propoxy group.
R1Represents an alkylthio group having 1 to 6 carbon atoms which may have one or more substituents, the alkylthio group represents a linear or branched alkylthio group having 1 to 6 carbon atoms, Specifically, those having a sulfur atom bonded to the terminal of the alkyl group correspond to, for example, methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i-butylthio group, sec-butylthio group. Group, t-butylthio group, n-pentylthio group, i-pentylthio group, sec-pentylthio group, t-pentylthio group, neopentylthio group, 1-methylbutylthio group, 2-methylbutylthio group, 1,1- Dimethylpropylthio, 1,2-dimethylpropylthio, n-hexylthio, i-hexylthio, 1-methylpentylthio, 2-methylpe Tylthio group, 3-methylpentylthio group, 1,1-dimethylbutylthio group, 1,2-dimethylbutylthio group, 2,2-dimethylbutylthio group, 1,3-dimethylbutylthio group, 2,3- Dimethylbutylthio group, 3,3-dimethylbutylthio group, 1-ethylbutylthio group, 2-ethylbutylthio group, 1,1,2-trimethylpropylthio group, 1,2,2-trimethylpropylthio group, 1-ethyl-1-methylpropylthio group, 1-ethyl-2-methylpropylthio group and the like can be mentioned, preferably methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i-butylthio group, sec-butylthio group, t-butylthio group, n-pentylthio group, i-pentylthio group, sec-pentylthio group, t-pentyl O group, neopentylthio group, 1-methylbutylthio group, 2-methylbutylthio group, 1,1-dimethylpropylthio group, 1,2-dimethylpropylthio group, n-hexylthio group, i-hexylthio group More preferably, methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i-butylthio group, sec-butylthio group, t-butylthio group, n-pentylthio group, i-pentylthio group. Group, sec-pentylthio group, t-pentylthio group, neopentylthio group, 1-methylbutylthio group, 2-methylbutylthio group, 1,1-dimethylpropylthio group, 1,2-dimethylpropylthio group, Preferably, methylthio group, ethylthio group, n-propylthio group, i-propylthio group, n-butylthio group, i- A butylthio group, a sec-butylthio group, and a t-butylthio group, and most preferably a methylthio group, an ethylthio group, an n-propylthio group, and an i-propylthio group.
R1Is a hydroxyalkyl group having 1 to 6 carbon atoms which may have one or more substituents, the hydroxyalkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with a hydroxy group. Specific examples include a hydroxymethyl group, a 2-hydroxyethyl group, and a 1-hydroxyethyl group.
Similarly R1Is an alkoxy group having 1 to 6 carbon atoms which may have one or more substituents, the hydroxyalkoxy group is the above linear or branched alkoxy group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with a hydroxy group. Specific examples include a hydroxymethoxy group, a 2-hydroxyethoxy group, and a 1-hydroxyethoxy group.
Similarly R1Is a hydroxyalkylthio group having 1 to 6 carbon atoms which may have one or more substituents, the hydroxyalkylthio group is a linear or branched alkylthio group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with a hydroxy group. Specific examples include a hydroxymethylthio group, a 2-hydroxyethylthio group, and a 1-hydroxyethylthio group.
R1Is an aminoalkyl group having 1 to 6 carbon atoms that may have one or more substituents, the aminoalkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with an amino group. Specific examples include an aminomethyl group, a 2-aminoethyl group, and a 1-aminoethyl group.
Similarly R1Is an aminoalkoxy group having 1 to 6 carbon atoms which may have one or more substituents, the aminoalkoxy group is a linear or branched alkoxy group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with an amino group. Specific examples include an aminomethoxy group, a 2-aminoethoxy group, and a 1-aminoethoxy group.
Similarly R1Is an aminoalkylthio group having 1 to 6 carbon atoms which may have one or more substituents, the aminoalkylthio group is a linear or branched alkylthio group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with an amino group. Specific examples include an aminomethylthio group, a 2-aminoethylthio group, and a 1-aminoethylthio group.
R1Is a halogenated alkyl group having 1 to 6 carbon atoms which may have one or more substituents, the halogenated alkyl group is a linear or branched chain having 1 to 6 carbon atoms. An alkyl group is a group in which a substitutable site is substituted with one or more halogen atoms. Here, the halogen atom means a fluorine atom, a chlorine atom, a bromine atom, an iodine atom or the like. Specific examples include a fluoromethyl group, a trifluoromethyl group, a 2-fluoroethyl group, and a 1-fluoroethyl group.
Similarly R1Is a halogenated alkoxy group having 1 to 6 carbon atoms which may have one or more substituents, the halogenated alkoxy group is a linear or branched chain having 1 to 6 carbon atoms. In the alkoxy group, a substitutable site is a group substituted with one or more halogen atoms. Specific examples include a fluoromethoxy group, a trifluoromethoxy group, a 2-fluoroethoxy group, and a 1-fluoroethoxy group.
Similarly R1Is a halogenated alkylthio group having 1 to 6 carbon atoms which may have one or more substituents, the halogenated alkylthio group is a linear or branched chain having 1 to 6 carbon atoms. In the alkylthio group, a substitutable site is a group substituted with one or more halogen atoms. Specific examples include a fluoromethylthio group, a trifluoromethylthio group, a 2-fluoroethylthio group, and a 1-fluoroethylthio group.
R1Is an alkoxyalkyl group having 2 to 12 carbon atoms which may have one or more substituents, the alkoxyalkyl group is a linear or branched alkyl group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with the above linear or branched alkoxy group having 1 to 6 carbon atoms. Specific examples include a methoxymethyl group, an ethoxymethyl group, a 1-methoxyethyl group, a 2-methoxyethyl group, a 1-ethoxyethyl group, and a 2-ethoxyethyl group.
Similarly R1Is an alkoxyalkoxy group having 2 to 12 carbon atoms which may have one or more substituents, the alkoxyalkoxy group is a linear or branched alkoxy group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with the above linear or branched alkoxy group having 1 to 6 carbon atoms. Specific examples include a methoxymethoxy group, an ethoxymethoxy group, a 1-methoxyethoxy group, a 2-methoxyethoxy group, a 1-ethoxyethoxy group, and a 2-ethoxyethoxy group.
Similarly R1Is an alkoxyalkylthio group having 2 to 12 carbon atoms which may have one or more substituents, the alkoxyalkylthio group is the above linear or branched alkylthio group having 1 to 6 carbon atoms. And the substitutable site represents a group substituted with the above linear or branched alkoxy group having 1 to 6 carbon atoms. Specific examples include a methoxymethylthio group, an ethoxymethylthio group, a 1-methoxyethylthio group, a 2-methoxyethylthio group, a 1-ethoxyethylthio group, and a 2-ethoxyethylthio group.
R1Is a cycloalkyl group having 3 to 7 carbon atoms which may have one or more substituents, the cycloalkyl group means a cyclic alkyl group having 3 to 7 carbon atoms, specifically Examples include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, and cycloheptyl group.
Similarly R1Is a cycloalkyloxy group having 3 to 7 carbon atoms which may have one or more substituents, the cycloalkyloxy group is the terminal of the cyclic alkyl group having 3 to 7 carbon atoms, And an oxygen atom bonded thereto. Specific examples include a cyclopropyloxy group, a cyclobutyloxy group, a cyclopentyloxy group, a cyclohexyloxy group, and a cycloheptyloxy group.
Similarly R1Is a cycloalkylthio group having 3 to 7 carbon atoms which may have one or more substituents, the cycloalkylthio group is a sulfur atom at the terminal of the cycloalkyl group having 3 to 7 carbon atoms. In particular, examples include a cyclopropylthio group, a cyclobutylthio group, a cyclopentylthio group, a cyclohexylthio group, and a cycloheptylthio group.
R1Represents an alkenyl group having 2 to 6 carbon atoms which may have one or more substituents, the alkenyl group represents a linear or branched alkenyl group having 2 to 6 carbon atoms, The compound residue which has a double bond in the said C2 or more alkyl group. Specifically, for example, ethenyl group, 1-propen-1-yl group, 2-propen-1-yl group, 3-propen-1-yl group, 1-buten-1-yl group, 1-buten-2- Yl group, 1-buten-3-yl group, 1-buten-4-yl group, 2-buten-1-yl group, 2-buten-2-yl group, 1-methyl-1-propen-1-yl Group, 2-methyl-1-propen-1-yl group, 1-methyl-2-propen-1-yl group, 2-methyl-2-propen-1-yl group, 1-methyl-1-butene-1 -Yl group, 2-methyl-1-buten-1-yl group, 3-methyl-1-buten-1-yl group, 1-methyl-2-buten-1-yl group, 2-methyl-2-butene -1-yl group, 3-methyl-2-buten-1-yl group, 1-methyl-3-buten-1-yl group, 2-methyl- -Buten-1-yl group, 3-methyl-3-buten-1-yl group, 1-ethyl-1-buten-1-yl group, 2-ethyl-1-buten-1-yl group, 3-ethyl -1-buten-1-yl group, 1-ethyl-2-buten-1-yl group, 2-ethyl-2-buten-1-yl group, 3-ethyl-2-buten-1-yl group, 1 -Ethyl-3-buten-1-yl group, 2-ethyl-3-buten-1-yl group, 3-ethyl-3-buten-1-yl group, 1,1-dimethyl-1-butene-1- Yl group, 1,2-dimethyl-1-buten-1-yl group, 1,3-dimethyl-1-buten-1-yl group, 2,2-dimethyl-1-buten-1-yl group, 3, 3-dimethyl-1-buten-1-yl group, 1,1-dimethyl-2-buten-1-yl group, 1,2-dimethyl-2-butene- -Yl group, 1,3-dimethyl-2-buten-1-yl group, 2,2-dimethyl-2-buten-1-yl group, 3,3-dimethyl-2-buten-1-yl group, , 1-dimethyl-3-buten-1-yl group, 1,2-dimethyl-3-buten-1-yl group, 1,3-dimethyl-3-buten-1-yl group, 2,2-dimethyl- 3-buten-1-yl group, 3,3-dimethyl-3-buten-1-yl group, 1-penten-1-yl group, 2-penten-1-yl group, 3-penten-1-yl group 4-penten-1-yl group, 1-penten-2-yl group, 2-penten-2-yl group, 3-penten-2-yl group, 4-penten-2-yl group, 1-penten- 3-yl group, 2-penten-3-yl group, 1-penten-1-yl group, 2-penten-1-yl group, 3-pen Ten-1-yl group, 4-penten-1-yl group, 1-penten-2-yl group, 2-penten-2-yl group, 3-penten-2-yl group, 4-penten-2-yl Group, 1-penten-3-yl group, 2-penten-3-yl group, 1-methyl-1-penten-1-yl group, 2-methyl-1-penten-1-yl group, 3-methyl- 1-penten-1-yl group, 4-methyl-1-penten-1-yl group, 1-methyl-2-penten-1-yl group, 2-methyl-2-penten-1-yl group, 3- Methyl-2-penten-1-yl group, 4-methyl-2-penten-1-yl group, 1-methyl-3-penten-1-yl group, 2-methyl-3-penten-1-yl group, 3-methyl-3-penten-1-yl group, 4-methyl-3-penten-1-yl group, 1-methyl 4-penten-1-yl group, 2-methyl-4-penten-1-yl group, 3-methyl-4-penten-1-yl group, 4-methyl-4-penten-1-yl group, 1- Methyl-1-penten-2-yl group, 2-methyl-1-penten-2-yl group, 3-methyl-1-penten-2-yl group, 4-methyl-1-penten-2-yl group, 1-methyl-2-penten-2-yl group, 2-methyl-2-penten-2-yl group, 3-methyl-2-penten-2-yl group, 4-methyl-2-penten-2-yl Group, 1-methyl-3-penten-2-yl group, 2-methyl-3-penten-2-yl group, 3-methyl-3-penten-2-yl group, 4-methyl-3-penten-2 -Yl group, 1-methyl-4-penten-2-yl group, 2-methyl-4-penten-2- Group, 3-methyl-4-penten-2-yl group, 4-methyl-4-penten-2-yl group, 1-methyl-1-penten-3-yl group, 2-methyl-1-pentene- 3-yl group, 3-methyl-1-penten-3-yl group, 4-methyl-1-penten-3-yl group, 1-methyl-2-penten-3-yl group, 2-methyl-2- Penten-3-yl group, 3-methyl-2-penten-3-yl group, 4-methyl-2-penten-3-yl group, 1-hexen-1-yl group, 1-hexen-2-yl group 1-hexen-3-yl group, 1-hexen-4-yl group, 1-hexen-5-yl group, 1-hexen-6-yl group, 2-hexen-1-yl group, 2-hexene- 2-yl group, 2-hexen-3-yl group, 2-hexen-4-yl group, 2-hexene-5-i Group, 2-hexen-6-yl group, 3-hexen-1-yl group, 3-hexen-2-yl group, 3-hexen-3-yl group, etc., preferably ethenyl group, Propen-1-yl group, 2-propen-1-yl group, 3-propen-1-yl group, 1-buten-1-yl group, 1-buten-2-yl group, 1-buten-3-yl Group, 1-buten-4-yl group, 2-buten-1-yl group, 2-buten-2-yl group, 1-methyl-1-propen-1-yl group, 2-methyl-1-propene group 1-yl group, 1-methyl-2-propen-1-yl group, 2-methyl-2-propen-1-yl group, 1-methyl-1-buten-1-yl group, 2-methyl-1- Buten-1-yl group, 3-methyl-1-buten-1-yl group, 1-methyl-2-buten-1-yl group, 2 Methyl-2-buten-1-yl group, 3-methyl-2-buten-1-yl group, 1-methyl-3-buten-1-yl group, 2-methyl-3-buten-1-yl group, 3-methyl-3-buten-1-yl group, 1-ethyl-1-buten-1-yl group, 2-ethyl-1-buten-1-yl group, 3-ethyl-1-buten-1-yl Group, 1-ethyl-2-buten-1-yl group, 2-ethyl-2-buten-1-yl group, 3-ethyl-2-buten-1-yl group, 1-ethyl-3-butene-1 -Yl group, 2-ethyl-3-buten-1-yl group, 3-ethyl-3-buten-1-yl group, 1,1-dimethyl-1-buten-1-yl group, 1,2-dimethyl -1-buten-1-yl group, 1,3-dimethyl-1-buten-1-yl group, 2,2-dimethyl-1-buten-1-yl 3,3-dimethyl-1-buten-1-yl group, 1,1-dimethyl-2-buten-1-yl group, 1,2-dimethyl-2-buten-1-yl group, 1,3- Dimethyl-2-buten-1-yl group, 2,2-dimethyl-2-buten-1-yl group, 3,3-dimethyl-2-buten-1-yl group, 1,1-dimethyl-3-butene -1-yl group, 1,2-dimethyl-3-buten-1-yl group, 1,3-dimethyl-3-buten-1-yl group, 2,2-dimethyl-3-buten-1-yl group 3,3-dimethyl-3-buten-1-yl group, more preferably ethenyl group, 1-propen-1-yl group, 2-propen-1-yl group, 3-propen-1-yl group 1-buten-1-yl group, 1-buten-2-yl group, 1-buten-3-yl group, 1-buten-4-yl Group, 2-buten-1-yl group, 2-buten-2-yl group, 1-methyl-1-propen-1-yl group, 2-methyl-1-propen-1-yl group, 1-methyl- 2-propen-1-yl group, 2-methyl-2-propen-1-yl group, 1-methyl-1-buten-1-yl group, 2-methyl-1-buten-1-yl group, 3- Methyl-1-buten-1-yl group, 1-methyl-2-buten-1-yl group, 2-methyl-2-buten-1-yl group, 3-methyl-2-buten-1-yl group, 1-methyl-3-buten-1-yl group, 2-methyl-3-buten-1-yl group, 3-methyl-3-buten-1-yl group, most preferably ethenyl group, 1-propene -1-yl group, 2-propen-1-yl group, 3-propen-1-yl group, 1-buten-1-yl group, - butene-2-yl group, 1-buten-3-yl group, 1-butene-4-yl group, 2-buten-1-yl group, 2-buten-2-yl group.
Similarly R1Is an alkenyloxy group having 2 to 6 carbon atoms which may have one or more substituents, the alkenyloxy group is the above-mentioned linear or branched alkenyl group having 2 to 6 carbon atoms. In which an oxygen atom is bonded to the terminal, specifically, for example, ethenyloxy group, 1-propen-1-yloxy group, 2-propen-1-yloxy group, 3-propen-1-yloxy group, 1-buten-1-yloxy group, 1-buten-2-yloxy group, 1-buten-3-yloxy group, 1-buten-4-yloxy group, 2-buten-1-yloxy group, 2-butene-2 -Yloxy group, 1-methyl-1-propen-1-yloxy group, 2-methyl-1-propen-1-yloxy group, 1-methyl-2-propen-1-yloxy group, 2-methyl- -Propen-1-yloxy group, 1-methyl-1-buten-1-yloxy group, 2-methyl-1-buten-1-yloxy group, 3-methyl-1-buten-1-yloxy group, 1-methyl 2-buten-1-yloxy group, 2-methyl-2-buten-1-yloxy group, 3-methyl-2-buten-1-yloxy group, 1-methyl-3-buten-1-yloxy group, 2 -Methyl-3-buten-1-yloxy group, 3-methyl-3-buten-1-yloxy group, 1-ethyl-1-buten-1-yloxy group, 2-ethyl-1-buten-1-yloxy group 3-ethyl-1-buten-1-yloxy group, 1-ethyl-2-buten-1-yloxy group, 2-ethyl-2-buten-1-yloxy group, 3-ethyl-2-butene-1- Yloxy group, 1- Tyl-3-buten-1-yloxy group, 2-ethyl-3-buten-1-yloxy group, 3-ethyl-3-buten-1-yloxy group, 1,1-dimethyl-1-buten-1-yloxy Group, 1,2-dimethyl-1-buten-1-yloxy group, 1,3-dimethyl-1-buten-1-yloxy group, 2,2-dimethyl-1-buten-1-yloxy group, 3,3 -Dimethyl-1-buten-1-yloxy group, 1,1-dimethyl-2-buten-1-yloxy group, 1,2-dimethyl-2-buten-1-yloxy group, 1,3-dimethyl-2- Buten-1-yloxy group, 2,2-dimethyl-2-buten-1-yloxy group, 3,3-dimethyl-2-buten-1-yloxy group, 1,1-dimethyl-3-buten-1-yloxy Group 1,2-dimethyl- 3-buten-1-yloxy group, 1,3-dimethyl-3-buten-1-yloxy group, 2,2-dimethyl-3-buten-1-yloxy group, 3,3-dimethyl-3-butene-1 -Yloxy group, 1-penten-1-yloxy group, 2-penten-1-yloxy group, 3-penten-1-yloxy group, 4-penten-1-yloxy group, 1-penten-2-yloxy group, 2 -Penten-2-yloxy group, 3-penten-2-yloxy group, 4-penten-2-yloxy group, 1-penten-3-yloxy group, 2-penten-3-yloxy group, 1-penten-1- Yloxy group, 2-penten-1-yloxy group, 3-penten-1-yloxy group, 4-penten-1-yloxy group, 1-penten-2-yloxy group, 2-pentene 2-yloxy group, 3-penten-2-yloxy group, 4-penten-2-yloxy group, 1-penten-3-yloxy group, 2-penten-3-yloxy group, 1-methyl-1-pentene-1 -Yloxy group, 2-methyl-1-penten-1-yloxy group, 3-methyl-1-penten-1-yloxy group, 4-methyl-1-penten-1-yloxy group, 1-methyl-2-pentene -1-yloxy group, 2-methyl-2-penten-1-yloxy group, 3-methyl-2-penten-1-yloxy group, 4-methyl-2-penten-1-yloxy group, 1-methyl-3 -Penten-1-yloxy group, 2-methyl-3-penten-1-yloxy group, 3-methyl-3-penten-1-yloxy group, 4-methyl-3-penten-1-yl Xyl group, 1-methyl-4-penten-1-yloxy group, 2-methyl-4-penten-1-yloxy group, 3-methyl-4-penten-1-yloxy group, 4-methyl-4-pentene- 1-yloxy group, 1-methyl-1-penten-2-yloxy group, 2-methyl-1-penten-2-yloxy group, 3-methyl-1-penten-2-yloxy group, 4-methyl-1- Penten-2-yloxy group, 1-methyl-2-penten-2-yloxy group, 2-methyl-2-penten-2-yloxy group, 3-methyl-2-penten-2-yloxy group, 4-methyl- 2-penten-2-yloxy group, 1-methyl-3-penten-2-yloxy group, 2-methyl-3-penten-2-yloxy group, 3-methyl-3-penten-2-yloxy group 4-methyl-3-penten-2-yloxy group, 1-methyl-4-penten-2-yloxy group, 2-methyl-4-penten-2-yloxy group, 3-methyl-4-penten-2- Yloxy group, 4-methyl-4-penten-2-yloxy group, 1-methyl-1-penten-3-yloxy group, 2-methyl-1-penten-3-yloxy group, 3-methyl-1-pentene- 3-yloxy group, 4-methyl-1-penten-3-yloxy group, 1-methyl-2-penten-3-yloxy group, 2-methyl-2-penten-3-yloxy group, 3-methyl-2- Penten-3-yloxy group, 4-methyl-2-penten-3-yloxy group, 1-hexen-1-yloxy group, 1-hexen-2-yloxy group, 1-hexen-3-yloxy 1-hexen-4-yloxy group, 1-hexen-5-yloxy group, 1-hexen-6-yloxy group, 2-hexen-1-yloxy group, 2-hexen-2-yloxy group, 2-hexene- 3-yloxy group, 2-hexen-4-yloxy group, 2-hexen-5-yloxy group, 2-hexen-6-yloxy group, 3-hexen-1-yloxy group, 3-hexen-2-yloxy group, And 3-hexen-3-yloxy group and the like, and preferably ethenyloxy group, 1-propen-1-yloxy group, 2-propen-1-yloxy group, 3-propen-1-yloxy group, 1-butene-1 -Yloxy group, 1-buten-2-yloxy group, 1-buten-3-yloxy group, 1-buten-4-yloxy group, 2-buten-1-yl Xyl group, 2-buten-2-yloxy group, 1-methyl-1-propen-1-yloxy group, 2-methyl-1-propen-1-yloxy group, 1-methyl-2-propen-1-yloxy group 2-methyl-2-propen-1-yloxy group, 1-methyl-1-buten-1-yloxy group, 2-methyl-1-buten-1-yloxy group, 3-methyl-1-butene-1- Yloxy group, 1-methyl-2-buten-1-yloxy group, 2-methyl-2-buten-1-yloxy group, 3-methyl-2-buten-1-yloxy group, 1-methyl-3-butene- 1-yloxy group, 2-methyl-3-buten-1-yloxy group, 3-methyl-3-buten-1-yloxy group, 1-ethyl-1-buten-1-yloxy group, 2-ethyl-1- Buten-1-yl Oxy group, 3-ethyl-1-buten-1-yloxy group, 1-ethyl-2-buten-1-yloxy group, 2-ethyl-2-buten-1-yloxy group, 3-ethyl-2-butene- 1-yloxy group, 1-ethyl-3-buten-1-yloxy group, 2-ethyl-3-buten-1-yloxy group, 3-ethyl-3-buten-1-yloxy group, 1,1-dimethyl- 1-buten-1-yloxy group, 1,2-dimethyl-1-buten-1-yloxy group, 1,3-dimethyl-1-buten-1-yloxy group, 2,2-dimethyl-1-butene-1 -Yloxy group, 3,3-dimethyl-1-buten-1-yloxy group, 1,1-dimethyl-2-buten-1-yloxy group, 1,2-dimethyl-2-buten-1-yloxy group, , 3-Dimethyl-2-bute -1-yloxy group, 2,2-dimethyl-2-buten-1-yloxy group, 3,3-dimethyl-2-buten-1-yloxy group, 1,1-dimethyl-3-buten-1-yloxy group 1,2-dimethyl-3-buten-1-yloxy group, 1,3-dimethyl-3-buten-1-yloxy group, 2,2-dimethyl-3-buten-1-yloxy group, 3,3- Dimethyl-3-buten-1-yloxy group, more preferably ethenyloxy group, 1-propen-1-yloxy group, 2-propen-1-yloxy group, 3-propen-1-yloxy group, 1-butene- 1-yloxy group, 1-buten-2-yloxy group, 1-buten-3-yloxy group, 1-buten-4-yloxy group, 2-buten-1-yloxy group, 2-buten-2-yloxy group Group, 1-methyl-1-propen-1-yloxy group, 2-methyl-1-propen-1-yloxy group, 1-methyl-2-propen-1-yloxy group, 2-methyl-2-propene-1 -Yloxy group, 1-methyl-1-buten-1-yloxy group, 2-methyl-1-buten-1-yloxy group, 3-methyl-1-buten-1-yloxy group, 1-methyl-2-butene -1-yloxy group, 2-methyl-2-buten-1-yloxy group, 3-methyl-2-buten-1-yloxy group, 1-methyl-3-buten-1-yloxy group, 2-methyl-3 -Buten-1-yloxy group, 3-methyl-3-buten-1-yloxy group, more preferably ethenyloxy group, 1-propen-1-yloxy group, 2-propen-1-yloxy group, 3- Propen-1-yloxy group, 1-buten-1-yloxy group, 1-buten-2-yloxy group, 1-buten-3-yloxy group, 1-buten-4-yloxy group, 2-buten-1-yloxy group A 2-buten-2-yloxy group, and most preferably an ethenyloxy group, a 1-propen-1-yloxy group, a 2-propen-1-yloxy group, and a 3-propen-1-yloxy group.
Similarly R1Is an alkenylthio group having 2 to 6 carbon atoms which may have one or more substituents, the alkenylthio group is the above-mentioned linear or branched alkenyl group having 2 to 6 carbon atoms. In which a sulfur atom is bonded to the terminal, specifically, for example, ethenylthio group, 1-propen-1-ylthio group, 2-propen-1-ylthio group, 3-propen-1-ylthio group, 1-buten-1-ylthio group, 1-buten-2-ylthio group, 1-buten-3-ylthio group, 1-buten-4-ylthio group, 2-buten-1-ylthio group, 2-butene-2 -Ylthio group, 1-methyl-1-propen-1-ylthio group, 2-methyl-1-propen-1-ylthio group, 1-methyl-2-propen-1-ylthio group, 2-methyl-2-propene -1-ylthio group, -Methyl-1-buten-1-ylthio group, 2-methyl-1-buten-1-ylthio group, 3-methyl-1-buten-1-ylthio group, 1-methyl-2-buten-1-ylthio group 2-methyl-2-buten-1-ylthio group, 3-methyl-2-buten-1-ylthio group, 1-methyl-3-buten-1-ylthio group, 2-methyl-3-butene-1- Ylthio group, 3-methyl-3-buten-1-ylthio group, 1-ethyl-1-buten-1-ylthio group, 2-ethyl-1-buten-1-ylthio group, 3-ethyl-1-butene- 1-ylthio group, 1-ethyl-2-buten-1-ylthio group, 2-ethyl-2-buten-1-ylthio group, 3-ethyl-2-buten-1-ylthio group, 1-ethyl-3- Buten-1-ylthio group, 2-ethyl-3-butene-1 Ylthio group, 3-ethyl-3-buten-1-ylthio group, 1,1-dimethyl-1-buten-1-ylthio group, 1,2-dimethyl-1-buten-1-ylthio group, 1,3- Dimethyl-1-buten-1-ylthio group, 2,2-dimethyl-1-buten-1-ylthio group, 3,3-dimethyl-1-buten-1-ylthio group, 1,1-dimethyl-2-butene -1-ylthio group, 1,2-dimethyl-2-buten-1-ylthio group, 1,3-dimethyl-2-buten-1-ylthio group, 2,2-dimethyl-2-buten-1-ylthio group 3,3-dimethyl-2-buten-1-ylthio group, 1,1-dimethyl-3-buten-1-ylthio group, 1,2-dimethyl-3-buten-1-ylthio group, 1,3- Dimethyl-3-buten-1-ylthio group, 2,2-dimethyl -3-buten-1-ylthio group, 3,3-dimethyl-3-buten-1-ylthio group, 1-penten-1-ylthio group, 2-penten-1-ylthio group, 3-penten-1-ylthio group Group, 4-penten-1-ylthio group, 1-penten-2-ylthio group, 2-penten-2-ylthio group, 3-penten-2-ylthio group, 4-penten-2-ylthio group, 1-pentene -3-ylthio group, 2-penten-3-ylthio group, 1-penten-1-ylthio group, 2-penten-1-ylthio group, 3-penten-1-ylthio group, 4-penten-1-ylthio group 1-penten-2-ylthio group, 2-penten-2-ylthio group, 3-penten-2-ylthio group, 4-penten-2-ylthio group, 1-penten-3-ylthio group, 2-pentene- 3-I Thio group, 1-methyl-1-penten-1-ylthio group, 2-methyl-1-penten-1-ylthio group, 3-methyl-1-penten-1-ylthio group, 4-methyl-1-pentene- 1-ylthio group, 1-methyl-2-penten-1-ylthio group, 2-methyl-2-penten-1-ylthio group, 3-methyl-2-penten-1-ylthio group, 4-methyl-2- Penten-1-ylthio group, 1-methyl-3-penten-1-ylthio group, 2-methyl-3-penten-1-ylthio group, 3-methyl-3-penten-1-ylthio group, 4-methyl- 3-penten-1-ylthio group, 1-methyl-4-penten-1-ylthio group, 2-methyl-4-penten-1-ylthio group, 3-methyl-4-penten-1-ylthio group, 4- Methyl-4-pentene -Ylthio group, 1-methyl-1-penten-2-ylthio group, 2-methyl-1-penten-2-ylthio group, 3-methyl-1-penten-2-ylthio group, 4-methyl-1-pentene 2-ylthio group, 1-methyl-2-penten-2-ylthio group, 2-methyl-2-penten-2-ylthio group, 3-methyl-2-penten-2-ylthio group, 4-methyl-2 -Penten-2-ylthio group, 1-methyl-3-penten-2-ylthio group, 2-methyl-3-penten-2-ylthio group, 3-methyl-3-penten-2-ylthio group, 4-methyl -3-penten-2-ylthio group, 1-methyl-4-penten-2-ylthio group, 2-methyl-4-penten-2-ylthio group, 3-methyl-4-penten-2-ylthio group, 4 -Methyl-4-pente N-2-ylthio group, 1-methyl-1-penten-3-ylthio group, 2-methyl-1-penten-3-ylthio group, 3-methyl-1-penten-3-ylthio group, 4-methyl- 1-penten-3-ylthio group, 1-methyl-2-penten-3-ylthio group, 2-methyl-2-penten-3-ylthio group, 3-methyl-2-penten-3-ylthio group, 4- Methyl-2-penten-3-ylthio group, 1-hexen-1-ylthio group, 1-hexen-2-ylthio group, 1-hexen-3-ylthio group, 1-hexen-4-ylthio group, 1-hexene -5-ylthio group, 1-hexen-6-ylthio group, 2-hexen-1-ylthio group, 2-hexen-2-ylthio group, 2-hexen-3-ylthio group, 2-hexen-4-ylthio group , 2-hexe -5-ylthio group, 2-hexen-6-ylthio group, 3-hexen-1-ylthio group, 3-hexen-2-ylthio group, 3-hexen-3-ylthio group and the like, preferably ethenylthio group 1-propen-1-ylthio group, 2-propen-1-ylthio group, 3-propen-1-ylthio group, 1-buten-1-ylthio group, 1-buten-2-ylthio group, 1-butene- 3-ylthio group, 1-buten-4-ylthio group, 2-buten-1-ylthio group, 2-buten-2-ylthio group, 1-methyl-1-propen-1-ylthio group, 2-methyl-1 -Propen-1-ylthio group, 1-methyl-2-propen-1-ylthio group, 2-methyl-2-propen-1-ylthio group, 1-methyl-1-buten-1-ylthio group, 2-methyl -1- Butte -1-ylthio group, 3-methyl-1-buten-1-ylthio group, 1-methyl-2-buten-1-ylthio group, 2-methyl-2-buten-1-ylthio group, 3-methyl-2 -Buten-1-ylthio group, 1-methyl-3-buten-1-ylthio group, 2-methyl-3-buten-1-ylthio group, 3-methyl-3-buten-1-ylthio group, 1-ethyl -1-buten-1-ylthio group, 2-ethyl-1-buten-1-ylthio group, 3-ethyl-1-buten-1-ylthio group, 1-ethyl-2-buten-1-ylthio group, 2 -Ethyl-2-buten-1-ylthio group, 3-ethyl-2-buten-1-ylthio group, 1-ethyl-3-buten-1-ylthio group, 2-ethyl-3-buten-1-ylthio group , 3-ethyl-3-buten-1-ylthio group, 1,1- Dimethyl-1-buten-1-ylthio group, 1,2-dimethyl-1-buten-1-ylthio group, 1,3-dimethyl-1-buten-1-ylthio group, 2,2-dimethyl-1-butene -1-ylthio group, 3,3-dimethyl-1-buten-1-ylthio group, 1,1-dimethyl-2-buten-1-ylthio group, 1,2-dimethyl-2-buten-1-ylthio group 1,3-dimethyl-2-buten-1-ylthio group, 2,2-dimethyl-2-buten-1-ylthio group, 3,3-dimethyl-2-buten-1-ylthio group, 1,1- Dimethyl-3-buten-1-ylthio group, 1,2-dimethyl-3-buten-1-ylthio group, 1,3-dimethyl-3-buten-1-ylthio group, 2,2-dimethyl-3-butene -1-ylthio group, 3,3-dimethyl-3-butene- -Ylthio group, more preferably ethenylthio group, 1-propen-1-ylthio group, 2-propen-1-ylthio group, 3-propen-1-ylthio group, 1-buten-1-ylthio group, 1- Buten-2-ylthio group, 1-buten-3-ylthio group, 1-buten-4-ylthio group, 2-buten-1-ylthio group, 2-buten-2-ylthio group, 1-methyl-1-propene -1-ylthio group, 2-methyl-1-propen-1-ylthio group, 1-methyl-2-propen-1-ylthio group, 2-methyl-2-propen-1-ylthio group, 1-methyl-1 -Buten-1-ylthio group, 2-methyl-1-buten-1-ylthio group, 3-methyl-1-buten-1-ylthio group, 1-methyl-2-buten-1-ylthio group, 2-methyl -2-butene-1- Ruthio group, 3-methyl-2-buten-1-ylthio group, 1-methyl-3-buten-1-ylthio group, 2-methyl-3-buten-1-ylthio group, 3-methyl-3-butene- 1-ylthio group, more preferably ethenylthio group, 1-propen-1-ylthio group, 2-propen-1-ylthio group, 3-propen-1-ylthio group, 1-buten-1-ylthio group, 1 -Buten-2-ylthio group, 1-buten-3-ylthio group, 1-buten-4-ylthio group, 2-buten-1-ylthio group, 2-buten-2-ylthio group, most preferably ethenylthio Group, 1-propen-1-ylthio group, 2-propen-1-ylthio group and 3-propen-1-ylthio group.
R1Represents an alkynyl group having 2 to 6 carbon atoms which may have one or more substituents, the alkynyl group represents a linear or branched alkynyl group having 2 to 6 carbon atoms, The compound residue which has a triple bond in the said C2 or more alkyl group. Specifically, for example, ethynyl group, 1-propyn-1-yl group, 2-propyn-1-yl group, 3-propyn-1-yl group, 1-butyn-1-yl group, 1-butyn-2- Yl group, 1-butyn-3-yl group, 1-butyn-4-yl group, 2-butyn-1-yl group, 2-butyn-2-yl group, 1-methyl-1-propyn-1-yl Group, 2-methyl-1-propyn-1-yl group, 1-methyl-2-propyn-1-yl group, 2-methyl-2-propyn-1-yl group, 1-methyl-1-butyne-1 -Yl group, 2-methyl-1-butyn-1-yl group, 3-methyl-1-butyn-1-yl group, 1-methyl-2-butyn-1-yl group, 2-methyl-2-butyne -1-yl group, 3-methyl-2-butyn-1-yl group, 1-methyl-3-butyn-1-yl group, 2-methyl- -Butyn-1-yl group, 3-methyl-3-butyn-1-yl group, 1-ethyl-1-butyn-1-yl group, 2-ethyl-1-butyn-1-yl group, 3-ethyl -1-butyn-1-yl group, 1-ethyl-2-butyn-1-yl group, 2-ethyl-2-butyn-1-yl group, 3-ethyl-2-butyn-1-yl group, 1 -Ethyl-3-butyn-1-yl group, 2-ethyl-3-butyn-1-yl group, 3-ethyl-3-butyn-1-yl group, 1,1-dimethyl-1-butyn-1- Yl group, 1,2-dimethyl-1-butyn-1-yl group, 1,3-dimethyl-1-butyn-1-yl group, 2,2-dimethyl-1-butyn-1-yl group, 3, 3-dimethyl-1-butyn-1-yl group, 1,1-dimethyl-2-butyn-1-yl group, 1,2-dimethyl-2-butyne group -Yl group, 1,3-dimethyl-2-butyn-1-yl group, 2,2-dimethyl-2-butyn-1-yl group, 3,3-dimethyl-2-butyn-1-yl group, , 1-Dimethyl-3-butyn-1-yl group, 1,2-dimethyl-3-butyn-1-yl group, 1,3-dimethyl-3-butyn-1-yl group, 2,2-dimethyl- 3-butyn-1-yl group, 3,3-dimethyl-3-butyn-1-yl group, 1-pentyn-1-yl group, 2-pentyn-1-yl group, 3-pentyn-1-yl group 4-pentyn-1-yl group, 1-pentyn-2-yl group, 2-pentyn-2-yl group, 3-pentyn-2-yl group, 4-pentyn-2-yl group, 1-pentyne- 3-yl group, 2-pentyn-3-yl group, 1-pentyn-1-yl group, 2-pentyn-1-yl group, 3-pen Chin-1-yl group, 4-pentyn-1-yl group, 1-pentyn-2-yl group, 2-pentyn-2-yl group, 3-pentyn-2-yl group, 4-pentyn-2-yl Group, 1-pentyn-3-yl group, 2-pentyn-3-yl group, 1-methyl-1-pentyn-1-yl group, 2-methyl-1-pentyn-1-yl group, 3-methyl- 1-pentyn-1-yl group, 4-methyl-1-pentyn-1-yl group, 1-methyl-2-pentyn-1-yl group, 2-methyl-2-pentyn-1-yl group, 3- Methyl-2-pentyn-1-yl group, 4-methyl-2-pentyn-1-yl group, 1-methyl-3-pentyn-1-yl group, 2-methyl-3-pentyn-1-yl group, 3-methyl-3-pentyn-1-yl group, 4-methyl-3-pentyn-1-yl group, 1-methyl 4-pentyn-1-yl group, 2-methyl-4-pentyn-1-yl group, 3-methyl-4-pentyn-1-yl group, 4-methyl-4-pentyn-1-yl group, 1- Methyl-1-pentyn-2-yl group, 2-methyl-1-pentyn-2-yl group, 3-methyl-1-pentyn-2-yl group, 4-methyl-1-pentyn-2-yl group, 1-methyl-2-pentyn-2-yl group, 2-methyl-2-pentyn-2-yl group, 3-methyl-2-pentyn-2-yl group, 4-methyl-2-pentyn-2-yl group Group, 1-methyl-3-pentyn-2-yl group, 2-methyl-3-pentyn-2-yl group, 3-methyl-3-pentyn-2-yl group, 4-methyl-3-pentyne-2 -Yl group, 1-methyl-4-pentyn-2-yl group, 2-methyl-4-pentyne-2- Group, 3-methyl-4-pentyn-2-yl group, 4-methyl-4-pentyn-2-yl group, 1-methyl-1-pentyn-3-yl group, 2-methyl-1-pentyne- 3-yl group, 3-methyl-1-pentyn-3-yl group, 4-methyl-1-pentyn-3-yl group, 1-methyl-2-pentyn-3-yl group, 2-methyl-2- Pentyn-3-yl group, 3-methyl-2-pentyn-3-yl group, 4-methyl-2-pentyn-3-yl group, 1-hexyn-1-yl group, 1-hexyn-2-yl group 1-hexyn-3-yl group, 1-hexyn-4-yl group, 1-hexyn-5-yl group, 1-hexyn-6-yl group, 2-hexyn-1-yl group, 2-hexyne- 2-yl group, 2-hexyn-3-yl group, 2-hexyn-4-yl group, 2-hexyne-5-yl Group, 2-hexyn-6-yl group, 3-hexyn-1-yl group, 3-hexyn-2-yl group, 3-hexyn-3-yl group, etc., preferably ethynyl group, Propin-1-yl group, 2-propyn-1-yl group, 3-propyn-1-yl group, 1-butyn-1-yl group, 1-butyn-2-yl group, 1-butyn-3-yl Group, 1-butyn-4-yl group, 2-butyn-1-yl group, 2-butyn-2-yl group, 1-methyl-1-propyn-1-yl group, 2-methyl-1-propyne- 1-yl group, 1-methyl-2-propyn-1-yl group, 2-methyl-2-propyn-1-yl group, 1-methyl-1-butyn-1-yl group, 2-methyl-1- Butyn-1-yl group, 3-methyl-1-butyn-1-yl group, 1-methyl-2-butyn-1-yl group, 2 Methyl-2-butyn-1-yl group, 3-methyl-2-butyn-1-yl group, 1-methyl-3-butyn-1-yl group, 2-methyl-3-butyn-1-yl group, 3-methyl-3-butyn-1-yl group, 1-ethyl-1-butyn-1-yl group, 2-ethyl-1-butyn-1-yl group, 3-ethyl-1-butyn-1-yl Group, 1-ethyl-2-butyn-1-yl group, 2-ethyl-2-butyn-1-yl group, 3-ethyl-2-butyn-1-yl group, 1-ethyl-3-butyne-1 -Yl group, 2-ethyl-3-butyn-1-yl group, 3-ethyl-3-butyn-1-yl group, 1,1-dimethyl-1-butyn-1-yl group, 1,2-dimethyl -1-butyn-1-yl group, 1,3-dimethyl-1-butyn-1-yl group, 2,2-dimethyl-1-butyn-1-yl 3,3-dimethyl-1-butyn-1-yl group, 1,1-dimethyl-2-butyn-1-yl group, 1,2-dimethyl-2-butyn-1-yl group, 1,3- Dimethyl-2-butyn-1-yl group, 2,2-dimethyl-2-butyn-1-yl group, 3,3-dimethyl-2-butyn-1-yl group, 1,1-dimethyl-3-butyne -1-yl group, 1,2-dimethyl-3-butyn-1-yl group, 1,3-dimethyl-3-butyn-1-yl group, 2,2-dimethyl-3-butyn-1-yl group 3,3-dimethyl-3-butyn-1-yl group, more preferably ethynyl group, 1-propyn-1-yl group, 2-propyn-1-yl group, 3-propyn-1-yl group 1-butyn-1-yl group, 1-butyn-2-yl group, 1-butyn-3-yl group, 1-butyn-4-yl Group, 2-butyn-1-yl group, 2-butyn-2-yl group, 1-methyl-1-propyn-1-yl group, 2-methyl-1-propyn-1-yl group, 1-methyl- 2-propyn-1-yl group, 2-methyl-2-propyn-1-yl group, 1-methyl-1-butyn-1-yl group, 2-methyl-1-butyn-1-yl group, 3- Methyl-1-butyn-1-yl group, 1-methyl-2-butyn-1-yl group, 2-methyl-2-butyn-1-yl group, 3-methyl-2-butyn-1-yl group, 1-methyl-3-butyn-1-yl group, 2-methyl-3-butyn-1-yl group, 3-methyl-3-butyn-1-yl group, more preferably ethynyl group, 1-propyne -1-yl group, 2-propyn-1-yl group, 3-propyn-1-yl group, 1-butyn-1-yl group, A butyn-2-yl group, a 1-butyn-3-yl group, a 1-butyn-4-yl group, a 2-butyn-1-yl group, and a 2-butyn-2-yl group, most preferably an ethynyl group 1-propyn-1-yl group, 2-propyn-1-yl group and 3-propyn-1-yl group.
Similarly R1Is an alkynyloxy group having 2 to 6 carbon atoms which may have one or more substituents, the alkynyloxy group is a linear or branched alkynyl group having 2 to 6 carbon atoms. In which an oxygen atom is bonded to the terminal, specifically, for example, ethynyloxy group, 1-propyn-1-yloxy group, 2-propyn-1-yloxy group, 3-propyn-1-yloxy group 1-butyn-1-yloxy group, 1-butyn-2-yloxy group, 1-butyn-3-yloxy group, 1-butyn-4-yloxy group, 2-butyn-1-yloxy group, 2-butyne- 2-yloxy group, 1-methyl-1-propyn-1-yloxy group, 2-methyl-1-propyn-1-yloxy group, 1-methyl-2-propyn-1-yloxy group, 2-methyl- -Propyn-1-yloxy group, 1-methyl-1-butyn-1-yloxy group, 2-methyl-1-butyn-1-yloxy group, 3-methyl-1-butyn-1-yloxy group, 1-methyl 2-butyn-1-yloxy group, 2-methyl-2-butyn-1-yloxy group, 3-methyl-2-butyn-1-yloxy group, 1-methyl-3-butyn-1-yloxy group, 2 -Methyl-3-butyn-1-yloxy group, 3-methyl-3-butyn-1-yloxy group, 1-ethyl-1-butyn-1-yloxy group, 2-ethyl-1-butyn-1-yloxy group 3-ethyl-1-butyn-1-yloxy group, 1-ethyl-2-butyn-1-yloxy group, 2-ethyl-2-butyn-1-yloxy group, 3-ethyl-2-butyne-1- Yloxy group, 1- Tyl-3-butyn-1-yloxy group, 2-ethyl-3-butyn-1-yloxy group, 3-ethyl-3-butyn-1-yloxy group, 1,1-dimethyl-1-butyn-1-yloxy Group, 1,2-dimethyl-1-butyn-1-yloxy group, 1,3-dimethyl-1-butyn-1-yloxy group, 2,2-dimethyl-1-butyn-1-yloxy group, 3,3 -Dimethyl-1-butyn-1-yloxy group, 1,1-dimethyl-2-butyn-1-yloxy group, 1,2-dimethyl-2-butyn-1-yloxy group, 1,3-dimethyl-2- Butyn-1-yloxy group, 2,2-dimethyl-2-butyn-1-yloxy group, 3,3-dimethyl-2-butyn-1-yloxy group, 1,1-dimethyl-3-butyn-1-yloxy Group 1,2-dimethyl- 3-butyn-1-yloxy group, 1,3-dimethyl-3-butyn-1-yloxy group, 2,2-dimethyl-3-butyn-1-yloxy group, 3,3-dimethyl-3-butyne-1 -Yloxy group, 1-pentyn-1-yloxy group, 2-pentyn-1-yloxy group, 3-pentyn-1-yloxy group, 4-pentyn-1-yloxy group, 1-pentyn-2-yloxy group, 2 -Pentyn-2-yloxy group, 3-pentyn-2-yloxy group, 4-pentyn-2-yloxy group, 1-pentyn-3-yloxy group, 2-pentyn-3-yloxy group, 1-pentyne-1- Yloxy group, 2-pentyn-1-yloxy group, 3-pentyn-1-yloxy group, 4-pentyn-1-yloxy group, 1-pentyn-2-yloxy group, 2-pentyne 2-yloxy group, 3-pentyn-2-yloxy group, 4-pentyn-2-yloxy group, 1-pentyn-3-yloxy group, 2-pentyn-3-yloxy group, 1-methyl-1-pentyne-1 -Yloxy group, 2-methyl-1-pentyn-1-yloxy group, 3-methyl-1-pentyn-1-yloxy group, 4-methyl-1-pentyn-1-yloxy group, 1-methyl-2-pentyne -1-yloxy group, 2-methyl-2-pentyn-1-yloxy group, 3-methyl-2-pentyn-1-yloxy group, 4-methyl-2-pentyn-1-yloxy group, 1-methyl-3 -Pentyn-1-yloxy group, 2-methyl-3-pentyn-1-yloxy group, 3-methyl-3-pentyn-1-yloxy group, 4-methyl-3-pentyn-1-yl Xyl group, 1-methyl-4-pentyn-1-yloxy group, 2-methyl-4-pentyn-1-yloxy group, 3-methyl-4-pentyn-1-yloxy group, 4-methyl-4-pentyne- 1-yloxy group, 1-methyl-1-pentyn-2-yloxy group, 2-methyl-1-pentyn-2-yloxy group, 3-methyl-1-pentyn-2-yloxy group, 4-methyl-1- Pentyn-2-yloxy group, 1-methyl-2-pentyn-2-yloxy group, 2-methyl-2-pentyn-2-yloxy group, 3-methyl-2-pentyn-2-yloxy group, 4-methyl- 2-pentyn-2-yloxy group, 1-methyl-3-pentyn-2-yloxy group, 2-methyl-3-pentyn-2-yloxy group, 3-methyl-3-pentyn-2-yloxy group 4-methyl-3-pentyn-2-yloxy group, 1-methyl-4-pentyn-2-yloxy group, 2-methyl-4-pentyn-2-yloxy group, 3-methyl-4-pentyn-2- Yloxy group, 4-methyl-4-pentyn-2-yloxy group, 1-methyl-1-pentyn-3-yloxy group, 2-methyl-1-pentyn-3-yloxy group, 3-methyl-1-pentyne- 3-yloxy group, 4-methyl-1-pentyn-3-yloxy group, 1-methyl-2-pentyn-3-yloxy group, 2-methyl-2-pentyn-3-yloxy group, 3-methyl-2- Pentyn-3-yloxy group, 4-methyl-2-pentyn-3-yloxy group, 1-hexyn-1-yloxy group, 1-hexyn-2-yloxy group, 1-hexyn-3-yloxy 1-hexyn-4-yloxy group, 1-hexyn-5-yloxy group, 1-hexyn-6-yloxy group, 2-hexyn-1-yloxy group, 2-hexyn-2-yloxy group, 2-hexyne- 3-yloxy group, 2-hexyn-4-yloxy group, 2-hexyn-5-yloxy group, 2-hexyn-6-yloxy group, 3-hexyn-1-yloxy group, 3-hexyn-2-yloxy group, And 3-hexyn-3-yloxy group, and the like, and preferably ethynyloxy group, 1-propyn-1-yloxy group, 2-propyn-1-yloxy group, 3-propyn-1-yloxy group, 1-butyne- 1-yloxy group, 1-butyn-2-yloxy group, 1-butyn-3-yloxy group, 1-butyn-4-yloxy group, 2-butyn-1-yl Xyl group, 2-butyn-2-yloxy group, 1-methyl-1-propyn-1-yloxy group, 2-methyl-1-propyn-1-yloxy group, 1-methyl-2-propyn-1-yloxy group 2-methyl-2-propyn-1-yloxy group, 1-methyl-1-butyn-1-yloxy group, 2-methyl-1-butyn-1-yloxy group, 3-methyl-1-butyne-1- Yloxy group, 1-methyl-2-butyn-1-yloxy group, 2-methyl-2-butyn-1-yloxy group, 3-methyl-2-butyn-1-yloxy group, 1-methyl-3-butyne- 1-yloxy group, 2-methyl-3-butyn-1-yloxy group, 3-methyl-3-butyn-1-yloxy group, 1-ethyl-1-butyn-1-yloxy group, 2-ethyl-1- Butyn-1-yl Oxy group, 3-ethyl-1-butyn-1-yloxy group, 1-ethyl-2-butyn-1-yloxy group, 2-ethyl-2-butyn-1-yloxy group, 3-ethyl-2-butyne- 1-yloxy group, 1-ethyl-3-butyn-1-yloxy group, 2-ethyl-3-butyn-1-yloxy group, 3-ethyl-3-butyn-1-yloxy group, 1,1-dimethyl- 1-butyn-1-yloxy group, 1,2-dimethyl-1-butyn-1-yloxy group, 1,3-dimethyl-1-butyn-1-yloxy group, 2,2-dimethyl-1-butyne-1 -Yloxy group, 3,3-dimethyl-1-butyn-1-yloxy group, 1,1-dimethyl-2-butyn-1-yloxy group, 1,2-dimethyl-2-butyn-1-yloxy group, , 3-Dimethyl-2-buty -1-yloxy group, 2,2-dimethyl-2-butyn-1-yloxy group, 3,3-dimethyl-2-butyn-1-yloxy group, 1,1-dimethyl-3-butyn-1-yloxy group 1,2-dimethyl-3-butyn-1-yloxy group, 1,3-dimethyl-3-butyn-1-yloxy group, 2,2-dimethyl-3-butyn-1-yloxy group, 3,3- Dimethyl-3-butyn-1-yloxy group, more preferably ethynyloxy group, 1-propyn-1-yloxy group, 2-propyn-1-yloxy group, 3-propyn-1-yloxy group, 1-butyne -1-yloxy, 1-butyn-2-yloxy, 1-butyn-3-yloxy, 1-butyn-4-yloxy, 2-butyn-1-yloxy, 2-butyn-2-yloxy Group, 1-methyl-1-propyn-1-yloxy group, 2-methyl-1-propyn-1-yloxy group, 1-methyl-2-propyn-1-yloxy group, 2-methyl-2-propyne-1 -Iloxy group, 1-methyl-1-butyn-1-yloxy group, 2-methyl-1-butyn-1-yloxy group, 3-methyl-1-butyn-1-yloxy group, 1-methyl-2-butyne -1-yloxy group, 2-methyl-2-butyn-1-yloxy group, 3-methyl-2-butyn-1-yloxy group, 1-methyl-3-butyn-1-yloxy group, 2-methyl-3 -Butyn-1-yloxy group, 3-methyl-3-butyn-1-yloxy group, more preferably ethynyloxy group, 1-propyn-1-yloxy group, 2-propyn-1-yloxy group, 3- Propin-1-yloxy group, 1-butyn-1-yloxy group, 1-butyn-2-yloxy group, 1-butyn-3-yloxy group, 1-butyn-4-yloxy group, 2-butyn-1-yloxy A 2-butyn-2-yloxy group, and most preferably an ethynyloxy group, a 1-propyn-1-yloxy group, a 2-propyn-1-yloxy group, and a 3-propyn-1-yloxy group.
Similarly R1Is an alkynylthio group having 2 to 6 carbon atoms which may have one or more substituents, the alkynylthio group is a linear or branched alkynyl group having 2 to 6 carbon atoms. In which a sulfur atom is bonded to the terminal, specifically, for example, ethynylthio group, 1-propyn-1-ylthio group, 2-propyn-1-ylthio group, 3-propyn-1-ylthio group, 1-butyn-1-ylthio group, 1-butyn-2-ylthio group, 1-butyne-3-ylthio group, 1-butyne-4-ylthio group, 2-butyn-1-ylthio group, 2-butyne-2 -Ylthio group, 1-methyl-1-propyne-1-ylthio group, 2-methyl-1-propyne-1-ylthio group, 1-methyl-2-propyn-1-ylthio group, 2-methyl-2-propyne -1-ylthio group, -Methyl-1-butyn-1-ylthio group, 2-methyl-1-butyn-1-ylthio group, 3-methyl-1-butyn-1-ylthio group, 1-methyl-2-butyn-1-ylthio group 2-methyl-2-butyn-1-ylthio group, 3-methyl-2-butyn-1-ylthio group, 1-methyl-3-butyn-1-ylthio group, 2-methyl-3-butyne-1- Ylthio group, 3-methyl-3-butyn-1-ylthio group, 1-ethyl-1-butyn-1-ylthio group, 2-ethyl-1-butyn-1-ylthio group, 3-ethyl-1-butyne- 1-ylthio group, 1-ethyl-2-butyn-1-ylthio group, 2-ethyl-2-butyn-1-ylthio group, 3-ethyl-2-butyn-1-ylthio group, 1-ethyl-3- Butyn-1-ylthio group, 2-ethyl-3-butyne-1 Ylthio group, 3-ethyl-3-butyn-1-ylthio group, 1,1-dimethyl-1-butyn-1-ylthio group, 1,2-dimethyl-1-butyn-1-ylthio group, 1,3- Dimethyl-1-butyn-1-ylthio group, 2,2-dimethyl-1-butyn-1-ylthio group, 3,3-dimethyl-1-butyn-1-ylthio group, 1,1-dimethyl-2-butyne -1-ylthio group, 1,2-dimethyl-2-butyn-1-ylthio group, 1,3-dimethyl-2-butyn-1-ylthio group, 2,2-dimethyl-2-butyn-1-ylthio group 3,3-dimethyl-2-butyn-1-ylthio group, 1,1-dimethyl-3-butyn-1-ylthio group, 1,2-dimethyl-3-butyn-1-ylthio group, 1,3- Dimethyl-3-butyn-1-ylthio group, 2,2-dimethyl -3-butyn-1-ylthio group, 3,3-dimethyl-3-butyn-1-ylthio group, 1-pentyn-1-ylthio group, 2-pentyn-1-ylthio group, 3-pentyn-1-ylthio group Group, 4-pentyn-1-ylthio group, 1-pentyn-2-ylthio group, 2-pentyn-2-ylthio group, 3-pentyn-2-ylthio group, 4-pentyn-2-ylthio group, 1-pentyne -3-ylthio group, 2-pentyn-3-ylthio group, 1-pentyn-1-ylthio group, 2-pentyn-1-ylthio group, 3-pentyn-1-ylthio group, 4-pentyn-1-ylthio group 1-pentyn-2-ylthio group, 2-pentyn-2-ylthio group, 3-pentyn-2-ylthio group, 4-pentyn-2-ylthio group, 1-pentyn-3-ylthio group, 2-pentyne- 3-I Thio group, 1-methyl-1-pentyn-1-ylthio group, 2-methyl-1-pentyn-1-ylthio group, 3-methyl-1-pentyn-1-ylthio group, 4-methyl-1-pentyne- 1-ylthio group, 1-methyl-2-pentyn-1-ylthio group, 2-methyl-2-pentyn-1-ylthio group, 3-methyl-2-pentyn-1-ylthio group, 4-methyl-2- Pentyn-1-ylthio group, 1-methyl-3-pentyn-1-ylthio group, 2-methyl-3-pentyn-1-ylthio group, 3-methyl-3-pentyn-1-ylthio group, 4-methyl- 3-pentyn-1-ylthio group, 1-methyl-4-pentin-1-ylthio group, 2-methyl-4-pentin-1-ylthio group, 3-methyl-4-pentyn-1-ylthio group, 4- Methyl-4-pentyne -Ylthio group, 1-methyl-1-pentyn-2-ylthio group, 2-methyl-1-pentyn-2-ylthio group, 3-methyl-1-pentyn-2-ylthio group, 4-methyl-1-pentyne 2-ylthio group, 1-methyl-2-pentyn-2-ylthio group, 2-methyl-2-pentyn-2-ylthio group, 3-methyl-2-pentyn-2-ylthio group, 4-methyl-2 -Pentyn-2-ylthio group, 1-methyl-3-pentyn-2-ylthio group, 2-methyl-3-pentyn-2-ylthio group, 3-methyl-3-pentyn-2-ylthio group, 4-methyl -3-pentyn-2-ylthio group, 1-methyl-4-pentyn-2-ylthio group, 2-methyl-4-pentyn-2-ylthio group, 3-methyl-4-pentyn-2-ylthio group, 4 -Methyl-4-pliers N-2-ylthio group, 1-methyl-1-pentyn-3-ylthio group, 2-methyl-1-pentyn-3-ylthio group, 3-methyl-1-pentyn-3-ylthio group, 4-methyl- 1-pentyn-3-ylthio group, 1-methyl-2-pentyn-3-ylthio group, 2-methyl-2-pentyne-3-ylthio group, 3-methyl-2-pentyn-3-ylthio group, 4- Methyl-2-pentin-3-ylthio group, 1-hexyn-1-ylthio group, 1-hexyn-2-ylthio group, 1-hexyn-3-ylthio group, 1-hexyn-4-ylthio group, 1-hexyne -5-ylthio group, 1-hexyn-6-ylthio group, 2-hexyn-1-ylthio group, 2-hexyn-2-ylthio group, 2-hexyn-3-ylthio group, 2-hexyn-4-ylthio group , 2-hexyl -5-ylthio group, 2-hexyn-6-ylthio group, 3-hexyn-1-ylthio group, 3-hexyn-2-ylthio group, 3-hexyn-3-ylthio group and the like, preferably ethynylthio group 1-propyn-1-ylthio group, 2-propyn-1-ylthio group, 3-propyne-1-ylthio group, 1-butyn-1-ylthio group, 1-butyn-2-ylthio group, 1-butyne- 3-ylthio group, 1-butyn-4-ylthio group, 2-butyn-1-ylthio group, 2-butyn-2-ylthio group, 1-methyl-1-propyn-1-ylthio group, 2-methyl-1 -Propyn-1-ylthio group, 1-methyl-2-propyn-1-ylthio group, 2-methyl-2-propyn-1-ylthio group, 1-methyl-1-butyn-1-ylthio group, 2-methyl -1-Buchi -1-ylthio group, 3-methyl-1-butyn-1-ylthio group, 1-methyl-2-butyn-1-ylthio group, 2-methyl-2-butyn-1-ylthio group, 3-methyl-2 -Butyn-1-ylthio group, 1-methyl-3-butyn-1-ylthio group, 2-methyl-3-butyn-1-ylthio group, 3-methyl-3-butyn-1-ylthio group, 1-ethyl -1-butyn-1-ylthio group, 2-ethyl-1-butyn-1-ylthio group, 3-ethyl-1-butyn-1-ylthio group, 1-ethyl-2-butyn-1-ylthio group, 2 -Ethyl-2-butyn-1-ylthio group, 3-ethyl-2-butyn-1-ylthio group, 1-ethyl-3-butyn-1-ylthio group, 2-ethyl-3-butyn-1-ylthio group 3-ethyl-3-butyn-1-ylthio group, 1,1- Dimethyl-1-butyn-1-ylthio group, 1,2-dimethyl-1-butyn-1-ylthio group, 1,3-dimethyl-1-butyn-1-ylthio group, 2,2-dimethyl-1-butyne -1-ylthio group, 3,3-dimethyl-1-butyn-1-ylthio group, 1,1-dimethyl-2-butyn-1-ylthio group, 1,2-dimethyl-2-butyn-1-ylthio group 1,3-dimethyl-2-butyn-1-ylthio group, 2,2-dimethyl-2-butyn-1-ylthio group, 3,3-dimethyl-2-butyn-1-ylthio group, 1,1- Dimethyl-3-butyn-1-ylthio group, 1,2-dimethyl-3-butyn-1-ylthio group, 1,3-dimethyl-3-butyn-1-ylthio group, 2,2-dimethyl-3-butyne -1-ylthio group, 3,3-dimethyl-3-butyne- -Ylthio group, more preferably ethynylthio group, 1-propyn-1-ylthio group, 2-propyn-1-ylthio group, 3-propyn-1-ylthio group, 1-butyn-1-ylthio group, 1- Butyn-2-ylthio group, 1-butyn-3-ylthio group, 1-butyne-4-ylthio group, 2-butyn-1-ylthio group, 2-butyn-2-ylthio group, 1-methyl-1-propyne -1-ylthio group, 2-methyl-1-propyn-1-ylthio group, 1-methyl-2-propyn-1-ylthio group, 2-methyl-2-propyn-1-ylthio group, 1-methyl-1 -Butyn-1-ylthio group, 2-methyl-1-butyn-1-ylthio group, 3-methyl-1-butyn-1-ylthio group, 1-methyl-2-butyn-1-ylthio group, 2-methyl -2-butyne-1- Ruthio group, 3-methyl-2-butyn-1-ylthio group, 1-methyl-3-butyn-1-ylthio group, 2-methyl-3-butyn-1-ylthio group, 3-methyl-3-butyne- 1-ylthio group, more preferably ethynylthio group, 1-propyn-1-ylthio group, 2-propyn-1-ylthio group, 3-propyn-1-ylthio group, 1-butyn-1-ylthio group, 1 -Butyn-2-ylthio group, 1-butyn-3-ylthio group, 1-butyne-4-ylthio group, 2-butyn-1-ylthio group, 2-butyn-2-ylthio group, most preferably ethynylthio A group, 1-propyn-1-ylthio group, 2-propyn-1-ylthio group, 3-propyn-1-ylthio group.
R1Represents an aryl group having 6 to 12 carbon atoms which may have one or more substituents, the aryl group means an aromatic ring group, specifically, for example, a phenyl group, a 1-naphthyl group. , 2-naphthyl group, as-indacenyl group, s-indacenyl group, acenaphthylenyl group and the like. Preferably they are a phenyl group, 1-naphthyl group, and 2-naphthyl group, More preferably, it is a phenyl group.
Similarly R1Represents an aryloxy group having 6 to 12 carbon atoms which may have one or more substituents, the aryloxy group is an aryl group having 6 to 12 carbon atoms, and an oxygen atom at the end of the aryl group. Specifically, for example, a phenyloxy group, a 1-naphthyloxy group, a 2-naphthyloxy group, an as-indacenyloxy group, an s-indacenyloxy group, an acenaphthylenyloxy group Etc. Preferably they are a phenyloxy group, 1-naphthyloxy group, and 2-naphthyloxy group, More preferably, it is a phenyloxy group.
Similarly R1Is an arylthio group having 6 to 12 carbon atoms which may have one or more substituents, the arylthio group is a sulfur atom bonded to the terminal of the aryl group having 6 to 12 carbon atoms. Specific examples thereof include a phenylthio group, a 1-naphthylthio group, a 2-naphthylthio group, an as-indacenylthio group, an s-indacenylthio group, and an acenaphthylenylthio group. A phenylthio group, a 1-naphthylthio group, and a 2-naphthylthio group are preferable, and a phenylthio group is more preferable.
R1Is an alkylaryl group having 7 to 18 carbon atoms which may have one or more substituents, the alkylaryl group is an aryl group having 6 to 12 carbon atoms, in which the substitutable moiety is the carbon A group substituted with an alkyl group of 1 to 6 is mentioned, and specific examples include tolyl group, xylyl group, cumenyl group, mesityl group, cymenyl group, styryl group and the like. Preferably, it is a tolyl group, xylyl group, cumenyl group, mesityl group, cymenyl group, styryl group, more preferably tolyl group, xylyl group, cumenyl group, mesityl group, more preferably tolyl group, xylyl group, cumenyl group. It is.
Similarly R1Is an alkylaryloxy group having 7 to 18 carbon atoms which may have one or more substituents, the alkylaryloxy group is the above-mentioned alkylaryl group having 7 to 18 carbon atoms, and the terminal thereof. A combination of oxygen atoms corresponds to, for example, o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, 2,3-xylyl-1-oxy group, 2,4-xylyl-1-oxy. Group, 2,5-xylyl-1-oxy group, o-cumenyloxy group, m-cumenyloxy group, p-cumenyloxy group, mesityloxy group, 2,3-cymenyl-1-oxy group, 2,4-cymenyl-1- Examples thereof include an oxy group, 2,5-cymenyl-1-oxy group, o-styryloxy group, m-styryloxy group, p-styryloxy group and the like. Preferably, o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, 2,3-xylyl-1-oxy group, 2,4-xylyl-1-oxy group, 2,5-xylyl-1-oxy group, o-cumenyloxy group, m-cumenyloxy group, p-cumenyloxy group, mesityloxy group, 2,3-cymenyl-1-oxy group, 2,4-cymenyl-1-oxy group, 2,5-cymenyl-1-oxy group O-styryloxy group, m-styryloxy group, p-styryloxy group, more preferably o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, 2,3-xylyl-1-oxy group, 2,4-xylyl-1-oxy group, 2,5-xylyl-1-oxy group, o-cumenyloxy group, m-cumenyloxy group, p-cumenyloxy group, mesityloxy Group, o-styryloxy group, m-styryloxy group, p-styryloxy group, more preferably o-tolyloxy group, m-tolyloxy group, p-tolyloxy group, 2,3-xylyl-1-oxy group. 2,4-xylyl-1-oxy group, 2,5-xylyl-1-oxy group, and mesityloxy group, and most preferably o-tolyloxy group, m-tolyloxy group, and p-tolyloxy group.
Similarly R1Is an alkylarylthio group having 7 to 18 carbon atoms which may have one or more substituents, the alkylarylthio group is the above-mentioned alkylaryl group having 7 to 18 carbon atoms, and the terminal thereof. Examples thereof include those bonded with a sulfur atom, specifically, for example, o-tolylthio group, m-tolylthio group, p-tolylthio group, 2,3-xylyl-1-thio group, 2,4-xylyl-1-thio. Group, 2,5-xylyl-1-thio group, o-cumenylthio group, m-cumenylthio group, p-cumenylthio group, mesitylthio group, 2,3-cymenyl-1-thio group, 2,4-cymenyl-1- A thio group, 2,5-cymenyl-1-thio group, o-styrylthio group, m-styrylthio group, p-styrylthio group and the like can be mentioned. Preferably, o-tolylthio group, m-tolylthio group, p-tolylthio group, 2,3-xylyl-1-thio group, 2,4-xylyl-1-thio group, 2,5-xylyl-1-thio group, o-cumenylthio group, m-cumenylthio group, p-cumenylthio group, mesitylthio group, 2,3-cymenyl-1-thio group, 2,4-cymenyl-1-thio group, 2,5-cymenyl-1-thio group O-styrylthio group, m-styrylthio group, p-styrylthio group, more preferably o-tolylthio group, m-tolylthio group, p-tolylthio group, 2,3-xylyl-1-thio group, 2,4 -Xylyl-1-thio group, 2,5-xylyl-1-thio group, o-cumenylthio group, m-cumenylthio group, p-cumenylthio group, mesitylthio group, o-styrylthio group, m-styrylthio group, p-styrene Rylthio group, more preferably o-tolylthio group, m-tolylthio group, p-tolylthio group, 2,3-xylyl-1-thio group, 2,4-xylyl-1-thio group, 2,5-xylyl A -1-thio group and a mesitylthio group, most preferably an o-tolylthio group, an m-tolylthio group, and a p-tolylthio group.
R1Represents an aralkyl group having 7 to 18 carbon atoms which may have one or more substituents, the aralkyl group is the above alkyl group having 1 to 6 carbon atoms, wherein the substitutable portion is the above-mentioned 6 carbon atoms. Or a group substituted with 12 aryl groups, specifically, for example, benzyl group, phenethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group, 1 -A naphthylmethyl group, 2-naphthylmethyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthylpropyl group, 2-naphthylpropyl group, etc. are mentioned. Preferably benzyl group, phenethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 1-naphthylethyl group, 2-naphthylethyl group, 1-naphthylpropyl group, 2-naphthylpropyl group, more preferably benzyl group, phenethyl group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenyl Hexyl group, 1-naphthylmethyl group and 2-naphthylmethyl group, more preferably benzyl group, phenethyl group, 3-phenylpropyl group and 4-phenylbutyl group, most preferably benzyl group and phenethyl group. .
Similarly R1Represents an aralkyloxy group having 7 to 18 carbon atoms which may have one or more substituents, the aralkyloxy group is an aralkyloxy group having 7 to 18 carbon atoms having an oxygen atom at its terminal. Specifically, for example, benzyloxy group, phenethyloxy group, 3-phenylpropyloxy group, 4-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 1- Examples include naphthylmethyloxy group, 2-naphthylmethyloxy group, 1-naphthylethyloxy group, 2-naphthylethyloxy group, 1-naphthylpropyloxy group, 2-naphthylpropyloxy group and the like. Preferably benzyloxy group, phenethyloxy group, 3-phenylpropyloxy group, 4-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 1-naphthylmethyloxy group, 2-naphthylmethyloxy group Group, 1-naphthylethyloxy group, 2-naphthylethyloxy group, 1-naphthylpropyloxy group, 2-naphthylpropyloxy group, more preferably benzyloxy group, phenethyloxy group, 3-phenylpropyloxy group, 4-phenylbutyloxy group, 5-phenylpentyloxy group, 6-phenylhexyloxy group, 1-naphthylmethyloxy group and 2-naphthylmethyloxy group, more preferably benzyloxy group, phenethyloxy group, 3- Phenylpropyloxy group, 4-phenyl An alkylsulfonyl butyl group, most preferably a benzyloxy group, phenethyloxy group.
Similarly R1Represents an aralkylthio group having 7 to 18 carbon atoms which may have one or more substituents, the aralkylthio group is the above aralkyl group having 7 to 18 carbon atoms having a sulfur atom at its terminal. Specifically, for example, benzylthio group, phenethylthio group, 3-phenylpropylthio group, 4-phenylbutylthio group, 5-phenylpentylthio group, 6-phenylhexylthio group, 1-naphthylmethylthio group. Group, 2-naphthylmethylthio group, 1-naphthylethylthio group, 2-naphthylethylthio group, 1-naphthylpropylthio group, 2-naphthylpropylthio group and the like. Preferably benzylthio group, phenethylthio group, 3-phenylpropylthio group, 4-phenylbutylthio group, 5-phenylpentylthio group, 6-phenylhexylthio group, 1-naphthylmethylthio group, 2-naphthylmethylthio group, 1- Naphtylethylthio group, 2-naphthylethylthio group, 1-naphthylpropylthio group, 2-naphthylpropylthio group, more preferably benzylthio group, phenethylthio group, 3-phenylpropylthio group, 4-phenylbutylthio group , 5-phenylpentylthio group, 6-phenylhexylthio group, 1-naphthylmethylthio group, 2-naphthylmethylthio group, more preferably benzylthio group, phenethylthio group, 3-phenylpropylthio group, 4-phenylbutylthio group. Group, most preferably Jiruchio group, a phenethylthio group.
In the case where L represents a single bond, the following general formula in which the group X and the group Y are bonded by a single bond:
Figure 2002080899
[The symbols in the formula are the same as defined above. ] The carboxylic acid derivative represented by this, its salt or its ester, or those hydrates shall be shown.
Similarly, when L represents a double bond, the following general formula in which X and Y are bonded by a single bond:
Figure 2002080899
[The symbols in the formula are the same as defined above. ] The carboxylic acid derivative represented by this, its salt or its ester, or those hydrates shall be shown.
When M represents a single bond, the following general formula
Figure 2002080899
[The symbols in the formula are the same as defined above. ] The carboxylic acid derivative represented by this, its salt or its ester, or those hydrates shall be shown.
When T represents a single bond, the following general formula
Figure 2002080899
[The symbols in the formula are the same as defined above. ] The carboxylic acid derivative represented by this, its salt or its ester, or those hydrates shall be shown.
When L and M represent an alkylene group having 1 to 6 carbon atoms which may have one or more substituents, the alkylene group means that one hydrogen atom is further removed from the alkyl group having 1 to 6 carbon atoms. Specifically, for example, methylene group, ethylene group, methylethylene group, propylene group, ethylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group , Trimethylene group, 1-methyltrimethylene group, 1-ethyltrimethylene group, 2-methyltrimethylene group, 1,1-dimethyltrimethylene group, tetramethylene group, pentamethylene group, hexamethylene group and the like. Preferably methylene group, ethylene group, methylethylene group, propylene group, ethylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group, trimethylene group, 1-methyltrimethylene group, 1-ethyltrimethylene Group, 2-methyltrimethylene group, 1,1-dimethyltrimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, more preferably methylene group, ethylene group, methylethylene group, propylene group, ethylethylene Group, 1,1-dimethylethylene group, 1,2-dimethylethylene group, trimethylene group, 1-methyltrimethylene group, 1-ethyltrimethylene group, 2-methyltrimethylene group, 1,1-dimethyltrimethylene group More preferably, methylene group, ethylene group, methylethylene group, propylene. Group, ethylethylene group, 1,1-dimethylethylene group, 1,2-dimethylethylene group, trimethylene group, even more preferably methylene group, ethylene group, methylethylene group, propylene group, most preferably A methylene group and an ethylene group;
Similarly, when T represents an alkylene group having 1 to 3 carbon atoms which may have a substituent of 1 or more, the alkylene group is one hydrogen atom from the above alkyl group having 1 to 3 carbon atoms. It means a divalent group derived by removing, specifically, an alkylene group having 1 to 3 carbon atoms as described above. Preferred are a methylene group, an ethylene group and a propylene group, more preferred are a methylene group and an ethylene group, and most preferred is a methylene group.
When L, M, and X represent an alkenylene group having 2 to 6 carbon atoms that may have one or more substituents, the alkenylene group is a hydrogen atom further from the alkenyl group having 2 to 6 carbon atoms. It means a divalent group derived by removing one, and specific examples include vinylene group, propenylene group, butenylene group, pentenylene group, hexenylene group and the like. A vinylene group, a propenylene group, a butenylene group, and a pentenylene group are preferable, a vinylene group, a propenylene group, and a butenylene group are more preferable, a vinylene group and a propenylene group are more preferable, and a vinylene group is most preferable.
Similarly, when T represents an alkenylene group having 2 to 3 carbon atoms which may have one or more substituents, the alkenylene group is one hydrogen atom from the alkenyl group having 2 to 3 carbon atoms. It means a divalent group derived by removing, specifically, an alkenylene group having 2 to 3 carbon atoms as described above. A vinylene group and a propenylene group are preferable, and a vinylene group is more preferable.
When L and M represent an alkynylene group having 2 to 6 carbon atoms which may have one or more substituents, the alkynylene group is a group in which one hydrogen atom is further removed from the alkynyl group having 2 to 6 carbon atoms. And specific examples include ethynylene group, propynylene group, butynylene group, pentynylene group, hexynylene group and the like. Preferred are an ethynylene group, a propynylene group, a butynylene group and a pentynylene group, more preferred are an ethynylene group, a propynylene group and a butynylene group, further preferred are an ethynylene group and a propynylene group, and most preferred is an ethynylene group.
Similarly, when T represents an alkynylene group having 2 to 3 carbon atoms which may have a substituent of 1 or more, the alkynylene group is one hydrogen atom from the above alkynyl group having 2 to 3 carbon atoms. It means a divalent group derived by removing, specifically, an alkynylene group having 2 to 3 carbon atoms shown above. Preferred are an ethynylene group and a propynylene group, and more preferred is an ethynylene group.
Rw1, Rw2, Rx, Rx1And Rx2Is an aliphatic acyl group having 2 to 7 carbon atoms which may have one or more substituents, the aliphatic acyl group is the above alkyl group having 1 to 6 carbon atoms, or the above 2 to 6 carbon atoms. Or an alkynyl group having 2 to 6 carbon atoms in which a carbonyl group is bonded to the terminal, specifically, for example, an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a valeryl group, an isovaleryl group. , Pivaloyl group, hexanoyl group, octanoyl group, acryloyl group, methacryloyl group, crotonyl group and the like. Preferred are acetyl group, propionyl group, butyryl group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group, octanoyl group, acryloyl group, methacryloyl group, crotonyl group, more preferred are acetyl group, propionyl group, butyryl. Group, isobutyryl group, valeryl group, isovaleryl group, pivaloyl group, hexanoyl group and octanoyl group, more preferably acetyl group, propionyl group, butyryl group and isobutyryl group, most preferably acetyl group and propionyl group.
Rw1, Rw2, Rx, Rx1And Rx2Is an aromatic acyl group having 7 to 19 carbon atoms which may have one or more substituents, the aromatic acyl group is an aryl group having 5 to 12 carbon atoms, and a carbonyl group at the terminal thereof. Or a group derived by removing one hydrogen atom from the aliphatic acyl group having 2 to 7 carbon atoms, specifically, for example, benzoyl group, o-toluoyl group, m-toluoyl group , P-toluoyl group, cinnamoyl group, 1-naphthoyl group, 2-naphthoyl group and the like. Preferred are benzoyl group, o-toluoyl group, m-toluoyl group, p-toluoyl group, cinnamoyl group, 1-naphthoyl group and 2-naphthoyl group, more preferably benzoyl group, o-toluoyl group and m-toluoyl group. , P-toluoyl group and cinnamoyl group, more preferably benzoyl group and cinnamoyl group, and most preferably benzoyl group.
Figure 2002080899
Represents a single bond or a double bond. Accordingly, the following general formula (I)
Figure 2002080899
[The symbols in the formula are the same as defined above. The compound of the present invention represented by the following general formulas
Figure 2002080899
Figure 2002080899
[The symbols in the formula are the same as defined above. ] The carboxylic acid derivative represented by these, its salt or its ester, or those hydrates are included.
Q represents an oxygen atom or a sulfur atom. Therefore, the general formula -CQ- means a carbonyl group or a thiocarbonyl group.
When Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms, which may have one or more substituents and may have one or more heteroatoms, the aromatic hydrocarbon group and Refers to a group in which the substitutable portion of the aryl group having 6 to 12 carbon atoms or the aryl group having 6 to 12 carbon atoms is substituted with the aliphatic hydrocarbon group having 1 to 6 carbon atoms (however, aromatic The hydrocarbon group does not exceed 12 carbon atoms, and the aliphatic hydrocarbon group includes monovalent and higher valent groups.), Specifically, for example, phenyl group, o-tolyl group, m- Tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, mesityl group, cymenyl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, Benzyl group, phenethyl group, α-methylbenzyl Group, benzhydryl group, trityl group, benzylidene group, styryl group, cinnamylyl group, cinnamylidene group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group, 1-naphthyl group, 2 -A naphthyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 1-naphthylethyl group, 2-naphthylethyl group, as-indacenyl group, s-indacenyl group, acenaphthylenyl group, etc. are mentioned. Preferably phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, mesityl group, cymenyl group, o-cumenyl Group, m-cumenyl group, p-cumenyl group, benzyl group, phenethyl group, α-methylbenzyl group, benzhydryl group, trityl group, benzylidene group, styryl group, cinnamyl group, cinnamylidene group, 3-phenylpropyl group, 4- Phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl group, 1-naphthyl group, 2-naphthyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, 1-naphthylethyl group, 2-naphthylethyl group, an as-indacenyl group, an s-indacenyl group, and an acenaphthylenyl group, more preferably a phenyl group, an o-tolyl group, and an m-tolyl group. P-tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, mesityl group, cymenyl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, benzyl group Phenethyl group, α-methylbenzyl group, benzhydryl group, trityl group, benzylidene group, styryl group, cinnamyl group, cinnamylidene group, 3-phenylpropyl group, 4-phenylbutyl group, 5-phenylpentyl group, 6-phenylhexyl Group, 1-naphthyl group, 2-naphthyl group, 1-naphthylmethyl group, 2-naphthylmethyl group, more preferably phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 2, 3 -Xylyl group, 2,4-xylyl group, 2,5-xylyl group, mesityl group, cymenyl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, A diyl group, a phenethyl group, an α-methylbenzyl group, a benzhydryl group, a trityl group, a benzylidene group, a styryl group, a cinnamyl group, a cinnamylidene group, and even more preferably a phenyl group, an o-tolyl group, an m-tolyl group, p. -Tolyl group, 2,3-xylyl group, 2,4-xylyl group, 2,5-xylyl group, mesityl group, cymenyl group, o-cumenyl group, m-cumenyl group, p-cumenyl group, benzyl group, phenethyl Most preferred are phenyl, o-tolyl, m-tolyl, p-tolyl, 2,3-xylyl, 2,4-xylyl, 2,5-xylyl, and benzyl groups. .
Here, the hetero atom specifically includes an oxygen atom, a sulfur atom, a nitrogen atom, phosphorus, arsenic, antimony, silicon, germanium, tin, lead, boron, mercury, etc., preferably an oxygen atom, a sulfur atom , A nitrogen atom and phosphorus, more preferably an oxygen atom, a sulfur atom and a nitrogen atom, still more preferably a sulfur atom and a nitrogen atom.
Hereinafter, in this specification, the hetero atom in “which may have one or more hetero atoms” means the above definition.
Therefore, specific examples of the case where Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms having one or more heteroatoms include, for example, pyridine, thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole. , Imidazole, triazole, pyrazole, furazane, thiadiazole, oxadiazole, pyridazine, pyrimidine, pyrazine, indole, isoindole, indazole, chromene, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, purine, pteridine, thienofuran, Imidazothiazole, benzofuran, benzothiophene, benzoxazole, benzthiazole, benzthiadiazole, benzimidazole, imidazopyridine, pyrrolopyridine, Olopyrimidine, pyridopyrimidine and the like, preferably pyridine, thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, triazole, pyrazole, furazane, thiadiazole, oxadiazole, pyridazine, pyrimidine, pyrazine, Indole, isoindole, indazole, chromene, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, naphthyridine, phthalazine, purine, pteridine, thienofuran, imidazolothiazole, benzofuran, benzothiophene, benzoxazole, benzthiazole, benzthiadiazole, benzimidazole, imidazo Pyridine, pyrrolopyridine, pyrrolopyrimidine, pyridopyrimidine and more preferred Or pyridine, thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, triazole, pyrazole, furazane, thiadiazole, oxadiazole, pyridazine, pyrimidine, pyrazine, indole, isoindole, indazole, benzoxazole, benz Thiazole, benzthiadiazole, more preferably thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, triazole, pyrazole, furazane, thiadiazole, oxadiazole, indole, isoindole, indazole, and more Preferably thiophene, furan, pyrrole, oxazole, thiazole, imidazole, indole Most preferred are oxazole and indole.
When Y represents an alicyclic hydrocarbon group having 3 to 7 carbon atoms, which may have one or more substituents or may have one or more heteroatoms, the alicyclic hydrocarbon The group means a cyclic aliphatic hydrocarbon group having 3 to 7 carbon atoms, specifically, for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropenyl group, cyclobutenyl group, A cyclopentenyl group, a cyclohexenyl group, a cycloheptenyl group, etc. are mentioned. Preferred are cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclopropenyl group, cyclobutenyl group, cyclopentenyl group, cyclohexenyl group, cycloheptenyl group, and more preferred are cyclopropyl group, cyclobutyl group, cyclopentyl group Group, cyclohexyl group, cycloheptyl group, more preferably cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, most preferably cyclopropyl group, cyclobutyl group, cyclopentyl group.
In the case where the ring Z represents an aromatic hydrocarbon group having 5 to 6 carbon atoms which may further have a substituent of 0 to 4 and may have one or more heteroatoms, the above carbon number of 5 The aromatic hydrocarbon group having 5 to 6 carbon atoms in the aromatic hydrocarbon group having 1 to 12 carbon atoms corresponds, and specific examples thereof include a phenyl group. Here, the aromatic hydrocarbon group having 5 to 6 carbon atoms in which the ring Z has one or more hetero atoms specifically includes, for example, pyridine, thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole. , Triazole, pyrazole, furazane, thiadiazole, oxadiazole, pyridazine, pyrimidine, pyrazine and the like. Preferably pyridine, thiophene, furan, pyrrole, oxazole, isoxazole, thiazole, isothiazole, imidazole, triazole, pyrazole, furazane, thiadiazole, oxadiazole, pyridazine, pyrimidine, pyrazine, more preferably pyridine, pyridazine, pyrimidine, Pyrazine.
Where the general formula
Figure 2002080899
Wherein the symbols in the formula represent the same groups as defined above, and the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z via three atoms. Specifically, for example, when ring Z is a benzene ring, the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above), and thus when the ring Z is a benzene ring, the above groups are bonded to each other at the m-position. . In addition, when ring Z is, for example, a furan ring, a general formula
Figure 2002080899
As used in the compounds represented by the formula (wherein the symbols in the formulas represent the same group as defined above), it means that three groups are bonded through each atom. However, in the case of this furan ring, the position of the oxygen atom is not limited to the position of the above compound.
In the present invention, the salt is not particularly limited, but specific examples include, for example, hydrofluoride, hydrochloride, sulfate, nitrate, perchlorate, phosphate, carbonate, bicarbonate, Addition salt of inorganic acid such as hydrobromide, hydroiodide; Addition of organic carboxylic acid such as acetate, maleate, fumarate, oxalate, lactate, tartrate, trifluoroacetate Salt; addition salt of organic sulfonic acid such as methanesulfonate, trifluoromethanesulfonate, ethanesulfonate, hydroxymethanesulfonate, hydroxyethanesulfonate, benzenesulfonate, toluenesulfonate, taurine salt Trimethylamine salt, triethylamine salt, pyridine salt, procaine salt, picoline salt, dicyclohexylamine salt, N, N′-dibenzylethylenediamine Addition salts of amines such as salts, N-methylglucamine salts, diethanolamine salts, triethanolamine salts, tris (hydroxymethylamino) methane salts and phenethylbenzylamine salts; addition salts of alkali metals such as sodium salts and potassium salts; Examples include addition salts of alkaline earth metals such as magnesium salts and calcium salts; addition salts of amino acids such as arginine salts, lysine salts, serine salts, glycine salts, aspartates and glutamates. A pharmacologically acceptable salt is preferable.
The pharmacologically acceptable salt is not particularly limited, and for example, an addition salt of an inorganic acid such as hydrochloride, sulfate, carbonate, bicarbonate, hydrobromide, hydroiodide; acetic acid Addition salts of organic carboxylic acids such as salt, maleate, lactate, tartrate, trifluoroacetate; methanesulfonate, hydroxymethanesulfonate, hydroxyethanesulfonate, benzenesulfonate, toluenesulfonic acid Salts of organic sulfonic acids such as salts and taurine salts; trimethylamine salt, triethylamine salt, pyridine salt, procaine salt, picoline salt, dicyclohexylamine salt, N, N′-dibenzylethylenediamine salt, N-methylglucamine salt, diethanolamine Salt, triethanolamine salt, tris (hydroxymethylamino) methane salt, phenethyl Addition salts of amines such as benzylamine salts; addition salts of alkali metals such as sodium salts and potassium salts; addition salts of amino acids such as arginine salts, lysine salts, serine salts, glycine salts, aspartates, glutamates, etc. Can do.
In the present invention, the ester means an ester of the carboxyl group of W in the general formula (I). This is not particularly limited as long as it is usually used in organic synthesis, and includes an ester group that is physiologically acceptable and hydrolyzed under physiological conditions. Specifically, for example, it has 1 to 6 carbon atoms. An alkyl group having 6 to 12 carbon atoms, an aralkyl group having 7 to 20 carbon atoms such as a benzyl group, a heteroarylalkyl group having 7 to 20 carbon atoms, a 4-methoxybenzyl group, an alkanoyloxyalkyl group such as acetoxy A methyl group, a propionyloxymethyl group or a pivaloxymethyl group, an alkoxycarbonyloxyalkyl group, such as a methoxycarbonyloxymethyl group, an ethoxycarbonyloxymethyl group or a 2-methoxycarbonyloxyethyl group, (5-methyl-2-oxo-1,3 -Dioxo-4-yl) -methyl group etc. It can gel.
Specifically, digestive organ diseases include, for example, 1) inflammatory diseases of the digestive tract such as ulcerative colitis, Crohn's disease, pancreatitis, gastritis, etc. 2) benign tumors of the digestive tract, polyps of the digestive tract, genetic polyposis syndrome Gastrointestinal proliferative diseases such as colon cancer, rectal cancer, gastric cancer, and 3) gastrointestinal tract such as duodenal ulcer, gastric ulcer, esophageal ulcer, reflux esophagitis, stress ulcer and erosion, drug erosion, Zollinger-Ellison syndrome Ulcerative diseases and the like.
Inflammatory diseases are 1) rheumatoid arthritis, 2) multiple sclerosis, 3) immunodeficiency, 4) cachexia, 5) osteoarthritis, 6) osteoporosis, 7) asthma disease, 8) allergic disease, and 9 ) Inflammatory diseases of the digestive tract.
The preparation for rectal administration is not limited as long as it can be administered directly or indirectly to the rectum, and specific examples include suppositories.
In the present invention, when the carboxylic acid derivative having the general formula (I), the pharmacologically acceptable salt thereof, or the pharmacologically acceptable ester thereof forms a solvate, they are all included in the present invention. It is.
Formula (I)
Figure 2002080899
The compound of the present invention represented by the formula (wherein the symbols represent the same groups as defined above) can be synthesized by a conventional method, for example, by the following method.
A. In the general formula (I), T is a single bond,
Figure 2002080899
(The symbols in the formula represent the same groups as defined above.)
Specifically, in the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following general production method A (1) or A (2).
General production method A (1)
Figure 2002080899
In the formula, each symbol represents the same group as defined above, Pc represents a protecting group for a carboxyl group, M1Is a single bond or an alkylene group having 1 to 5 carbon atoms, an alkenylene group having 2 to 5 carbon atoms or an alkynylene group having 2 to 5 carbon atoms, each of which may have one or more substituents, R0Represents an alkyl group having 1 to 6 carbon atoms, R11Is a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, and a C 1 to 6 carbon atom in which the hydroxyl group is protected with a protecting group. A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. A group represented by the general formula PcOCQ- (wherein the symbols are the same as defined above), and a general formula -M1The groups represented by CHO (wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z through three atoms.
The compound of the general formula (1-iii) can be produced by reacting the compound of the general formula (1-ii) with the compound of the general formula (1-i).
The reaction is carried out by using a compound of the general formula (1-ii) and a compound of the general formula (1-i) in an organic solvent such as tetrahydrofuran, N, N-dimethylformamide and the like such as sodium hydride, potassium hydride, t-butoxypotassium and the like. Can be done in the presence. The reaction temperature can be ice-cooled-50 ° C.
The compound of the general formula (1-iv) can be produced by reducing the compound of the general formula (1-iii) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon.
The compound of the general formula (1-v) can be produced by allowing the compound of the general formula (1-vii) to act on the compound of the general formula (1-iv).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled to room temperature.
The compound of the general formula (1-vi) can be produced by hydrolyzing the compound of the general formula (1-v) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
General production method A (2)
Figure 2002080899
Figure 2002080899
In the formula, each symbol represents the same group as defined above, Pn and Pn ′ are different from each other, and represent an amino-protecting group, R12Is a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, and a C 1 to 6 carbon atom in which the hydroxyl group is protected with a protecting group. A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. A group represented by the general formula PcOCQ- (wherein the symbols are the same as defined above), and a general formula -M1The groups represented by CHO (wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z through three atoms.
The compound of general formula (2-iii) can be produced by reacting the compound of general formula (2-ii) with the compound of general formula (2-i).
The reaction is carried out by converting a compound of the general formula (2-ii) and a compound of the general formula (2-i) in an organic solvent such as tetrahydrofuran, N, N-dimethylformamide and the like into sodium hydride, potassium hydride, t-butoxypotassium and the like. Can be done in the presence. The reaction temperature can be ice-cooled-50 ° C.
The compound of the general formula (2-iv) can be produced by reducing the compound of the general formula (2-iii) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon. The reaction temperature can be from ice-cooled to room temperature.
The compound of the general formula (2-v) can be produced by reacting the compound of the general formula (2-iv) with di-t-butyl dicarbonate.
The reaction can be carried out by reacting the compound of the general formula (2-iv) with di-t-butyl dicarbonate in the presence of an organic base such as triethylamine in an organic solvent such as ethanol or methanol. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (2-vi) can be produced by allowing the compound of the general formula (1-vii) to act on the compound of the general formula (2-v).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled to room temperature.
The compound of the general formula (2-vii) can be produced by reacting the compound of the general formula (2-vi) with hydrochloric acid or the like in an organic solvent such as methanol, tetrahydrofuran, acetone, ethyl acetate or the like. The reaction temperature can be from ice cooling to room temperature.
The compound of the general formula (2-viii) can be produced by reacting the compound of the general formula (2-vii) with isoamyl nitrite.
The reaction can be carried out by adding isoamyl nitrite to the compound of the general formula (2-vii) in the presence of an organic acid such as acetic acid in an organic solvent such as chloroform. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (2-ix) can be produced by heating and refluxing the compound of the general formula (2-viii) and the compound of the general formula (2-xi) in the presence of rhodium acetate.
The compound of the general formula (2-x) can be produced by hydrolyzing the compound of the general formula (2-ix) in an ethanol solvent with an inorganic base such as sodium hydroxide or potassium hydroxide. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
In the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following general production method A (3).
General production method A (3)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R13Is a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Shown respectively; Formula O2A group represented by N- and a general formula -M1The groups represented by CHO (wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z through three atoms.
The compound of general formula (3-ii) can be produced by reacting the compound of general formula (3-i) with the compound of general formula (1-ii).
The reaction is carried out by converting a compound of the general formula (1-ii) and a compound of the general formula (3-i) in an organic solvent such as tetrahydrofuran, N, N-dimethylformamide and the like into sodium hydride, potassium hydride, t-butoxypotassium and the like. Can be done in the presence. The reaction temperature can be ice-cooled-50 ° C.
The compound of the general formula (3-iii) can be produced by reducing the compound of the general formula (3-ii) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon.
The compound of the general formula (3-iv) can be produced by allowing the compound of the general formula (3-vi) to act on the compound of the general formula (3-iii).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide, carbonyldiimidazole, etc. in an organic solvent such as tetrahydrofuran. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled-50 ° C.
The compound of the general formula (3-v) can be produced by hydrolyzing the compound of the general formula (3-iv) in an ethanol solvent with an inorganic base such as sodium hydroxide or potassium hydroxide. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
In the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following general production method A (4).
General production method A (4)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R14Is a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, and a C 1 to 6 carbon atom in which the hydroxyl group is protected with a protecting group. A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. A group represented by the general formula PcOCQ- (wherein the symbols are the same as defined above), and a general formula -M1The groups represented by CHO (wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z through three atoms.
The compound of general formula (4-ii) can be produced by reacting the compound of general formula (4-i) with the compound of general formula (1-ii).
The reaction is carried out by converting a compound of the general formula (1-ii) and a compound of the general formula (4-i) in an organic solvent such as tetrahydrofuran, N, N-dimethylformamide and the like into sodium hydride, potassium hydride, t-butoxypotassium and the like. Can be done in the presence. The reaction temperature can be ice-cooled-50 ° C.
The compound of the general formula (4-iii) can be produced by treating the compound of the general formula (4-ii) with an organic acid such as trifluoroacetic acid in an organic solvent such as tetrahydrofuran or dichloromethane.
The compound of the general formula (4-iv) can be produced by allowing the compound of the general formula (1-vii) to act on the compound of the general formula (4-iii).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled to room temperature.
The compound of the general formula (4-v) can be produced by hydrolyzing the compound of the general formula (4-iv) in an ethanol solvent with an inorganic base such as sodium hydroxide or potassium hydroxide. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
In the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following general production method A (5).
General production method A (5)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R15Is a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Shown respectively; general formula Rx2A group represented by HN- (wherein the symbols are the same as defined above) and a general formula -MCH (R15) The groups represented by W (wherein the symbols in the formulas represent the same groups as defined above) are bonded to each other on the ring Z via three atoms. ]
The compound of the general formula (5-ii) can be synthesized by reacting the compound of the general formula (3-iii) and the compound of the general formula (5-i) in a solvent such as tetrahydrofuran. The reaction temperature can be from room temperature to 50 ° C.
The compound of general formula (5-i) can be synthesized by reacting the compound of general formula (5-iii) with diphenylphosphoryl azide (DPPA) or the like.
The reaction can be carried out in an organic solvent such as toluene or tetrahydrofuran in the presence of an organic base such as triethylamine. The reaction temperature can be from room temperature to heating under reflux.
Next, the general synthesis method of the compound of the present invention will be described more specifically. The compound of the present invention can be produced by the following general synthesis method or by a general organic synthesis method.
Manufacturing method A (1)
Figure 2002080899
Figure 2002080899
The symbols in the formula have the same meaning as defined above, and R1aIs a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Each is shown.
The compound of general formula (1c) can be produced by reacting the compound of general formula (1b) with the compound of general formula (1a).
The reaction is carried out in the presence of sodium hydride, potassium hydride, potassium t-butoxy, etc. in the presence of sodium hydride, potassium hydride, t-butoxy potassium, etc., in a compound such as tetrahydrofuran, N, N-dimethylformamide, etc. I can do it. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (1d) can be produced by reducing the compound of the general formula (1c) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon.
The compound of the general formula (1e) can be produced by allowing the compound of the general formula (1g) to act on the compound of the general formula (1d).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be from ice cooling to room temperature.
The compound of the general formula (1f) can be produced by hydrolyzing the compound of the general formula (1e) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. The reaction temperature can be from room temperature to heating under reflux.
Manufacturing method A (2)
Figure 2002080899
The symbols in the formula have the same meaning as defined above, and R1bIs a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Each is shown.
The compound of the general formula (2c) can be produced by reacting the compound of the general formula (2b) with the compound of the general formula (2a).
The reaction is carried out in the presence of sodium hydride, potassium hydride, potassium t-butoxy, etc. in the presence of sodium hydride, potassium hydride, t-butoxy potassium and the like. I can do it. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (2d) can be produced by reducing the compound of the general formula (2c) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon. The reaction temperature can be from ice-cooled to room temperature.
The compound of the general formula (2e) can be produced by reacting the compound of the general formula (2d) with di-t-butyl dicarbonate.
The reaction can be carried out by reacting the compound of general formula (2d) with di-t-butyl dicarbonate in the presence of an organic base such as triethylamine in an organic solvent such as ethanol or methanol. The reaction temperature can be from ice cooling to 50 ° C.
The compound of general formula (2f) can be manufactured by making the compound of general formula (1g) act on the compound of general formula (2e).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be from ice cooling to room temperature.
The compound of the general formula (2g) can be produced by reacting the compound of the general formula (2f) with hydrochloric acid or the like in an organic solvent such as methanol, tetrahydrofuran, acetone, ethyl acetate or the like. The reaction temperature can be from ice cooling to room temperature.
The compound of the general formula (2h) can be produced by reacting the compound of the general formula (2g) with isoamyl nitrite.
The reaction can be carried out by adding isoamyl nitrite to the compound of the general formula (2 g) in the presence of an organic acid such as acetic acid in an organic solvent such as chloroform. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (2i) can be produced by heating and refluxing the compound of the general formula (2h) and the compound of the general formula (2k) in the presence of rhodium acetate.
The compound of the general formula (2j) can be produced by hydrolyzing the compound of the general formula (2i) in an ethanol solvent with an inorganic base such as sodium hydroxide or potassium hydroxide. The reaction temperature can be from room temperature to heating under reflux.
Manufacturing method A (3)
Figure 2002080899
The symbols in the formula have the same meaning as defined above, and R1cIs a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Each is shown.
The compound of the general formula (3b) can be produced by reacting the compound of the general formula (1b) with the compound of the general formula (3a).
The reaction is carried out in the presence of sodium hydride, potassium hydride, potassium t-butoxy, etc. in the presence of sodium hydride, potassium hydride, t-butoxy potassium, etc., in a compound such as tetrahydrofuran, N, N-dimethylformamide, etc. I can do it. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (3c) can be produced by reducing the compound of the general formula (3b) in a solvent such as ethanol, ethyl acetate or tetrahydrofuran in the presence of a catalyst such as palladium carbon.
The compound of the general formula (3d) can be produced by allowing the compound of the general formula (3f) to act on the compound of the general formula (3c).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3'-dimethylaminopropyl) carbodiimide, carbonyldiimidazole, etc. in an organic solvent such as tetrahydrofuran. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (3e) can be produced by hydrolyzing the compound of the general formula (3d) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. The reaction temperature can be from room temperature to heating under reflux.
Manufacturing method A (4)
Figure 2002080899
Figure 2002080899
The symbols in the formula have the same meaning as defined above, and R1dIs a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms. A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Each is shown.
The compound of the general formula (4b) can be produced by reacting the compound of the general formula (1b) with the compound of the general formula (4a).
The reaction is carried out in the presence of sodium hydride, potassium hydride, potassium t-butoxy, etc. in the presence of sodium hydride, potassium hydride, t-butoxy potassium, etc., in a compound such as tetrahydrofuran, N, N-dimethylformamide, etc. I can do it. The reaction temperature can be from ice cooling to 50 ° C.
The compound of the general formula (4c) can be produced by treating the compound of the general formula (4b) with an organic acid such as trifluoroacetic acid in an organic solvent such as tetrahydrofuran or dichloromethane.
The compound of the general formula (4d) can be produced by allowing the compound of the general formula (1g) to act on the compound of the general formula (4c).
The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be from ice cooling to room temperature.
The compound of the general formula (4e) can be produced by hydrolyzing the compound of the general formula (4d) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. The reaction temperature can be from room temperature to heating under reflux.
Manufacturing method A (5)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R1eIs a hydrogen atom, a hydroxyl group protected with a protecting group, or an alkyl group having 1 to 6 carbon atoms, each of which may have one or more substituents, or a C 1 to C6 hydroxyl group protected with a protecting group A hydroxyalkyl group, an aminoalkyl group having 1 to 6 carbon atoms in which the amino group is protected by a protecting group, a halogenated alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 2 to 12 carbon atoms, or an alkyl group having 3 to 7 carbon atoms A cycloalkyl group, an alkenyl group having 2 to 6 carbon atoms, an alkynyl group having 2 to 6 carbon atoms, an aryl group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, and an aralkyl group having 7 to 18 carbon atoms. Each is shown.
The compound of the general formula (5b) can be synthesized by reacting the compound of the general formula (3c) with the compound of the general formula (5a) in a solvent such as tetrahydrofuran. The reaction temperature can be from room temperature to 50 ° C.
The compound of the general formula (5a) can be synthesized by reacting the compound of the general formula (5c) with diphenylphosphoryl (DPPA).
The reaction can be carried out in an organic solvent such as toluene or tetrahydrofuran in the presence of an organic base such as triethylamine. The reaction temperature can be from room temperature to heating under reflux.
B. In the general formula (I), T is other than a single bond.
Figure 2002080899
(The symbols in the formula represent the same groups as defined above.)
Hereinafter, a general synthesis method of the compound of the present invention will be described.
Specifically, in the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following production method B (1), B (6) or B (7).
Specifically, in the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following production method B (3).
Specifically, in the present invention, the following general formula
Figure 2002080899
(The symbols in the formula each represent the same group as defined above) can be synthesized, for example, by the following production method B (4) or B (5).
Production method B (1)
Figure 2002080899
Figure 2002080899
Wherein each symbol represents the same group as defined above, R2Represents a group corresponding to the YL- group or Y = L- group shown above.
The compound of the general formula (1b) is converted into an acid anhydride by reacting the compound of the general formula (1a) with methyl chloroformate, ethyl chloroformate, etc. in an organic solvent such as tetrahydrofuran, and then sodium borohydride, It can be produced by reduction with potassium boron or the like.
The compound of the general formula (1c) can be produced by reacting the compound of the general formula (1b) with diphenylphosphoryl azide in the presence of an organic base such as diazabicyclo [5.4.0] undecene in an organic solvent such as toluene. .
The compound of the general formula (1d) can be produced by allowing triphenylphosphine to act on the compound of the general formula (1c) in an organic solvent such as tetrahydrofuran.
The compound of the general formula (1e) can be produced by allowing the compound of the general formula (1g) to act on the compound of the general formula (1d). The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled to room temperature.
The compound of the general formula (1f) can be produced by hydrolyzing the compound of the general formula (1e) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
Production method B (2)
Figure 2002080899
Where R3Is a hydroxyl protecting group, R4And R5Represents a substituent for Y.
The compound of the general formula (2b) is obtained by reacting the general formula (2a) with a strong base such as normal butyllithium, sec-butyllithium or lithium diisopropylamide in a solvent such as anhydrous diethyl ether or tetrahydrofuran to change the ortho position of the alkoxy group. After lithiation, it can be produced by reacting a formylating agent such as N, N-dimethylformamide. The reaction can be performed at -78 ° C to 50 ° C.
The compound of the general formula (2c) is R of the compound of the general formula (2b).1Is a methoxymethyl group, it can be obtained by reacting an acid such as hydrochloric acid, sulfuric acid, paratoluenesulfonic acid, methanesulfonic acid in a solvent such as acetone or tetrahydrofuran.
The compound of the general formula (2d) is obtained by reacting the compound of the general formula (2c) with a base such as sodium hydride or potassium tert butoxide in a solvent such as N, -dimethylformamide, tetrahydrofuran or N-methylpyrrolidone. It can be obtained by reacting an alkyl halide such as methyl iodide. The reaction temperature can be in the range of -78 ° C to 100 ° C.
The compound of the general formula (2e) can be obtained by reacting the compound of the general formula (2d) with an oxidizing agent such as sodium chlorite in a mixed solvent of dimethyl sulfoxide and a sodium dihydrogen phosphate aqueous solution.
Manufacturing method B (3)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R6The O-group represents a substituent on the ring Z, R7Represents a carboxyl-protecting group.
The compound of the general formula (3b) is prepared by reacting the compound of the general formula (3a) with an acid halogenating agent such as thionyl chloride or oxalyl dichloride in a solvent such as dichloromethane, carbon tetrachloride, chloroform, and the like. Can be manufactured by acting. The reaction can be carried out at -20 ° C to 100 ° C.
The compound of the general formula (3c) is obtained by reacting the compound of the general formula (3b) and hexamethylenetetramine in a solvent such as trifluoroacetic acid in the range of 50 ° C. to 100 ° C., or dichloromethyl methyl ether and tetrachloride in dichloromethane. Titanium can be produced by acting at -20 ° C to 50 ° C.
The compound of the general formula (3d) can be produced by reacting the compound of the general formula (3c) with N, N-dimethylformamide, N-methylpyrrolidone or an appropriate phospholane or phosphonate in tetrahydrofuran.
The compound of the general formula (3e) can be produced by subjecting the compound of the general formula (3d) to a hydrogenation reaction in a solvent such as ethanol, ethyl acetate, methanol and tetrahydrofuran in the presence of a catalyst such as palladium carbon.
The compound of the general formula (3f) can be produced by hydrolyzing the compound of the general formula (3e) with an inorganic base such as sodium hydroxide or potassium hydroxide in a solvent such as ethanol, methanol or tetrahydrofuran.
Manufacturing method B (4)
Figure 2002080899
In the formula, each symbol represents the same group as defined above.
The compound of the general formula (4c) can be produced by reacting the compound of the general formula (4b) with the compound of the general formula (4a). The reaction can be carried out by treating the compound of the general formula (4a) and the compound of the general formula (4b) with diethyl azodicarboxylate, diisopropyl azodicarboxylate, etc. in the presence of triphenylphosphine in an organic solvent such as tetrahydrofuran. it can.
The compound of the general formula (4d) can be produced by reacting the compound of the general formula (4c) and hexamethylenetetramine in a solvent such as trifluoroacetic acid in the range of 50 ° C to 100 ° C.
The compound of the general formula (4f) is obtained by reacting the compound of the general formula (4e) with the compound of the general formula (4d) in the presence of sodium hydride or potassium hydride in an organic solvent such as tetrahydrofuran, followed by ethanol, ethyl acetate. In a solvent such as palladium on carbon in the presence of a catalyst such as palladium carbon.
The compound of the general formula (4g) can be produced by hydrolyzing the compound of the general formula (4f) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
Manufacturing method B (5)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R8Represents a group corresponding to the YL- group or Y = L- group shown above.
The compound of the general formula (5b) is converted into an acid anhydride by reacting the compound of the general formula (5a) with methyl chloroformate, ethyl chloroformate or the like in an organic solvent such as tetrahydrofuran, and then sodium borohydride, hydrogenated It can be produced by reduction with potassium boron or the like.
The compound of general formula (5d) can be produced by reacting the compound of general formula (5c) with the compound of general formula (5b) in the presence of sodium hydride, potassium hydride and the like in an organic solvent such as tetrahydrofuran.
The compound of the general formula (5e) can be produced by reacting the compound of the general formula (5d) with N, N-dimethylformamide, N-formylmorpholine or the like in the presence of n-butyllithium or the like in an organic solvent such as tetrahydrofuran.
The compound of general formula (5f) is obtained by reacting the compound of general formula (5e) with the compound of general formula (4e) in the presence of sodium hydride, potassium hydride, etc. in an organic solvent such as tetrahydrofuran, It can be produced by reduction in the presence of a catalyst such as palladium carbon in a solvent such as ethyl.
The compound of the general formula (5g) can be produced by hydrolyzing the compound of the general formula (5f) with an inorganic base such as sodium hydroxide or potassium hydroxide in an ethanol solvent. As the reaction temperature, it can be carried out at room temperature under reflux with heating.
Manufacturing method B (6)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R2Represents a group corresponding to the YL- group or Y = L- group shown above.
The compound of the general formula (6b) can be produced by reacting the compound of the general formula (6a) with 2-methoxybenzyl alcohol. The reaction can be carried out by treating with a condensing agent such as 1-ethyl-3- (3′-dimethylaminopropyl) carbodiimide, diethyl cyanophosphate in an organic solvent such as dimethyl sulfoxide, N, N-dimethylformamide and the like. I can do it. If necessary, an organic base such as triethylamine may be added. The reaction temperature can be ice-cooled to room temperature.
The compound of the general formula (6c) is obtained by reacting the compound of the general formula (6b) and hexamethylenetetramine in a solvent such as trifluoroacetic acid in the range of 50 ° C. to 100 ° C., or dichloromethyl methyl ether and tetrachloride in dichloromethane. Titanium can be produced by acting at -20 ° C to 50 ° C.
The compound of the general formula (6d) can be produced by allowing 2,4-thiazolidinedione to act on the compound of the general formula (6c). The reaction can be carried out in an organic solvent such as benzene or toluene by heating to reflux in the presence of a secondary amine (piperidine, pyrrolidine, etc.) and an organic acid (acetic acid, benzoic acid, etc.) as catalysts.
Manufacturing method B (7)
Figure 2002080899
Wherein each symbol represents the same group as defined above, R2Represents a group corresponding to the YL- group or Y = L- group shown above.
The compound of the general formula (7b) is obtained by converting the compound of the general formula (7a) into a solvent such as ethanol, ethyl acetate, N, N-dimethylformamide at room temperature and under heating, in the presence of a catalyst such as palladium carbon, and at an atmospheric pressure of −20 kg / cm2It can be produced by performing a hydrogenation reaction under pressure.
Manufacturing method C (1)
Figure 2002080899
The compound of the general formula (1b) can be produced by reacting the compound of the general formula (1b) with diphenylphosphoryl azide in the presence of an organic base such as diazabicyclo [5.4.0] undecene in an organic solvent such as toluene. . The reaction temperature is preferably −20 ° C. to 50 ° C.
The compound of the general formula (1c) can be produced by catalytic hydrogenation reduction of the compound of the general formula (1b) in the presence of 10% palladium carbon and tert-butyl dicarbonate in an organic solvent such as ethyl acetate.
The compound of the general formula (1d) can be produced by reacting the compound of the general formula (1c) with N-bromosuccinimide in an organic solvent such as N, N-dimethylformamide or acetonitrile. The reaction temperature is preferably −0 ° C. to 50 ° C.
The compound of the general formula (1e) is the same as the compound of the general formula (1c) in an organic solvent such as N, N-dimethylformamide in the presence of a metal catalyst such as dichlorobistriphenylphosphine palladium and a reducing agent such as sodium formate. It can be produced by reacting with carbon oxide. The reaction temperature is preferably 80 ° C to 150 ° C.
The compound of the general formula (1f) is obtained by reacting the compound of the general formula (1e) with N, N-dimethylformamide, N-methylpyrrolidone, an appropriate phospholane or phosphonate in tetrahydrofuran, and then ethanol, ethyl acetate, methanol, tetrahydrofuran In a solvent such as palladium carbon in the presence of a catalyst such as palladium carbon. The reaction temperature is preferably 0 ° C to 50 ° C.
Manufacturing method C (2)
Figure 2002080899
In the formula, R represents a group corresponding to the YL-group or Y = L-group shown above.
The compound of the formula (2b) is obtained by reacting the compound of the formula (2a) with (triphenylphosphoranylidene) acetaldehyde in a solvent such as toluene, preferably at 80 to 100 ° C., and then N, N-dimethylformamide In the presence of a base such as sodium hydride in a solvent such as N-methylpyrrolidone or tetrahydrofuran, an appropriate phosphonate is allowed to act, and then in a solvent such as methanol or ethanol acetate ethyltetrahydrofuran in the presence of a catalyst such as palladium carbon, hydrogen It can manufacture by performing addition reaction.
The compound of the general formula (2c) is obtained by deprotecting the tert-butoxycarbonyl group, which is a protecting group of the amino group of the compound of the compound of the formula (2b), under acidic conditions, and then condensing RCOOH with the resulting amino group, Subsequently, it can manufacture by hydrolyzing an ester group with a base. The deprotection reaction is carried out using an acid such as hydrochloric acid or trifluoroacetic acid in a solvent such as dichloromethane, 1,4-dioxane, methanol, or ethanol. The condensation reaction can be performed using 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide or diethyl cyanophosphate as a condensing agent in an organic solvent such as dimethyl sulfoxide or N, N-dimethylformamide. If necessary, a base such as triethylamine may be added. The hydrolysis reaction can be carried out using a base such as sodium hydroxide or potassium hydroxide in a solvent such as methanol or ethanol.
Manufacturing method C (3)
Figure 2002080899
In the formula, R represents a group corresponding to the YL-group or Y = L-group shown above.
The compound of the formula (3b) can be produced by reacting the compound of the formula (3a) with an organic peroxide such as m-chloroperbenzoic acid in a solvent such as dichloromethane. This compound can also be produced by reacting hydrogen peroxide with acetic acid or water in a solvent.
The compound of the formula (3c) can be produced by reacting the compound of the formula (3b) with dimethylcarbamyl chloride and trimethylsilylcyanide in a solvent such as dichloromethane.
The compound of the formula (3d) can be produced by subjecting the compound of the formula (3c) to a hydrogenation reaction in a solvent such as methanol or ethanol ethyl acetate tetrahydrofuran in the presence of a catalyst such as palladium carbon. At this time, when an acid typified by hydrochloric acid or the like is added, the reaction is accelerated.
The compound of the general formula (3e) can be produced by condensing RCOOH with the amino group of the compound of the formula (3d) and then hydrolyzing the ester group with a base. The condensation reaction can be performed using 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide or diethyl cyanophosphate as a condensing agent in an organic solvent such as dimethyl sulfoxide or N, N-dimethylformamide. If necessary, a base such as triethylamine may be added. The hydrolysis reaction can be carried out using a base such as sodium hydroxide or potassium hydroxide in a solvent such as methanol or ethanol.
Manufacturing method C (4)
Figure 2002080899
The compound of the general formula (4a) can be obtained by reducing the corresponding benzoic acid or benzaldehyde derivative using sodium borohydride, diborane or the like. The reaction temperature is preferably −20 ° C. to 50 ° C.
The compound of the general formula (4b) can be obtained by reacting the compound of the general formula (4b) with an alkylating agent such as trialkylsilyl halide in a solvent such as tetrahydrofuran. The reaction temperature is preferably 0 ° C to 50 ° C.
The compound of the general formula (4c) is obtained by reacting a compound of the general formula (4b) with a strong base such as butyllithium in a solvent such as tetrahydrofuran and then lithiating it to react with a formylating agent such as 4-formylmorpholine. Can be manufactured. A suitable reaction temperature is -78 ° C.
The compound of the general formula (4d) is obtained by reacting the compound of the general formula (4c) with N, N-dimethylformamide, N-methylpyrrolidone, an appropriate phospholane or phosphonate in tetrahydrofuran, and then adding tetrabutyl in a solvent such as tetrahydrofuran. It can be obtained by reacting ammonium fluoride. The reaction temperature is preferably 0 ° C to 50 ° C.
The compound of the general formula (4e) is reacted with a compound of the general formula (4d) and diphenylphosphoryl azide in the presence of an organic base such as diazabicyclo [5.4.0] undecene in an organic solvent such as toluene, and then reacted with acetic acid. It can be produced by catalytic hydrogenation reduction in the presence of 10% palladium carbon and tert-butyl dicarbonate in an organic solvent such as ethyl. The reaction temperature is preferably −20 ° C. to 50 ° C.
Manufacturing method C (5)
Figure 2002080899
The compound of the general formula (5b) is a compound of the general formula (5a) in the presence of a dehydrating agent such as trimethyl orthoformate and an acid catalyst such as tosylic acid in a solvent such as methanol at a temperature of 0 to 80 ° C. It is obtained by reacting.
The compound of the general formula (5c) is obtained by reacting an alcohol obtained by reacting a compound of the general formula (5b) with a reducing agent such as lithium aluminum hydride in an organic solvent such as toluene in a solvent such as tetrahydrofuran or diethyl ether. It can be obtained by reacting with diphenylphosphoryl azide in the presence of an organic base such as diazabicyclo [5.4.0] undecene and then reacting with an acid such as hydrochloric acid.
The compound of the general formula (5d) is obtained by reacting the compound of the general formula (5c) with N, N-dimethylformamide, N-methylpyrrolidone, an appropriate phospholane or phosphonate in tetrahydrofuran, and then ethanol, ethyl acetate, methanol, tetrahydrofuran In a solvent such as palladium carbon in the presence of a catalyst such as palladium carbon. The reaction temperature is preferably 0 ° C to 50 ° C.
In the compound of the general formula (5e), the compound of the general formula (5d) is replaced with an alkylating agent such as iodomethane, ethane, propane, trifluoromethanesulfonyl chloride or the like in an organic solvent such as N, N-dimethylformamide, acetonitrile, or pyridine. It is obtained by reacting at 50 to 50 ° C.
The compound of the general formula (5f) is obtained by mixing a compound of the general formula (5e) (R2 = trifluoromethanesulfone derivative) with a metal catalyst such as tetrakistriphenylphosphine palladium and an inorganic base such as potassium carbonate in an organic solvent such as toluene. It can be obtained by reacting an allyl boric acid derivative at 80 to 150 ° C. in the presence.
Manufacturing method C (6)
Figure 2002080899
The compound of the general formula (6b) can be produced by reacting the compound of the general formula (6a) with N-iodosuccinimide in an organic solvent such as N, N-dimethylformamide or acetonitrile. The reaction temperature is preferably −0 ° C. to 50 ° C.
The compound of the general formula (6c) is prepared by the reaction of the general formula (6b) in an organic solvent such as N, N-dimethylformamide in the presence of a metal catalyst such as dichlorobistriphenylphosphine palladium, an organic base such as copper iodide or triethylamine. It can be produced by reacting a compound with acetylene. The reaction temperature is preferably 80 ° C to 150 ° C.
The compound of general formula (6d) can be obtained by heating the compound of general formula (6c) in the presence of an inorganic base such as potassium carbonate in an organic solvent such as N, N-dimethylformamide. The reaction temperature is preferably 80 ° C to 150 ° C.
Manufacturing method C (7)
Figure 2002080899
Figure 2002080899
The compound of the general formula (7c) is reacted with hexamethyldisilazane sodium, lithium diisopropylamide and the like in an anhydrous solvent such as tetrahydrofuran in the range of −78 ° C. to 0 ° C. It can be produced by reacting with a compound of the formula (7a) (PG means a protecting group that can be cleaved by an acid).
The compound of the general formula (7d) can be produced by reacting the compound of the general formula (7c) with trifluoroacetic acid and triethylsilane in the range of 0 ° C. to room temperature.
The compound of the general formula (7e) is a compound represented by the general formula (7d) in the presence of a base such as pyridine and triethylamine in an anhydrous solvent such as N, N-dimethylformamide, dichloromethane or diethyl ether in the range from −78 ° C. to room temperature. Can be produced by reacting the above compound with an appropriate acid chloride, activated ester or the like.
The compound of the general formula (7f) can be produced by hydrolyzing the compound of the general formula (7e) with an inorganic base such as sodium hydroxide or lithium hydroxide in a solvent such as ethanol, methanol, or tetrahydrofuran.
Intermediate (7e) can also be produced by the following route.
Figure 2002080899
The compound of the general formula (7h) is reacted with hexamethyldisilazane sodium, lithium diisopropylamide and the like in the anhydrous solvent such as tetrahydrofuran in the range of −78 ° C. to 0 ° C. It can manufacture by making it react with the compound of (7g).
The compound of the general formula (7e) can be produced by reacting the compound of the general formula (7h) with trifluoroacetic acid and triethylsilane in the range of 0 ° C. to room temperature.
Figure 2002080899
The compound of the general formula (7j) is dibutyl boron trif in the range of −78 ° C. to room temperature in an anhydrous solvent such as toluene and dichloromethane (X means an asymmetric auxiliary group such as oxazolidinone). After reacting a dialkylborane compound such as a rate, it is produced diastereoselectively by reacting with a compound of the general formula (7a) (PG means a protecting group that can be cleaved by an acid) in the range of −78 ° C. to room temperature. it can.
The compound of the general formula (7k) can be produced by reacting the compound of the general formula (7j) with trifluoroacetic acid and triethylsilane in the range of 0 ° C. to room temperature.
The compound of the general formula (7l) is a compound represented by the general formula (7k) in the presence of a base such as pyridine and triethylamine in an anhydrous solvent such as N, N-dimethylformamide, dichloromethane or diethyl ether in the range from -78 ° C to room temperature. Can be produced by reacting the above compound with an appropriate acid chloride, active ester or the like.
The compound of the general formula (7m) is a compound of the general formula (7l) in a solvent such as ethanol, methanol or tetrahydrofuran in a range from −30 ° C. to room temperature, or in a mixed solvent of one of these solvents and water. Can be reacted with an inorganic base such as lithium hydroxide / hydrogen peroxide or sodium hydroxide, or by sequentially reacting sodium methoxide with sodium hydroxide.
Intermediate (7l) can also be produced by the following route.
Figure 2002080899
The compound of the general formula (7m) is dibutyl boron trif in the range of −78 ° C. to room temperature in an anhydrous solvent such as toluene, dichloromethane, etc., with the compound of the general formula (7i) (X means an asymmetric auxiliary group such as oxazolidinone). After reacting a dialkylboron compound such as a rate, the diastereomer can be selectively produced by reacting with a compound of the general formula (7 g) in the range of −78 ° C. to room temperature.
The compound of the general formula (7l) can be produced by reacting the compound of the general formula (7m) with trifluoroacetic acid and triethylsilane in the range of 0 ° C. to room temperature.
Manufacturing method C (8)
Figure 2002080899
The compound of the general formula (1b) can be produced by reacting the compound of the general formula (1a) with an ortho ester in the presence of a Lewis acid. The reaction can be carried out in an organic solvent such as methanol, ethanol, toluene and the like. As the Lewis acid, p-toluenesulfonic acid, hydrochloric acid or the like can be used, and as the ortho ester, methyl orthoformate, ethyl orthoformate or the like can be used. The reaction temperature can be from room temperature to 100 ° C.
The compound of the general formula (8c) can be produced by reacting the compound of the general formula (8b) with a base such as n-butyllithium and further reacting N, N-dimethylformamide, N-formylmorpholine and the like. The reaction can be carried out in an organic solvent such as diethyl ether or tetrahydrofuran, and the reaction temperature can be carried out at from -80 ° C to 0 ° C.
The compound of the general formula (8d) can be produced by reacting the compound of the general formula (8c) with sodium borohydride in a solvent such as methanol or ethanol. The reaction temperature can be 0 ° C. to room temperature.
The compound of the general formula (8e) can be synthesized by reacting the compound of the general formula (8d) with diphenylphosphoryl azide in the presence of 1,8-diazabicyclo [5.4.0] -7-undecene. The reaction can be carried out in toluene, and the reaction temperature can be from 0 ° C. to room temperature.
The compound of the general formula (8f) can be produced by allowing triphenylphosphine to act on the compound of the general formula (8e). The reaction can be carried out in an organic solvent such as tetrahydrofuran or water, and the reaction temperature can be carried out at 0 ° C. to 50 ° C.
The compound of the general formula (8g) can be produced by allowing tert-butyl dicarbonate to act on the compound of the general formula (8f). The reaction can be carried out in an organic solvent such as tetrahydrofuran or dichloromethane, and the reaction temperature can be carried out from 0 ° C. to room temperature.
The compound of the general formula (8h) can be produced by treating the compound of the general formula (8g) with an acid such as hydrochloric acid. The reaction solution can be carried out in an organic solvent such as tetrahydrofuran or acetone, and the reaction temperature can be carried out from 0 ° C. to room temperature.
Manufacturing method C (9)
Figure 2002080899
The compound of the general formula (9b) can be produced by reacting the compound of the general formula (9a) with phosphorus tribromide, thionyl bromide or the like in a solvent such as dichloromethane.
The compound of the general formula (9c) is etherified by reacting the compound of the general formula (9b) with an alcohol in a solvent such as tetrahydrofuran in the presence of a base such as sodium hydride, and then hydroxylated in ethanol or methanol. It can be produced by hydrolysis with an inorganic base such as sodium or potassium hydroxide.
Manufacturing method C (10)
Figure 2002080899
The compound of the general formula (10b) is a compound of the general formula (9b) in the presence of an organic acid (acetic acid, benzoic acid, etc.) and a secondary amine (piperidine, pyrrolidine, etc.) in an organic solvent such as benzene, toluene, etc. , 4-thiazolidinedione was allowed to act under heating and reflux, and then in a solvent such as ethanol, ethyl acetate, N, N-dimethylformamide, at room temperature and under heating, in the presence of a catalyst such as palladium carbon, at an atmospheric pressure of -20 kg / cm2It can be produced by performing a hydrogenation reaction under pressure.
The compound of the general formula (10c) is obtained by deprotecting the tert-butoxycarbonyl group, which is a protecting group for the amino group of the compound of the general formula (10b), under acidic conditions, and then condensing a carboxylic acid with the resulting amino group. Can be manufactured. The deprotection reaction is carried out using an acid such as hydrochloric acid or trifluoroacetic acid in a solvent such as dichloromethane, 1,4-dioxane, methanol, or ethanol. The condensation reaction can be performed using 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide or diethyl cyanophosphate as a condensing agent in an organic solvent such as dimethyl sulfoxide or N, N-dimethylformamide. If necessary, a base such as triethylamine may be added.
Manufacturing method C (11)
Figure 2002080899
The compound of the general formula (11b) is generally used in a solvent such as dimethyl sulfoxide in the presence of a catalyst such as 1,1-bis (diphenylphosphino) ferrocenedichloropalladium and an inorganic base such as potassium acetate under room temperature to heating under reflux. It can be produced by reacting formula (11a) and bis (pinacolato) diboron.
The compound of the general formula (11c) is generally used in a solvent such as dimethoxyethane in the presence of a catalyst such as 1,1-bis (diphenylphosphino) ferrocenedichloropalladium and an inorganic base such as potassium carbonate at room temperature under heating and reflux. It can be produced by reacting the formula (11b) and aryl bromide, followed by hydrolysis with an inorganic base such as sodium hydroxide or potassium hydroxide in ethanol or methanol.
In the above synthesis method, the hydroxyl group protected with a protecting group means a hydroxyl group protected with a protecting group for a hydroxyl group. To give specific examples, it is usually a group known as a protecting group for a hydroxyl group in organic synthesis. Any group may be used as long as it is a hydroxyl group protected with an alkyl group, and examples of the hydroxyl-protecting group include lower alkylsilyl groups such as trimethylsilyl group and t-butyldimethylsilyl group; for example, methoxymethyl group, 2-methoxyethoxymethyl Lower alkoxymethyl group such as a group; for example, tetrahydropyranyl group; for example, aralkyl group such as benzyl group, p-methoxybenzyl group, 2,4-dimethoxybenzyl group, o-nitrobenzyl group, p-nitrobenzyl group, trityl group An acyl group such as a formyl group or an acetyl group; for example, a t-butoxycarbonyl group or 2-iodoe; Lower alkoxycarbonyl groups such as xoxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group; for example, 2-propenyloxycarbonyl group, 2-chloro-2-propenyloxycarbonyl group, 3-methoxycarbonyl-2-propenyloxycarbonyl Groups, alkenyloxycarbonyl groups such as 2-methyl-2-propenyloxycarbonyl group, 2-butenyloxycarbonyl group, cinnamyloxycarbonyl group; for example, benzyloxycarbonyl group, p-methoxybenzyloxycarbonyl group, o-nitro Examples thereof include aralkyloxycarbonyl groups such as benzyloxycarbonyl group and p-nitrobenzyloxycarbonyl group.
Removal of these protecting groups can be carried out by conventional methods such as hydrolysis and reduction, depending on the type of protecting group used.
Next, the protecting group of the amino group in the amino group protected by the protecting group is, as a specific example, usually any group as long as it is a group known as an amino group protecting group in organic synthesis, Although not particularly limited, for example, a substituted or unsubstituted lower alkanoyl group such as formyl group, acetyl group, chloroacetyl group, dichloroacetyl group, propionyl group, phenylacetyl group, phenoxyacetyl group, thienylacetyl group; benzyloxycarbonyl group, substituted or unsubstituted lower alkoxycarbonyl groups such as t-butoxycarbonyl group and p-nitrobenzyloxycarbonyl group; methyl group, t-butyl group, 2,2,2-trichloroethyl group, trityl group, p-methoxybenzyl Group, p-nitrobenzyl group, diphenylmethyl group, pivaloyloxymethyl Substituted lower alkyl group such as a group; substituted silyl group such as trimethylsilyl group and t-butyldimethylsilyl group; trimethylsilylmethoxymethyl group, trimethylsilylethoxymethyl group, t-butyldimethylsilylmethoxymethyl group, t-butyldimethylsilylethoxymethyl group Substituted silylalkoxyalkyl groups such as benzylidene group, salicylidene group, p-nitrobenzylidene group, m-chlorobenzylidene group, 3,5-di (t-butyl) -4-hydroxybenzylidene group, 3,5-di (t And a substituted or unsubstituted benzylidene group such as a (butyl) benzylidene group.
Removal of these protecting groups can be carried out by conventional methods such as hydrolysis and reduction, depending on the type of protecting group used.
In addition, the protecting group for the carboxy group is not particularly limited as long as it is a carboxyl group protected with a group known as a protecting group for a carboxyl group in organic synthesis. Examples of the protecting group for the carboxyl group include linear or branched lower alkyl groups having 1 to 4 carbon atoms such as methyl, ethyl, isopropyl, and t-butyl groups, such as 2-ethyl iodide. A halogeno lower alkyl group such as a 2,2,2-trichloroethyl group, for example, a lower alkoxymethyl group such as a methoxymethyl group, an ethoxymethyl group or an isobutoxymethyl group, a butyryloxymethyl group, a pivaloyloxy group Lower aliphatic acyloxymethyl group such as methyl group, for example, 1-methoxycarbonyloxyethyl group, 1-ethoxycarbonyl 1-lower alkoxycarbonyloxyethyl groups such as xylethyl group, for example, aralkyl groups such as benzyl, p-methoxybenzyl group, o-nitrobenzyl group, p-nitrobenzyl group, benzhydryl group and phthalidyl group. it can.
Removal of these protecting groups can be carried out by conventional methods such as hydrolysis and reduction, depending on the type of protecting group used.
As described above, the solvent that can be used in the present invention is not particularly limited as long as it does not inhibit the reaction and is usually used in organic synthesis. , Lower alcohols such as methanol, ethanol, propanol and butanol, polyalcohols such as ethylene glycol and glycerin, ketones such as acetone, methyl ethyl ketone, diethyl ketone and cyclohexanone, diethyl ether, isopropyl ether, tetrahydrofuran, dioxane, 2-methoxy Ethers such as ethanol and 1,2-dimethoxyethane, nitriles such as acetonitrile and propionitrile, esters such as methyl acetate, ethyl acetate, isopropyl acetate, butyl acetate and diethyl phthalate, dichlorometh Halogenated hydrocarbons such as benzene, toluene, xylene, monochlorobenzene, nitrobenzene, indene, pyridine, quinoline, collidine, phenol, and the like, halogenated hydrocarbons such as chlorobenzene, chloroform, carbon tetrachloride, 1,2-dichloroethane, trichloroethylene, and tetrachloroethylene , Hydrocarbons such as pentane, cyclohexane, hexane, heptane, octane, isooctane, petroleum benzine, petroleum ether, ethanolamine, diethylamine, triethylamine, pyrrolidine, piperidine, piperazine, morpholine, aniline, dimethylaniline, benzylamine, toluidine, etc. Amines, formamide, N-methylpyrrolidone, N, N-dimethylimidazolone, N, N-dimethylacetamide, N, N-dimethylformamide, etc. Amides, phosphoric acid amides such as hexamethylphosphoric triamide, hexamethylphosphorous triamide, water, and one or more mixed solvents such as other commonly used solvents, and the mixing ratio is There is no particular limitation.
As described above, the base that can be used in the present invention is not particularly limited as long as it does not inhibit the reaction and is usually known as a base in organic synthesis. Specifically, for example, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, sodium hydride, potassium hydride, t-butoxy potassium, pyridine, dimethylaminopyridine, trimethylamine, triethylamine, N, N-diisopropylethylamine, N-methyl Morpholine, N-methylpyrrolidine, N-methylpiperidine, N, N-dimethylaniline, 1,8-diazabicyclo [5,4,0] undec-7-ene (DBU), pyridine, 4-dimethylaminopyridine, picoline, Lutidine, quinoline, isoquinoline, sodium hydroxide, water Potassium, lithium hydroxide, butyl lithium, sodium methylate, potassium methylate, sodium or potassium alcoholates such as sodium ethylate and the like.
As described above, the reducing agent that can be used in the present invention is not particularly limited as long as it does not inhibit the reaction and is usually used in organic synthesis. For example NaBH4, LiBH4Zn (BH4)2, Me4NBH (OAc)3, NaBH3CN, Selectride, Super Hide (LiBHEt3), LiAlH4, DIBAL, LiAlH (t-BuO)3, Red-al, binap, etc., and catalytic hydrogenation catalysts such as platinum, palladium, rhodium, ruthenium, nickel, and the like.
After completion of the above reaction, purification can be carried out by a usual treatment method if desired, for example, by column chromatography using silica gel or an adsorbent resin or by recrystallization from an appropriate solvent.
The dose of the medicament according to the present invention varies depending on the degree of symptoms, age, sex, body weight, dosage form, disease type, etc., but is usually 100 μg to 10 g per day for an adult, and is divided into 1 to several times.
The administration form of the medicament according to the present invention is not particularly limited, and can be administered orally or parenterally by a commonly used method.
For these formulations, commonly used excipients, binders, lubricants, coloring agents, flavoring agents, etc., and if necessary, stabilizers, emulsifiers, absorption promoters, surfactants, etc. can be used. In general, it is formulated by a conventional method by blending ingredients used as raw materials for pharmaceutical preparations. In the present invention, pharmacologically acceptable carriers refer to these, and are specifically listed below.
These ingredients include, for example, animal and vegetable oils (soybean oil, beef tallow, synthetic glycerides, etc.), hydrocarbons (liquid paraffin, squalane, solid paraffin, etc.), ester oils (octyldodecyl myristate, isopropyl myristate, etc.), higher alcohols ( Cetostearyl alcohol, behenyl alcohol, etc.), silicone resin, silicone oil, surfactant (polyoxyethylene fatty acid ester, sorbitan fatty acid ester, glycerin fatty acid ester, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene hydrogenated castor oil, polyoxyethylene polyoxy) Propylene block copolymer, etc.), water-soluble polymers (hydroxyethyl cellulose, polyacrylic acid, carboxyvinyl polymer, polyethylene glycol, polyvinyl pyrrole) , Methylcellulose, etc.), alcohol (ethanol, isopropanol, etc.), polyhydric alcohol (glycerin, propylene glycol, dipropylene glycol, sorbitol, etc.), sugar (glucose, sucrose, etc.), inorganic powder (anhydrous silicic acid, silicic acid) Aluminum magnesium, aluminum silicate, etc.) and purified water. For pH adjustment, inorganic acids (hydrochloric acid, phosphoric acid, etc.), alkali metal salts of inorganic acids (sodium phosphate, etc.), inorganic bases (sodium hydroxide, etc.), organic acids (lower fatty acids, citric acid, lactic acid, etc.) Organic metal alkali metal salts (such as sodium citrate and sodium lactate), organic bases (such as arginine and ethanolamine) can be used. Moreover, antiseptic | preservative, antioxidant, etc. can be added as needed.
Next, in order to show the usefulness of the present application, examples of pharmacological experiments are shown.
Experimental Example 1: Measurement of transcriptional activity
The chimeric expression vector of GAL4-PPAR LBD is human PPAR 167-468 (PPARα), 138-440 (NUC-1), 174-475 (PPARγ) in the 1-147 amino acid region of GAL4 which is a transcription factor of yeast. Each was constructed by linking amino acid regions (LBD; Ligand Binding Domain). PLAP (Plaxal Alkaline Phosphatase) was used as the reporter gene, and this was constructed by ligating it downstream of the TK promoter containing 5 copies of GAL4 DNA binding element. CV-1 (ATCC CCL-70) was used for the host cell. That is, CV-1 cell is 5x10 in 35mm dish.5After being cultured for 24 hours in 10% FCS / DMEM, GAL4-PPAR LBD expression vector and GAL4 DBD-TK-PLAP expression vector were co-transfected using FuGENE 6 transfection reagent. 1x10 after 24 hours of Transfection4The cells were re-spread on a 96-well plate so as to become / well, and further cultured for 24 hours. After 24 hours, the medium was replaced with DMEM containing 10% FCS treated at 65 ° C. to inactivate endogenous alkaline phosphatase, and the compound was added at an arbitrary concentration. Transcriptional activity was measured by PLAP activity secreted during 24 hours after compound addition, and EC50 was calculated. PLAP activity was measured after adding 50 μl of assay buffer and 50 μl of chemiluminescent substrate to 10 μl of culture supernatant and incubating at room temperature for 1 hour. Table 1 shows the transcriptional activities for PPARα, PPARβ, and PPARγ.
Figure 2002080899
Experimental Example 2: Anti-inflammatory action in the digestive tract
Female ICR mice (10 cases per group, Charles River, Japan, Yokohama) were allowed to freely drink 4% sodium dextran sulfate solution for 5 days to induce experimental colitis. After 8 days, according to a report by Cooper HS et al. (Laboratory Invest (69), p.238-249, 1993), the three indicators of diarrhea, bloody stool and weight loss were classified from 0 (normal) to 4 (severe), respectively. The average value was taken as the colitis activity index. The test compound was suspended in a 0.5% methylcellulose solution and orally administered once a day from the start of colitis induction using a sonde. The results are shown in Table 2.
Figure 2002080899
As described above, the compound of the present invention has an excellent anti-inflammatory action in the gastrointestinal tract and is very useful as a therapeutic agent for digestive system diseases, particularly a therapeutic agent for inflammatory bowel diseases.
The compound of the present invention does not have a thiazolidine skeleton, and there is a possibility that toxicity such as liver damage which is a problem with a compound having a PPARγagonist action can be completely avoided.
Example
The present invention will be described in detail and specifically by the following examples, but the present invention is not limited to these examples.
Example 1
Production Example 1a)
Figure 2002080899
1.5 g of ethyl 2- (diethylphosphoryl) -2-ethyl acetate was dissolved in 30 ml of tetrahydrofuran, and 0.26 g of 60% sodium hydride was added under ice cooling. The reaction solution was stirred for 30 minutes under ice-cooling, 1.5 g of benzyl 5-formyl-2-methoxybenzoate was added, and the mixture was stirred at room temperature for 20 hours. To the reaction mixture was added aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (4: 1), benzyl 5- (3-ethoxy-2-ethoxy-3-oxo-1-propenyl) -2-methoxybenzoate 6g was obtained with EZ.
1H-NMR (Z-isomer, CDCl3) Δ: 1.25 (t, J = 6.8 Hz, 3H) 1.36 (t, J = 7.2 Hz, 3H) 3.96 (s, 3H) 3.98 (q, J = 6.8 Hz) , 2H) 4.27 (q, J = 7.2 Hz, 2H) 6.92 (s, 1H) 6.98 (d, J = 8.0 Hz, 1H) 7.30-7.43 (m, 5H) 7.90 (dd, J = 2.4, 8.0 Hz, 1H) 8.32 (d, J = 2.4 Hz, 1H)
Production Example 1b)
Figure 2002080899
1.6 g of benzyl 5- (3-ethoxy-2-ethoxy-3-oxo-1-propenyl) -2-methoxybenzoate is dissolved in 30 ml of ethanol, and 0.35 g of 10% palladium on carbon is added. Stir for hours. After the catalyst was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (2: 1), 5- (3-ethoxy-2-ethoxy-3-oxopropyl) was obtained. ) 1.2 g of 2-methoxybenzoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.16 (t, J = 6.8 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.98 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.8, 14.0 Hz, 1H) 3.34 (dq, J = 6.8, 9.2 Hz, 1H) 3.61 (dq, J = 6.8, 9.2 Hz) , 1H) 3.98 (dd, J = 4.8, 8.0 Hz, 1H) 4.05 (s, 3H) 4.18 (q, J = 7.2 Hz, 2H) 6.97 (d, J = 8.0 Hz, 1H) 7.47 (dd, J = 2.4, 8.0 Hz, 1H) 8.06 (d, J = 2.4 Hz, 1H)
Example 1c)
Figure 2002080899
0.58 g of 5- (3-ethoxy-2-ethoxy-3-oxopropyl) -2-methoxybenzoic acid and 0.34 g of 4- (trifluoromethyl) benzylamine were dissolved in 7 ml of N, N-dimethylformamide, Under ice-cooling, 0.30 ml of diethyl cyanophosphonate and 0.27 ml of triethylamine were added. The reaction mixture was stirred at room temperature for 16 hours, poured into ice water, and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and ethyl 2-ethoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino was extracted from the fraction eluted with hexane-ethyl acetate (3: 1). } 0.64 g of carbonyl) phenyl) propanoate was obtained.
1H-NMR (CDCl3) Δ: 1.16 (t, J = 6.8 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.98 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.8, 14.0 Hz, 1H) 3.34 (dq, J = 6.8, 9.2 Hz, 1H) 3.61 (dq, J = 6.8, 9.2 Hz) , 1H) 3.93 (s, 3H) 4.01 (dd, J = 4.8, 8.0 Hz, 1H) 4.18 (q, J = 7.2 Hz, 2H) 4.73 (d, J = 6.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz) , 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.12 (d, J = 2.4 Hz, 1H) 8.29 (m, 1H)
Example 1d)
Figure 2002080899
0.25 g of ethyl 2-ethoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoate is dissolved in 7 ml of methanol, and 3 ml of 1N sodium hydroxide is added. And stirred at room temperature for 14 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give 2-ethoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino. } Carbonyl) phenyl) propanoic acid 0.18 g was obtained.
1H-NMR (DMSO-d6) Δ: 1.02 (t, J = 7.2 Hz, 3H) 2.82 (dd, J = 8.0, 14.4 Hz, 1H) 2.91 (dd, J = 5.2, 14.4 Hz) , 1H) 3.30 (dq, J = 7.2, 9.6 Hz, 1H) 3.50 (dq, J = 7.2, 9.6 Hz, 1H) 3.86 (s, 3H) 3.94 (Dd, J = 5.2, 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.05 (d, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.61 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 2.4 Hz) , 2H) 8.78 (t, J = 6.0 Hz, 1H)
Example 2
Production Example 2b)
Figure 2002080899
5- (3-Ethoxy-2-isopropoxy-3-oxopropyl) -2-methoxybenzoic acid was obtained in the same manner as in Production Example 1b).
1H-NMR (CDCl3) Δ: 0.94 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.26 (t, J = 7.2 Hz, 3H) 2.93 (dd , J = 8.0, 14.0 Hz, 1H) 3.02 (dd, J = 4.8, 14.0 Hz, 1H) 3.52 (sept, J = 6.0 Hz, 1H) 4.03 (dd , J = 4.8, 8.0 Hz, 1H) 4.06 (s, 3H) 4.15-4.22 (m, 2H) 6.98 (d, J = 8.0 Hz, 1H) 7.47 (Dd, J = 2.4, 8.0 Hz, 1H) 8.08 (d, J = 2.4 Hz, 1H)
Example 2c)
Figure 2002080899
Ethyl 2-isopropoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.92 (dd , J = 8.0, 14.0 Hz, 1H) 3.01 (dd, J = 4.8, 14.0 Hz, 1H) 3.51 (sept, J = 6.0 Hz, 1H) 3.93 (s , 3H) 4.05 (dd, J = 4.8, 8.0 Hz, 1H) 4.14-4.21 (m, 2H) 4.73 (d, J = 6.0 Hz, 2H) 6.90 (D, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.13 (d, J = 2.4 Hz, 1H) 8.30 (m, 1H)
Example 2d)
Figure 2002080899
In the same manner as in Example 1d), 2-isopropoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.89 (t, J = 6.0 Hz, 3H) 1.03 (t, J = 6.0 Hz, 3H) 2.76 (dd, J = 8.0, 14.0 Hz, 1H) 2 .88 (dd, J = 4.8, 14.0 Hz, 1H) 3.48 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 3.99 (dd, J = 4.8 , 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.04 (d, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz) , 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.62 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.77 (t , J = 6.0Hz, 1H)
Example 3
Production Example 3b)
Figure 2002080899
5- (3-Ethoxy-2-tert-butoxy-3-oxopropyl) -2-methoxybenzoic acid was obtained in the same manner as in Production Example 1b).
1H-NMR (CDCl3) Δ: 1.02 (s, 9H) 1.25 (t, J = 7.2 Hz, 3H) 2.85 (dd, J = 8.0, 14.0 Hz, 1H) 2.95 (dd, J = 4.8, 14.0 Hz, 1H) 4.06 (s, 3H) 4.10 (dd, J = 4.8, 8.0 Hz, 1H) 4.18 (q, J = 7.2 Hz, 2H) 6.98 (d, J = 8.0 Hz, 1H) 7.47 (dd, J = 2.4, 8.0 Hz, 1H) 8.07 (d, J = 2.4 Hz, 1H)
Example 3c)
Figure 2002080899
Ethyl 2-tert-butoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 1.02 (s, 9H) 1.25 (t, J = 7.2 Hz, 3H) 2.85 (dd, J = 8.0, 14.0 Hz, 1H) 2.95 (dd, J = 4.8, 14.0 Hz, 1H) 3.93 (s, 3H) 4.10 (dd, J = 4.8, 8.0 Hz, 1H) 4.18 (q, J = 7.2 Hz, 2H) 4.73 (d, J = 6.0 Hz, 2H) 6.90 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (D, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.13 (d, J = 2.4 Hz, 1H) 8.29 (m, 1H)
Example 3d)
Figure 2002080899
In the same manner as in Example 1d), 2-tert-butoxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.94 (s, 9H) 2.70 (dd, J = 8.8, 13.2 Hz, 1H) 2.83 (dd, J = 4.4, 13.2 Hz, 1H) 3.86 (S, 3H) 4.01 (dd, J = 4.4, 8.8 Hz, 1H) 4.56 (d, J = 6.0 Hz, 2H) 7.04 (d, J = 8.0 Hz, 1H) 7.31 (dd, J = 2.0, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.63 (d, J = 2.0 Hz, 1H) 7.68 (D, J = 8.0 Hz, 2H) 8.77 (t, J = 6.0 Hz, 1H)
Example 4
Production Example 4b)
Figure 2002080899
5- (3-Ethoxy-2-hydroxy-3-oxopropyl) -2-methoxybenzoic acid was obtained in the same manner as in Production Example 1b).
1H-NMR (CDCl3) Δ: 1.31 (t, J = 7.2 Hz, 3H) 2.95 (dd, J = 8.0, 14.0 Hz, 1H) 3.12 (dd, J = 4.8, 14.0 Hz) , 1H) 4.06 (s, 3H) 4.23 (q, J = 7.2 Hz, 2H) 4.40 (dd, J = 4.8, 8.0 Hz, 1H) 6.98 (d, J = 8.0 Hz, 1H) 7.47 (dd, J = 2.4, 8.0 Hz, 1H) 8.01 (d, J = 2.4 Hz, 1H)
Example 4c)
Figure 2002080899
Ethyl 2-hydroxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 1.31 (t, J = 7.2 Hz, 3H) 2.95 (dd, J = 8.0, 14.0 Hz, 1H) 3.15 (dd, J = 4.8, 14.0 Hz) , 1H) 3.92 (s, 3H) 4.23 (q, J = 7.2 Hz, 2H) 4.40-4.43 (m, 1H) 4.73 (d, J = 6.0 Hz, 2H) 6.92 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (D, J = 8.0 Hz, 2H) 8.08 (d, J = 2.4 Hz, 1H) 8.28 (m, 1H)
Example 4d)
Figure 2002080899
In the same manner as in Example 1d), 2-hydroxy-3- (4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl) propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.75 (dd, J = 8.0, 14.0 Hz, 1H) 2.90 (dd, J = 4.8, 14.0 Hz, 1H) 3.86 (s, 3H) 4.08 (Dd, J = 4.8, 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.05 (d, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.62 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz) , 2H) 8.77 (t, J = 6.0 Hz, 1H)
Example 5
Production Example 5b)
Figure 2002080899
5- [2- (Ethoxycarbonyl) butyl] -2-methoxybenzoic acid was obtained in the same manner as in Production Example 1b).
1H-NMR (CDCl3) Δ: 0.92 (t, J = 7.6 Hz, 3H) 1.17 (t, J = 6.8 Hz, 3H) 1.51-1.70 (m, 2H) 2.54-2.60 (M, 1H) 2.75 (dd, J = 6.4, 13.6 Hz, 1H) 2.91 (dd, J = 8.4, 13.6 Hz, 1H) 4.02-4.10 (m , 2H) 4.05 (s, 3H) 6.96 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 8.00 (d, J = 2.4Hz, 1H)
Example 5c)
Figure 2002080899
Ethyl 2- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) benzyl] butanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 0.91 (t, J = 7.6 Hz, 3H) 1.18 (t, J = 6.8 Hz, 3H) 1.51-1.70 (m, 2H) 2.54-2.61 (M, 1H) 2.75 (dd, J = 6.4, 13.6 Hz, 1H) 2.92 (dd, J = 8.4, 13.6 Hz, 1H) 3.92 (s, 3H) 4 .04-4.15 (m, 2H) 4.73 (d, J = 6.0 Hz, 2H) 6.89 (d, J = 8.0 Hz, 1H) 7.26 (dd, J = 2.4) , 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.05 (d, J = 2.4 Hz, 1H) 8 .30 (m, 1H)
Example 5d)
Figure 2002080899
In the same manner as in Example 1d), 2- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) benzyl] butanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.84 (t, J = 7.2 Hz, 3H) 1.43-1.49 (m, 2H) 2.38-2.43 (m, 1H) 2.64 (dd, J = 6) 0.0, 13.6 Hz, 1H) 2.75 (dd, J = 8.8, 13.6 Hz, 1H) 3.85 (s, 3H) 4.54 (d, J = 6.4 Hz, 2H) 7 .04 (d, J = 8.0 Hz, 1H) 7.27 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.55 (d , J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.78 (t, J = 6.4 Hz, 1H)
Example 6
Production Example 6b)
Figure 2002080899
5- {2- (ethoxycarbonyl) ethyl} -2-methoxybenzoic acid was obtained in the same manner as in Production Example 1b).
1H-NMR (CDCl3) Δ: 1.14 (t, J = 6.8 Hz, 3H) 2.56 (t, J = 7.2 Hz, 2H) 2.88 (t, J = 7.2 Hz, 2H) 3.98 (s) 3H) 4.06 (q, J = 6.8 Hz, 2H) 6.92 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7 .98 (d, J = 2.4 Hz, 1H)
Example 6c)
Figure 2002080899
Ethyl 3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 1.12 (t, J = 6.8 Hz, 3H) 2.60 (t, J = 7.2 Hz, 2H) 2.95 (t, J = 7.2 Hz, 2H) 3.92 (s) 3H) 4.11 (q, J = 6.8 Hz, 2H) 4.73 (d, J = 6.0 Hz, 2H) 6.90 (d, J = 8.0 Hz, 1H) 7.26 (dd , J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.07 (d, J = 2 .4Hz, 1H) 8.30 (m, 1H)
Example 6d)
Figure 2002080899
In the same manner as in Example 1d), 3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.48 (t, J = 7.2 Hz, 2H) 2.76 (t, J = 7.2 Hz, 2H) 3.85 (s, 3H) 4.54 (d, J = 6.4 Hz) , 2H) 7.04 (d, J = 8.0 Hz, 1H) 7.31 (dd, J = 2.4, 8.0 Hz, 1H) 7.51 (d, J = 8.0 Hz, 2H) 7 .57 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.78 (t, J = 6.4 Hz, 1H)
Example 7
Example 7c)
Figure 2002080899
Ethyl 2-ethoxy-3- [4-methoxy-3-({[(1-methyl-1H-2-indolyl) methyl] amino} carbonyl) phenyl] propanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 1.16 (t, J = 6.8 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.98 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.8, 14.0 Hz, 1H) 3.34 (dq, J = 6.8, 9.2 Hz, 1H) 3.61 (dq, J = 6.8, 9.2 Hz) , 1H) 3.74 (s, 3H) 3.84 (s, 3H) 4.01 (dd, J = 4.8, 8.0 Hz, 1H) 4.18 (q, J = 7.2 Hz, 2H) 4.87 (d, J = 6.0 Hz, 2H) 6.87 (d, J = 8.0 Hz, 1H) 6.90 (s, 1H) 7.11 (dd, J = 0.8, 8) 0.0 Hz, 1H) 7.20 (dd, J = 0.8, 8.0 Hz, 1H) 7.30 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8 .0Hz, 1H) 7.59 (d J = 8.0Hz, 1H) 8.10 (m, 1H) 8.12 (d, J = 2.4Hz, 1H)
Example 7d)
Figure 2002080899
In the same manner as in Example 1d), 2-ethoxy-3- [4-methoxy-3-({[(1-methyl-1H-2-indolyl) methyl] amino} carbonyl) phenyl] propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 1.03 (t, J = 6.8 Hz, 3H) 2.83 (dd, J = 7.2, 14.0 Hz, 1H) 2.91 (dd, J = 4.8, 14.0 Hz) , 1H) 3.30 (dq, J = 6.8, 9.6 Hz, 1H) 3.50 (dq, J = 6.8, 9.6 Hz, 1H) 3.74 (s, 3H) 3.84 (S, 3H) 3.94 (dd, J = 4.8, 7.2 Hz, 1H) 4.67 (d, J = 5.6 Hz, 2H) 6.35 (s, 1H) 6.97 (dd , J = 0.8, 8.0 Hz, 1H) 7.04 (d, J = 8.0 Hz, 1H) 7.09 (dd, J = 0.8, 8.0 Hz, 1H) 7.31 (dd , J = 2.0, 8.0 Hz, 1H) 7.39 (d, J = 8.0 Hz, 1H) 7.46 (d, J = 8.0 Hz, 1H) 7.61 (d, J = 2) .0Hz, 1H) 8.57 (t J = 5.6Hz, 1H)
Example 8
Example 8c)
Figure 2002080899
Ethyl 3- [3-({[cyclohexylmethyl] amino} carbonyl) -4-methoxyphenyl] -2-ethoxypropanoate was obtained in the same manner as in Example 1c).
1H-NMR (CDCl3) Δ: 0.95-1.07 (m, 2H) 1.16 (t, J = 6.8 Hz, 3H) 1.16-1.25 (m, 3H) 1.25 (t, J = 7) .2 Hz, 3H) 1.50-1.80 (m, 6H) 2.98 (dd, J = 8.0, 14.0 Hz, 1H) 3.04 (dd, J = 4.8, 14.0 Hz , 1H) 3.30 (t, J = 6.4 Hz, 2H) 3.34 (dq, J = 6.8, 9.2 Hz, 1H) 3.61 (dq, J = 6.8, 9.2 Hz) , 1H) 3.94 (s, 3H) 4.01 (dd, J = 4.8, 8.0 Hz, 1H) 4.18 (q, J = 7.2 Hz, 2H) 6.87 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.4, 8.0 Hz, 1H) 7.90 (m, 1H) 8.08 (d, J = 2.4 Hz, 1H)
Example 8d)
Figure 2002080899
In the same manner as in Example 1d), 3- (3-[{(cyclohexylmethyl) amino} carbonyl] -4-methoxyphenyl) -2-ethoxypropanoic acid was obtained.
1H-NMR (DMSO-d6): 0.89-0.95 (m, 2H) 1.03 (t, J = 7.2 Hz, 3H) 1.14-1.20 (m, 3H) 1.45-1.70 (m 6H) 2.81 (dd, J = 8.0, 14.0 Hz, 1H) 2.90 (dd, J = 5.2, 14.0 Hz, 1H) 3.10 (dd, J = 6.4) , 6.4 Hz, 2H) 3.30 (dq, J = 7.2, 9.6 Hz, 1H) 3.50 (dq, J = 7.2, 9.6 Hz, 1H) 3.83 (s, 3H 3.93 (dd, J = 5.2, 8.0 Hz, 1H) 7.02 (d, J = 8.0 Hz, 1H) 7.28 (dd, J = 2.4, 8.0 Hz, 1H) 7.57 (d, J = 2.4 Hz, 1H) 8.07 (t, J = 6.4 Hz, 1H)
Example 9
Example 9a)
Figure 2002080899
0.25 g of methyl 2-amino-3-methoxy ({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoate and 0.12 ml of acetic acid are dissolved in 8 ml of chloroform, and 0.10 ml of isoamyl nitrite at room temperature. Was added. The reaction was heated to reflux for 30 minutes, then cooled to room temperature and diluted with ethyl acetate. The organic layer was washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, and dried over anhydrous magnesium sulfate. After distilling off the solvent under reduced pressure, the residue was dissolved in 8 ml of 1-propanol, and 13 mg of rhodium acetate was added at room temperature. The reaction solution was heated to reflux for 5 hours, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and methyl 3- [4-methoxy-3-ylate was eluted from the fraction eluted with hexane-ethyl acetate (2: 1). 0.18 g of ({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] -2-propoxypropanoate was obtained.
1H-NMR (CDCl3) Δ: 0.84 (t, J = 7.2 Hz, 3H) 1.55 (tq, J = 6.8, 7.2 Hz, 2H) 2.98 (dd, J = 8.0, 14.0 Hz) , 1H) 3.04 (dd, J = 4.8, 14.0 Hz, 1H) 3.21 (dt, J = 6.8, 8.8 Hz, 1H) 3.53 (dt, J = 6.8) , 8.8 Hz, 1H) 3.73 (s, 3H) 3.93 (s, 3H) 4.02 (dd, J = 4.8, 8.0 Hz, 1H) 4.73 (d, J = 6) 0.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.36 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) ) 7.59 (d, J = 8.0 Hz, 2H) 8.10 (d, J = 2.4 Hz, 1H) 8.29 (m, 1H)
Example 9b)
Figure 2002080899
0.18 g of methyl 3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] -2-propoxypropanoate is dissolved in 2 ml of methanol, and 2 ml of 1N sodium hydroxide. And stirred at room temperature for 4 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give 3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl. ] 0.15 g of 2-propoxypropanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.76 (t, J = 7.2 Hz, 3H) 1.41 (tq, J = 6.4, 7.2 Hz, 2H) 2.82 (dd, J = 8.0, 14.4 Hz) , 1H) 2.91 (dd, J = 4.8, 14.4 Hz, 1H) 3.17 (dt, J = 6.4, 9.2 Hz, 1H) 3.43 (dt, J = 6.4) , 9.2 Hz, 1H) 3.86 (s, 3H) 3.92 (dd, J = 4.8, 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.05 (D, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.61 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.78 (t, J = 6.0 Hz, 1H)
Example 10
Example 10a)
Figure 2002080899
Methyl 2-butoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoate was obtained in the same manner as in Example 9a).
1H-NMR (CDCl3) Δ: 0.84 (t, J = 7.2 Hz, 3H) 1.25-1.32 (m, 2H) 1.46-1.55 (m, 2H) 2.98 (dd, J = 8) 0.0, 14.0 Hz, 1H) 3.04 (dd, J = 4.8, 14.0 Hz, 1H) 3.25 (dt, J = 6.8, 8.8 Hz, 1H) 3.55 (dt , J = 6.8, 8.8 Hz, 1H) 3.73 (s, 3H) 3.93 (s, 3H) 4.01 (dd, J = 4.8, 8.0 Hz, 1H) 4.73 (D, J = 6.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.35 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.10 (d, J = 2.4 Hz, 1H) 8.29 (m, 1H)
Example 10b)
Figure 2002080899
In the same manner as in Example 9b), 2-butoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.77 (t, J = 7.2 Hz, 3H) 1.15-1.25 (m, 2H) 1.32-1.41 (m, 2H) 2.82 (dd, J = 8) .4, 14.0 Hz, 1H) 2.91 (dd, J = 4.8, 14.0 Hz, 1H) 3.20 (dt, J = 6.4, 9.2 Hz, 1H) 3.46 (dt , J = 6.4, 9.2 Hz, 1H) 3.86 (s, 3H) 3.90 (dd, J = 4.8, 8.4 Hz, 1H) 4.55 (d, J = 6.0 Hz , 2H) 7.05 (d, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7 .61 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.77 (t, J = 6.0 Hz, 1H)
Example 11
Example 11a)
Figure 2002080899
Methyl 2-cyclohexyloxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoate was obtained in the same manner as in Example 9a).
1H-NMR (CDCl3) Δ: 0.80 (dd, J = 6.4, 16.0 Hz, 1H) 1.08-1.90 (m, 9H) 2.96 (dd, J = 8.0, 14.0 Hz, 1H) ) 3.02 (dd, J = 4.8, 14.0 Hz, 1H) 3.14-3.21 (m, 1H) 3.73 (s, 3H) 3.93 (s, 3H) 4.10 (Dd, J = 4.8, 8.0 Hz, 1H) 4.73 (d, J = 6.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.36 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.10 (d, J = 2.4 Hz) , 1H) 8.29 (m, 1H)
Example 11b)
Figure 2002080899
In the same manner as in Example 9b), 2-cyclohexyloxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.75 (dd, J = 6.4, 16.0 Hz, 1H) 1.00-1.71 (m, 9H) 2.78 (dd, J = 8.0, 14.0 Hz, 1H) ) 2.89 (dd, J = 4.8, 14.0 Hz, 1H) 3.18-3.23 (m, 1H) 3.86 (s, 3H) 4.03 (dd, J = 4.8 , 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.05 (d, J = 8.0 Hz, 1H) 7.33 (dd, J = 2.4, 8.0 Hz) , 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.63 (d, J = 2.4 Hz, 1H) 7.67 (d, J = 8.0 Hz, 2H) 8.77 (t , J = 6.0Hz, 1H)
Example 12
Example 12a)
Figure 2002080899
Methyl 3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] -2- (2,2,2-trifluoroethoxy) in the same manner as in Example 9a) ) Propanoate was obtained.
1H-NMR (CDCl3) Δ: 3.04 (dd, J = 8.0, 14.0 Hz, 1H) 3.15 (dd, J = 4.8, 14.0 Hz, 1H) 3.67 (dd, J = 8.8) , 12.0 Hz, 1H) 3.73 (s, 3H) 3.93 (s, 3H) 4.03 (d, J = 8.8, 12.0 Hz, 1H) 4.20 (dd, J = 4 .8, 8.0 Hz, 1H) 4.73 (d, J = 6.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.36 (dd, J = 2.4, 8 0.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.59 (d, J = 8.0 Hz, 1H) 8.10 (d, J = 8.0 Hz, 2H) 8.29 (M, 1H)
Example 12b)
Figure 2002080899
3- [4-Methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] -2- (2,2,2-trifluoroethoxy) in a manner similar to Example 9b) Propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.01 (dd, J = 4.8, 14.0 Hz, 1H) 3.87 (s, 3H) 4.03 (Dd, J = 8.8, 12.0 Hz, 1H) 4.11 (d, J = 8.8, 12.0 Hz, 1H) 4.26 (dd, J = 4.8, 8.0 Hz, 1H) ) 4.55 (d, J = 6.4 Hz, 2H) 7.06 (d, J = 8.0 Hz, 1H) 7.31 (dd, J = 2.4, 8.0 Hz, 1H) 7.52 (D, J = 8.0 Hz, 2H) 7.61 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 8.78 (t, J = 6.4 Hz) , 1H)
Example 13
Example 13a)
Figure 2002080899
Methyl 2-isobutoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoate was obtained in the same manner as in Example 9a).
1H-NMR (CDCl3) Δ: 0.82 (d, J = 6.4 Hz, 6H) 1.80 (tq, J = 6.4, 6.4 Hz, 1H) 2.98 (dd, J = 8.0, 14.0 Hz) , 1H) 2.99 (dd, J = 6.4, 8.8 Hz, 1H) 3.04 (dd, J = 4.8, 14.0 Hz, 1H) 3.36 (dd, J = 6.4) , 8.8 Hz, 1H) 3.72 (s, 3H) 3.93 (s, 3H) 4.00 (dd, J = 4.8, 8.0 Hz, 1H) 4.73 (d, J = 6 0.0 Hz, 2H) 6.91 (d, J = 8.0 Hz, 1H) 7.36 (dd, J = 2.4, 8.0 Hz, 1H) 7.47 (d, J = 8.0 Hz, 2H) ) 7.59 (d, J = 8.0 Hz, 2H) 8.10 (d, J = 2.4 Hz, 1H) 8.29 (m, 1H)
Example 13b)
Figure 2002080899
2-Isobutoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] propanoic acid was obtained in the same manner as in Example 9b).
1H-NMR (DMSO-d6) Δ: 0.74 (d, J = 6.4 Hz, 6H) 1.67 (tq, J = 6.4, 6.4 Hz, 1H) 2.82 (dd, J = 8.0, 14.4 Hz) , 1H) 2.92 (dd, J = 4.8, 14.4 Hz, 1H) 2.96 (dd, J = 6.4, 8.8 Hz, 1H) 3.26 (dd, J = 6.4) , 8.8 Hz, 1H) 3.86 (s, 3H) 3.90 (dd, J = 4.8, 8.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 2H) 7.04 (D, J = 8.0 Hz, 1H) 7.32 (dd, J = 2.4, 8.0 Hz, 1H) 7.51 (d, J = 8.0 Hz, 2H) 7.62 (d, J = 2.4 Hz, 1H) 7.67 (d, J = 8.0 Hz, 2H) 8.76 (t, J = 6.0 Hz, 1H)
Example 14
Production Example 14a)
Figure 2002080899
1.5 g of ethyl 2- (diethylphosphoryl) -2-isopropyl acetate was dissolved in 10 ml of tetrahydrofuran, and 0.22 g of 60% sodium hydride was added under ice cooling. After the reaction solution was stirred for 20 minutes under ice cooling, 0.88 g of 4-methoxy-3-nitrobenzaldehyde was added, and the mixture was stirred at room temperature for 2 hours. To the reaction mixture was added aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.85 g of ethyl-2-isopropoxy-3- (4-methoxy-3-nitrophenyl) -2-propanoate was obtained from the fraction eluted with hexane-ethyl acetate (9: 1). Obtained by mixing with EZ.
1H-NMR (CDCl3) Δ: 1.17 + 1.37 (t, J = 6.0 Hz, 3H) 1.27 + 1.31 (d, J = 6.0 Hz, 6H) 3.94 + 3.98 (s, 3H) 4.17 + 4.28 (Q, J = 6.0 Hz, 2H) 6.10 + 6.88 (s, 1H) 7.00 + 7.06 (d, J = 8.0 Hz, 1H) 7.40 + 7.91 (dd, J = 8.0 , 2.0 Hz, 1H) 7.75 + 8.37 (d, J = 2.0 Hz, 1H)
Production Example 14b)
Figure 2002080899
0.85 g of ethyl-2-isopropoxy-3- (4-methoxy-3-nitrophenyl) -2-propanoate is dissolved in 15 ml of ethanol, 0.3 g of 10% palladium carbon is added, and the mixture is stirred under a hydrogen atmosphere for 4 hours. did. After the catalyst was filtered and the solvent was distilled off under reduced pressure, the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (6: 1), ethyl-3- (3-amino-4-methoxyphenyl)- 0.72 g of 2-isopropoxypropanoate was obtained.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.0 Hz, 3H) 2.83 (m , 2H) 3.50 (dq, J-6.4, 6.4 Hz, 1H) 3.81 (s, 3H) 4.00 (dd, J = 8.4, 4.8 Hz, 1H) 4.17 (Q, J = 6.0 Hz, 2H) 6.60 (dd, J = 8.0, 2.0 Hz, 1H) 6.67 (d, J = 2.0 Hz, 1H) 6.70 (d, J = 8.0Hz, 1H)
Example 14c)
Figure 2002080899
Dissolve 0.3 g of ethyl-3- (3-amino-4-methoxyphenyl) -2-isopropoxypropanoate and 0.218 g of (α, α, α-trifluoro-p-tolyl) acetic acid in 7 ml of tetrahydrofuran. Then, 0.22 g of carbonyldiimidazole and 0.23 ml of triethylamine were added, and the mixture was stirred at 50 ° C. for 2 hours. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and ethyl-2-isopropoxy-3- [4-methoxy-3- (4-trifluoromethylphenylacetylamino) phenyl was extracted from the fraction eluted with hexane-ethyl acetate (6: 1). ] 0.34 g of propanoate was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.10 (d, J = 6.0 Hz, 3H) 1.22 (t, J = 7.2 Hz, 3H) 2.83 (dd , J = 14.0, 6.0 Hz, 1H) 2.93 (dd, J = 14.0, 4.4 Hz, 1H) 3.48 (dq, J = 6.0, 6.0 Hz, 1H) 3 .73 (s, 3H) 3.78 (s, 2H) 4.02 (dd, J = 7.6, 4.4 Hz, 1H) 4.15 (q, J = 8.0 Hz, 2H) 6.72 (D, J = 8.0 Hz, 1H) 6.91 (dd, J = 8.0, 2.0 Hz, 1H) 7.46 (d, J = 8.0 Hz, 2H) 7.64 (d, J = 8.0 Hz, 2H) 7.73 (s, 1H) 8.24 (d, J = 2.0 Hz, 1H)
Example 14d)
Figure 2002080899
Ethyl-2-isopropoxy-3- (4-methoxy-3- (4-trifluoromethylphenylacetylamino) phenyl) propanoate (0.34 g) was dissolved in ethanol (5 ml), and 5N sodium hydroxide (0.28 ml) was added. For 4 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give 2-isopropoxy-3- (4-methoxy-3-[{2- (4-trifluoromethyl) phenyl. ] 0.28 g of acetyl} amino) phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.89 (dd, J = 14.0, 6.0 Hz, 1H) 3 .06 (dd, J = 14.0, 4.4 Hz, 1H) 3.58 (dq, J = 6.0, 6.0 Hz, 1H) 3.75 (s, 3H) 3.80 (s, 2H 4.13 (dd, J = 7.6, 4.4 Hz, 1H) 6.74 (d, J = 8.0 Hz, 1H) 6.90 (dd, J = 8.0, 2.0 Hz, 1H) 7.48 (d, J = 8.0 Hz, 2H) 7.65 (d, J = 8.0 Hz, 2H) 7.73 (s, 1H) 8.26 (d, J = 2.0 Hz, 1H) )
Example 15
Example 15c)
Figure 2002080899
In a manner similar to Example 14c), ethyl-2-isopropoxy-3- (4-methoxy-3-{[2- (5-methyl-2-phenyl-1,3-oxazolyl-4-yl) acetyl] Amino} phenyl) propanoate was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.13 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 7.2 Hz, 3H) 2.40 (s , 3H) 2.87 (dd, J = 14.0, 8.8 Hz, 1H) 2.95 (dd, J = 14.0, 8.8 Hz, 1H) 3.50 (dq, J = 6.4) , 6.4HZ, 1H) 3.63 (s, 2H) 3.75 (s, 3H) 4.04 (dd, J = 8.4, 4.8 Hz, 1H) 4.17 (q, J = 7 .2 Hz, 2H) 6.73 (d, J = 8.0 Hz, 1H) 6.90 (dd, J = 8.0, 2.0 Hz, 1H) 7.47 (m, 3H) 8.08 (m , 2H) 8.33 (d, J = 2.0 Hz, 1H) 9.42 (s, 1H)
Example 15d)
Figure 2002080899
In a manner similar to Example 14d), 2-isopropoxy-3- (4-methoxy-3-{[2- (5-methyl-2-phenyl-1,3-oxazol-4-yl) acetyl] amino } Phenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.40 (s, 3H) 2.89 (dd, J = 14.0) , 8.8Hz, 1H) 3.09 (dd, J = 14.0, 8.8Hz, 1H) 3.58 (dq, J = 6.4, 6.4HZ, 1H) 3.63 (s, 2H) 3.75 (s, 3H) 4.14 (dd, J = 8.4, 4.8 Hz, 1H) 6.75 (d, J = 8.0 Hz, 1H) 6.88 (dd, J = 8) 0.0, 2.0 Hz, 1H) 7.46 (m, 3H) 8.08 (m, 2H) 8.33 (d, J = 2.0 Hz, 1H) 9.46 (s, 1H)
Example 16
Production Example 16a)
Figure 2002080899
1.6 g of ethyl 2- (diethylphosphoryl) -2-isopropyl acetate was dissolved in 30 ml of tetrahydrofuran, and 0.24 g of 60% sodium hydride was added under ice cooling. The reaction solution was stirred for 30 minutes under ice-cooling, 1.2 g of tert-butyl 5-formyl-2-methoxybenzoate was added, and the mixture was stirred at room temperature for 3 hours. To the reaction mixture was added aqueous ammonium chloride solution, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and tert-butyl 5- (3-ethoxy-2-isopropoxy-3-oxo-1-propenyl) -2-methoxy was extracted from the fraction eluted with hexane-ethyl acetate (3: 1). 1.5 g of benzoate was obtained with EZ.
1H-NMR (Z-isomer, CDCl3) Δ: 1.28 (d, J = 6.4 Hz, 6H) 1.36 (t, J = 7.2 Hz, 3H) 1.59 (s, 9H) 3.91 (s, 3H) 4.29 (Q, J = 7.2 Hz, 2H) 4.41 (sept, J = 6.4 Hz, 1H) 6.92 (d, J = 8.0 Hz, 1H) 6.96 (s, 1H) 7.85 (Dd, J = 2.4, 8.0 Hz, 1H) 8.26 (d, J = 2.4 Hz, 1H)
Production Example 16b)
Figure 2002080899
Dissolve 0.3 g of tert-butyl 5- (3-ethoxy-2-isopropoxy-3-oxo-1-propenyl) -2-methoxybenzoate in 2.5 ml of dichloromethane, and add 1.2 ml of trifluoroacetic acid under ice-cooling. The mixture was further stirred for 2 hours under ice cooling. The operation of adding 30 ml of toluene to the reaction mixture and evaporating the solvent under reduced pressure was repeated twice, and then the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (2: 1), 5-[(Z) 65 mg of -3-ethoxy-2-isopropoxy-3-oxo-1-propenyl] -2-methoxybenzoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.30 (d, J = 6.4 Hz, 6H) 1.36 (t, J = 7.2 Hz, 3H) 4.09 (s, 3H) 4.29 (q, J = 7.2 Hz) , 2H) 4.47 (sept, J = 6.4 Hz, 1H) 6.96 (s, 1H) 7.05 (d, J = 8.0 Hz, 1H) 8.18 (dd, J = 2.4 , 8.0 Hz, 1H) 8.57 (d, J = 2.4 Hz, 1H)
Example 16c)
Figure 2002080899
5-[(E) -3-ethoxy-2-isopropoxy-3-oxo-1-propenyl] -2-methoxybenzoic acid 65 mg and 4- (trifluoromethyl) benzylamine 37 mg were added to 1 ml of N, N-dimethylformamide. Then, 33 μl of diethyl cyanophosphonate and 30 μl of triethylamine were added under ice cooling. The reaction mixture was stirred at room temperature for 16 hours, poured into ice water, and extracted with ethyl acetate. The organic skin was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (5: 1), ethyl (Z) -2-isopropoxy-3- [4-methoxy-3-({[4- (trifluoro 77 mg of methyl) benzyl] amino} carbonyl) phenyl] -2-propenoate were obtained.
1H-NMR (CDCl3) Δ: 1.30 (d, J = 6.4 Hz, 6H) 1.36 (t, J = 7.2 Hz, 3H) 3.97 (s, 3H) 4.29 (q, J = 7.2 Hz) , 2H) 4.47 (sept, J = 6.4 Hz, 1H) 4.75 (d, J = 6.0 Hz, 2H) 6.99 (d, J = 8.0 Hz, 1H) 7.01 (s , 1H) 7.47 (d, J = 8.0 Hz, 2H) 7.60 (d, J = 8.0 Hz, 2H) 8.12 (dd, J = 2.4, 8.0 Hz, 1H) 8 .18 (m, 1H) 8.57 (d, J = 2.4 Hz, 1H)
Example 16d)
Figure 2002080899
77 mg of ethyl (Z) -2-isopropoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] amino} carbonyl) phenyl] -2-propenoate was dissolved in 2 ml of methanol, and 1N 1 ml of sodium hydroxide was added and stirred at room temperature for 22 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give (Z) -2-isopropoxy-3- [4-methoxy-3-({[4- (trifluoro 44 mg of methyl) benzyl] amino} carbonyl) phenyl] -2-propenoic acid were obtained.
1H-NMR (DMSO-d6) Δ: 1.17 (d, J = 6.4 Hz, 6H) 3.90 (s, 3H) 4.46 (sept, J = 6.4 Hz, 1H) 4.56 (d, J = 6.4 Hz) , 2H) 6.90 (s, 1H) 7.15 (d, J = 8.8 Hz, 1H) 7.53 (d, J = 8.0 Hz, 2H) 7.68 (d, J = 8.0 Hz) , 2H) 7.87 (dd, J = 2.4, 8.8 Hz, 1H) 8.30 (d, J = 2.4 Hz, 1H) 8.82 (m, 1H)
Example 17
Production Example 17a)
Figure 2002080899
Ethyl 2-ethyl-3- (4-methoxy-3-nitrophenyl) -2-propenoate was obtained with EZ in the same manner as in Production Example 14a).
1H-NMR (CDCl3) Δ: 1.15 + 1.35 (m, 6H) 2.45 + 2.53 (q, J = 6.0 Hz, 2H) 3.95 + 3.98 (s, 3H) 4.18 + 4.27 (d, J = 6) 0.0 Hz, 2H) 6.52 + 7.53 (d, 1H) 7.01 + 7.11 (d, J = 8.0 Hz, 1H) 7.44 + 7.55 (dd, J = 8.0, 2.0 Hz, 1H) ) 7.79 + 7.89 (d, J = 2.0 Hz, 1H)
Production Example 17b)
Figure 2002080899
Ethyl 2- (3-amino-4-methoxybenzyl) butanoate was obtained in the same manner as in Production Example 14b).
1H-NMR (CDCl3) Δ: 0.88 (t, J = 6.0 Hz, 3H) 1.17 (t, J = 6.0 Hz, 3H) 1.56 (m, 2H) 2.52 (m, 1H) 2.59 (Dd, J = 13.5, 7.0 Hz, 1H) 2.80 (dd, J = 13.5, 8.0 Hz, 1H) 3.81 (s, 3H) 4.08 (q, J = 6 0.0 Hz, 2H) 6.50 (dd, J = 8.0, 2.0 Hz, 1H) 6.54 (d, J = 2.0 Hz, 1H) 6.68 (d, J = 8.0 Hz, 1H) )
Example 17c)
Figure 2002080899
Ethyl 2- (4-methoxy-3-{[2- (5-methyl-2-phenyl-1,3-oxazol-4-yl) acetyl] amino} benzyl) butanoate is prepared in the same manner as in Example 14c). Obtained.
1H-NMR (CDCl3) Δ: 0.89 (t, J = 6.0 Hz, 3H) 1.18 (t, J = 6.0 Hz, 3H) 1.58 (m, 2H) 2.56 (m, 1H) 2.68 (Dd, J = 13.5, 7.0 Hz, 1H) 2.88 (dd, J = 13.5, 8.0 Hz, 1H) 3.63 (s, 2H) 3.74 (s, 3H) 4 0.08 (q, J = 6.0 Hz, 2H) 6.71 (d, J = 8.0 Hz, 2H) 6.79 (dd, J = 8.0, 2.0 Hz, 2H) 7.46 (m , 3H) 8.07 (m, 2H) 8.25 (d, J = 2.0 Hz, 1H) 9.40 (bs, 1H)
Example 17d)
Figure 2002080899
2- (4-Methoxy-3-{[2- (5-methyl-2-phenyl-1,3-oxazol-4-yl) acetyl] amino} benzyl) butanoic acid in the same manner as in Example 14d) Obtained.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 6.0 Hz, 3H) 1.60 (m, 2H) 2.61 (m, 1H) 2.72 (dd, J = 13.5, 7.0 Hz, 1H) ) 2.90 (dd, J = 13.5, 8.0 Hz, 1H) 3.62 (s, 2H) 3.74 (s, 3H) 6.73 (d, J = 8.0 Hz, 2H) 6 .83 (dd, J = 8.0, 2.0 Hz, 2H) 7.46 (m, 3H) 8.06 (m, 2H) 8.26 (d, J = 2.0 Hz, 1H) 9.40 (Bs, 1H)
Example 18
Example 18c)
Figure 2002080899
Ethyl 2- (4-methoxy-3-{[2- (3-fluoro-4-trifluoromethylphenyl) acetyl] amino} benzyl) butanoate was obtained in the same manner as in Example 17c).
1H-NMR (CDCl3) Δ: 0.88 (t, J = 6.0 Hz, 3H) 1.17 (t, J = 6.0 Hz, 3H) 1.58 (m, 2H) 2.54 (m, 1H) 2.67 (Dd, J = 13.5, 7.0 Hz, 1H) 2.86 (dd, J = 13.5, 8.0 Hz, 1H) 3.77 (s, 2H) 3.79 (s, 3H) 4 0.08 (q, J = 6.0 Hz, 2H) 6.73 (d, J = 8.0 Hz, 1H) 6.83 (dd, J = 8.0, 2.0 Hz, 1H) 7.24 (m , 2H) 7.61 (t, J = 7.5 Hz, 1H) 7.77 (bs, 1H) 8.17 (d, J = 2.0 Hz, 1H)
Example 18d)
Figure 2002080899
In the same manner as in Example 17d), 2- (4-methoxy-3-{[2- (3-fluoro-4-trifluoromethylphenyl) acetyl] amino} benzyl) butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 6.0 Hz, 3H) 1.59 (m, 2H) 2.59 (m, 1H) 2.70 (dd, J = 13.5, 7.0 Hz, 1H) ) 2.89 (dd, J = 13.5, 8.0 Hz, 1H) 3.70 + 3.77 (s, 2H) 3.79 + 3.81 (s, 3H) 6.74 (d, J = 8.0 Hz) , 1H) 6.86 (dd, J = 8.0, 2.0 Hz, 1H) 7.17 (d, J = 8.0 Hz, 1H) 7.22 (d, J = 10.5 Hz, 1H) 7 .60 (t, J = 7.5 Hz, 1H) 7.78 (bs, 1H) 8.17 (d, J = 2.0 Hz, 1H)
Example 19
Production Example 19a)
Figure 2002080899
0.50 g of 5- [2- (ethoxycarbonyl) butyl] -2-methoxybenzoic acid was dissolved in 8 ml of tetrahydrofuran, and 0.20 ml of ethyl chloroformate and 0.29 ml of triethylamine were added under ice cooling. The reaction solution was stirred for 10 minutes under ice-cooling, and insoluble matter was filtered off. The mother liquor was ice-cooled again, 10 μl of water and 136 mg of sodium borohydride were added, and the mixture was stirred at room temperature for 2 hours. Water was added to the reaction product and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.47 g of ethyl 2- [3- (hydroxymethyl) -4-methoxybenzyl] butanoate was obtained from the fraction eluted with hexane-ethyl acetate (3: 1).
1H-NMR (CDCl3) Δ: 0.90 (t, J = 7.2 Hz, 3H) 1.17 (t, J = 6.8 Hz, 3H) 1.50-1.64 (m, 2H) 2.51-2.57 (M, 1H) 2.68 (dd, J = 6.8, 14.0 Hz, 1H) 2.87 (dd, J = 8.0, 14.0 Hz, 1H) 3.84 (s, 3H) 4 .04-4.10 (m, 2H) 4.65 (s, 2H) 6.78 (d, J = 9.2 Hz, 1H) 7.05 (d, J = 9.2 Hz, 1H) 7.07 (S, 1H)
Production Example 19b)
Figure 2002080899
0.47 g of ethyl 2- [3- (hydroxymethyl) -4-methoxybenzyl] butanoate is dissolved in 6 ml of toluene, 0.54 ml of diphenylphosphoryl azide and 0.37 ml of diazabicyclo [5.4.0] undecene are added, Stir at room temperature for 16 hours. Water was added to the reaction product and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (5: 1), 1- {5- [2- (ethoxycarbonyl) butyl] -2-methoxybenzyl} -1,2-triazadiene- 0.47 g of 2-ium was obtained.
1H-NMR (CDCl3) Δ: 0.90 (t, J = 7.2 Hz, 3H) 1.17 (t, J = 6.8 Hz, 3H) 1.50-1.64 (m, 2H) 2.51-2.57 (M, 1H) 2.68 (dd, J = 6.8, 14.0 Hz, 1H) 2.87 (dd, J = 8.0, 14.0 Hz, 1H) 3.82 (s, 3H) 4 .02-4.12 (m, 2H) 4.30 (s, 2H) 6.81 (d, J = 8.0 Hz, 1H) 7.03 (s, 1H) 7.11 (d, J = 8 .0Hz, 1H)
Production Example 19c)
Figure 2002080899
0.47 g of 1- {5- [2- (ethoxycarbonyl) butyl] -2-methoxybenzyl} -1,2-triazadien-2-ium is dissolved in 6 ml of tetrahydrofuran, 0.4 ml of water and 0. 55 g was added and stirred at room temperature for 20 hours. After the solvent was distilled off under reduced pressure, the residue was subjected to silica gel column chromatography, and ethyl 2- [3- (aminomethyl) -4- was extracted from the fraction eluted with ethyl acetate-methanol-triethylamine (10: 1: 0.1). 0.40 g of methoxybenzyl] butanoate was obtained.
1H-NMR (CDCl3) Δ: 0.90 (t, J = 7.2 Hz, 3H) 1.17 (t, J = 6.8 Hz, 3H) 1.50-1.64 (m, 2H) 2.49-2.56 (M, 1H) 2.67 (dd, J = 6.8, 14.0 Hz, 1H) 2.86 (dd, J = 8.0, 14.0 Hz, 1H) 3.77 (s, 2H) 3 .81 (s, 3H) 4.04-4.10 (m, 2H) 6.76 (d, J = 8.8 Hz, 1H) 7.00 (d, J = 8.8 Hz, 1H) 7.01 (S, 1H)
Example 19d)
Figure 2002080899
Ethyl 2- [3- (aminomethyl) -4-methoxybenzyl] butanoate (0.40 g) and 4- (trifluoromethyl) benzoic acid (0.29 g) were dissolved in N, N-dimethylformamide (5 ml), and cyanophosphone was cooled with ice. 0.24 ml of diethyl acid and 0.21 ml of triethylamine were added. The reaction mixture was stirred at room temperature for 16 hours, poured into ice water, and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and ethyl 2- [4-methoxy-3-({[4- (trifluoromethyl) benzoyl] amino} methyl) benzyl was eluted from the fraction eluted with hexane-ethyl acetate (3: 1). ] 0.59 g of butanoate was obtained.
1H-NMR (CDCl3) Δ: 0.91 (t, J = 7.2 Hz, 3H) 1.16 (t, J = 6.8 Hz, 3H) 1.50-1.67 (m, 2H) 2.49-2.56 (M, 1H) 2.68 (dd, J = 6.4, 14.0 Hz, 1H) 2.86 (dd, J = 8.6, 14.0 Hz, 1H) 3.86 (s, 3H) 4 .01-4.10 (m, 2H) 4.61 (d, J = 6.0 Hz, 2H) 6.67-6.72 (m, 1H) 6.81 (d, J = 8.0 Hz, 1H) ) 7.08 (dd, J = 2.4, 8.0 Hz, 1H) 7.13 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.0 Hz, 2H) 7.86 (D, J = 8.0Hz, 2H)
Example 19e)
Figure 2002080899
Ethyl 2- [4-methoxy-3-({[4- (trifluoromethyl) benzoyl] amino} methyl) benzyl] butanoate 0.59 g was dissolved in 5 ml of ethanol, 2 ml of 1N sodium hydroxide was added, and Stir for 4 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was evaporated under reduced pressure to give 2- [4-methoxy-3-({[4- (trifluoromethyl) benzoyl] amino} methyl) benzyl. ] 0.50 g of butanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.80 (t, J = 7.2 Hz, 3H) 1.39-1.46 (m, 2H) 2.33-2.40 (m, 1H) 2.55 (dd, J = 6) .4, 14.0 Hz, 1H) 2.72 (dd, J = 8.0, 14.0 Hz, 1H) 3.77 (s, 3H) 4.42 (d, J = 5.6 Hz, 2H) 6 .88 (d, J = 8.0 Hz, 1H) 7.01 (s, 1H) 7.03 (d, J = 8.0 Hz, 1H) 7.85 (d, J = 8.0 Hz, 2H) 8 0.07 (d, J = 8.0 Hz, 2H) 9.03 (t, J = 5.6 Hz, 1H)
Example 20
Production Example 20a)
Figure 2002080899
Ethyl 3- [3- (hydroxymethyl) -4-methoxyphenyl] -2-isopropoxypropanoate was obtained in the same manner as in Production Example 19a).
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 7.2 Hz, 3H) 2.88 (dd , J = 8.4, 14.0 Hz, 1H) 2.95 (dd, J = 5.2, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.85 (s 3H) 4.00 (dd, J = 5.2, 8.4 Hz, 1H) 4.11-4.21 (m, 2H) 4.65 (d, J = 6.4 Hz, 2H) 6.79 (D, J = 8.8 Hz, 1H) 7.14 (d, J = 8.8 Hz, 1H) 7.15 (s, 1H)
Production Example 20b)
Figure 2002080899
1- [5- (3-Ethoxyisopropoxyoxopropyl) -2-methoxybenzyl] -1,2-triazadien-2-ium was obtained in the same manner as in Production Example 19b).
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.88 (dd , J = 8.8, 13.6 Hz, 1H) 2.95 (dd, J = 4.8, 13.6 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.84 (s , 3H) 4.00 (dd, J = 4.8, 8.8 Hz, 1H) 4.15-4.21 (m, 2H) 4.32 (s, 2H) 6.83 (d, J = 8 0.0 Hz, 1H) 7.14 (d, J = 2.0 Hz, 1H) 7.20 (dd, J = 2.0, 8.0 Hz, 1H)
Production Example 20c)
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate was obtained in the same manner as in Production Example 19c).
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.88 (dd , J = 8.8, 13.6 Hz, 1H) 2.95 (dd, J = 4.8, 13.6 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.84 (s , 3H) 4.00 (dd, J = 4.8, 8.8 Hz, 1H) 4.15-4.21 (m, 2H) 4.32 (s, 2H) 6.83 (d, J = 8 0.0 Hz, 1H) 7.14 (d, J = 2.0 Hz, 1H) 7.20 (dd, J = 2.0, 8.0 Hz, 1H)
Example 20d)
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzoyl] amino} methyl) phenyl] propanoate was obtained in the same manner as in Example 19d).
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 7.2 Hz, 3H) 2.88 (dd , J = 8.4, 14.0 Hz, 1H) 2.95 (dd, J = 4.8, 14.0 Hz, 1H) 3.51 (sept, J = 6.0 Hz, 1H) 3.87 (s 3H) 4.01 (dd, J = 4.8, 8.4 Hz, 1H) 4.12-4.20 (m, 2H) 4.62 (d, J = 6.0 Hz, 2H) 6.65 −6.70 (m, 1H) 6.82 (d, J = 8.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2) 0.0 Hz, 1H) 7.68 (d, J = 8.4 Hz, 2H) 7.86 (d, J = 8.4 Hz, 2H)
Example 20e)
Figure 2002080899
In the same manner as in Example 19e), 2-isopropoxy-3- [4-methoxy-3-({[4- (trifluoromethyl) benzoyl] amino} methyl) phenyl] propanoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 0.78 (d, J = 6.0 Hz, 3H) 0.93 (d, J = 6.0 Hz, 3H) 2.68 (dd, J = 8.0, 14.0 Hz, 1H) 2 .81 (dd, J = 4.0, 14.0 Hz, 1H) 3.41 (sept, J = 6.0 Hz, 1H) 3.78 (s, 3H) 3.92 (dd, J = 4.8 , 8.4 Hz, 1H) 4.43 (d, J = 6.0 Hz, 2H) 6.88 (d, J = 8.0 Hz, 1H) 7.07 (s, 1H) 7.08 (d, J = 8.0 Hz, 1H) 7.85 (d, J = 8.0 Hz, 2H) 8.09 (d, J = 8.0 Hz, 2H) 9.06 (t, J = 6.0 Hz, 1H)
Example 21
Production Example 21a)
Figure 2002080899
7.0 g of 1- (methoxymethyl) -3- (trifluoromethyl) benzene was dissolved in 300 ml of anhydrous diethyl ether, and 19 ml of normal butyl lithium (2.5 M hexane solution) was added dropwise at -78 ° C. The reaction mixture was stirred at room temperature for 3 hours, cooled again to −78 ° C., and 10 ml of N, N-dimethylformamide was added. The reaction solution was returned to room temperature, poured into water, extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (9: 1), 5.0 g of 1- (methoxymethyl) -3- (trifluoromethyl) benzaldehyde was obtained. Was obtained as a red amber oil.
1H-NMR (CDCl3) Δ: 3.54 (s, 3H) 5.35 (s, 2H) 7.34 (d, J = 8 Hz, 1H) 7.49 (s, 1H) 7.94 (d, J = 8 Hz, 1H) ) 10.52 (s, 1H)
Production Example 21b)
Figure 2002080899
5.0 g of 1- (methoxymethyl) -3- (trifluoromethyl) benzaldehyde was dissolved in 25 ml of acetone, and 22 ml of 6N hydrochloric acid was added. The mixture was reacted at room temperature for 3 hours, water was added, and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 4.5 g of 2-hydroxy-4- (trifluoromethyl) benzaldehyde as a pale red amber oil.
1H-NMR (CDCl3) Δ: 7.2-7.3 (m, 2H) 7.70 (d, J = 8 Hz, 1H) 10.0 (s, 1H) 11.1 (s, 1H)
Production Example 21c)
Figure 2002080899
4.5 g of 2-hydroxy-4- (trifluoromethyl) benzaldehyde was dissolved in 20 ml of N, N-dimethylformamide, 1.0 g of sodium hydride (60% oily) was added, and the mixture was stirred at room temperature for 30 minutes. To this was added dropwise 1.8 ml of methyl iodide and allowed to react for 1 hour. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with saturated brine. The extract was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 3.0 g of 2-methoxy-4- (trifluoromethyl) benzaldehyde was obtained as a colorless oil from the fraction eluted with hexane-ethyl acetate (9: 1).
1H-NMR (CDCl3) Δ: 4.00 (s, 3H) 7.22 (s, 1H) 7.29 (d, J = 8 Hz, 1H) 7.93 (d, J = 8 Hz, 1H) 10.50 (s, 1H) )
Production Example 21d)
Figure 2002080899
Dissolve 3.0 g of 2-methoxy-4- (trifluoromethyl) benzaldehyde in 50 ml of dimethyl sulfoxide and 1.6 g aqueous solution of sodium dihydrogen phosphate (20 ml), and add 8.0 g aqueous solution of sodium chlorite (30 ml) dropwise. did. After stirring at room temperature for 3 days, water was added and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.8 g of 2-methoxy-4- (trifluoromethyl) benzoic acid was obtained as a colorless solid from the fraction eluted with hexane-ethyl acetate (3: 7).
1H-NMR (CDCl3) Δ: 4.14 (s, 3H) 7.29 (s, 1H) 7.41 (d, J = 8 Hz, 1H) 8.30 (d, J = 8 Hz, 1H)
Example 21e)
Figure 2002080899
0.24 g of 2-methoxy-4- (trifluoromethyl) benzoic acid and 0.3 g of ethyl 2- [3- (aminomethyl) -4-methoxybenzyl] butanoate follow Example 19d), followed by Example 19e) The same treatment was performed to obtain 0.3 g of 2- [4-methoxy-3-({[2-methoxy-4- (trifluoromethyl) benzoyl] amino} methyl) benzyl] butanoic acid as a pale yellow oil.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 7 Hz, 3H) 1.5-1.7 (m, 2H) 2.5-2.6 (m, 1H) 2.69 (dd, J = 7, 14 Hz) , 1H) 2.89 (dd, J = 8, 14 Hz, 1H) 3.87 (s, 3H) 3.98 (s, 3H) 4.62 (d, J = 6 Hz, 2H) 6.80 (d , J = 8 Hz, 1H) 7.08 (dd, J = 2, 8 Hz, 1H) 7.16 (s, 2H) 7.28-7.34 (m, 1H) 8.26-8.40 (m , 1H) 8.36 (t, J = 6 Hz, 1H)
Example 22
Production Example 22a)
Figure 2002080899
2-methoxyphenylacetic acid 5.0 g was dissolved in dichloromethane 20 ml, oxalyl dichloride 4.6 g was added, and the mixture was stirred at room temperature for 3 hours. Under reduced pressure, the solvent and excess oxalyl dichloride were distilled off, the residue was dissolved in 20 ml of dichloromethane, 14 g of 4-trifluoromethylaniline was added under ice cooling, and the mixture was stirred at room temperature for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate and washed with 1N hydrochloric acid and saturated brine. After drying over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure. The precipitated solid was collected by filtration and washed with diethyl ether to obtain 8.0 g of N- [4- (trifluoromethyl) phenyl] -2- (2-methoxyphenyl) acetamide as a colorless solid.
1H-NMR (CDCl3) Δ: 3.73 (s, 2H) 4.95 (s, 3H) 6.98 (d, J = 8 Hz, 1H) 7.00 (d, J = 8 Hz, 1H) 7.28-7.35 (M, 2H) 7.50-7.60 (m, 4H) 7.91 (s, 1H)
Production Example 22b)
Figure 2002080899
1.0 g of N- [4- (trifluoromethyl) phenyl] -2- (2-methoxyphenyl) acetamide was dissolved in 10 ml of trifluoroacetic acid, 0.46 g of hexamethylenetetramine was added, and the mixture was reacted at 85 ° C. for 3 hours. . The reaction solution was returned to room temperature, water and ethyl acetate were added, and sodium bicarbonate was further added until PH = 8. The mixture was extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (1: 1), N- [4- (trifluoromethyl) phenyl] -2- (5-formyl There were obtained 0.7 g of 2-methoxyphenyl) acetamide as a colorless oil.
1H-NMR (CDCl3) Δ: 3.78 (s, 2H) 4.00 (s, 3H) 7.07 (d, J = 8 Hz, 1H) 7.54 (d, J = 9 Hz, 2H) 7.57 (d, J = 9 Hz, 2H) 7.85 (d, J = 2 Hz, 1H) 7.83-7.90 (m, 1H) 9.91 (s, 1H)
Example 22c)
Figure 2002080899
N- [4- (trifluoromethyl) phenyl] -2- (5-formyl-2-methoxyphenyl) acetamide 0.7 g and ethyl 2-phosphonobutanoate 1.6 g were treated in the same manner as in Production Example 1a) to give ethyl. 0.8 g of 2-ethyl-3- (4-methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} phenyl) -2-propenoate was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 1.18 (t, J = 7 Hz, 3H) 1.34 (t, J = 7 Hz, 3H) 2.55 (q, J = 7 Hz, 2H) 3.74 (s, 2H) 3.97 (S, 3H) 4.26 (q, J = 7 Hz, 2H) 6.99 (d, J = 9 Hz, 1H) 7.34 (d, J = 9 Hz, 1H) 7.38 (dd, J = 2) , 8 Hz, 1H) 7.48-7.62 (m, 5H) 7.82 (s, 1H)
Example 22d)
Figure 2002080899
0.3 g of ethyl 2-ethyl-3- (4-methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} phenyl) -2-propenoate was prepared in the same manner as in Production Example 1b). Treatment gave 0.3 g of ethyl 2- (4-methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} benzyl) butanoate as a colorless oil.
1H-NMR (CDCl3) Δ: 0.91 (t, J = 7 Hz, 3H) 1.14 (t, J = 7 Hz, 3H) 1.5-1.8 (m, 2H) 2.48-2.60 (m, 1H) 2.71 (dd, J = 6, 14 Hz, 1H) 2.87 (dd, J = 4, 14 Hz, 1H) 3.68 (s, 2H) 3.91 (s, 3H) 3.95-4 .10 (m, 2H) 6.86 (d, J = 9 Hz, 1H) 7.09 (s, 1H) 7.06-7.12 (m, 1H) 7.51 (d, J = 9 Hz, 2H) ) 7.56 (d, J = 9 Hz, 2H) 7.94 (s, 1H)
Example 22e)
Figure 2002080899
0.3 g of ethyl 2- (4-methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} benzyl) butanoate was treated in the same manner as in Example 19e) to give 2- (4 0.11 g of -methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} benzyl) butanoic acid was obtained as a colorless solid.
1H-NMR (DMSO-d6) Δ: 0.84 (t, J = 8 Hz, 3H) 1.46 (sept, J = 8 Hz, 2H) 2.35-2.60 (m, 1H) 2.57 (dd, J = 6, 14 Hz) , 1H) 2.74 (dd, J = 8, 14 Hz, 1H) 3.61 (s, 2H) 3.71 (s, 3H) 6.86 (d, J = 8 Hz, 1H) 7.02 (s , 1H) 7.03 (d, J = 8 Hz, 1H) 7.64 (d, J = 9 Hz, 2H) 7.79 (d, J = 9 Hz, 2H) 10.4 (s, 1H) 12.1 (S, 1H)
Example 23
Example 23a)
Figure 2002080899
Example 15 d) 0.15 g of ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 0.24 g of 2-methoxy-4- (trifluoromethyl) benzoic acid were used in Example 19d). Subsequent treatment as in Example 1d) and 2-isopropoxy-3- [4-methoxy-3-({[2-methoxy-4- (trifluoromethyl) benzoyl] amino} methyl) phenyl] propanoic acid 0.15 g was obtained as a pale yellow oil.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6 Hz, 3H) 1.14 (d, J = 6 Hz, 3H) 2.90 (dd, J = 8, 14 Hz, 1H) 3.03 (dd, J = 4) , 14 Hz, 1H) 3.56 (sept, J = 6 Hz, 1H) 3.88 (s, 3H) 4.00 (s, 3H) 4.08 (dd, J = 4, 8 Hz, 1H) 4.63 (D, J = 6 Hz, 2H) 6.81 (d, J = 8 Hz, 1H) 7.14 (dd, J = 2, 8 Hz, 1H) 7.17 (s, 1H) 7.22 (d, J = 2Hz, 1H) 7.32 (d, J = 8Hz, 1H) 8.30 (d, J = 8Hz, 1H) 8.35 (t, J = 8Hz, 1H)
Example 24
Example 24a)
Figure 2002080899
0.15 g of ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate is dissolved in 5 ml of N, N-dimethylformamide, 0.2 ml of pyridine and 2-fluoro-4- (Trifluoromethyl) benzoic acid chloride 0.24g was added, and it was made to react at room temperature for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was subjected to silica gel column chromatography, and ethyl 2-isopropoxy-3- [4-methoxy-3-({[ 0.2 g of 2-fluoro-4- (trifluoromethyl) benzoyl] amino} methyl) phenyl] propanoate was obtained as a pale yellow oil. This was further treated as in Example 1d) to give 2-isopropoxy-3- [4-methoxy-3-({[2-fluoro-4- (trifluoromethyl) benzoyl] amino} methyl) phenyl] propane. 0.15 g of acid was obtained as a pale yellow solid.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6 Hz, 3H) 1.15 (d, J = 6 Hz, 3H) 2.91 (dd, J = 8, 14 Hz, 1H) 3.04 (dd, J = 4) , 14 Hz, 1H) 3.56 (sept, J = 6 Hz, 1H) 3.87 (s, 3H) 4.09 (dd, J = 4, 8 Hz, 1H) 4.64 (d, J = 6 Hz, 2H) 6.82 (d, J = 8 Hz, 1H) 7.16 (dd, J = 2, 8 Hz, 1H) 7.22 (d, J = 2 Hz, 1H) 7.37 (d, J = 12 Hz, 1H) ) 7.51 (d, J = 8 Hz, 1H) 7.34-7.5 (m, 1H) 8.22 (t, J = 8 Hz, 1H)
Example 25
Production Example 25a)
Figure 2002080899
1.1 g of 4-hydroxybenzotrifluoride and 1.0 g of 2-methoxyphenethyl alcohol were dissolved in 200 ml of tetrahydrofuran, 2.6 g of triphenylphosphine and 2.0 g of diisopropyl azodicarboxylate were added, and the mixture was stirred at room temperature for 24 hours. After distilling off the solvent under reduced pressure, the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (10: 1), 1-methoxy-2- {2- [4- (trifluoromethyl) phenoxy] 1.6 g of ethyl} benzene was obtained.
1H-NMR (CDCl3) Δ: 3.14 (t, J = 7.2 Hz, 2H) 3.85 (s, 3H) 4.20 (t, J = 7.2 Hz, 2H) 6.85-6.92 (m, 2H) 6.96 (d, J = 8.0 Hz, 2H) 7.20-7.27 (m, 2H) 7.51 (d, J = 8.0 Hz, 2H)
Production Example 25b)
Figure 2002080899
1.6 g of 1-methoxy-2- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzene is treated in the same manner as in Example 22b) to give 4-methoxy-3- {2- [4- (tri 0.20 g of fluoromethyl) phenoxy] ethyl} benzaldehyde was obtained.
1H-NMR (CDCl3) Δ: 3.18 (t, J = 7.2 Hz, 2H) 3.93 (s, 3H) 4.20 (t, J = 7.2 Hz, 2H) 6.95 (d, J = 8.0 Hz) , 2H) 6.99 (d, J = 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz, 2H) 7.78 (s, 1H) 7.80 (d, J = 8.0 Hz) , 1H) 9.89 (s, 1H)
Example 25c)
Figure 2002080899
4-Methoxy-3- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzaldehyde (0.20 g) was treated in the same manner as in Production Example 1b) following Production Example 1a) to give ethyl 2- (4-methoxy). 0.22 g of -3- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzyl) butanoate was obtained.
1H-NMR (CDCl3) Δ: 0.91 (t, J = 6.8 Hz, 3H) 1.16 (t, J = 7.2 Hz, 3H) 1.52-1.67 (m, 2H) 2.48-2.56 (M, 1H) 2.67 (dd, J = 6.8, 13.6 Hz, 1H) 2.86 (dd, J = 8.4, 13.6 Hz, 1H) 3.07 (t, J = 7 .2 Hz, 2H) 3.81 (s, 3H) 4.04-4.10 (m, 2H) 4.16 (t, J = 7.2 Hz, 2H) 6.77 (d, J = 8.0 Hz) , 1H) 6.96 (d, J = 8.0 Hz, 2H) 7.00 (s, 1H) 7.01 (d, J = 8.0 Hz, 1H) 7.52 (d, J = 8.0 Hz) , 2H)
Example 25d)
Figure 2002080899
0.22 g of ethyl 2- (4-methoxy-3- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzyl) butanoate was treated in the same manner as in Example 19e) to give 2- (4-methoxy-3 0.20 g of-{2- [4- (trifluoromethyl) phenoxy] ethyl} benzyl) butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.95 (t, J = 7.2 Hz, 3H) 1.53-1.67 (m, 2H) 2.52-2.60 (m, 1H) 2.69 (dd, J = 6) .8, 14.0 Hz, 1H) 2.90 (dd, J = 8.0, 14.0 Hz, 1H) 3.07 (t, J = 7.2 Hz, 2H) 3.81 (s, 3H) 4 .16 (t, J = 7.2 Hz, 2H) 6.78 (d, J = 8.0 Hz, 1H) 6.96 (d, J = 8.0 Hz, 2H) 7.02 (s, 1H) 7 .03 (d, J = 8.0 Hz, 1H) 7.52 (d, 1 = 8.0 Hz, 2H)
Example 26
Production Example 26a)
Figure 2002080899
3.0 g of 5-bromo-2-methoxybenzoic acid was treated in the same manner as in Production Example 19a) to obtain 1.7 g of 5-bromo-2-methoxyphenylmethanol.
1H-NMR (CDCl3) Δ: 2.20 (m, 1H) 3.82 (s, 3H) 4.64 (d, J = 6.0 Hz, 2H) 6.77 (d, J = 8.0 Hz, 1H) 7.37 (Dd, J = 2.0, 8.0 Hz, 1H) 7.52 (d, J = 2.0 Hz, 1H)
Production Example 26b)
Figure 2002080899
0.8 g of 5-bromo-2-methoxyphenylmethanol is dissolved in 30 ml of tetrahydrofuran, 2.6 g of 4- (trifluoromethyl) benzyl bromide and 0.22 g of sodium hydride (60% oil) are added, and the mixture is stirred at room temperature for 16 hours. Stir. Water was added to the reaction mixture, and the mixture was extracted with diethyl ether. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 4-bromo-1-methoxy-2-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzene was extracted from the fraction eluted with hexane-ethyl acetate (9: 1). 1.4 g was obtained.
1H-NMR (CDCl3) Δ: 3.80 (s, 3H) 4.57 (s, 2H) 4.64 (s, 2H) 6.77 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2) 0.0, 8.0 Hz, 1H) 7.50 (d, J = 8.0 Hz, 2H) 7.52 (d, J = 2.0 Hz, 1H) 7.61 (d, J = 8.0 Hz, 2H) )
Production Example 26c)
Figure 2002080899
After dissolving 1.4 g of 4-bromo-1-methoxy-2-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzene in 15 ml of tetrahydrofuran and cooling to −78 ° C., n-butyllithium ( 3.0 ml of 1.5M pentane solution) was added. After the reaction solution was stirred at −78 ° C. for 30 minutes, 0.45 ml of N-formylmorpholine was added and stirred at −78 ° C. for 1 hour. 1N Hydrochloric acid was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.42 g of 4-methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzaldehyde was obtained from the fraction eluted with hexane-ethyl acetate (3: 1). Obtained.
1H-NMR (CDCl3) Δ: 3.92 (s, 3H) 4.63 (s, 2H) 4.70 (s, 2H) 6.99 (d, J = 8.0 Hz, 1H) 7.51 (d, J = 8) 0.0 Hz, 2H) 7.62 (d, J = 8.0 Hz, 2H) 7.84 (dd, J = 2.0, 8.0 Hz, 1H) 7.98 (d, J = 2.0 Hz, 1H) 9.90 (s, 1H)
Example 26d)
Figure 2002080899
4-Methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzaldehyde (0.42 g) was treated in the same manner as in Production Example 1b) following Production Example 1a) to give ethyl 2- [4- 0.33 g of methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzyl] butanoate was obtained.
1H-NMR (CDCl3) Δ: 0.91 (t, J = 7.6 Hz, 3H) 1.16 (t, J = 7.2 Hz, 3H) 1.52-1.68 (m, 2H) 2.50-2.57 (M, 1H) 2.70 (dd, J = 6.8, 14.0 Hz, 1H) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 3.80 (s, 3H) 4 .01-4.10 (m, 2H) 4.57 (s, 2H) 4.64 (s, 2H) 6.78 (d, J = 8.0 Hz, 1H) 7.06 (dd, J = 2) 0.0, 8.0 Hz, 1H) 7.19 (d, J = 2.0 Hz, 1H) 7.50 (d, J = 8.0 Hz, 2H) 7.61 (d, J = 8.0 Hz, 2H) )
Example 26e)
Figure 2002080899
Ethyl 2- [4-methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzyl] butanoate was treated in the same manner as in Example 19e) to give 2- [4-methoxy- 0.30 g of 3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzyl] butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.95 (t, J = 7.2 Hz, 3H) 1.54-1.68 (m, 2H) 2.55-2.62 (m, 1H) 2.71 (dd, J = 6) .8, 13.6 Hz, 1H) 2.92 (dd, J = 8.0, 13.6 Hz, 1H) 3.79 (s, 3H) 4.57 (s, 2H) 4.63 (s, 2H) 6.78 (d, J = 8.0 Hz, 1H) 7.08 (dd, J = 2.0, 8.0 Hz, 1H) 7.21 (d, J = 2.0 Hz, 1H) 7.49 (D, J = 8.0 Hz, 2H) 7.61 (d, J = 8.0 Hz, 2H)
Example 27
Production Example 27a)
Figure 2002080899
5.7 g of 4- (trifluoromethyl) benzoic acid and 4.0 g of 2-methoxybenzylamine are dissolved in 100 ml of N, N-dimethylformamide, and 4.8 ml of diethyl cyanophosphonate and 4.2 ml of triethylamine are added under ice cooling. It was. The reaction mixture was stirred at room temperature for 16 hours, poured into ice water, and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 8.7 g of N1- (2-methoxybenzyl) -4- (trifluoromethyl) benzamide was obtained from the fraction eluted with hexane-ethyl acetate (2: 1).
1H-NMR (CDCl3) Δ: 3.89 (s, 3H) 4.65 (d, J = 5.6 Hz, 2H) 6.70 (br, 1H) 6.92 (d, J = 8.4 Hz, 1H) 6.95 (T, J = 7.6 Hz, 1H) 7.28-7.36 (m, 2H) 7.68 (d, J = 8.4 Hz, 2H) 7.86 (d, J = 8.4 Hz, 2H) )
Production Example 27b)
Figure 2002080899
8.7 g of N1- (2-methoxybenzyl) -4- (trifluoromethyl) benzamide was dissolved in 20 ml of trifluoroacetic acid, 3.9 g of hexamethylenetetramine was added, and the mixture was reacted at 85 ° C. for 3 hours. The reaction solution was returned to room temperature, water and ethyl acetate were added, and sodium bicarbonate was further added until PH = 8. The mixture was extracted with ethyl acetate, washed with saturated brine, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, the residue was subjected to silica gel column chromatography, and N1- (5-formyl-2-methoxybenzyl) -4- (trifluoromethyl) was eluted from the fraction eluted with hexane-ethyl acetate (2: 1). ) 4.2 g of benzamide was obtained.
1H-NMR (CDCl3) Δ: 3.99 (s, 3H) 4.72 (d, J = 5.6 Hz, 2H) 6.70 (br, 1H) 7.02 (d, J = 8.4 Hz, 1H) 7.68 (D, J = 8.4 Hz, 2H) 7.83-7.90 (m, 4H) 9.89 (s, 1H)
Example 27c)
Figure 2002080899
Dissolve 1.5 g of N1- (5-formyl-2-methoxybenzyl) -4- (trifluoromethyl) benzamide in 15 ml of toluene, add 0.52 g of 2,4-thiazolidinedione, 36 mg of pyrrolidine and 30 mg of acetic acid, The mixture was heated to reflux for 2 hours with a Stark apparatus. After cooling to room temperature, the precipitated crystals were collected by filtration, washed with ethyl acetate, dried, and N1- {5-[(2,4-dioxo-1,3-thiazolan-5-ylidene) methyl] -2. 1.4 g of -methoxybenzyl} -4- (trifluoromethyl) benzamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.90 (s, 3H) 4.47 (d, J = 5.6 Hz, 2H) 6.70 (br, 1H) 7.17 (d, J = 8.8 Hz, 1H) 7.40 (S, 1H) 7.54 (d, J = 8.8 Hz, 1H) 7.70 (s, 1H) 7.87 (d, J = 8.0 Hz, 2H) 8.13 (d, J = 8 .0Hz, 2H) 9.23 (t, J = 5.6 Hz, 1H)
Example 28
Production Example 28a)
Figure 2002080899
N- (2-methoxybenzyl) -2-fluoro-4 was treated with 1.5 g of 2-fluoro-4- (trifluoromethyl) benzoic acid and 0.90 g of 2-methoxybenzylamine in the same manner as in Production Example 27a). 2.0 g of-(trifluoromethyl) benzamide was obtained.
1H-NMR (CDCl3) Δ: 3.90 (s, 3H) 4.67 (d, J = 4.8 Hz, 2H) 6.90-6.96 (m, 2H) 7.25-7.39 (m, 4H) 7 .52 (d, J = 8.0 Hz, 1H) 8.24 (t, J = 8.0 Hz, 1H)
Production Example 28b)
Figure 2002080899
N1- (2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide (2.0 g) was treated in the same manner as in Production Example 27b) to give N1- (5-formyl-2-methoxybenzyl) -2- 1.1 g of fluoro-4- (trifluoromethyl) benzamide was obtained.
1H-NMR (CDCl3) Δ: 4.00 (s, 3H) 4.72 (d, J = 5.6 Hz, 2H) 7.03 (d, J = 8.0 Hz, 1H) 7.32 (br, 1H) 7.40 (D, J = 12.0 Hz, 1H) 7.53 (d, J = 8.0 Hz, 1H) 7.84-7.88 (m, 2H) 8.25 (t, J = 8.0 Hz, 1H) ) 9.89 (s, 1H)
Example 28c)
Figure 2002080899
N1- (5-formyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide (1.1 g) was treated in the same manner as in Example 27c) to give N1- {5-[(2,4- Dioxo-1,3-thiazolane-5-ylidene) methyl] -2-methoxybenzyl} -2-fluoro-4- (trifluoromethyl) benzamide 0.70 g was obtained.
1H-NMR (DMSO-d6) Δ: 3.89 (s, 3H) 4.45 (d, J = 5.6 Hz, 2H) 7.18 (d, J = 8.8 Hz, 1H) 7.44 (d, J = 2.0 Hz) , 1H) 7.55 (dd, J = 2.0, 8.8 Hz, 1H) 7.68 (d, J = 8.0 Hz, 1H) 7.71 (s, 1H) 7.83-7.90 (M, 2H) 9.02 (t, J = 5.6 Hz, 1H)
Example 29
Figure 2002080899
0.55 g of N1- {5-[(2,4-dioxo-1,3-thiazolan-5-ylidene) methyl] -2-methoxybenzyl} -4- (trifluoromethyl) benzamide was added to N, N-dimethylformamide Suspend in 20 ml, add 0.60 g of 10% palladium on carbon, 50 degrees, 15 kg / cm2For 16 hours under hydrogen pressure. After the reaction, the catalyst was filtered and the solvent was distilled off under reduced pressure. Water was added to the residue, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was subjected to silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (1: 1), N1- {5-[(2,4-dioxo-1,3-thiazolane- 1.2 g of 5-yl) methyl] -2-methoxybenzyl} -4- (trifluoromethyl) benzamide were obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 9.2, 17.5 Hz, 1H) 3.28 (dd, J = 4.0, 17.5 Hz, 1H) 3.79 (s, 3H) 4.42 (D, J = 5.6 Hz, 2H) 4.79 (dd, J = 4.0, 9.2 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 7.08 (d, J = 2.0 Hz, 1H) 7.10 (dd, J = 2.0, 8.4 Hz, 1H) 7.84 (d, J = 8.0 Hz, 2H) 8.08 (d, J = 8.0 Hz) , 2H) 9.05 (t, J = 5.6 Hz, 1H)
Example 30
Figure 2002080899
Production Example of 0.70 g of N1- {5-[(2,4-dioxo-1,3-thiazolane-5-ylidene) methyl] -2-methoxybenzyl} -2-fluoro-4- (trifluoromethyl) benzamide 29) and treated with N1- {5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl} -2-fluoro-4- (trifluoromethyl). ) 0.47 g of benzamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.01 (dd, J = 9.6, 18.0 Hz, 1H) 3.31 (dd, J = 4.0, 18.0 Hz, 1H) 3.79 (s, 3H) 4.40 (D, J = 5.6 Hz, 2H) 4.81 (dd, J = 4.0, 9.6 Hz, 1H) 6.94 (d, J = 9.2 Hz, 1H) 7.12 (m, 2H 7.66 (d, J = 7.2 Hz, 1H) 7.80-7.84 (m, 2H) 8.88 (t, J = 5.6 Hz, 1H)
Example 31
Production Example 31a)
Figure 2002080899
13.0 g of 2-methoxybenzylamine was dissolved in 80 ml of tetrahydrofuran, and a solution of 16 g of tert-butyl dicarbonate in tetrahydrofuran (20 ml) was added. After stirring at room temperature for 1 hour, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate and washed sequentially with 1N hydrochloric acid and saturated brine. The organic layer was dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain 19.0 g of tert-butyl N- (2-methoxybenzyl) carbamate.
1H-NMR (CDCl3) Δ: 1.45 (s, 9H) 3.84 (s, 3H) 4.27-4.33 (m, 2H) 5.01 (br, 1H) 6.84 (d, J = 8.8 Hz) , 1H) 6.94 (t, J = 8.8 Hz, 1H) 7.23-7.29 (m, 2H)
MS m / e (ESI) 440 (MH+)
Production Example 31b)
Figure 2002080899
6.04 g of tert-butyl N- (2-methoxybenzyl) carbamate was dissolved in 50 ml of acetonitrile, and 4.6 g of N-bromosuccinimide was added. After stirring at room temperature for 3 hours, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate, washed successively with water and saturated brine, and then thick. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure. The residue was washed with a mixed solution of methyl tert-butyl methyl ether and hexane to obtain 6.97 g of tert-butyl N- (5-bromo-2-methoxybenzyl) carbamate.
1H-NMR (CDCl3) Δ: 1.45 (s, 9H) 3.62 (s, 3H) 4.26 (d, J = 6.4 Hz, 2H) 4.97 (br, 1H) 6.72 (d, J = 8) .8 Hz, 1H) 7.34 (dd, J = 2.8, 11.2 Hz) 7.35 (s, 1H)
Production Example 31c)
Figure 2002080899
Tertiary butyl N- (5-bromo-2-methoxybenzyl) carbamate 1.015 g, dichlorobis (triphenylphosphine) palladium (II) 45 mg, sodium formate 330 mg, and triphenylphosphine 17 mg in anhydrous N, N-dimethylformamide It melt | dissolved and it stirred at 110 degreeC under the carbon monoxide atmosphere for 2 hours. The reaction mixture was diluted with ethyl acetate and washed with water and saturated aqueous sodium bicarbonate. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography, and 640 mg of tert-butyl N- (5-formyl-2-methoxybenzyl) carbamate was obtained from the fraction eluted with hexane-ethyl acetate (3: 1).
1H-NMR (CDCl3) Δ: 1.45 (s, 9H) 3.94 (s, 3H) 4.36 (d, J = 6.0 Hz, 2H) 5.00 (br, 1H) 6.98 (d, J = 8) .4 Hz, 1H) 7.80-7.83 (m, 2H) 9.88 (s, 1H)
Production Example 31d)
Figure 2002080899
Under a nitrogen atmosphere, 80 ml of hexamethyldisilazane sodium (1M tetrahydrofuran solution) was diluted with 40 ml of tetrahydrofuran and cooled to −78 ° C. Then, a solution of 11.68 g of ethyl 2-isopropoxyacetic acid in tetrahydrofuran (10 ml) was added. After stirring for 30 minutes, a solution of 10.73 g of tert-butyl N- (5-formyl-2-methoxybenzyl) carbamate in tetrahydrofuran (10 ml) was added, followed by further stirring for 1 hour, and then 100 ml of saturated aqueous ammonium chloride solution was added. The reaction solution was poured into 400 ml of water and 500 ml of ethyl acetate, and the organic layer was dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (elution solvent: hexane-ethyl acetate), ethyl 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl). 12.8 g of -3-hydroxy-2-isopropoxypropanoate (mixture of erythro and threo forms) was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 0.99 (d, J = 6.1 Hz, 3H) 1.15 (d, J = 6.1 Hz, 3H) 1.19 (t, J = 7.6 Hz, 3H) 1.44 (s , 9H) 2.91 (d, J = 5.2 Hz, 1H) 3.43 (sept, J = 6.1 Hz, 1H) 3.83 (s, 3H) 4.03 (d, J = 6.3 Hz) , 1H) 4.12 (q, J = 7.6 Hz, 2H) 4.29 (d, J = 6.6 Hz, 2H) 4.86 (dd, J = 5.2, 6.3 Hz, 1H) 4 .99 (t, J = 6.6 Hz, 1H) 6.81 (d, J = 8.7 Hz, 1H) 7.23-7.29 (m, 2H)
δ: 1.11 (t, J = 6.9 Hz, 3H) 1.17 (d, J = 6.1 Hz, 3H) 1.19 (d, J = 6.1 Hz, 3H) 1.44 ( s, 9H) 3.00 (d, J = 4.4 Hz, 1H) 3.63 (sept, J = 6.1 Hz, 1H) 3.83 (s, 3H) 3.95 (d, J = 5. 9 Hz, 1H) 4.08 (q, J = 6.9 Hz, 2H) 4.29 (d, J = 6.6 Hz, 2H) 4.80 (dd, J = 4.4, 5.9 Hz, 1H) 4.99 (t, J = 6.6 Hz, 1H) 6.81 (d, J = 8.7 Hz, 1H) 7.23-7.29 (m, 2H)
Production Example 31e)
Figure 2002080899
24.7 g of ethyl 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -3-hydroxy-2-isopropoxypropanoate (mixture of erythro and threo forms) was added to trifluoroacetic acid It melt | dissolved in 400 ml, 96 ml of triethylsilanes were added, and it stirred for 38 hours. The solvent was distilled off under reduced pressure, and the residue was dissolved in 300 ml of 3N hydrochloric acid and 200 ml of hexane. The aqueous layer was washed with 100 ml of hexane, made alkaline with 5N sodium hydroxide solution and extracted with dichloromethane 200 ml × 4. The organic layers were combined. After drying over anhydrous magnesium sulfate and distilling off the solvent under reduced pressure, tlc and113.0 g of ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate identical to the compound obtained in Preparation Example 2c) in H-nmr was obtained as a pale yellow oil. .
Example 31f)
Figure 2002080899
To a solution of 18.67 g of ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 7.7 g of triethylamine in diethyl ether (300 ml), 2,4-dichlorobenzoyl chloride 15 was added under water cooling. .9 g of tetrahydrofuran (15 ml) solution was added dropwise. After stirring for 30 minutes under ice cooling and further for 30 minutes at room temperature, the reaction mixture was poured into 500 ml of water and extracted with 300 ml of ethyl acetate. The organic layer was washed successively with 200 ml of saturated aqueous sodium hydrogensulfate solution, 200 ml of saturated sodium hydrogencarbonate, and 200 ml of saturated brine, and then dried over anhydrous magnesium sulfate. After evaporating the solvent under reduced pressure, the residue was purified by silica gel column chromatography (elution solvent: hexane-ethyl acetate), tlc and1Ethyl 3- (3-{[(2,4-dichlorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoate 28 identical to the compound obtained in Example 31 g) in H-nmr 0.2 g was obtained as a colorless solid.
Example 31g)
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 2,4-dichlorobenzoic acid were treated as in Example 19d) to give ethyl 3- (3- { [(2,4-Dichlorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoate was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 6.8 Hz, 3H) 2.87 (dd , J = 8.4, 13.6 Hz, 1H) 2.94 (dd, J = 4.8, 13.6 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.84 (s , 3H) 4.01 (dd, J = 4.8, 8.4 Hz, 1H) 4.05-4.20 (m, 2H) 4.61 (d, J = 5.6 Hz, 2H) 6.74 −6.84 (m, 1H) 6.79 (d, J = 8.4 Hz, 1H) 7.16 (dd, J = 2.0, 8.4 Hz, 1H) 7.22 (d, J = 2) 0.0 Hz, 1H) 7.29 (dd, J = 2.0, 8.4 Hz, 1H) 7.39 (d, J = 2.0 Hz, 1H) 7.64 (d, J = 8.0 Hz, 1H) )
Example 31h)
Figure 2002080899
The same treatment as in Example 1d) was carried out to obtain 3- (3-{[(2,4-dichlorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoic acid.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.91 (dd, J = 7.2, 14 Hz, 1H) 3.04 (Dd, J = 4.0, 14 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.84 (s, 3H) 4.09 (dd, J = 4.4, 7.6 Hz , 1H) 4.60 (d, J = 6.0 Hz, 2H) 6.81 (d, J = 8.4 Hz, 1H) 6.83 (m, 1H) 7.16 (dd, J = 2.4 , 8.4 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.29 (dd, J = 2.0, 8.4 Hz, 1H) 7.39 (d, J = 2.0 Hz , 1H) 7.64 (d, J = 8.4 Hz, 1H)
Example 31i)
Figure 2002080899
Dissolve 1.0 g of 3- (3-{[(2,4-dichlorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoic acid in 5 ml of ethanol, and add 2.3 ml of 1N aqueous sodium hydroxide solution. In addition, the solvent was distilled off under reduced pressure to obtain sodium 3- (3-{[(2,4-dichlorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoate.
1H-NMR (DMSO-d6) Δ: 0.79 (d, J = 6.0 Hz, 3H) 0.97 (d, J = 6.0 Hz, 3H) 2.51 (dd, J = 9.2, 13.6 Hz, 1H) 2 .79 (dd, J = 4.0, 13.6 Hz, 1H) 3.48 (sept, J = 6.0 Hz, 1H) 3.63 (dd, J = 3.6, 8.8 Hz, 1H) 3 .75 (s, 3H) 4.35 (d, J = 6.0 Hz, 2H) 6.82 (d, J = 8.4 Hz, 1H) 7.07 (d, J = 7.6 Hz, 1H) 7 .15 (s, 1H) 7.48 (s, 2H) 7.67 (s, 1H) 8.87 (t, J = 6.0 Hz, 1H)
Example 32
Example 32a)
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 4-chloro-2-fluorobenzoic acid were treated as in Example 19d) to give ethyl 3- (3 -{[(4-Chloro-2-fluorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoate was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.13 (d, J = 6.0 Hz, 3H) 1.22 (t, J = 7.2 Hz, 3H) 2.86 (dd , J = 8.0, 14 Hz, 1H) 2.93 (dd, J = 4.8, 14 Hz, 1H) 3.49 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4 .00 (dd, J = 5.2, 8.0 Hz, 1H) 4.05-4.25 (m, 2H) 4.62 (d, J = 5.6 Hz, 2H) 6.80 (d, J = 8.4 Hz, 1H) 7.10-7.20 (m, 2H) 7.20 (d, J = 2.0 Hz, 1H) 7.23 (dd, J = 2.0, 8.4 Hz, 1H) 7.2-7.35 (m, 1H) 8.06 (t, J = 8.4 Hz, 1H)
Example 32b)
Figure 2002080899
In the same manner as in Example 1d), 3- (3-{[(4-chloro-2-fluorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.6, 14 Hz, 1H) 3.04 (Dd, J = 4.0, 14 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 3.87 (s, 3H) 4.09 (dd, J = 4.0, 7.6 Hz) , 1H) 4.62 (d, J = 5.6 Hz, 2H) 6.82 (d, J = 8.0 Hz, 1H) 7.08-7.18 (m, 2H) 7.16-7.28 (M, 2H) 7.24-7.38 (m, 1H) 8.05 (t, J = 8.4 Hz, 1H)
Example 32b)
Figure 2002080899
In the same manner as in Example 31c), sodium 3- (3-{[(4-chloro-2-fluorobenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoate was obtained.
1H-NMR (DMSO-d6) Δ: 0.77 (d, J = 6.4 Hz, 3H) 0.95 (d, J = 6.0 Hz, 3H) 2.53 (dd, J = 9.2, 14 Hz, 1H) 2.79 (Dd, J = 3.2, 14 Hz, 1H) 3.46 (sept, J = 6.0 Hz, 1H) 3.64 (dd, J = 3.6, 9.2 Hz, 1H) 3.76 (s 3H) 4.38 (t, J = 5.2 Hz, 2H) 6.82 (d, J = 8.4 Hz, 1H) 7.07 (d, J = 8.8 Hz, 1H) 7.10 (s) , 1H) 7.36 (d, J = 8.4 Hz, 1H) 7.53 (d, J = 10 Hz, 1H) 7.67 (t, J = 8 Hz, 1H) 8.76 (m, 1H)
Example 33
Example 33a)
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 2-methoxy-6-methylnicotinic acid were treated in the same manner as in Example 19d) to give ethyl 2- Isopropoxy-3- [4-methoxy-3-({[(2-methoxy-6-methyl-3-pyridyl) carbonyl] amino} methyl) phenyl] propanoate was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.12 (d, J = 6.0 Hz, 3H) 1.21 (t, J = 7.2 Hz, 3H) 2.47 (s , 3H) 2.86 (dd, J = 8.4, 14 Hz, 1H) 2.93 (dd, J = 5.2, 14 Hz, 1H) 3.49 (sept, J = 6.0 Hz, 1H) 3 .89 (s, 3H) 4.00 (dd, J = 4.8, 8.0 Hz, 1H) 4.04 (s, 3H) 4.1-4.2 (m, 2H) 4.62 (d , J = 6.0 Hz, 2H) 6.80 (d, J = 8.4 Hz, 1H) 6.86 (d, J = 7.6 Hz, 1H) 7.14 (dd, J = 2.0, 8 0.0 Hz, 1H) 7.20 (d, J = 2.0 Hz, 1H) 8.39 (d, J = 7.6 Hz, 1H) 8.42 (m, 1H)
Example 33b)
Figure 2002080899
2-Isopropoxy-3- [4-methoxy-3-({[(2-methoxy-6-methyl-3-pyridyl) carbonyl] amino} methyl) phenyl] propanoic acid was prepared by a method similar to Example 1d). Obtained.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.4 Hz, 3H) 2.47 (s, 3H) 2.90 (dd, J = 7.2) , 14 Hz, 1H) 3.04 (dd, J = 4.4, 14 Hz, 1H) 3.56 (sept, J = 6.4 Hz, 1H) 3.89 (s, 3H) 4.06 (s, 3H ) 4.0-4.15 (m, 1H) 4.61 (d, J = 4.0 Hz, 2H) 6.81 (d, J = 8.4 Hz, 1H) 6.86 (d, J = 7) .6 Hz, 1H) 7.12 (dd, J = 2.0, 8.4 Hz, 1H) 7.20 (d, J = 2.4 Hz, 1H) 8.37 (d, J = 7.6 Hz, 1H) 8.48 (m, 1H)
Example 34
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 4-chloro-2-methoxybenzoic acid are treated as in Example 1d) following Example 20d). 3- (3-{[(4-chloro-2-methoxybenzoyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.6, 14 Hz, 1H) 3.03 (Dd, J = 4.4, 14 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.88 (s, 3H) 3.94 (s, 3H) 4.05-4.15 (M, 1H) 4.61 (dd, J = 2.0, 6.0 Hz, 2H) 6.81 (d, J = 8.4 Hz, 1H) 6.95 (d, J = 2.0 Hz, 1H) ) 7.05 (dd, J = 2.0, 8.4 Hz, 1H) 7.13 (dd, J = 2.0, 8.4 Hz, 1H) 7.20 (d, J = 2.0 Hz, 1H) 8.14 (d, J = 8.4 Hz, 1H) 8.28 (t, J = 5.6 Hz, 1H)
Example 35
Example 35d)
Figure 2002080899
Ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 2,6-dimethoxynicotinic acid were treated as in Example 1d) following Example 20d) 3- [3-({[(2,6-dimethoxy-3-pyridyl) carbonyl] amino} methyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.4 Hz, 3H) 1.13 (d, J = 6.4 Hz, 3H) 2.89 (dd, J = 7.6, 14 Hz, 1H) 3.03 (Dd, J = 4.4, 14 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 3.88 (s, 3H) 3.95 (s, 3H) 4.07 (s, 3H ) 3.8-4.2 (m, 1H) 4.60 (dd, J = 1.6, 6.0 Hz, 2H) 6.41 (d, J = 8.4 Hz, 1H) 6.80 (d , J = 8.4 Hz, 1H) 7.13 (dd, J = 2.0, 8.4 Hz, 1H) 7.21 (d, J = 2.0 Hz, 1H) 8.32 (m, 1H) 8 .41 (d, J = 8.4 Hz, 1H)
Example 36
Production Example 36a)
Figure 2002080899
A solution of 98 g of 2-isopropoxyacetic acid and 360 ml of triethylamine in tetrahydrofuran (4 l) was cooled to −25 ° C., 92 ml of 2,2-dimethylpropanoyl chloride was added dropwise, and the reaction solution was stirred at −20 ° C. for 5 hours. 50 g of anhydrous lithium chloride and 120 g of (4S) -4-benzyl-1,3-oxazolone-2-one were sequentially added, and the mixture was further stirred overnight at room temperature. The reaction mixture was filtered and concentrated under reduced pressure. The residue was dissolved in 2 l of ethyl acetate, washed with a saturated aqueous sodium hydrogen carbonate solution, and dried over anhydrous magnesium sulfate. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (elution solvent: hexane-ethyl acetate), (4S) -4-benzyl-3- (2-isopropoxyacetyl) -1,3- 106.6 g of oxazolone-2-one was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 1.17 (d, J = 6.0 Hz, 6H) 2.81 (dd, J = 9.5, 13.4 Hz, 1H) 3.35 (dd, J = 3.2, 13.4 Hz) , 1H) 3.74 (sept, J = 6.0 Hz, 1H)) 4.24 (dd, J = 3.5, 9.3 Hz) 4.29 (t, J = 9.3 Hz, 1H) 65 (d, J = 19.5 Hz, 1H) 4.69 (m, 1H) 4.70 (d, J = 19.5 Hz, 1H) 7.22 (d, J = 7.2 Hz, 2H) 30-7.45 (m, 3H)
Production Example 36b)
Figure 2002080899
(4S) -4-Benzyl-3- (2-isopropoxyacetyl) -1,3-oxazolone-2-one 127.4 g of toluene (4 l) solution was divided into equal portions and cooled to -75 ° C. To each solution, 28.0 g of triethylamine was added. 232 ml of dibutyl boron triflate (1M dichloromethane solution) was added dropwise at a rate such that the internal temperature did not exceed -70 ° C. After stirring for 50 minutes after dropping, the internal temperature was raised to 0 ° C., stirring was continued for 50 minutes, and the mixture was cooled to −75 ° C. again. To this reaction solution, a solution of tert-butyl N- (5-formyl-2-methoxybenzyl) carbamate in dichloromethane (1.4 l) previously cooled to about -70 ° C was added using canel, and the mixture was added at -75 ° C for 30 minutes. After stirring, the internal temperature was raised to 0 ° C. by 10 ° C. every 10 minutes over about 1 hour. After stirring at 0 ° C. for 75 minutes, a mixed solution of 1.21 l of methanol, 0.605 l of pH 7 buffer (sodium dihydrogen phosphate-citric acid) and 0.262 l of hydrogen peroxide (30% aqueous solution) was added. The two reaction solutions were combined, poured into 9 l of water and extracted with 1 l of dichloromethane. The organic layer was washed with 4 l of saturated brine, and the aqueous layers were combined and extracted with 4 l of ethyl acetate. All organic layers were combined and dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography (eluent: hexane-ethyl acetate), tert-butyl N- (5- (1R, 2S) -3-[(4S) -4-benzyl-2-oxo-1 , 3-Oxazolan-3-yl] -1-hydroxy-2-isopropoxy-3-oxopropyl-2-methoxybenzyl) carbamate 111.0 g was obtained as a colorless solid.
1H-NMR (CDCl3) Δ: 1.17 (d, J = 6.2 Hz, 3H) 1.21 (d, J = 6.2 Hz, 3H) 1.43 (s, 9H) 2.75 (dd, J = 9.6) , 13.2 Hz, 1H) 3.02-3.15 (br.s, 1H) 3.24 (dd, J = 3.6, 13.2 Hz, 1H) 3.64-3.73 (m, 2H 3.83 (s, 3H) 4.02 (d, J = 8.2 Hz, 1H) 4.23 (dd, J = 6.2, 15.6 Hz, 1H) 4.31 (dd, J = 6) .4, 15.6 Hz, 1H) 4.46 (m, 1H) 4.78 (d, J = 5.6 Hz, 1H) 4.99 (m, 1H) 5.42 (d, J = 5.6 Hz) , 1H) 6.83 (d, J = 8.3 Hz, 1H) 7.19 (d, J = 7.2 Hz, 2H) 7.26-7.39 (m, 5H)
Production Example 36c)
Figure 2002080899
Tert-Butyl N- (5- (1R, 2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -1-hydroxy as in Preparation Example 31e) After reducing 8.96 g of 2-isopropoxy-3-oxopropyl-2-methoxybenzyl) carbamate, 50 ml of 4N hydrochloric acid ethyl acetate solution was added to the crude product. After the solvent was distilled off under reduced pressure, the residue was suspended in diisopropyl ether-hexane, the solid was collected by filtration, washed with the above solvent, and (4S) -3- (2S) -3- [3- (aminomethyl). ) -4-Methoxyphenyl] -2-isopropoxypropanoyl-4-benzyl-1,3-oxazolan-2-one hydrochloride (7.89 g) was obtained as a colorless solid.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.3 Hz, 3H) 1.14 (d, J = 6.3 Hz, 3H) 2.77-2.85 (m, 2H) 2.94 (dd, J = 3.5, 11.9 Hz, 1H) 3.28 (dd, J = 1.7, 12.8 Hz, 1H) 3.50 (sept, J = 6.3 Hz, 1H) 3.82 (s, 3H 4.10-4.19 (m, 4H) 4.64 (m, 1H) 5.28 (dd, J = 3.5, 7.9 Hz, 1H) 6.81 (d, J = 8.4 Hz) , 1H) 7.20 (d, J = 7.0 Hz, 2H) 7.25-7.34 (m, 5H) 8.25 (br.s, 3H)
Production Example 36d)
Figure 2002080899
(4S) -3- (2S) -3- [3- (Aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoyl-4-benzyl-1,3-oxazolane as in Preparation Example 31f) After 7.66 g of 2-one hydrochloride was amidated, the crude product was dissolved in 20 ml of ethyl acetate under reflux and cooled to room temperature. 60 ml of diisopropyl ether and 120 ml of hexane were sequentially added, and the precipitate was collected by filtration to give N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl. ] -2 Isopropoxy-3-oxopropyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide 6.46 g was obtained as a colorless solid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.2 Hz, 3H) 1.16 (d, J = 6.2 Hz, 3H) 2.75 (dd, J = 10.1, 12.6 Hz, 1H) 2 .88 (dd, J = 7.9, 13.9 Hz, 1H) 2.93 (dd, J = 4.7, 13.9 Hz, 1H) 3.32 (dd, J = 3.5, 12.6 Hz) , 1H) 3.52 (sept, J = 6.2 Hz, 1H) 3.86 (s, 3H) 3.98 (t, J = 8.5 Hz, 1H) 4.11 (dd, J = 2.6 , 8.5 Hz, 1H) 4.56 (m, 1H) 4.65 (d, J = 5.9 Hz, 2H) 5.34 (dd, J = 4.7, 7.9 Hz, 1H) 6.8 (D, J = 8.7 Hz, 1H) 7.20-7.38 (m, 8H) 7.56 (d, J = 8.7 Hz, 1H), 8.34 (t, J = 8.7 Hz, 1H)
Example 36e)
Figure 2002080899
As in Preparation Example 36b), 1.39 g of (4S) -4-benzyl-3- (2-isopropoxyacetyl) -1,3-oxazolone-2-one and N1- (5-formyl-2-methoxybenzyl) From 0.89 g of 2-fluoro-4- (trifluoromethyl) benzamide to N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl ] 1.36 g of 1-hydroxy-2-isopropoxy-3-oxopropyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide was obtained as a colorless solid.
1H-NMR (CDCl3) Δ: 1.15 (d, J = 6.0 Hz, 3H) 1.20 (d, J = 3 Hz, 3H) 2.67 (dd, J = 9.6, 13.4 Hz, 1H) 3.05 -3.14 (br.s, 1H) 3.25 (dd, J = 3.8, 13.4 Hz, 1H) 3.61 (t, J = 8.6 Hz, 1H) 3.67 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 3.93 (dd, J = 1.7, 8.6 Hz, 1H) 4.44 (m, 1H) 4.60 (dd, J = 5 .2, 14.1 Hz, 1H) 4.66 (dd, J = 5.2, 14.1 Hz) 4.79 (d, J = 5.8 Hz, 1H) 5.42 (d, J = 5.8 Hz) , 1H) 6.88 (d, J = 8.7 Hz, 1H) 7.19 (d, J = 7.1 Hz, 2H) 7.27-7.33 (m, 4H) 7.36 (dd, J = 0.8,11 1Hz, 1H) 7.39 (dd, J = 2.0,8.0Hz, 1H) 7.44 (d, J = 7.7Hz, 1H) 8.03 (t, J = 7.7Hz, 1H)
Example 36f)
Figure 2002080899
N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -1-hydroxy-2-isopropoxy as in Preparation Example 31e) -3-oxopropyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide from 1.36 g to tlc and1N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl]-identical to the compound obtained in Preparation Example 36d) in H-nmr 1.30 g of 2-isopropoxy-3-oxopropyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide was obtained as a colorless solid.
Example 36g)
Figure 2002080899
N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -2-isopropoxy-3-oxo as in Preparation Example 37c) Propyl-2-methoxybenzyl) -2-fluoro-4- (trifluoromethyl) benzamide from 6.46 g to tlc and1(2S) -3- [3-([2-Fluoro-4- (tofluorofluoromethyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2 identical to the compound obtained in Example 6a) in H-nmr -4.81 g of isopropoxypropanoic acid was obtained as a colorless oil. Purity by HPLC analysis: 97.7%, optical purity: 96.8% e.e. e. (OD column; flow rate 0.5 ml / min; 2-propanol: hexane: trifluoroacetic acid = 700: 300: 1).
Example 37
Production Example 37a)
Figure 2002080899
To a solution of 50 mL of 2-methoxybenzylamine and 123 mL of pyridine in N, N-dimethylformamide (400 mL) was dropped 45 mL of 2,4-dichlorobenzoyl chloride at 5-10 ° C. over 1.5 hours, and then 16 mL at room temperature. Stir for hours. The reaction solution was diluted with ethyl acetate, saturated aqueous ammonium chloride solution and 1N aqueous sodium hydroxide solution. The organic layer was washed with 1N aqueous sodium hydroxide, 1N hydrochloric acid (× 2), saturated aqueous ammonium chloride (× 2), and saturated brine, then dried over anhydrous sodium sulfate and concentrated. The residue was suspended in diisopropyl ether (300 mL) and diethyl ether (500 mL), the solid was collected by filtration and washed with diethyl ether, and 81.1 g of N1- (2-methoxybenzyl) -2,4-dichlorobenzamide was added. Obtained as a pale yellow solid.
1H-NMR (CDCl3) Δ: 3.87 (s, 3H) 4.64 (d, J = 6.0 Hz, 2H) 6.82 (br, 1H) 6.89 (d, J = 8.4 Hz, 1H) 6.92 −6.98 (m, 1H) 7.26−7.32 (m, 2H) 7.35 (dd, J = 2.4, 7.6 Hz, 1H) 7.40 (d, J = 2.4 Hz) , 1H) 7.65 (d, J = 8.4 Hz, 1H)
Production Example 37b)
Figure 2002080899
To a solution of 10.0 g of N1- (2-methoxybenzyl) -2,4-dichlorobenzamide in trifluoroacetic acid (200 mL), 9.04 g of hexamethylenetetramine was added and stirred at 50 ° C. for 23 hours. The reaction solution was allowed to cool to room temperature and concentrated. The residue was diluted with ice water and adjusted to pH = 11-12 with 1N aqueous sodium hydroxide solution. This was extracted with ethyl acetate. The organic layer was washed with 1N aqueous sodium hydroxide solution (× 3), 1N hydrochloric acid (× 2), and saturated brine, dried over anhydrous sodium sulfate, and filtered through 100 g of silica gel. After the filtrate was concentrated, the residue was suspended in ethyl acetate. The solid was collected by filtration and washed with ethyl acetate to obtain 7.15 g of N1- (5-formyl-2-methoxybenzyl) -2,4-dichlorobenzamide as a colorless solid.
1H-NMR (CDCl3) Δ: 3.97 (s, 3H) 4.68 (d, J = 6.0 Hz, 2H) 6.81 (br, 1H) 7.01 (d, J = 8.4 Hz, 1H) 7.31 (Dd, J = 2.0, 8.4 Hz, 1H) 7.41 (d, J = 2.0 Hz, 1H) 7.68 (d, J = 8.4 Hz, 1H) 7.85 (dd, J = 2.0, 8.4 Hz, 1H) 7.90 (d, J = 2.0 Hz, 1H) 9.88 (s, 1H)
Example 37c)
Figure 2002080899
Similar to Preparation Example 36b), 125.0 g of (4S) -4-benzyl-3- (2-isopropoxyacetyl) -1,3-oxazolone-2-one and N1- (5-formyl-2-methoxybenzyl) From N- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -1-hydroxy- from 101.9 g of 2,4-dichlorobenzamide There were obtained 167.0 g of 2-isopropoxy-3-oxopropyl-2-methoxybenzyl) -2,4-dichlorobenzamide as a colorless solid.
1H-NMR (CDCl3) Δ: 1.15 (d, J = 6.2 Hz, 3H) 1.20 (d, J = 6.2 Hz, 3H) 2.71 (dd, J = 9.5, 14.1 Hz, 1H) 3 .06-3.15 (br.s, 1H) 3.25 (dd, J = 3.2, 14.1 Hz, 1H) 3.68 (sept, J = 6.2 Hz, 1H) 3.69 (dd , J = 7.8, 8.5 Hz, 1H) 3.84 (s, 3H) 3.97 (dd, J = 2.1, 8.5 Hz, 1H) 4.44 (m, 1H) 4.58 (Dd, J = 5.3, 13.9 Hz, H) 4.63 (dd, J = 5.3, 13.9 Hz, 1H) 4.79 (d, J = 5.6 Hz, 1H) 5.40 (D, J = 5.6 Hz, 1H) 6.73 (t, J = 5.3 Hz, 1H) 6.85 (d, J = 8.2 Hz, 1H) 7.16 (d, J = 7.0 Hz) , 2H) 7.25 7.34 (m, 5H) 7.37 (dd, J = 1.9, 8.2 Hz, 1H) 7.40 (d, J = 1.9 Hz, 1H) 7.58 (d, J = 8. 2Hz, 1H)
Production Example 37d)
Figure 2002080899
N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -1-hydroxy-2-isopropoxy as in Preparation Example 31e) The crude product was obtained from 167 g of -3-oxopropyl-2-methoxybenzyl) -2,4-dichlorobenzamide, which was dissolved in 550 ml of ethyl acetate under reflux, cooled to room temperature, 550 ml of diisopropyl ether and hexane. 800 ml was sequentially added, and the precipitate was collected by filtration, and N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -2- 119.7 g of isopropoxy-3-oxopropyl-2-methoxybenzyl) -2,4-dichlorobenzamide was obtained as a colorless solid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.2 Hz, 3H) 1.17 (d, J = 6.2 Hz, 1H) 2.96 (dd, J = 9.1, 13.3 Hz, 1H) 2 .89 (dd, J = 7.8, 13.2 Hz, 1H) 2.94 (dd, J = 5.3, 13.2 Hz, 1H) 3.30 (dd, J = 3.1, 13.3 Hz , 1H) 3.53 (sept, J = 6.2 Hz, 1H) 3.84 (s, 3H) 4.02 (t, J = 8.4 Hz, 1H) 4.11 (dd, J = 1.6 , 8.4 Hz, 1H) 4.57 (m, 1H) 4.59 (dd, J = 6.2, 14.3 Hz, 1H) 4.63 (dd, J = 6.2, 14.3 Hz, 1H) ) 5.34 (dd, J = 5.3, 7.8 Hz, 1H) 6.75 (t, J = 6.2 Hz, 1H) 6.80 (d, J = 8.2 Hz, 1H) 7.19 (D, J = .3Hz, 2H) 7.22-7.33 (m, 6H) 7.40 (d, J = 2.8Hz, 1H) 7.63 (d, J = 10.3Hz, 1H)
Example 37e)
Figure 2002080899
N1- (5- (2S) -3-[(4S) -4-benzyl-2-oxo-1,3-oxazolan-3-yl] -2-isopropoxy-3-oxopropyl-2-methoxybenzyl) 400 ml of water was added to a solution of 124.9 g of 2,4-dichlorobenzamide in tetrahydrofuran (1.6 l) and cooled to −10 ° C., then 184 ml of 30% hydrogen peroxide and 20.3 g of lithium hydroxide (150 ml) ) The solution was added sequentially and stirred at 4 ° C. for 24 hours. After cooling again to −10 ° C., 1.5 L of 2M sodium sulfite aqueous solution was added, the pH was adjusted to 2-3 with 5N hydrochloric acid, and the mixture was extracted with 1.5 l of ethyl acetate. The organic layer was dried over anhydrous magnesium sulfate and the solvent was removed under reduced pressure. The residue was dissolved in 1N sodium hydroxide, and the aqueous layer was extracted four times with 1 l of a 4: 1 mixed solvent of diethyl ether-dichloromethane. The organic layers were combined and the solvent was removed under reduced pressure. The residue was recrystallized from ethyl acetate-hexane to recover 33.7 g of (4S) -4-benzyl-3- (2-isopropoxyacetyl) -1,3-oxazolone-2-one. The aqueous layer was adjusted to pH 2-3 with 5N hydrochloric acid and extracted with 1.5 l and 0.5 l dichloromethane. The organic layers were combined and dried over anhydrous magnesium sulfate, and then the solvent was distilled off under reduced pressure to obtain tlc and1(2S) -3- [3-([2,4-Dichlorobenzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid 87 identical to the compound obtained in Preparation Example 31b) in H-nmr 0.7 g was obtained. Purity by HPLC analysis: 98.6% (OD column; flow rate 0.5 ml / min; 2-propanol: hexane: trifluoroacetic acid = 700: 300: 1). This compound was purified by silica gel column chromatography (elution solvent hexane-ethyl acetate), and then recrystallized from 410 ml of ethyl acetate and 410 ml of heptane, whereby purity by HPLC analysis: 99.8%, optical purity: 99.7 % E. e. 61.6 g of a colorless solid was obtained.
Example 38
Production Example 38a)
Figure 2002080899
A toluene (50 mL) suspension of 2.75 g of tert-butyl N- (5-formyl-2-methoxybenzyl) carbamate and 4.73 g of (triphenylphosphoranylidene) acetaldehyde was stirred at 80 ° C. for 16 hours. The reaction solution was allowed to cool to room temperature, insoluble material was filtered off through silica gel, and the filtrate was concentrated. Ethyl 5- (3-{[(tert-butoxycarbonyl) amino] methyl} -4-methoxyphenyl) -2 was prepared in the same manner as in Production Example 1a) and Production Example 1b) using 2.47 g of the obtained residue. -630 mg of isopropoxypentanoate was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 1.13 (d, J = 6.0 Hz, 3H) 1.19 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 1.44 (s , 9H) 1.50-1.80 (m, 4H) 2.55 (t, J = 7.2 Hz, 2H) 3.57 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H 3.88 (dd, J = 4.8, 7.6 Hz, 1H) 4.19 (q, J = 7.2 Hz, 2H) 4.27 (d, J = 5.6 Hz, 2H) 5.01 (Br, 1H) 6.76 (d, J = 8.0 Hz, 1H) 7.00-7.08 (m, 2H)
Example 38b)
Figure 2002080899
To 50 mg of ethyl 5- (3-{[(tert-butoxycarbonyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypentanoate was added 2 mL of 4N HCl / dioxane, and the mixture was stirred at room temperature for 3.5 hours. . After concentrating the reaction solution, the residue was dissolved in 2 mL of N, N-dimethylformamide, and 12 mg of 2,4-dichlorobenzoic acid, 9 μL of diethyl cyanophosphonate and 17 μL of triethylamine were added to 1 mL, and the mixture was stirred at room temperature for 17 hours. did. The reaction mixture was diluted with water and extracted with ethyl acetate. After the organic layer was concentrated, the residue was dissolved in 0.4 mL of methanol, 0.1 mL of 5N aqueous sodium hydroxide solution was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was concentrated and neutralized with 1N hydrochloric acid. After extraction with ethyl acetate, purification was performed by HPLC using a water-acetonitrile-trifluoroacetic acid system as an elution solvent on a reverse-phase column, and 5- (3 {[(2,4-dichlorobenzoyl) amino] Methyl} -4-methoxyphenyl) -2-isopropoxypentanoic acid 5.02 mg was obtained.
MS m / e (ESI) 468 (MH+)
Example 39
Figure 2002080899
2-isopropoxy-5- [4-methoxy-3-({[(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] amino} methyl) phenyl] pentanoic acid is ethyl 5- Obtained in the same manner as in Example 38, using (3-{[(tert-butoxycarbonyl) amino] methyl} -4-methoxyphenyl) -2-isopropoxypentanoate.
MS m / e (ESI) 497 (MH+)
Example 40
Production Example 40a)
Figure 2002080899
Using 4.0 g of 4-pyridinecarboxaldehyde, 4.88 g of ethyl 2-isopropoxy-3- (4-pyridyl) propanoate was obtained as a colorless oil in the same manner as in Production Example 1a) and Production Example 1b). It was.
1H-NMR (CDCl3) Δ: 0.93 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.26 (t, J = 7.2 Hz, 3H) 2.92 (dd , J = 8.8, 13.6 Hz, 1H) 3.00 (dd, J = 4.4, 13.6 Hz, 1H) 3.52 (sept, J = 6.0 Hz, 1H) 4.06 (dd , J = 4.4, 8.8 Hz, 1H) 4.15-4.24 (m, 2H) 7.19 (dd, J = 1.6, 4.4 Hz, 2H) 8.51 (dd, J = 1.6, 4.4 Hz, 2H)
Production Example 40b)
Figure 2002080899
To a solution of 4.88 g of ethyl 2-isopropoxy-3- (4-pyridyl) propanoate in dichloromethane (50 mL) was added 6.0 g of m-chloroperbenzoic acid, and the mixture was stirred at room temperature for 1.5 hours. The reaction solution was diluted with a saturated aqueous sodium hydrogen carbonate solution, and then the aqueous layer was extracted three times with dichloromethane. The combined organic layers were dried over anhydrous sodium sulfate and concentrated to give 6.40 g of a crude product of 4- (3-ethoxy-2-isopropoxy-3-oxopropyl) -1-pyridinium oleate as a yellow oil. Got as.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 2.93 (dd , J = 8.8, 14.0 Hz, 1H) 3.00 (dd, J = 4.0, 14.0 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 4.03 (dd , J = 4.0, 8.8 Hz, 1H) 4.16-4.25 (m, 2H) 7.20-7.25 (m, 2H) 8.16-8.21 (m, 2H)
Production Example 40c)
Figure 2002080899
To a solution of 6.40 g of the crude product of 4- (3-ethoxy-2-isopropoxy-3-oxopropyl) -1-pyridinium oleate and 3.3 mL of trimethylsilyl cyanide in dichloromethane (60 mL), 2.3 mL of dimethylcarbamyl chloride. Was added dropwise over 40 minutes, followed by stirring for 11.5 hours. A 10% aqueous potassium carbonate solution was added to the reaction solution, and the mixture was stirred at room temperature for 30 minutes. The organic layer was dried over anhydrous sodium sulfate and concentrated. The residue was purified by silica gel flash column chromatography to obtain 3.87 g of ethyl 3- (2-cyano-4-pyridyl) -2-isopropoxypropanoate as a pale yellow oil.
1H-NMR (CDCl3) Δ: 0.94 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.28 (t, J = 7.2 Hz, 3H) 2.99 (dd , J = 8.8, 14.0 Hz, 1H) 3.06 (dd, J = 4.0, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 4.06 (dd , J = 4.0, 8.8 Hz, 1H) 4.17-4.26 (m, 2H) 7.43 (dd, J = 1.6, 5.0 Hz, 1H) 7.63 (dd, J = 0.8, 1.6 Hz, 1H) 8.61 (dd, J = 0.8, 5.0 Hz, 2H)
Production Example 40d)
Figure 2002080899
Dissolve 1.0 g of ethyl 3- (2-cyano-4-pyridyl) -2-isopropoxypropanoate in 70 mL of ethanol, add 1.9 mL of concentrated hydrochloric acid and 0.9 g of 10% palladium carbon, and under a hydrogen atmosphere, Stir at room temperature for 2 hours. The catalyst was removed by filtration, the solvent was distilled off under reduced pressure, and the residue was azeotroped with ethyl acetate and toluene to give ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride. 21 g was obtained as a crude product.
1H-NMR (DMSO-d6) Δ: 0.90 (d, J = 6.0 Hz, 3H) 1.07 (d, J = 6.0 Hz, 3H) 1.19 (t, J = 7.2 Hz, 3H) 2.96 (dd , J = 8.8, 14.0 Hz, 1H) 3.08 (dd, J = 4.4, 8.8 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 4.13 (q , J = 7.2 Hz, 2H) 4.25 (br, 2H) 4.31 (dd, J = 4.4, 8.8 Hz, 1H) 7.52 (d, J = 5.2 Hz, 1H) 7 97 (s, 1H) 8.63 (d, J = 5.2 Hz, 1H) 8.66-8.83 (m, 3H)
Example 40e)
Figure 2002080899
3- (2-{[(2,4-dichlorobenzoyl) amino] methyl} -4-pyridyl) -2-isopropoxypropanoic acid trifluoroacetate is ethyl 3- [2- (aminomethyl) -4-pyridyl This was obtained in the same manner as in Example 19d) and Example 19e) using 2-isopropoxypropanoate hydrochloride.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 3.27 (d, J = 5.6 Hz, 2H) 3.69 (sept , J = 6.0 Hz, 1H) 4.30 (t, J = 5.6 Hz, 1H) 4.80-4.91 (m, 2H) 7.27 (dd, J = 2.0, 7.8 Hz) , 1H) 7.39 (d, J = 2.0 Hz, 1H) 7.48 (d, J = 7.8 Hz, 1H) 7.68 (dd, J = 1.6, 6.0 Hz, 1H) 7 .93 (d, J = 1.6 Hz, 1H) 8.56 (d, J = 6.0 Hz, 1H) 8.60 (t, J = 6.0 Hz, 1H)
MS m / e (ESI) 440 (MH+)
Example 41
Figure 2002080899
2-Isopropoxy-3- [2-({[(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] amino} methyl) -4-pyridyl] propanoic acid trifluoroacetate is It was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.19 (d, J = 6.0 Hz, 3H) 2.72 (s, 3H) 3.28 (d, J = 6.0 Hz) , 2H) 3.71 (sept, J = 6.0 Hz, 1H) 4.31 (t, J = 5.6 Hz, 1H) 4.84 (dd, J = 2.8, 5.6 Hz, 2H) 7 .41-7.49 (m, 3H) 7.68 (dd, J = 2.0, 6.0 Hz, 1H) 7.88-7.93 (m, 2H) 7.94 (d, J = 1) .2 Hz, 1H) 8.57 (d, J = 6.0 Hz, 1H) 8.74 (t, J = 6.0 Hz, 1H)
MS m / e (ESI) 411 (MH+)
Example 42
Figure 2002080899
3- (2-{[(2-Chloro-4-isopropoxybenzoyl) amino] methyl} -4-pyridyl) -2-isopropoxypropanoic acid trifluoroacetate is ethyl 3- [2- (aminomethyl)- 4-Pyridyl] -2-isopropoxypropanoate hydrochloride was used in the same manner as in Example 19d) and Example 19e).
MS m / e (ESI) 435 (MH+)
Example 43
Figure 2002080899
3- (2-{[(2-Chloro-4-propoxybenzoyl) amino] methyl} -4-pyridyl) -2-isopropoxypropanoic acid trifluoroacetate is ethyl 3- [2- (aminomethyl) -4 -Pyridyl] -2-isopropoxypropanoate hydrochloride was used in the same manner as in Example 19d) and Example 19e).
MS m / e (ESI) 435 (MH+)
Example 44
Figure 2002080899
3- [2-({[2-Chloro-4- (cyclopentyloxy) benzoyl] amino} methyl) -4-pyridyl] -2-isopropoxypropanoic acid trifluoroacetate is ethyl 3- [2- (aminomethyl ) -4-pyridyl] -2-isopropoxypropanoate hydrochloride was obtained in the same manner as Example 19d) and Example 19e).
MS m / e (ESI) 461 (MH+)
Example 45
Figure 2002080899
Ethyl 3- [2-({[2-Fluoro-4- (trifluoromethyl) benzoyl] amino} methyl) -4-pyridyl] -2-isopropoxypropanoic acid trifluoroacetate is ethyl 3- [2- ( Aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride was used in the same manner as in Example 19d) and Example 19e).
MS m / e (ESI) 429 (MH+)
Example 46
Figure 2002080899
2-Isopropoxy-3- {2-[({[4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} propanoic acid The trifluoroacetate salt was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 454 (MH+)
Example 47
Figure 2002080899
3- {2-[({[2- (3-Chloro-4-fluorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} -2- Isopropoxypropanoic acid trifluoroacetic acid salt is ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride, and is the same method as Example 19d) and Example 19e) Got in.
MS m / e (ESI) 492 (MH+)
Example 48
Figure 2002080899
3- {2-[({[2- (4-Chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} -2-isopropoxypropanoic acid tri The fluoroacetate was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 474 (MH+)
Example 49
Figure 2002080899
3- {2-[({[2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} -2-isopropoxypropanoic acid tri The fluoroacetate was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 474 (MH+)
Example 50
Figure 2002080899
3- {2-[({[2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} -2-isopropoxypropane The acid trifluoroacetate salt was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride. .
MS m / e (ESI) 508 (MH+)
Example 51
Figure 2002080899
2-Isopropoxy-3- {2-[({[2- (4-methoxyphenyl) -4-methyl-1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} propanoic acid The trifluoroacetate salt was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 470 (MH+)
Example 52
Figure 2002080899
2-Isopropoxy-3- {2-[({[4-methyl-2- (2-methylphenyl) -1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} propanoic acid The trifluoroacetate salt was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 454 (MH+)
Example 53
Figure 2002080899
2-isopropoxy-3- {2-[({[4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonyl} amino) methyl] -4-pyridyl} propanoic acid tri The fluoroacetate was obtained in the same manner as Example 19d) and Example 19e) using ethyl 3- [2- (aminomethyl) -4-pyridyl] -2-isopropoxypropanoate hydrochloride.
MS m / e (ESI) 446 (MH+)
Example 54
Figure 2002080899
In the same manner as in Example 19d) and Example 19e) using cinnamic acid, 2-isopropoxy-3- [4-methoxy-3-([(E) -3-phenyl-2-propenoyl] aminomethyl ) Phenyl] propionic acid was obtained.
MS m / e (ESI) 398 (MH+)
Example 55
Figure 2002080899
In the same manner as in Example 54, 2-isopropoxy-3- [4-methoxy-3-([(E) -2-methyl-3-phenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was obtained. It was.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.09 (d, J = 1.2 Hz, 3H) 2.92 (dd , J = 7.2, 13.6 Hz, 1H) 3.07 (dd, J = 4.4, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.87 (s 3H) 4.12 (dd, J = 4.4, 7.2 Hz, 1H) 4.54 (d, J = 5.6 Hz, 2H) 6.46 (br, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.15 (dd, J = 2.0, 8.4 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.26-7.39 (m, 6H) )
MS m / e (ESI) 412 (MH+)
Example 56
Figure 2002080899
In the same manner as in Example 54, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (2-chlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was obtained. .
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 7.2, 13.6 Hz, 1H) 3 .05 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.11 (t, J = 4.4 Hz) , 1H) 4.54 (d, J = 5.6 Hz, 2H) 6.22 (br, 1H) 6.40 (d, J = 16.0 Hz, 1H) 6.81 (d, J = 8.4 Hz) , 1H) 7.14 (d, J = 8.0 Hz, 1H) 7.21-7.27 (m, 2H) 7.40 (d, J = 2.0, 7.6 Hz, 1H) 7.56 (D, J = 7.6 Hz, 1H) 7.97 (d, J = 16.0 Hz, 1H)
MS m / e (ESI) 432 (MH+)
Example 57
Figure 2002080899
In the same manner as in Example 54, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (3-chlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was obtained. .
MS m / e (ESI) 432 (MH+)
Example 58
Figure 2002080899
In the same manner as in Example 54, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (4-chlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was obtained. .
MS m / e (ESI) 432 (MH+)
Example 59
Figure 2002080899
In the same manner as in Example 54, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (3,4-dichlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was added. Obtained.
MS m / e (ESI) 466 (MH+)
Example 60
Production Example 60a)
Figure 2002080899
600 mg of diethylphosphonoacetic acid and 969 mg of 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropionic acid ethyl ester were dissolved in 10 ml of N, N-dimethylformamide, 470 μl of diethyl cyanophosphonate, 1.07 ml of triethylamine was added sequentially. The mixture was stirred overnight at room temperature, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. 1.387 g of 3- [3-([2- (diethoxyphosphoryl) acetyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23-1.30 (m, 9H) 2.84 (d, J = 20.4 Hz, 2H) 2.85-2.94 (m, 2H) 3.48 (sept, J = 6.0 Hz, 1H) 3.84 (s, 3H) 4.00 (dd, J = 4 .8, 8.4 Hz, 1H) 4.03-4.21 (m, 6H) 4.43 (d, J = 6.0 Hz, 2H) 6.77 (d, J = 8.0 Hz, 1H) 7 .12-7.15 (m, 2H)
Example 60b)
Figure 2002080899
15 mg of 3- [3-([2- (diethoxyphosphoryl) acetyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropionic acid ethyl ester is dissolved in 0.4 ml of tetrahydrofuran, and about lithium hydride 3 mg was added and stirred at room temperature for 0.5 hour. A solution of 10 mg of 4- (trifluoromethyl) benzaldehyde in N, N-dimethylformamide (0.1 ml) was added. After stirring at room temperature for 1 hour, 0.5 ml of methanol and 0.1 ml of 5N sodium hydroxide were added, and the mixture was stirred overnight at room temperature. Then, 1N hydrochloric acid was added, extracted with ethyl acetate, and the solvent was concentrated under reduced pressure. The residue was purified by HPLC to give 2-isopropoxy-3--4-methoxy-3-[((E) -3- [4- (trifluoromethyl) phenyl] -2-propenoylamino) methyl] phenylpropion 9.26 mg of acid was obtained.
MS m / e (ESI) 466 (MH+)
Example 61
Figure 2002080899
In the same manner as in Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (2,3-dichlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was added. Obtained.
MS m / e (ESI) 466 (MH+)
Example 62
Figure 2002080899
In a manner similar to Example 60, 2-isopropoxy-3--4-methoxy-3-[((E) -3- [2-fluoro-3- (trifluoromethyl) phenyl] -2-propenoylamino ) Methyl] phenylpropionic acid was obtained.
MS m / e (ESI) 484 (MH+)
Example 63
Figure 2002080899
In the same manner as in Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (2,4-dichlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was added. Obtained.
MS m / e (ESI) 466 (MH+)
Example 64
Figure 2002080899
In a manner similar to Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (4-bromo-2-fluorophenyl-2-propenoyl] aminomethyl) phenyl] Propionic acid was obtained.
MS m / e (ESI) 494 (MH+)
Example 65
Figure 2002080899
In the same manner as in Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (2,5-dichlorophenyl-2-propenoyl] aminomethyl) phenyl] propionic acid was added. Obtained.
MS m / e (ESI) 466 (MH+)
Example 66
Figure 2002080899
In the same manner as in Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -3- (1-naphthyl) -2-propenoyl] aminomethyl) phenyl] propionic acid was obtained. It was.
MS m / e (ESI) 448 (MH+)
Example 67
Production Example 67a)
Figure 2002080899
2-Diethylphosphonopropionic acid 643 mg and 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypionic acid ethyl ester 973 mg were dissolved in 10 ml of N, N-dimethylformamide, and cyanophosphonic acid was dissolved. Diethyl 470 μl and triethylamine 1.07 ml were sequentially added. The mixture was stirred overnight at room temperature, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. There was obtained 1.310 g of 3- [3-([2- (diethoxyphosphoryl) propanoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropionic acid ethyl ester.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24-1.29 (m, 9H) 1.40 (dd, J = 7.2, 17.6 Hz, 3H) 2.79-2.94 (m, 3H) 3.50 (sept, J = 6.0 Hz, 1H) 3.84 (s, 3H) 3.98-4 .2 (m, 7H) 4.43 (d, J = 4.8 Hz, 2H) 6.77 (d, J = 8.4 Hz, 1H) 7.12 (d, J = 8.4 Hz, 1H) 7 .16 (s, 1H)
Example 67b)
Figure 2002080899
In the same manner as in Example 60, 3- [3-([(E) -3- (2-chlorophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropionic acid was added. Obtained.
MS m / e (ESI) 446 (MH+)
Example 68
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (2-methylphenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropionic acid Got.
MS m / e (ESI) 426 (MH+)
Example 69
Figure 2002080899
In the same manner as in Example 60, 3- [3-([(E) -3- (4-chlorophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropionic acid was added. Obtained.
MS m / e (ESI) 446 (MH+)
Example 70
Figure 2002080899
In a manner similar to Example 60, 2-isopropoxy-3--4-methoxy-3-[((E) -2-methyl-3- [4- (trifluoromethyl) phenyl] -2-propenoyl emi No) methyl] phenylpropionic acid.
MS m / e (ESI) 480 (MH+)
Example 71
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (2,3-dichlorophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropion The acid was obtained.
MS m / e (ESI) 480 (MH+)
Example 72
Figure 2002080899
In a manner similar to that in Example 60, 3-3-3 [((E) -3- [2-fluoro-3- (trifluoromethyl) phenyl] -2-methyl-2-propenoylamino) methyl] -4 -Methoxyphenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 498 (MH+)
Example 73
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (3-fluoro-2-methylphenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2- Isopropoxypropionic acid was obtained.
MS m / e (ESI) 444 (MH+)
Example 74
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (2,4-dichlorophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropion The acid was obtained.
MS m / e (ESI) 480 (MH+)
Example 75
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (2-fluoro-4-bromophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2- Isopropoxypropionic acid was obtained.
MS m / e (ESI) 510 (MH+)
Example 76
Figure 2002080899
In a manner similar to Example 60, 3- [3-([(E) -3- (3,4-dichlorophenyl) -2-methyl-propenoyl] aminomethyl) -4 methoxyphenyl] -2-isopropoxypropion The acid was obtained.
MS m / e (ESI) 480 (MH+)
Example 77
Figure 2002080899
In a manner similar to Example 60, 2-isopropoxy-3- [4-methoxy-3-([(E) -2-methyl-3- (1-naphthyl) -2-propenoyl] aminomethyl) phenyl] Propionic acid was obtained.
MS m / e (ESI) 462 (MH+)
Example 78
Production Example 78a)
Figure 2002080899
114 mg of propiolic acid was dissolved in 8 ml of tetrahydrofuran, 13 mg of lithium hydride and 140 μl of ethyl chloroformate were sequentially added, and the mixture was stirred at room temperature for 1 hour. 3- [3- (Aminomethyl) -4-methoxyphenyl] -2-isopropoxypropionic acid ethyl ester 489 mg of a solution was added to 2 ml of tetrahydrofuran, 210 ml of triethylamine was added, and the mixture was stirred at room temperature overnight. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (2: 1 → 3: 2), 2-isopropoxy-3--4-methoxy-3-[(propioroylamino) methyl] phenylpropi 230 mg of on acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 2.76 (s , 1H) 2.87 (dd, J = 8.4, 14.0 Hz, 1H) 2.94 (dd, J = 4.8, 14.0 Hz, 1H) 3.51 (sept, J = 6.0 Hz , 1H) 3.85 (s, 3H) 4.01 (dd, J = 5.2, 8.4 Hz, 1H) 4.12 (q, J = 8.0 Hz, 2H) 4.45 (d, J = 6.0 Hz, 2H) 6.35 (br, 1H) 6.80 (d, J = 8.0 Hz, 1H) 7.13-7.18 (m, 2H)
Example 78b)
Figure 2002080899
16 mg of 2-isopropoxy-3--4-methoxy-3-[(propioloylamino) methyl] phenylpropionic acid ethyl ester is dissolved in 0.6 ml of N, N-dimethylformamide, 15 mg of iodobenzene, dichlorobistriphenylphosphine 3 mg of palladium, 2 mg of copper iodide, 3 mg of lithium chloride and 0.1 ml of triethylamine were added, and the mixture was stirred overnight at room temperature under a nitrogen atmosphere. Water was added to the reaction mixture, extraction was performed with ethyl acetate, and the solvent was concentrated under reduced pressure. To the residue, 0.5 ml of methanol and 0.1 ml of 5N sodium hydroxide were added, and the mixture was stirred at room temperature overnight. The reaction mixture was acidified with 5N hydrochloric acid, extracted with ethyl acetate, and the solvent was concentrated under reduced pressure. The residue was purified by HPLC to obtain 1.91 mg of 2-isopropoxy-3- (4-methoxy-3-[(3-phenyl-2-propinoyl) amino] methylphenyl) propionic acid.
MS m / e (ESI) 397 (MH+)
Example 79
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (4-methoxyphenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 426 (MH+)
Example 80
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (4-methylphenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 410 (MH+)
Example 81
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (4-fluorophenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 414 (MH+)
Example 82
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (3-methoxyphenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 426 (MH+)
Example 83
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3-14-methoxy-3-([3- (3-bromophenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 475 (MH+)
Example 84
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3--4-methoxy-3-[(3- [3- (trifluoromethyl) phenyl] -2-propinoylaminomethyl] propionic acid was obtained.
MS m / e (ESI) 464 (MH+)
Example 85
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (3-methylphenyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 410 (MH+)
Example 86
Figure 2002080899
In the same manner as in Example 78, 2-isopropoxy-3- [4-methoxy-3-([3- (1-naphthyl) -2-propinoyl] aminomethyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 446 (MH+)
Example 87
Production Example 87a)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-2,4-dimethoxyfemil) -2-isopropoxy using 3-bromo-2,6-dimethoxybenzaldehyde in the same manner as in Production Example 89e) Propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 7.2 Hz, 3H) 1.44 (s 9H) 2.87 (dd, J = 8.4, 14.0 Hz, 1H) 2.98 (dd, J = 5.6, 14.0 Hz, 1H) 3.51 (sept, J = 6.4 Hz) , 1H) 3.80 (s, 3H) 3.83 (s, 3H) 4.12-4.17 (m, 3H) 4.40 (d, J = 5.2 Hz, 2H) 5.11 (br , 1H) 6.60 (d, J = 8.8 Hz, 1H) 7.15 (d, J = 8.8 Hz, 1H)
Example 87b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-2,4-dimethoxyfemil) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38, and 3- ( 3-[(2,4-dichlorobenzoyl) amino] methyl-2,4-dimethoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 470 (MH+)
Example 88
Production Example 88a)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4,6-dimethoxyfemil) -2-isopropoxy using 5-bromo-2,4-dimethoxybenzaldehyde in the same manner as in Production Example 89e) Propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 1.26 (t, J = 6.8 Hz, 3H) 1.43 (s , 9H) 2.86 (dd, J = 8.8, 18.4 Hz, 1H) 2.98 (dd, J = 6.4, 13.6 Hz, 1H) 3.51 (sept, J = 6.4 Hz) , 1H) 3.83 (s, 3H) 3.84 (s, 3H) 4.08-4.17 (m, 3H) 4.20 (brs, 2H) 4.94 (br, 1H) 6.40 (S, 1H) 7.02 (s, 1H)
Example 88b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-4,6-dimethoxyfemil) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38, and 3- ( 5-[(2,4-dichlorobenzoyl) amino] methyl-2,4-dimethoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 470 (MH+)
Example 89
Production Example 89a)
Figure 2002080899
10.67 g of 5-bromo-2,3-dimethoxybenzaldehyde was dissolved in 100 ml of tetrahydrofuran and 100 ml of ethanol, 1 g of sodium borohydride was added, and the mixture was stirred at room temperature overnight. 1N-hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate. The solvent was evaporated under reduced pressure, and 5-bromo-2, 10.27 g of 3-dimethoxybenzyl alcohol was obtained. 5.326 g of this crude product was dissolved in 50 ml of N, N-dimethylformamide, 1.8 g of imidazole and 5.9 g of tert-butylchlorodiphenylsilane were added, and the mixture was stirred overnight at room temperature. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure, [(5-bromo-2,3-dimethoxybenzyl 1) 10.72 g of oxy] (tert-butyl) diphenylsilane was obtained.
1H-NMR (CDCl3) Δ: 1.10 (s, 9H) 3.63 (s, 3H) 3.84 (s, 3H) 4.76 (s, 2H) 6.96 (d, J = 2.0 Hz, 1H) 7 .33 (d, J = 1.6 Hz, 1H) 7.63-7.45 (m, 6H) 7.68-7.71 (m, 4H)
Production Example 89b)
Figure 2002080899
10.72 g of [(5-bromo-2,3-dimethoxybenzyl 1) oxy] (tertiary butyl) diphenylsilane was dissolved in 100 ml of tetrahydrofuran and cooled to −78 ° C. under a nitrogen atmosphere. After adding 16 ml of butyl lithium (1.5 M hexane solution) and stirring for 30 minutes, 2.5 ml of 4-formylmorpholine was added. After stirring at −78 ° C. for 1 hour, 1N-hydrochloric acid was added and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. . The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (2: 1 → 3: 2), 3-([1- (tert-butyl) -1,1-diphenylsilyl] oxymethyl)- 9.4 g of 4,5-dimethoxybenzaldehyde was obtained.
1H-NMR (CDCl3) Δ: 1.12 (s, 9H) 3.77 (s, 3H) 3.91 (s, 3H) 4.84 (s, 2H) 7.39-7.44 (m, 7H) 7.69 -7.72 (m, 5H) 9.91 (s, 1H)
Production Example 89c)
Figure 2002080899
Diethyl 2-isopropoxyphosphonoacetate (510 mg) was dissolved in tetrahydrofuran (20 ml), and sodium hydride (370 mg) was added. The mixture was stirred at room temperature for 30 minutes, and a solution of 3.485 g of 3-([1- (tert-butyl) -1,1-diphenylsilyl] oxymethyl) -4,5-dimethoxybenzaldehyde in 5 ml of N, N-dimethylformamide was added. added. The mixture was stirred overnight at room temperature, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. (E, Z) -3-[[1- (tert-butyl) -1,1-diphenylsilyl] oxymethyl) -4,5-dimethoxyphenyl] -2-isopropoxy-2-propionic acid ethyl ester 01 g was obtained. 5.01 g of this crude product was dissolved in 30 ml of tetrahydrofuran, and 1 ml of acetic acid and 10 ml of tetrabutylammonium fluoride (1M solution) were sequentially added. The reaction mixture was diluted with ethyl acetate, and the organic layer was washed with water and saturated aqueous sodium chloride and dried over anhydrous magnesium sulfate. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (2: 1 → 3: 2), (E, Z) -3- [hydroxymethyl) -4,5-dimethoxyphenyl] -2- 2.209 g of isopropoxy-2-propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 1.24-1.39 (m, 9H) 3.84, 3.87 (each s, 3H) 3.89, 3.92 (each s, 3H) 4.16, 4.29 (each) q, J = 7.2 Hz, 2H) 4.27, 4.47 (each sept, J = 6.0 Hz, 1H) 4.65, 4.67 (each s, 2H) 6.16, 6.94 ( (each s, 1H) 6.79 (s, 1H) 7.23, 7.67 (each d, J = 2.0 Hz and 1.6 Hz, 1H)
Production Example 89d)
Figure 2002080899
Dissolve 2.209 g of (E, Z) -3- [hydroxymethyl) -4,5-dimethoxyphenyl] -2-isopropoxy-2-propionic acid ethyl ester in 15 ml of toluene, and add 1.6 ml of diphenylphosphoryl azide and Diazabicyclo [5.4.0] undecene (1.1 ml) was added, and the mixture was stirred overnight at room temperature. Water was added to the reaction product and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography, and (E, Z) -3- [3- (azidomethyl) -4,5-dimethoxyphenyl]-from the fraction eluted with hexane-ethyl acetate (2: 1 → 3: 2). 2-Isopropoxy-2-propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 1.14 (t, = 6.8 Hz, 3H) 1.30 (d, J = 7.2 Hz, 3H) 1.35 (d, J = 7.2 Hz, 3H) 3.84, 3. 87 (each s, 3H) 3.90, 3.92 (each s, 3H) 4.16, 4.30 (each q, J = 6.8 Hz, 2H) 4.35 (d, J = 11.2 Hz 2H) 4.50 (sept, J = 6.4 Hz, 1H) 6.14, 6.93 (each s, 1H) 6.75, 6.72 (each d, J = 2.0 Hz, 1H) 7 .26, 7.64 (each d, J = 2.0 Hz, 1H)
Production Example 89e)
Figure 2002080899
(E, Z) -3- [3- (azidomethyl) -4,5-dimethoxyphenyl] -2-isopropoxy-2-propionic acid ethyl ester 2.124 g was dissolved in 50 ml of ethyl acetate, and tert-butyl dicarbonate was added. 1.5 g, 10% palladium carbon 800 mg was added, and the mixture was stirred at room temperature for 20 hours under a hydrogen atmosphere. The reaction mixture was filtered through celite, the filtrate was concentrated, the residue was purified by silica gel column chromatography, and 3- (3-[(tert-butoxycarbonyl) was eluted from the fraction eluted with hexane-ethyl acetate (5: 1 → 4: 1). ) Amino] methyl-4,5-dimethoxyfemil) -2-isopropoxypropionic acid ethyl ester 1.93 g was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.26 (t, J = 6.8 Hz, 3H) 1.44 (s , 9H) 2.87 (dd, J = 8.4, 14.0 Hz, 1H) 2.94 (dd, J = 4.8, 14.0 Hz, 1H) 3.51 (sept, J = 6.4 Hz) , 1H) 3.82 (s, 3H) 3.84 (s, 3H) 4.02 (dd, J = 4.8, 8.4 Hz, 1H) 4.13-4.22 (m, 2H) 4 .29 (d, J = 6.0 Hz, 2H) 4.94 (br, 1H) 6.76 (s, 1H) 6.78 (s, 1H)
Example 89f)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4,5-dimethoxyfemil) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38, and 3- ( 3-[(2,4-dichlorobenzoyl) amino] methyl-4,5-dimethoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 470 (MH+)
Example 90
Production Example 90a)
Figure 2002080899
2-Benzyloxy-5-formyl-benzoic acid methyl ester (39.1 g) was dissolved in methanol (300 ml), trimethyl orthoformate (60 ml) and paratosylic acid (2 g) were added, and the mixture was heated to reflux for 4 hours. After cooling to room temperature, 5 ml of triethylamine was added and concentrated under reduced pressure. The residue was dissolved in ethyl acetate, washed successively with water and saturated aqueous sodium hydrogen carbonate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. 39.08 g of 2- (benzyloxy) -5- (dimethoxymethyl) benzoic acid methyl ester was obtained.
1H-NMR (CDCl3) Δ: 3.32 (6H, s) 3.88 (s, 3H) 5.19 (s, 2H) 5.37 (s, 1H) 7.03 (d, J = 8.0 Hz, 1H) 7 .33-7.41 (m, 3H) 7.47-7.53 (m, 3H) 7.91 (s, 1H)
Production Example 90b)
Figure 2002080899
7 g of hydrogenated aluminum hydride was suspended in 200 ml of tetrahydrofuran under ice cooling, and a solution of 39.08 g of methyl 2- (benzyloxy) -5- (dimethoxymethyl) benzoate in 100 ml of tetrahydrofuran was added. After stirring for 5 minutes, water, 15% sodium hydroxide and water were added and filtered. The filtrate was concentrated under reduced pressure to obtain 35.15 g of 2- (benzyloxy) -5- (dimethoxymethyl) benzyl alcohol. This crude product was dissolved in 250 ml of toluene, 40 g of diphenylphosphoryl azide and 22 ml of diazabicyclo [5.4.0] undecene were added, and the mixture was stirred overnight at room temperature. Water was added to the reaction product and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography, and 17.4 g of 4- (benzyloxy) -3- (azidomethyl) dimethoxymethylbenzene was obtained from the fraction eluted with hexane-ethyl acetate (15: 1). This was allowed to stand at room temperature for 1 month and purified by silica gel column chromatography. 9.39 g of 4- (benzyloxy) -3- (azidomethyl) benzaldehyde was obtained from the fraction eluted with hexane-ethyl acetate (12: 1). It was.
1H-NMR (CDCl3) Δ: 4.48 (s, 2H) 5.22 (s, 2H) 7.90 (d, J = 8.8 Hz, 1H) 7.37-7.45 (m, 5H) 7.84-7 .86 (m, 2H) 9.90 (s, 1H)
Production Example 90c)
Figure 2002080899
12.9 g of diethyl 2-isopropoxyphosphonoacetate was dissolved in 100 ml of tetrahydrofuran, and 1.7 g of sodium hydride was added under ice cooling. The mixture was stirred at room temperature for 30 minutes, and a solution of 9.39 g of 3,4- (benzyloxy) -3- (azidomethyl) benzaldehyde in 20 ml of N, N-dimethylformamide was added. The mixture was stirred at room temperature for 4 hours, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. 16.7 g of (E, Z) -3- [azidomethyl) -4- (benzyloxy) phenyl] -2-isopropoxy-2-propionic acid ethyl ester was obtained. 12.46 g of this crude product was dissolved in ethanol, 8.3 g of tert-butyl dicarbonate and 3 g of 10% palladium carbon were added, and the mixture was stirred at room temperature for 1.5 days in a hydrogen atmosphere. The reaction mixture was filtered through Celite, the filtrate was concentrated, the residue was purified by silica gel column chromatography, and 3- (3-[(tert-butoxycarbonyl) amino] methyl was extracted from the fraction eluted with hexane-ethyl acetate (4: 1). 6.2 g of -4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.99 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 7.2 Hz, 3H) 1.44 (s , 9H) 2.84 (dd, J = 8.4, 13.6 Hz, 1H) 2.90 (dd, J = 5.0, 13.6 Hz, 1H) 3.50 (sept, J = 6.4 Hz) , 1H) 3.98 (dd, J = 5.6, 8.4 Hz, 1H) 4.12 (q, J = 6.8 Hz, 2H) 4.19 (d, J = 6.4 Hz, 2H) 5 .22 (br, 1H) 6.86 (d, J = 8.4 Hz, 1H) 6.94 (d, J = 2.0 Hz, 1H) 7.08 (dd, = 2.0, 8.0 Hz, 1H) 8.77 (br, 1H)
Production Example 90d)
Figure 2002080899
402 mg of 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester was dissolved in 5 ml of acetonitrile, and 200 mg of N-bromosuccinimide was added. The mixture was stirred at room temperature for 1 hour, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (5: 1), 3- (3-bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2 was obtained. -433 mg of isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 6.8 Hz, 3H) 1.44 (s 9H) 2.80 (dd, J = 8.4, 13.6 Hz, 1H) 2.88 (dd, J = 7.2, 14.0 Hz, 1H) 3.51 (sept, J = 6.4 Hz) , 1H) 3.97 (dd, J = 4.8, 8.4 Hz, 1H) 4.16-4.22 (m, 2H) 4.24 (d, J = 6.8 Hz, 2H) 5.20 (Br, 1H) 6.96 (d, J = 1.6 Hz, 1H) 7.35 (d, J = 2.0 Hz, 1H) 8.45 (br, 1H)
Production Example 90e)
Figure 2002080899
944 mg of 3- (3-bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester was dissolved in 5 ml of N, N-dimethylformamide, 15 ml and 500 mg of potassium carbonate were sequentially added. After stirring at room temperature for 2 hours, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (4: 1), 3- (3-bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -2 -876 mg of isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.45 (s, 9H) 2.86 (dd, J = 8.4) , 14.0 Hz, 1H) 2.93 (dd, J = 4.4, 14.0 Hz, 1H) 3.51 (sept, J = 6.4 Hz, 1H) 3.74 (s, 3H) 3.84 (S, 3H) 4.02 (dd, J = 4.8, 8.4 Hz, 1H) 4.34 (d, J = 6.0 Hz, 2H) 4.95 (br, 1H) 7.12 (d , J = 1.6 Hz, 1H) 7.37 (d, J = 2.0 Hz, 1H)
Example 90f)
Figure 2002080899
3- (3-Bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropionic acid ethyl ester is used in the same manner as in Example 38, and 3- (3-Bromo-5-[(2,4-dichlorobenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 520 (MH+)
Example 91
Production Example 91a)
Figure 2002080899
3- (3-Bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropionic acid ethyl ester 876 mg was dissolved in propionitrile 5 ml, sodium cyanide 182 mg, tetrakis To this, 214 mg of triphenylphosphine palladium and 70 mg of copper iodide were added, and the mixture was heated to reflux overnight under a nitrogen atmosphere. The reaction mixture was cooled to room temperature, ethyl acetate was added, and the mixture was filtered through celite. The filtrate was concentrated under reduced pressure, and the residue was purified by Rica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (4: 1), 3- (3-cyano-5-[(tert-butoxycarbonyl) amino] methyl-4- Methoxyphenyl) -2-isopropoxypropionic acid ethyl ester 586 mg was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 6.8 Hz, 3H) 1.45 (s , 9H) 2.89 (dd, J = 8.4, 14.0 Hz, 1H) 2.97 (dd, J = 4.4, 14.0 Hz, 1H) 3.53 (sept, J = 6.4 Hz) , 1H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.07 (s, 3H) 4.21-4.27 (m, 2H) 4.30 (s, 2H) 4 .94 (br, 1H) 7.40 (d, J = 2.4 Hz, 1H) 7.42 (d, J = 0.8 Hz, 1H)
Example 91b)
Figure 2002080899
3- (3-Cyano-5-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropionic acid ethyl ester is used in the same manner as in Example 38, and 3- (3-Cyano-5-[(2,4-dichlorobenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 465 (MH+)
Example 92
Production Example 92a)
Figure 2002080899
12 g of 5-bromo-2-chlorobenzoic acid was dissolved in 60 ml of tetrahydrofuran, and 148.3 g of borane tetrahydrofuran complex (1M tetrahydrofuran solution) was added. Stir at room temperature for 2.5 days. 1N-hydrochloric acid was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 5-bromo-2-chlorobenzyl. 11.46 g of alcohol was obtained. This crude product was treated in the same manner as in Production Example 89e) to obtain 3- (3-[(tert-butoxycarbonyl) amino] methylfemil) -2-isopropoxypropionic acid ethyl ester.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 7.2 Hz, 3H) 1.46 (s 9H) 2.93 (dd, J = 8.4, 14.0 Hz, 1H) 3.07 (dd, J = 4.8, 14.0 Hz, 1H) 3.49 (sept, J = 6.4 Hz) , 1H) 4.04 (dd, J = 4.8, 8.4 Hz, 1H) 4.12-4.19 (m, 2H) 4.30 (d, J = 5.2 Hz, 2H) 4.80 (Br, 1H) 7.12-7.16 (m, 3H) 7.23 (d, J = 8.0 Hz, 1H)
Example 92b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methylfemil) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38 to give 3- (3-[(2,4- Dichlorobenzoyl) amino] methylphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 410 (MH+)
Example 93
Production Example 93a)
Figure 2002080899
795 mg of 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester is dissolved in 2 ml of N, N-dimethylformamide, 0.3 ml of iodoethane, potassium carbonate 200 mg was added sequentially. After stirring at 50 ° C. for 4 hours, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography, and 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropion was obtained from the fraction eluted with hexane-ethyl acetate (8: 1). 185 mg of acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.8 Hz, 3H) 1.42 (t , J = 6.8 Hz, 3H) 1.45 (s, 9H) 2.86 (dd, J = 8.4, 14.0 Hz, 1H) 2.93 (dd, J = 4.8, 14.0 Hz) , 1H) 3.49 (sept, J = 6.4 Hz, 1H) 3.98-4.06 (m, 3H) 4.13-4.21 (m, 2H) 4.29 (d, J = 5 .2 Hz, 2H) 4.99 (br, 1H) 6.75 (d, J = 8.4 Hz, 1H) 7.14 (d, J = 8.8 Hz, 1H) 7.14 (s, 1H)
Example 93b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38 to give 3- (3- [ (2,4-Dichlorobenzoyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.45 (t, J = 7.2 Hz, 3H) 2.92 (dd , J = 8.0, 14.0 Hz, 1H) 3.07 (dd, J = 4.4, 14.0 Hz, 1H) 3.58 (sept, J = 6.0 Hz, 1H) 4.06-4 .15 (m, 3H) 4.64 (d, J = 6.0 Hz, 2H) 6.81 (d, J = 8.4 Hz, 1H) 6.88 (br, 1H) 7.15 (dd, J = 2.4, 8.4 Hz, 1H) 7.27 (d, J = 8.4 Hz, 2H) 7.42 (d, J = 2.4 Hz, 1H) 7.68 (d, J = 8.4 Hz) , 1H)
MS m / e (ESI) 454 (MH+)
Example 94
Production Example 94a)
Figure 2002080899
In the same manner as in Production Example 93, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-propoxyphenyl) -2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.05 (t, J = 6.8 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (t , J = 6.8 Hz, 3H) 1.44 (s, 9H) 1.78-1.86 (m, 2H) 2.86 (dd, J = 8.4, 14.0 Hz, 1H) 2.93 (Dd, J = 4.8, 14.0 Hz, 1H) 3.50 (sept, J = 6.4 Hz, 1H) 3.93 (t, J = 6.4 Hz, 2H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.14-4.21 (m, 2H) 4.30 (d, J = 5.2 Hz, 2H) 4.98 (br, 1H) 6.75 (d , J = 8.4 Hz, 1H) 7.09 (dd, J = 2.0, 8.4 Hz, 1H) 7.13 (s, 1H)
Example 94b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-4-propoxyphenyl) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38 to give 3- (3- [ (2,4-Dichlorobenzoyl) amino] methyl-4-propoxyphenyl) -2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.05 (t, J = 7.2 Hz, 3H) 1.06 (d, J = 6.6 Hz, 3H) 1.18 (d, J = 6.0 Hz, 3H) 1.80-1 .87 (m, 2H) 2.91 (dd, J = 8.0, 14.0 Hz, 1H) 3.07 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.97 (t, J = 7.2 Hz, 2H) 4.12 (dd, J = 4.4, 8.0 Hz, 1H) 4.65 (d, J = 6.0 Hz) , 2H) 6.81-6.84 (m, 2H) 7.15 (dd, J = 2.4, 8.4 Hz, 1H) 7.25 (d, J = 2.4 Hz, 1H) 7.28 −7.33 (m, 1H) 7.42 (d, J = 2.4 Hz, 1H) 7.67 (d, J = 9.6 Hz, 1H)
MS m / e (ESI) 470 (MH+)
Example 95
Production Example 95a)
Figure 2002080899
In the same manner as in Production Example 93, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.8 Hz, 3H) 1.33 (d , J = 6.0 Hz, 6H) 1.44 (s, 9H) 1.78-1.86 (m, 2H) 2.86 (dd, J = 8.4, 14.0 Hz, 1H) 2.92 (Dd, J = 4.8, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.13 -4.21 (m, 2H) 4.26 (d, J = 5.2 Hz, 2H) 4.54 (sept, J = 6.0 Hz, 1H) 4.96 (br, 1H) 6.77 (d , J = 8.4 Hz, 1H) 7.08 (dd, J = 2.4, 8.4 Hz, 1H) 7.13 (s, 1H)
Example 95b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38 to give 3- (3- [(2,4-Dichlorobenzoyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 470 (MH+)
Example 96
Production Example 96a)
Figure 2002080899
In the same manner as in Production Example 93, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.8 Hz, 3H) 1.44 (s , 9H) 1.63-1.65 (m, 2H) 1.75-1.90 (m, 6H) 2.85 (dd, J = 8.4, 14.0 Hz, 1H) 2.92 (dd , J = 4.8, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.10-4 .21 (m, 2H) 4.25 (d, J = 5.2 Hz, 2H) 4.76-4.79 (m, 1H) 4.95 (br, 1H) 6.75 (d, J = 8 .4 Hz, 1H) 7.07 (d, J = 8.4 Hz, 1H) 7.12 (s, 1H)
Example 96b)
Figure 2002080899
3- (3-[(tert-Butoxycarbonyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38 to give 3- (3- [(2,4-Dichlorobenzoyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 494 (MH+)
Example 97
Production Example 97a)
Figure 2002080899
329 mg of 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2-isopropoxypropionic acid ethyl ester was dissolved in 4 ml of toluene, and 4-fluorophenyl was dissolved. Boronic acid 110 mg, tetrakistriphenylphosphine palladium 74 mg, and potassium carbonate 440 mg were added, and the mixture was stirred overnight at 100 ° C. in a nitrogen atmosphere. The reaction mixture was diluted with ethyl acetate, filtered through Celite, the filtrate was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (6: 1), 3- (3-[(tertiary butoxy Carbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (4-fluorophenyl) phenylpropoxypropionic acid ethyl ester 262 mg was obtained.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.4 Hz, 3H) 1.18 (d, J = 6.4 Hz, 3H) 1.26 (t, J = 7.2 Hz, 3H) 1.43 (s , 9H) 2.99 (dd, J = 8.8, 13.6 Hz, 1H) 3.04 (dd, J = 5.6, 13.2 Hz, 1H) 3.56 (sept, J = 6.4 Hz) , 1H) 4.08-4.24 (m, 5H) 4.60 (br 1H) 7.05-7.15 (m, 4H) 7.19-7.30 (m, 3H)
Example 97b)
Figure 2002080899
Example 38 using 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (4-fluorophenyl) phenylpropoxypropionic acid ethyl ester To give 3- (3-[(2,4-dichlorobenzoyl) amino] methyl-4- (4-fluorophenyl) phenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 504 (MH+)
Example 98
Production Example 98a)
Figure 2002080899
501 mg of 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester is dissolved in 7 ml of pyridine, and 270 μl of trifluoromethanesulfonic anhydride is added under ice cooling. added. After stirring at room temperature for 1 hour, 100 μl of trifluoromethanesulfonic anhydride was added. The mixture was further stirred for 2 hours, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with 1N hydrochloric acid, water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. There was obtained 663 mg of 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2-isopropoxypropionic acid ethyl ester.
1H-NMR (CDCl3) Δ: 0.92 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.8 Hz, 3H) 1.46 (s , 9H) 2.91-3.04 (m, 2H) 3.51 (sept, J = 6.4 Hz, 1H) 4.02 (dd, J = 4.4, 8.8 Hz, 1H) 4.16 -4.23 (m, 2H) 4.40 (d, J = 6.0 Hz, 2H) 4.95 (br, 1H) 7.17-7.20 (m, 1H) 7.24-7.25 (M, 1H) 7.40 (s, 1H)
Production Example 98b)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2-isopropoxypropionic acid ethyl ester (334 mg) was dissolved in dioxane (4 ml), and 2-tributylstani 280 mg of rufuran, 75 mg of tetrakistriphenylphosphine palladium and 83 mg of lithium chloride were added and stirred at 80 ° C. overnight under a nitrogen atmosphere. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (7: 1), 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(tri 180 mg of fluoromethyl) sulfonyl] oxyphenyl) -2- (2-furyl) propoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.4 Hz, 3H) 1.26 (t, J = 6.8 Hz, 3H) 1.46 (s 9H) 2.95 (dd, J = 8.8, 13.6 Hz, 1H) 3.02 (dd, J = 4.8, 14.0 Hz, 1H) 3.51 (sept, J = 6.4 Hz) , 1H) 4.06 (dd, J = 4.8, 8.8 Hz, 1H) 4.19 (q, J = 6.8 Hz, 2H) 4.47 (s, 2H) 4.95 (br 1H) 6.52 (d, J = 20 Hz, 2H) 6.98 (s, 1H) 7.21 (d, J = 8.4 Hz, 1H) 7.32 (s, 1H) 7.51-7.53 ( m, 2H)
Example 98c)
Figure 2002080899
Similar to Example 38 using 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (2-furyl) propoxypropionic acid ethyl ester In this way, 3- (3-[(2,4-dichlorobenzoyl) amino] methyl-4- (2-furyl) phenyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 476 (MH+)
Example 99
Production Example 99a)
Figure 2002080899
7.4 g of 2-methoxy-3-hydroxymethylpyridine was dissolved in 100 ml of toluene, 13.8 ml of diphenylphosphoryl azide and 9.5 ml of diazabicyclo [5.4.0] undecene were added, and the mixture was stirred at room temperature overnight. Water was added to the reaction product and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 9.5 g of [(2-methoxy-3-pyridyl) methyl] azide.
1H-NMR (CDCl3) Δ: 4.00 (s, 3H) 4.35 (s, 2H) 6.89-6.92 (m, 1H) 7.55-7.57 (m, 1H) 8.15-8.16 (M, 1H)
Production Example 99b)
Figure 2002080899
9.5 g of [(2-methoxy-3-pyridyl) methyl] azide was dissolved in 100 ml of ethyl acetate, 13 g of tert-butyl dicarbonate and 3 g of 10% palladium carbon were added, and the mixture was stirred at room temperature for 3 hours in a hydrogen atmosphere. . The reaction mixture was filtered through Celite, the filtrate was concentrated, the residue was purified by silica gel column chromatography, and tert-butyl N-[(2-methoxy-) was eluted from the fraction eluted with hexane-ethyl acetate (5: 1 → 4: 1). 6.84 g of 3-pyridyl) methyl] carbamate were obtained. 2.916 g of this crude product was dissolved in 30 ml of acetonitrile, and 2.19 g of N-bromosuccinimide was added. After stirring at room temperature for 3 days, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate, the organic layer was washed successively with water and saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was washed with a mixed solution of diethyl ether, ethyl acetate, and hexane to obtain 1.185 g of N-[(5-bromo-2-methoxy-3-pyridyl) methyl] carbamate.
1H-NMR (CDCl3) Δ: 1.44 (s, 9H) 3.94 (s, 3H) 4.22 (d, J = 6.0 Hz, 2H) 5.02 (br, 1H) 7.62 (s, 1H) 8 .01 (s, 1H)
Production Example 99c)
Figure 2002080899
N-[(5-bromo-2-methoxy-3-pyridyl) methyl] carbamate 1.009 g, dichlorobistriphenylphosphine palladium 45 mg, sodium formate 325 mg, triphenylphosphine 17 mg in anhydrous N, N-dimethylformamide 3 ml Dissolved and stirred at 110 ° C. for 2.5 hours under carbon monoxide atmosphere. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium bicarbonate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography, and 401 mg of tert-butyl N-[(5-formyl-2-methoxy-3-pyridyl) methyl] carbamate was obtained from the fraction eluted with hexane-ethyl acetate (3.5: 1). It was.
1H-NMR (CDCl3) Δ: 1.46 (s, 9H) 4.08 (s, 3H) 4.31 (d, J = 6.0 Hz, 2H) 5.02 (br, 1H) 8.01 (d, J = 2) .4 Hz, 1 H) 8.54 (d, J = 2.0 Hz, 1 H)
Production Example 99d)
Figure 2002080899
510 mg of ethyl 2-isopropoxyphosphonoacetate was dissolved in 5 ml of tetrahydrofuran, and 70 mg of sodium hydride was added. The mixture was stirred at room temperature for 15 minutes, and a solution of 401 mg of N-[(5-formyl-2-methoxy-3-pyridyl) methyl] carbamate in 2 ml of N, N-dimethylformamide was added. The mixture was stirred at room temperature for 15 minutes, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was dissolved in 8 ml of ethyl acetate and 2 ml of ethanol, 200 mg of 10% palladium carbon was added, and the mixture was stirred overnight at room temperature in a hydrogen atmosphere. The reaction mixture was filtered through Celite, the filtrate was concentrated, and the residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (4: 1 → 2.5: 1), 3- (5-[(third There were obtained 514 mg of butoxycarbonyl) amino] methyl-6-methoxy-3-pyridyl) -2-isopropoxypropionic acid ethyl ester.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 1.45 (s 9H) 2.85 (dd, J = 8.4, 14.0 Hz, 1H) 2.92 (dd, J = 4.8, 14.0 Hz, 1H) 3.52 (sept, J = 6.0 Hz ) 3.96 (s, 3H) 3.99 (dd, J = 4.8, 8.4 Hz, 1H) 4.17-4.24 (m, 4H) 5.03 (br, 1H) 7.47 (S, 1H) 7.93 (d, J = 2.0 Hz, 1H)
Example 99e)
Figure 2002080899
3- (5-[(tert-Butoxycarbonyl) amino] methyl-6-methoxy-3-pyridyl) -2-isopropoxypropionic acid ethyl ester was used in the same manner as in Example 38, and 3- ( 5-[(2,4-dichlorobenzoyl) amino] methyl-6-methoxy-3-pyridyl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 441 (MH+)
Example 100
Production Example 100a)
Figure 2002080899
253 mg of 3- (3-bromo-5-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester was dissolved in 3 ml of acetonitrile, and 157 mg of N-iodosuccinimide was dissolved. added. After stirring at room temperature for 2.5 days, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium thiosulfate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography, and 3- (3-iodo-5-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2 was obtained from the fraction eluted with hexane-ethyl acetate (4: 1). -100 mg of isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.99 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 6.8 Hz, 3H) 1.44 (s , 9H) 2.80 (dd, J = 8.0, 13.6 Hz, 1H) 2.86 (dd, J = 5.6, 13.6 Hz, 1H) 3.50 (sept, J = 6.4 Hz) , 1H) 3.96 (dd, J = 5.2, 8.8 Hz, 1H) 4.15-4.23 (m, 5H) 6.96 (d, J = 1.6 Hz, 1H) 7.58 (D, J = 1.6Hz, 1H)
Production Example 100b)
Figure 2002080899
305 mg of 3- (3-iodo-5-[(tert-butoxycarbonyl) amino] methyl-4-hydroxyphenyl) -2-isopropoxypropionic acid ethyl ester is dissolved in 3 ml of N, N-dimethylformamide, and 120 mg of trimethylsilylacetylene is obtained. , Tetrakistriphenylphosphine palladium (70 mg), copper iodide (11.5 mg) and triethylamine (0.5 ml) were added, and the mixture was stirred at room temperature overnight. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous ammonium chloride, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (6: 1), 3--3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxy-5- [2- (1, 165 mg of 1,1-trimethylsilyl) -1-ethynyl] phenyl-2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.27 (s, 9H) 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.4 Hz, 3H) 1.24 (t, J = 7.2 Hz) , 3H) 1.44 (s, 9H) 2.80 (dd, J = 9.2, 14.4 Hz, 1H) 2.88 (dd, J = 5.2, 14.0 Hz, 1H) 3.49 (Sept, J = 6.4 Hz, 1H) 3.96 (dd, J = 4.8, 8.8 Hz, 1H) 4.13-4.21 (m, 3H) 4.24 (d, J = 6 .0 Hz, 2H) 5.11 (br, 1H) 7.05 (d, J = 1.6 Hz, 1H) 7.19 (d, J = 2.4 Hz, 1H)
Production Example 100c)
Figure 2002080899
165 mg of 3--3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxy-5- [2- (1,1,1-trimethylsilyl) -1-ethynyl] phenyl-2-isopropoxypropionic acid ethyl ester Dissolved in 2 ml of tetrahydrofuran, 40 μl of acetic acid and 0.5 ml of tetrabutylammonium fluoride (1M tetrahydrofuran solution) were added and stirred at room temperature for 1 hour. The reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium hydrogen carbonate, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography, and -3-[(tert-butoxycarbonyl) amino] methyl-4-hydroxy-5- (1-ethynyl) phenyl was extracted from the fraction eluted with hexane-ethyl acetate (3: 1). 122 mg of 2-isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.4 Hz, 3H) 1.26 (t, J = 7.2 Hz, 3H) 1.44 (s , 9H) 2.81 (dd, J = 9.2, 14.4 Hz, 1H) 2.88 (dd, J = 5.2, 14.0 Hz, 1H) 3.36 (s, 1H) 3.50 (Sept, J = 6.4 Hz, 1H) 3.97 (dd, J = 4.8, 8.8 Hz, 1H) 4.15-4.22 (m, 2H) 4.23 (d, J = 6 .8 Hz, 2H) 7.04 (s, 1H) 7.20 (s, 1H)
Production Example 100d)
Figure 2002080899
3- (3-((Butoxycarbonyl) amino) methyl-4-hydroxy-5- (1-ethynyl) phenyl-2-isopropoxypropionic acid ethyl ester (121 mg) was dissolved in 2 ml of N, N-dimethylformamide. 50 mg of potassium was added. After stirring at 60-70 ° C. overnight, the reaction mixture was diluted with ethyl acetate, the organic layer was washed with water and saturated aqueous sodium chloride, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography. From the fraction eluted with hexane-ethyl acetate (6: 1), 3- (7-[(tert-butoxycarbonyl) amino] methylbenzo [b] furan-5-yl) -2- 57 mg of isopropoxypropionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.94 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 6.8 Hz, 3H) 1.46 (s , 9H) 3.01 (dd, J = 8.8, 14.0 Hz, 1H) 3.08 (dd, J = 5.2, 14.0 Hz, 1H) 3.49 (sept, J = 6.4 Hz) , 1H) 4.07 (dd, J = 5.2, 8.4 Hz, 1H) 4.12-4.19 (m, 2H) 4.60 (brs, 2H) 5.01 (br, 1H) 6 .72 (s, 1H) 7.13 (s, 1H) 7.39 (d, J = 1.6 Hz, 1H) 7.61 (d, J = 2.0 Hz, 1H)
Example 100e)
Figure 2002080899
3- (7-[(tert-Butoxycarbonyl) amino] methylbenzo [b] furan-5-yl) -2-isopropoxypropionic acid ethyl ester is used in the same manner as in Example 38, and 3- ( 7-[(2,4-dichlorobenzoyl) amino] methylbenzo [b] furan-5-yl) -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 451 (MH+)
Example 101
Production Example 101a)
Figure 2002080899
3- (7-[(tert-butoxycarbonyl) amino] methylbenzo [b] furan-5-yl) -2-isopropoxypropionic acid ethyl ester 29 mg was dissolved in ethanol, 10% palladium carbon 30 mg was added, and hydrogen atmosphere was added. Under stirring at room temperature for 3 days. The reaction mixture was filtered through celite, the filtrate was concentrated and 3- (7-[(tert-butoxycarbonyl) amino] methyl-2,3-dihydrobenzo [b] furan-5-yl) -2-isopropoxypropionic acid. 27 mg of ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 0.99 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (t, J = 6.8 Hz, 3H) 1.45 (s 9H) 2.85 (dd, J = 8.4, 14.0 Hz, 1H) 2.92 (dd, J = 4.8, 14.0 Hz, 1H) 3.17 (t, J = 5.2 Hz) , 2H) 3.50 (sept, J = 6.0 Hz, 1H) 3.98 (dd, J = 4.8, 8.4 Hz, 1H) 4.13-4.20 (m, 2H) 4.24 (Brs, 2H) 4.57 (t, J = 5.2 Hz, 2H) 4.97 (br, 1H) 6.91 (s, 1H) 7.00 (s, 1H)
Example 101b)
Figure 2002080899
Method similar to Example 38 using 3- (7-[(tert-butoxycarbonyl) amino] methyl-2,3-dihydrobenzo [b] furan-5-yl) -2-isopropoxypropionic acid ethyl ester To give 3- (7-[(2,4-dichlorobenzoyl) amino] methyl-2,3-dihydrobenzo [b] furan-5-yl) -2-isopropoxypropionic acid.
MS m / e (ESI) 481 (MH+)
Example 102
Figure 2002080899
Treatment in the same manner as in Example 87, 3- [2,4-dimethoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 499 (MH+)
Example 103
Figure 2002080899
Treatment in the same manner as in Example 88, 3- [2,4-dimethoxy-5-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 499 (MH+)
Example 104
Figure 2002080899
Treatment in the same manner as in Example 89, 3- [3,4-dimethoxy-5-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 499 (MH+)
Example 105
Figure 2002080899
Treatment in the same manner as in Example 90 and 3- [3-bromo-4-methoxy-5-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) Phenyl] -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 548 (MH+)
Example 106
Figure 2002080899
Treatment in the same manner as in Example 91, 3- [3-cyano-4-methoxy-5-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) Phenyl] -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 494 (MH+)
Example 107
Figure 2002080899
2-Isopropoxy-3- [3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl]] propion was treated in the same manner as in Example 92. The acid was obtained.
MS m / e (ESI) 439 (MH+)
Example 108
Figure 2002080899
Treatment in the same manner as in Example 93, followed by 3- [4-ethoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2 -Isopropoxypropionic acid was obtained.
MS m / e (ESI) 483 (MH+)
Example 109
Figure 2002080899
Treatment in the same manner as in Example 94, followed by 3- [4-propoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2 -Isopropoxypropionic acid was obtained.
MS m / e (ESI) 497 (MH+)
Example 110
Figure 2002080899
Treat in the same manner as in Example 95 to give 3- [4-isopropoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl]- 2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 497 (MH+)
Example 111
Figure 2002080899
Treatment in the same manner as in Example 96, followed by 3- [4-cyclopentyloxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl]- 2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 523 (MH+)
Example 112
Figure 2002080899
Treatment in a manner similar to that in Example 97 gave 3- [4- (4-fluorophenyl) -3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl. ) Phenyl] -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 533 (MH+)
Example 113
Figure 2002080899
Treatment in the same manner as in Example 98, 3- [4- (4-furyl) -3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) Phenyl] -2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 505 (MH+)
Example 114
Figure 2002080899
Treatment with a method similar to that in Example 99 and 2-isopropoxy-3- [6-methoxy-5-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl ) -3-Pyridyl] propionic acid.
MS m / e (ESI) 470 (MH+)
Example 115
Figure 2002080899
Treatment in the same manner as in Example 100 gave 2-isopropoxy-3- [7-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) benzo [b ] Furan-5-yl] propionic acid was obtained.
MS m / e (ESI) 479 (MH+)
Example 116
Figure 2002080899
Treatment in the same manner as in Example 101 gave 2-isopropoxy-3- [7-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) -2, 3-Dihydrobenzo [b] furan-5-yl] propionic acid was obtained.
MS m / e (ESI) 480 (MH+)
Example 117
Figure 2002080899
The product was treated in the same manner as in Example 93 to obtain 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 498 (MH+)
Example 118
Figure 2002080899
The product was treated in the same manner as in Example 93 to obtain 3- (3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropionic acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.34 (d, J = 6.0 Hz, 6H) 1.43 (t , J = 7.2 Hz, 3H) 2.90 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept , J = 6.0 Hz, 1H) 4.06 (q, J = 7.2 Hz, 2H) 4.11 (dd, J = 4.4, 8.0 Hz, 1H) 4.56 (sept, J = 6 0.0 Hz, 1H) 4.62 (d, J = 5.6 Hz, 2H) 6.79 (d, J = 8.8 Hz, 1H) 6.81 (dd, J = 2.4, 8.4 Hz, 1H) 6.87 (d, J = 2.8 Hz, 1H) 7.07 (br, 1H) 7.12 (dd, J = 2.4, 8.4 Hz, 1H) 7.23 (d, J = 2) .4Hz, 1 ) 7.74 (d, J = 8.4Hz, 1H)
MS m / e (ESI) 478 (MH+)
Example 119
Figure 2002080899
The product was treated in the same manner as in Example 93 to obtain 3- (3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4-ethoxyphenyl) -2-isopropoxypropionic acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.43 (t, J = 7.2 Hz, 3H) 1.61-1 .65 (m, 2H) 1.74-1.94 (m, 6H) 2.90 (dd, J = 8.0, 14.0 Hz, 1H) 3.05 (dd, J = 4.4, 14 .0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 4.06 (q, J = 7.2 Hz, 2H) 4.10 (dd, J = 4.4, 8.0 Hz, 1H ) 4.62 (d, J = 5.6 Hz, 2H) 4.74-4.77 (m, 1H) 6.78 (d, J = 8.0 Hz, 1H) 6.80 (dd, J = 2) .4, 8.4 Hz, 1H) 6.86 (d, J = 2.4 Hz, 1H) 7.08 (brt, J = 5.6 Hz, 1H) 7.12 (dd, J = 2.4, 8 .4Hz, 1H) 7 23 (d, J = 2.4Hz, 1H) 7.73 (d, J = 8.4Hz, 1H)
MS m / e (ESI) 504 (MH+)
Example 120
Figure 2002080899
Treatment in the same manner as in Example 93, and 3--3-[([2- (4-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-ethoxy Phenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.48 (t, J = 7.2 Hz, 3H) 2.04 (s) , 3H) 2.71 (s, 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (Sept, J = 6.0 Hz, 1H) 4.08-4.13 (m, 3H) 4.59 (d, J = 5.6 Hz, 2H) 4.74-4.77 (m, 1H) 6 .53 (brt, J = 6.4 Hz, 1H) 6.81 (d, J = 8.4 Hz, 1H) 7.13 (dd, J = 2.4, 8.4 Hz, 1H) 7.21 (d , J = 2.4 Hz, 1H) 7.24 (d, J = 8.0 Hz, 2H) 7.80 (d, J = 8.4 Hz, 2H)
MS m / e (ESI) 497 (MH+)
Example 121
Figure 2002080899
Treatment in the same manner as in Example 93 to give 3--3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-ethoxyphenyl -2-Isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.48 (t, J = 7.2 Hz, 3H) 2.75 (s) , 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz , 1H) 4.08-4.13 (m, 3H) 4.60 (d, J = 6.0 Hz, 2H) 6.61 (brt, J = 6.4 Hz, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.4, 8.4 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.35-7.40 (m, 1H) 7.48-7.51 (m, 1H) 8.24-8.27 (m, 1H)
MS m / e (ESI) 516 (MH+)
Example 122
Figure 2002080899
Treatment in the same manner as in Example 93, followed by 3-3-3-[([2- (4-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-ethoxyphenyl -2-Isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.48 (t, J = 7.2 Hz, 3H) 2.71 (s , 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz , 1H) 4.08-4.13 (m, 3H) 4.59 (d, J = 6.0 Hz, 2H) 6.54 (brt, J = 5.6 Hz, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.4, 8.4 Hz, 1H) 7.21 (d, J = 2.4 Hz, 1H) 7.41 (d, J = 8.8 Hz) , 2H) 7.86 (d, J = 8.8 Hz, 2H)
MS m / e (ESI) 516 (MH+)
Example 123
Figure 2002080899
Treatment in the same manner as in Example 93, and 3--3-[([2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4- Ethoxyphenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 551 (MH+)
Example 124
Figure 2002080899
Treatment in the same manner as in Example 93, followed by 3-4-ethoxy-3-[([4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl] phenyl -2-Isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.47 (t, J = 7.2 Hz, 3H) 2.05 (s 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz) , 1H) 4.08-4.13 (m, 3H) 4.58 (d, J = 5.6 Hz, 2H) 6.50 (br, 1H) 6.82 (d, J = 8.0 Hz, 1H) ) 7.09 (dd, J = 3.6, 5.2 Hz, 1H) 7.13 (dd, J = 2.4, 8.0 Hz, 1H) 7.21 (d, J = 2.0 Hz, 1H) ) 7.48 (ddd, J = 1.2, 5.2, 33.6 Hz, 1H)
MS m / e (ESI) 489 (MH+)
Example 125
Figure 2002080899
The product was treated in the same manner as in Example 94 to obtain 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-propoxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 492 (MH+)
Example 126
Figure 2002080899
The product was treated in the same manner as in Example 94 to obtain 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.05 (t, J = 7.2 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.33 (d , J = 6.0 Hz, 6H) 1.79-1.87 (m, 2H) 2.90 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4 , 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.95 (t, J = 7.2 Hz, 2H) 4.11 (dd, J = 4.4, 8.0 Hz) , 1H) 4.56 (sept, J = 6.0 Hz, 1H) 4.63 (d, J = 7.0 Hz, 2H) 6.79 (d, J = 8.8 Hz, 1H) 6.81 (dd , J = 2.4, 8.8 Hz, 1H) 6.86 (d, J = 2.8 Hz, 1H) 6.99 (br, 1H) 7.11 (dd, J = 2.4, 8.4 Hz) , 1H) 7 23 (d, J = 2.0Hz, 1H) 7.72 (d, J = 8.4Hz, 1H)
MS m / e (ESI) 492 (MH+)
Example 127
Figure 2002080899
The product was treated in the same manner as in Example 94 to obtain 3- (3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4-propoxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 518 (MH+)
Example 128
Figure 2002080899
Treatment in the same manner as in Example 94 to give 3--3-[([2- (4-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-propoxy Phenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.09 (t, J = 7.2 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.82-1 .91 (m, 2H) 2.40 (s, 3H) 2.71 (s, 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4 .4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.99 (t, J = 6.8 Hz, 2H) 4.12 (dd, J = 4.4, 8 .0 Hz, 1H) 4.59 (d, J = 6.0 Hz, 2H) 6.46 (brt, J = 6.4 Hz, 1H) 6.82 (d, J = 8.2 Hz, 1H) 7.14 (Dd, J = 2.4, 8.8 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.24 (d, J = 8.0 Hz, 2H) 7.80 (d, J = 8.4 Hz, 2 )
MS m / e (ESI) 511 (MH+)
Example 129
Figure 2002080899
Treatment in the same manner as in Example 94 to give 3--3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-propoxyphenyl -2-Isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.09 (t, J = 7.6 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.85-1 .91 (m, 2H) 2.74 (s, 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H ) 3.59 (sept, J = 6.0 Hz, 1H) 3.99 (t, J = 6.4 Hz, 2H) 4.12 (dd, J = 4.4, 8.0 Hz, 1H) 4.60 (D, J = 6.0 Hz, 2H) 6.57 (brt, J = 6.4 Hz, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.4 , 8.4 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.35-7.40 (m, 2H) 7.48-7.51 (m, 1H) 8.24-8 .27 (m, 1H
MS m / e (ESI) 531 (MH+)
Example 130
Figure 2002080899
Treatment in the same manner as in Example 94 to give 3--3-[([2- (4-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-propoxyphenyl -2-Isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.08 (t, J = 7.6 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.84-1 .89 (m, 2H) 2.70 (s, 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3.05 (dd, J = 4.4, 14.0 Hz, 1H 3.60 (sept, J = 6.0 Hz, 1H) 3.99 (t, J = 6.4 Hz, 2H) 4.12 (dd, J = 4.4, 8.0 Hz, 1H) 4.59 (D, J = 5.6 Hz, 2H) 6.49 (brt, J = 6.4 Hz, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.4 , 8.4 Hz, 1H) 7.21 (d, J = 2.4 Hz, 1H) 7.41 (d, J = 8.8 Hz, 2H) 7.85 (d, J = 8.8 Hz, 2H)
MS m / e (ESI) 531 (MH+)
Example 131
Figure 2002080899
Treatment in the same manner as in Example 94, and 3--3-[([2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4- Propoxyphenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.07 (t, J = 7.2 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.83-1 .92 (m, 2H) 2.73 (s, 3H) 2.92 (dd, J = 7.2, 14.0 Hz, 1H) 3.06 (dd, J = 4.0, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.99 (t, J = 6.4 Hz, 2H) 4.12 (dd, J = 4.4, 8.0 Hz, 1H) 4.60 (D, J = 5.6 Hz, 2H) 6.55 (brt, J = 6.4 Hz, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.4 , 8.4 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.36 (dd, J = 2.4, 8.8 Hz, 1H) 7.51 (d, J = 2.0 Hz) , 1H) 8.2 (D, J = 8.4Hz, 1H)
MS m / e (ESI) 565 (MH+)
Example 132
Figure 2002080899
Treatment in the same manner as in Example 94, followed by 3-4-propoxy-3-[([4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl] phenyl -2-Isopropoxypropionic acid was obtained.
MS m / e (ESI) 503 (MH+)
Example 133
Figure 2002080899
The mixture was treated in the same manner as in Example 95 to obtain 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid.
1H-NMR (CDCl3) Δ: 1.03 (t, J = 7.2 Hz, 3H) 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.35 (d , J = 6.0 Hz, 6H) 1.78-1.83 (m, 2H) 2.90 (dd, J = 7.2, 14.0 Hz, 1H) 3.05 (dd, J = 4.0 , 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.92 (t, J = 6.4 Hz, 2H) 4.10 (dd, J = 4.0, 7.2 Hz , 1H) 4.56-4.61 (m, 3H) 6.80 (d, J = 8.4 Hz, 1H) 6.83 (dd, J = 2.4, 8.4 Hz, 1H) 6.89 (D, J = 2.4 Hz, 1H) 7.04 (brt, J = 5.2 Hz, 1H) 7.11 (dd, J = 2.4, 8.4 Hz, 1H) 7.23 (d, J = 2.4 Hz, 1 ) 7.74 (d, J = 8.8Hz, 1H)
MS m / e (ESI) 492 (MH+)
Example 134
Figure 2002080899
The product was treated in the same manner as in Example 95 to obtain 3- (3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 492 (MH+)
Example 135
Figure 2002080899
The reaction solution was treated in the same manner as in Example 95 to obtain 3- (3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4-isopropoxyphenyl) -2-isopropoxypropionic acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.35 (d, J = 6.0 Hz, 6H) 1.61-1 .65 (m, 2H) 1.75-1.94 (m, 6H) 2.90 (dd, J = 7.2, 14.0 Hz, 1H) 3.05 (dd, J = 4.0, 14 .0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 4.10 (dd, J = 4.0, 7.2 Hz, 1H) 4.60 (d, J = 5.6 Hz, 3H) ) 4.76 (sept, J = 6.0 Hz, 1H) 6.80 (d, J = 8.8 Hz, 1H) 6.81 (d, J = 8.8 Hz, 1H) 6.86 (d, J = 2.4 Hz, 1H) 7.05 (brt, J = 5.6 Hz, 1H) 7.11 (dd, J = 2.4, 8.4 Hz, 1H) 7.23 (d, J = 2.0 Hz) , 2H) .73 (d, J = 8.8Hz, 2H)
MS m / e (ESI) 518 (MH+)
Example 136
Figure 2002080899
Treatment in the same manner as in Example 95 to give 3--3-[([2- (4-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-iso Propoxyphenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.39 (d, J = 6.0 Hz, 6H) 2.40 (s) , 3H) 2.71 (s, 3H) 2.91 (dd, J = 7.2, 14.0 Hz, 1H) 3.05 (dd, J = 4.0, 14.0 Hz, 1H) 3.59 (Sept, J = 6.0 Hz, 1H) 4.11 (dd, J = 4.0, 7.2 Hz, 1H) 4.56 (d, J = 5.6 Hz, 2H) 4.63 (sept, J = 6.0 Hz, 1H) 6.53 (brt, J = 5.6 Hz, 1H) 6.83 (d, J = 8.4 Hz, 1H) 7.13 (dd, J = 2.4, 8.4 Hz) , 1H) 7.21 (d, J = 2.4 Hz, 1H) 7.24 (d, J = 8.4 Hz, 2H) 7.80 (d, J = 8.4 Hz, 2H)
MS m / e (ESI) 511 (MH+)
Example 137
Figure 2002080899
Treatment in the same manner as in Example 95 to give 3--3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-isopropoxy Phenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.40 (d, J = 6.0 Hz, 6H) 2.75 (s) 3H) 2.92 (dd, J = 7.2, 14.0 Hz, 1H) 3.05 (dd, J = 4.0, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz) , 1H) 4.12 (dd, J = 4.0, 7.2 Hz, 1H) 4.58 (d, J = 5.6 Hz, 2H) 4.64 (sept, J = 6.0 Hz, 1H) 6 .63 (brt, J = 5.6 Hz, 1H) 6.83 (d, J = 8.4 Hz, 1H) 7.13 (dd, J = 2.4, 8.4 Hz, 1H) 7.21 (d , J = 2.4 Hz, 1H) 7.35-7.39 (m, 2H) 7.48-7.50 (m, 1H) 8.25-8.27 (m, 1H)
MS m / e (ESI) 531 (MH+)
Example 138
Figure 2002080899
Treatment in the same manner as in Example 95 to give 3--3-[([2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4- Isopropoxyphenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.40 (d, J = 6.0 Hz, 6H) 2.74 (s 3H) 2.92 (dd, J = 7.2, 14.0 Hz, 1H) 3.05 (dd, J = 4.0, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz) , 1H) 4.12 (dd, J = 4.0, 7.2 Hz, 1H) 4.56 (d, J = 5.6 Hz, 2H) 4.64 (sept, J = 6.0 Hz, 1H) 6 .63 (brt, J = 5.6 Hz, 1H) 6.83 (d, J = 8.4 Hz, 1H) 7.13 (dd, J = 2.4, 8.4 Hz, 1H) 7.21 (d , J = 2.4 Hz, 1H) 7.36 (dd, J = 2.0, 8.4 Hz, 1H) 7.51 (d, J = 2.4 Hz, 1H) 7.26 (d, J = 8 .8Hz, H)
MS m / e (ESI) 565 (MH+)
Example 139
Figure 2002080899
Treatment in the same manner as in Example 95 and 3-4-isopropoxy-3-[([4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl] Phenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 503 (MH+)
Example 140
Figure 2002080899
The product was treated in the same manner as in Example 96 to obtain 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 513 (MH+)
Example 141
Figure 2002080899
The product was treated in the same manner as in Example 96 to obtain 3- (3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 518 (MH+)
Example 142
Figure 2002080899
The product was treated in the same manner as in Example 96 to obtain 3- (3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4-cyclopentyloxyphenyl) -2-isopropoxypropionic acid.
MS m / e (ESI) 544 (MH+)
Example 143
Figure 2002080899
Treatment in the same manner as in Example 96, and 3--3-[([2- (4-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-cyclopentyl Oxyphenyl-2-isopropoxypropionic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.65 to 1.69 (m, 2H) 1.77-2.10 (M, 6H) 2.40 (s, 3H) 2.71 (s, 3H) 2.91 (dd, J = 7.2, 14.0 Hz, 1H) 3.06 (dd, J = 4.0 , 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 4.11 (dd, J = 4.0, 7.2 Hz, 1H) 4.54 (d, J = 5.6 Hz) , 2H) 4.82-4.85 (m, 1H) 6.44 (br, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.12 (dd, J = 2.4, 8 .4 Hz, 1H) 7.20 (d, J = 2.4 Hz, 1H) 7.24 (d, J = 7.2 Hz, 2H) 7.80 (d, J = 8.0 Hz, 2H)
MS m / e (ESI) 537 (MH+)
Example 144
Figure 2002080899
Treatment in the same manner as in Example 96, and 3--3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-cyclopentyloxy Phenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 557 (MH+)
Example 145
Figure 2002080899
Treatment in the same manner as in Example 96, and 3--3-[([2- (4-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-cyclopentyloxy Phenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 557 (MH+)
Example 146
Figure 2002080899
Treatment in the same manner as in Example 96, and 3--3-[([2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4- Cyclopentyloxyphenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 591 (MH+)
Example 147
Figure 2002080899
Treatment in the same manner as in Example 96, followed by 3-4-cyclopentyloxy-3-[([4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl] Phenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 529 (MH+)
Example 148
Figure 2002080899
Treatment in the same manner as in Example 98 gave 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (2-furyl) phenyl] -2-isopropoxypropionic acid. .
MS m / e (ESI) 500 (MH+)
Example 149
Figure 2002080899
Treatment in the same manner as in Example 98 gives 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (2-furyl) phenyl] -2-isopropoxypropionic acid. It was.
MS m / e (ESI) 500 (MH+)
Example 150
Figure 2002080899
Treatment in the same manner as in Example 98 gives 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (2-furyl) phenyl] -2-isopropoxypropionic acid. It was.
MS m / e (ESI) 526 (MH+)
Example 151
Figure 2002080899
The reaction mixture was treated in the same manner as in Example 98 to give 3--4- (2-furyl) -3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonyl. Amino) methyl] phenyl-2-isopropoxypropionic acid was obtained.
MS m / e (ESI) 519 (MH+)
Example 152
Figure 2002080899
The reaction mixture was treated in the same manner as in Example 98 to give 3-4- (2-furyl) -3-[([4-methyl-2- (2-chlorophenyl) -1,3-thiazol-5-yl] carbonylamino. ) Methyl] phenyl-2-isopropoxypropionic acid.
MS m / e (ESI) 539 (MH+)
Example 153
Production Example 153a)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (2-thienyl) propoxypropionic acid ethyl ester in the same manner as in Production Example 97 Got.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.0 Hz, 3H) 1.18 (d, J = 6.4 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 1.46 (s , 9H) 2.91-3.06 (m, 2H) 3.51 (sept, J = 6.4 Hz, 1H) 4.10 (dd, J = 4.8, 8.8 Hz, 1H) 4.16 -4.24 (m, 2H) 4.40 (d, J = 5.6 Hz, 2H) 4.69 (br 1H) 7.01 (d, J = 6.0 Hz, 1H) 7.08 (d, J = 5.2 Hz, 1H) 7.13-7.20 (m, 2H) 7.24-7.35 (m, 2H)
Example 153b)
Figure 2002080899
Example 98 with 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (2-thienyl) propoxypropionic acid ethyl ester The same treatment was performed to obtain 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 492 (MH+)
Example 154
Figure 2002080899
The same treatment as in Example 153 was performed to obtain 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 516 (MH+)
Example 155
Figure 2002080899
The same treatment as in Example 153 was performed to obtain 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 516 (MH+)
Example 156
Production Example 156a)
Figure 2002080899
In the same manner as in Production Example 97, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (5-methyl-2-thienyl) propoxy Propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.4 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 1.46 (s , 9H) 2.51 (s, 3H) 2.91-3.05 (m, 2H) 3.51 (sept, J = 6.4 Hz, 1H) 4.07 (dd, J = 4.8, 8 .8 Hz, 1H) 4.18-4.29 (m, 2H) 4.40 (br, 2H) 4.70 (br 1H) 6.73 (s, 1H) 7.11-7.19 (m, 2H) 7.23-7.30 (m, 2H)
Example 156b)
Figure 2002080899
Performed with 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (5-methyl-2-thienyl) propoxypropionic acid ethyl ester The same treatment as in Example 153 gave 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (5-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 506 (MH+)
Example 157
Figure 2002080899
Treat as in Example 156 to give 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (5-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 530 (MH+)
Example 158
Figure 2002080899
Treated as in Example 156 and treated with 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (5-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid. Got.
MS m / e (ESI) 530 (MH+)
Example 159
Production Example 159a)
Figure 2002080899
In the same manner as in Production Example 97, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (5-chloro-2-thienyl) propoxy Propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.4 Hz, 3H) 1.25 (t, J = 7.2 Hz, 3H) 1.45 (s , 9H) 2.51 (s, 3H) 2.91-3.05 (m, 2H) 3.50 (sept, J = 6.0 Hz, 1H) 4.08 (dd, J = 4.8, 8 0.8 Hz, 1H) 4.21-4.24 (m, 2H) 4.38-4.41 (m, 2H) 4.69 (br 1H) 6.78 (d, J = 3.6 Hz, 1H) 7.17-7.20 (m, 2H) 7.25 (d, J = 8.0 Hz, 1H) 7.31 (s, 1H)
Example 159b)
Figure 2002080899
Performed with 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (5-chloro-2-thienyl) propoxypropionic acid ethyl ester The same treatment as in Example 153 gave 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (5-chloro-2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 526 (MH+)
Example 160
Figure 2002080899
Treat as in Example 159 to give 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (5-chloro-2-thienyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 550 (MH+)
Example 161
Figure 2002080899
Treated as in Example 159 and treated with 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (5-chloro-2-thienyl) phenyl] -2-isopropoxypropionic acid. Got.
MS m / e (ESI) 550 (MH+)
Example 162
Production Example 162a)
Figure 2002080899
In the same manner as in Production Example 97, 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (4-methyl-2-thienyl) propoxy Propionic acid ethyl ester was obtained.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.4 Hz, 3H) 1.26 (t, J = 7.2 Hz, 3H) 1.45 (s , 9H) 2.29 (s, 3H) 2.94-3.05 (m, 2H) 3.54 (sept, J = 6.0 Hz, 1H) 4.08 (dd, J = 4.8, 8 .8 Hz, 1H) 4.12-4.24 (m, 2H) 4.40 (br, 2H) 4.70 (br 1H) 6.82 (s, 1H) 7.14-7.19 (m, 2H) 7.28 (d, J = 9.6 Hz, 1H) 7.31 (s, 1H)
Example 162b)
Figure 2002080899
Performed with 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (4-methyl-2-thienyl) propoxypropionic acid ethyl ester The same treatment as in Example 153 was carried out to obtain 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (4-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 506 (MH+)
Example 163
Figure 2002080899
Treat as in Example 162 to give 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (4-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 530 (MH+)
Example 164
Figure 2002080899
Treated as in Example 162 and treated with 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (4-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid. Got.
MS m / e (ESI) 530 (MH+)
Example 165
Production Example 165a)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (3-thienyl) propoxypropionic acid ethyl ester in the same manner as in Production Example 97 Got.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.4 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 1.44 (s , 9H) 2.95-3.06 (m, 2H) 3.55 (sept, J = 6.0 Hz, 1H) 4.09 (dd, J = 4.8, 8.8 Hz, 1H) 4.14 -4.25 (m, 2H) 4.32 (d, J = 5.6 Hz, 2H) 4.64 (br 1H) 7.10-7.11 (m, 1H) 7.18-7.25 ( m, 3H) 7.30 (s, 1H) 7.37 (dd, J = 2.1, 5.2 Hz, 1H)
Example 165b)
Figure 2002080899
Similar to Example 153 using 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (3-thienyl) propoxypropionic acid ethyl ester To give 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (3-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 492 (MH+)
Example 166
Figure 2002080899
The same treatment as in Example 165 was performed to obtain 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (3-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 516 (MH+)
Example 167
Figure 2002080899
The same treatment as in Example 165 was carried out to obtain 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (3-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 516 (MH+)
Example 168
Production Example 168a)
Figure 2002080899
3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (3-furyl) propoxypropionic acid ethyl ester in the same manner as in Production Example 97 Got.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 7.2 Hz, 3H) 1.45 (s , 9H) 2.93-3.04 (m, 2H) 3.54 (sept, J = 6.0 Hz, 1H) 4.08 (dd, J = 6.8, 8.0 Hz, 1H) 4.18 -4.26 (m, 2H) 4.30-4.41 (m, 2H) 4.67 (br 1H) 6.52 (d, J = 4.0 Hz, 1H) 7.13-7.19 ( m, 2H) 7.25-7.28 (m, 2H) 7.49 (d, J = 4.0 Hz, 1H)
Example 168b)
Figure 2002080899
Example 153) using 3- (3-[(tert-butoxycarbonyl) amino] methyl-4-[(trifluoromethyl) sulfonyl] oxyphenyl) -2- (3-furyl) propoxypropionic acid ethyl ester The same treatment was performed to obtain 3- [3-[(2,4-dichlorobenzoyl) amino] methyl-4- (3-furyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 476 (MH+)
Example 169
Figure 2002080899
The same treatment as in Example 168 was carried out to obtain 3- [3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4- (3-furyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 500 (MH+)
Example 170
Figure 2002080899
The same treatment as in Example 168 was performed to obtain 3- [3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4- (3-furyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 500 (MH+)
Example 171
Figure 2002080899
Treat as in Example 153 to give 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (2-thienyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 510 (MH+)
Example 172
Figure 2002080899
The same treatment as in Example 153 was performed to obtain 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (2-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 542 (MH+)
Example 173
Figure 2002080899
Treated as in Example 153 and treated with 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (2-Thienyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 535 (MH+)
Example 174
Figure 2002080899
Treat as in Example 156 and prepare 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (5-methyl-2-thienyl) phenyl] -2-iso Propoxypropionic acid was obtained.
MS m / e (ESI) 524 (MH+)
Example 175
Figure 2002080899
Treated as in Example 156 and treated with 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (5-methyl-2-thienyl) phenyl] -2-isopropoxypropionic acid. Got.
MS m / e (ESI) 556 (MH+)
Example 176
Figure 2002080899
Treated as in Example 156 and treated with 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (5-Methyl-2-thienyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 549 (MH+)
Example 177
Figure 2002080899
Treat as in Example 159 and prepare 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (5-chloro-2-thienyl) phenyl] -2-iso Propoxypropionic acid was obtained.
MS m / e (ESI) 544 (MH+)
Example 178
Figure 2002080899
Treated as in Example 159 and treated with 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (5-chloro-2-thienyl) phenyl] -2-isopropoxypropionic acid. Got.
MS m / e (ESI) 576 (MH+)
Example 179
Figure 2002080899
Treated as in Example 159 and treated with 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (5-Chloro-2-thienyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 569 (MH+)
Example 180
Figure 2002080899
Work up as in Example 162 to give 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (4-methyl-2-thienyl) phenyl] -2-iso Propoxypropionic acid was obtained.
MS m / e (ESI) 524 (MH+)
Example 181
Figure 2002080899
3- [3-[(2-Chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (4-methyl-2-thienyl) phenyl] -2-isopropoxypropion The acid was obtained.
MS m / e (ESI) 556 (MH+)
Example 182
Figure 2002080899
Treated as in Example 162 and treated with 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (4-Methyl-2-thienyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 549 (MH+)
Example 183
Figure 2002080899
Treat as in Example 165 to give 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (3-thienyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 510 (MH+)
Example 184
Figure 2002080899
The same treatment as in Example 165 was performed to obtain 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (3-thienyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 542 (MH+)
Example 185
Figure 2002080899
Treated as in Example 165 and treated with 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (3-Thienyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 535 (MH+)
Example 186
Figure 2002080899
Treat as in Example 168 to give 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4- (3-furyl) phenyl] -2-isopropoxypropionic acid. Obtained.
MS m / e (ESI) 494 (MH+)
Example 187
Figure 2002080899
The same treatment as in Example 168 was carried out to obtain 3- [3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4- (3-furyl) phenyl] -2-isopropoxypropionic acid.
MS m / e (ESI) 526 (MH+)
Example 188
Figure 2002080899
Treated in the same manner as in Example 168 to give 2-isopropoxy-3- [3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl]. -4- (3-Furyl) phenyl] propionic acid was obtained.
MS m / e (ESI) 519 (MH+)
Example 189
Production Example 189a)
Figure 2002080899
2.95 g of benzyl 5-formyl-2-methoxybenzoate and 5 g of triphenylphosphoranylideneacetaldehyde were mixed in toluene and stirred at 80 ° C. for 7 hours. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to give benzyl 2-methoxy-5-(-3-oxo-1-propenyl) benzoate (E-Z mixture). ) 2.0 g was obtained as a yellow solid.
1H-NMR (CDCl3) Δ: 3.95 + 3.97 (s, 3H) 5.37 (s, 2H) 6.61 + 6.64 (s, J = 8.0 Hz, 1H) 6.90-7.07 (m, 2H) 7 .33-7.47 (m, 5H) 7.62 + 7.70 (dd, J = 2.0, 8.0 Hz, 1H) 7.95 + 8.02 (d, J = 2.0 Hz, 1H)
Example 189b)
Figure 2002080899
0.77 g of triethyl-2-phosphonobutyrate was dissolved in N, N-dimethylformamide, 115 mg of sodium hydride was added, and the mixture was stirred at room temperature for 1 hour. A solution prepared by dissolving 0.6 g of benzyl 2-methoxy-5-(-3-oxo-1-propenyl) benzoate (E-Z mixture) in N, N-dimethylformamide was added and stirred at room temperature for 2 hours. Water and ammonium chloride solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was extracted with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 8: 1). The obtained product was dissolved in ethanol, 10% palladium carbon was added, hydrogen substitution was performed, and the mixture was stirred at room temperature for 7 hours. Palladium carbon was filtered and the solvent was distilled off under reduced pressure to obtain 0.47 g of 5- [4- (ethoxycarbonyl) hexyl] -2-methoxybenzoic acid as a colorless oil.
1H-NMR (CDCl3) Δ: 0.50 (t, J = 8.0 Hz, 3H) 1.17 (t, J = 8.0 Hz, 3H) 1.38-1.58 (m, 6H) 2.20 (m, 1H) ) 2.54 (t, J = 8.0 Hz, 2H) 3.99 (s, 3H) 4.07 (q, J = 8.0 Hz, 2H) 7.90 (d, J = 8.0 Hz, 1H) 7.29 (dd, J = 2.0, 8.0 Hz, 1H) 7.91 (d, J = 2.0 Hz, 1H)
Example 189c)
Figure 2002080899
The reaction is carried out in the same manner as in Example 1c) d) using 0.47 g of 5- [4- (ethoxycarbonyl) hexyl] -2-methoxybenzoic acid and 0.27 g of 4- (trifluoromethyl) benzylamine. As a result, 0.21 g of 2-ethyl-5- [4-methoxy-3-([4- (trifluoromethyl) benzyl] aminocarbonyl) phenyl] pentanoic acid was obtained as a colorless amorphous substance.
1H-NMR (CDCl3) Δ: 0.85 (t, J = 8.0 Hz, 3H) 1.42-1.59 (m, 6H) 2.27 (m, 1H) 2.53 (m, 2H) 3.85 (s) 3H) 4.66 (d, J = 6.0 Hz, 2H) 6.90 (d, J = 7.0 Hz, 1H) 7.26 (m, 1H) 7.47 (d, J = 8.0 Hz) , 2H) 7.59 (d, J = 8.0 Hz, 2H) 8.04 (d, J = 2.0 Hz, 1H) 8.34 (bs, 1H)
Example 190
Production Example 190a)
Figure 2002080899
5- (5-Ethoxy-4-isopropoxy-5-oxopentyl) -2-methoxybenzoic acid was obtained in the same manner as in Production Example 189a) and Example 189a).
1H-NMR (CDCl3) Δ: 1.13 (d, J = 6.0 Hz, 3H) 1.19 (d, J = 6.0 Hz, 3H) 1.27 (t, J = 8.0 Hz, 3H) 1.54-1 .74 (m, 4H) 2.62 (t, J = 8.0 Hz, 2H) 3.58 (sept, J = 6.0 Hz, 1H) 3.88 (m, 1H) 4.05 (s, 3H 4.18 (q, J = 8.0 Hz, 2H) 6.98 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.0, 8.0 Hz, 1H) 8.00 (D, J = 2.0Hz, 1H)
Example 190b)
Figure 2002080899
Similar to Example 1c) d), using 0.35 g of 5- (5-ethoxy-4-isopropoxy-5-oxopentyl) -2-methoxybenzoic acid and 0.18 g of 4- (trifluoromethyl) benzylamine. By performing the reaction according to the above method, 0.18 g of 5-3-[(benzylamino) carbonyl] -4-methoxyphenyl-1-isopropoxypentanoic acid was obtained as a colorless amorphous substance.
1H-NMR (CDCl3) Δ: 1.20 (d, J = 6.0 Hz, 3H) 1.21 (d, J = 6.0 Hz, 3H) 1.67-1.80 (m, 4H) 2.63 (t, J = 8.0 Hz, 2H) 3.69 (sept, J = 6.0 Hz, 1H) 3.92 (s, 3H) 3.96 (m, 1H) 4.70 (d, J = 6.0 Hz, 2H) 6.98 (d, J = 8.0 Hz, 1H) 7.26 (m, 1H) 7.47 (d, J = 8.0 Hz, 1H) 7.59 (d, J = 8.0 Hz, 2H) ) 8.04 (d, J = 2.0 Hz, 1H) 8.33 (bs, 1H)
Example 191
Figure 2002080899
In the same manner as in Example 17, 2- (4-methoxy-3-{[2- (2.4-dichlorophenyl) acetyl] amino} benzyl) butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 8.0 Hz, 3H) 1.55-1.64 (m, 2H) 2.58 (m, 1H) 2.68 (dd, J = 4.5, 14) 0.0 Hz, 1H) 2.89 (dd, J = 7.0, 14.0 Hz, 1H) 3.78 (s, 3H) 3.82 (s, 2H) 6.73 (d, J = 8.0 Hz) , 1H) 6.84 (dd, J = 2.0, 8.0 Hz, 1H) 7.26 (m, 1H) 7.35 (d, J = 8.0 Hz, 2H) 7.45 (d, 2 .0Hz, 1H) 7.88 (s, 1H) 8.19 (d, J = 2.0Hz, 1H)
Example 192
Figure 2002080899
In the same manner as in Example 14, 2-isopropoxy-3- (4-methoxy-3-{[2- (3-fluoro) -4-trifluoromethyl) phenyl] acetyl} amino) phenylpropanoic acid was obtained. .
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.65 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.0, 14.0 Hz, 1H) 3 .06 (dd, J = 4.5, 14.0 Hz, 1H) 3.58 (sept, J = 6.0 Hz, 1H) 3.78 (s, 2H) 3.80 (s, 3H) 4.13 (M, 1H) 6.77 (d, J = 8.0 Hz, 1H) 6.92 (dd, J = 2.0, 8.0 Hz, 1H) 7.25 (m, 2H) 7.61 (t , J = 8.0 Hz, 1H) 7.76 (s, 1H) 8.24 (d, J = 2.0 Hz, 1H)
Example 193
Figure 2002080899
In the same manner as in Example 14, 2-isopropoxy-3- (4-methoxy-3-{[2- (2,4-dichlorophenyl] acetyl} amino) phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.88 (dd, J = 7.0, 14.0 Hz, 1H) 3 .05 (dd, J = 4.5, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.80 (s, 3H) 3.83 (s, 2H) 4.12. (M, 1H) 6.76 (d, J = 8.0 Hz, 1H) 6.90 (dd, J = 2.0, 8.0 Hz, 1H) 7.27 (dd, J = 2.0, 8 0.0 Hz, 1H) 7.36 (d, J = 8.0 Hz, 1H) 7.46 (d, J = 2.0 Hz, 1H) 7.86 (s, 1H) 8.26 (d, J = 2) .0Hz, 1H)
Example 194
Figure 2002080899
2- (4-Methoxy-3- {2-oxo-2- [2,4-difluoroanilino] ethyl} benzyl) butanoic acid was obtained in the same manner as in Example 22.
1H-NMR (CDCl3) Δ: 0.95 (t, J-8.0 Hz, 3H) 1.57-1.66 (m, 2H) 2.57 (m, 1H) 2.70 (dd, J = 7.0, 14) 0.0 Hz, 1H) 2.89 (dd, J = 4.5, 14.0 Hz, 1H) 3.69 (s, 2H) 3.92 (s, 3H) 6.76-6.87 (m, 3H) ) 7.09-7.12 (m, 2H) 8.22-8.29 (m, 2H)
Example 195
Figure 2002080899
In the same manner as in Example 22, 2- (4-methoxy-3- {2-oxo-2- [2-methyl-4- (trifluoromethyl) anilino] ethyl} benzyl) butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.96 (t, J-8.0 Hz, 3H) 1.55-1.70 (m, 2H) 2.10 (m, 1H) 2.57 (dd, J = 4.5, 14) 0.0 Hz, 1H) 2.89 (dd, J = 7.0, 14.0 Hz, 1H) 3.73 (s, 3H) 3.89 (s, 2H) 6.88 (d, J = 8.0 Hz) , 1H) 7.12-7.15 (m, 2H) 7.26 (t, J = 8.0 Hz, 1H) 7.39 (d, J = 8.0 Hz, 2H) 7.63 (s, 1H ) 8.03 (d, J = 8.0 Hz, 1H)
Example 196
Example 196a)
Figure 2002080899
Example 22a) Ethyl 2-ethyl-3- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} phenyl) -2-propenoate by a method analogous to c) Got.
1H-NMR (CDCl3) Δ: 1.17 (t, J = 8.0 Hz, 3H) 1.34 (t, J = 8.0 Hz, 3H) 2.56 (q, J = 8.0 Hz, 2H) 3.77 (s , 3H) 3.96 (s, 3H) 4.26 (q, J = 8.0 Hz, 2H) 6.98 (d, J = 8.0 Hz, 1H) 7.22 (dd, J = 2.0 , 8.0 Hz, 1H) 7.31 (d, J = 8.0 Hz, 1H) 7.37 (dd, J = 2.0, 8.0 Hz, 1H) 7.58 (s, 1H) 8.22 (Bs, 1H) 8.37 (d, J = 8.0 Hz, 1H)
Example 196b)
Figure 2002080899
2-ethyl-3- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} phenyl) -2-propenoate (0.9 g) was dissolved in ethanol (15 ml) and ethyl acetate (15 ml). Then, 0.6 g of palladium carbon poisoned with ethylenediamine was added. The reaction solution was stirred at room temperature for 5 hours under a hydrogen atmosphere, palladium carbon was filtered, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography to obtain 0.44 g of ethyl 2- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} benzyl) butanoate as a colorless oil. It was.
1H-NMR (CDCl3) Δ: 0.90 (t, J-8.0 Hz, 3H) 1.14 (t, J-8.0 Hz, 3H) 1.50-1.68 (m, 2H) 2.54 (m, 2H) ) 2.68 (dd, J = 4.5, 14.0 Hz, 1H) 2.86 (dd, J = 4.5, 14.0 Hz, 1H) 3.72 (s, 2H) 3.88 (s) 3H) 4.05 (q, J = 8.0 Hz, 2H) 6.85 (d, J = 8.0 Hz, 1H) 7.10 (m, 2H) 7.20 (d, J = 8.0 Hz) , 1H) 7.26 (d, J = 8.0 Hz, 1H) 8.30 (bs, 1H) 8.37 (d, J = 8.0 Hz, 1H)
Example 196c)
Figure 2002080899
0.27 g of ethyl 2- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} benzyl) butanoate was dissolved in 10 ml of ethanol, and 1 ml of 5N sodium hydroxide was added. The reaction mixture was stirred at room temperature for 24 hours, water was added, and the aqueous layer was extracted with diethyl ether. The aqueous layer was acidified with hydrochloric acid and extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure to give 2- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino]. Ethyl} benzyl) butanoic acid was obtained as a colorless oil.
1H-NMR (CDCl3) Δ: 0.89 (t, J-8.0 Hz, 3H) 1.49-1.62 (m, 2H) 2.50 (m, 2H) 2.64 (dd, J = 4.5, 14) 0.0 Hz, 1H) 2.84 (dd, J = 4.5, 14.0 Hz, 1H) 3.72 (s, 2H) 3.88 (s, 3H) 6.80 (d, J = 8.0 Hz) , 1H) 7.06 (m, 2H) 7.12 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 8.0 Hz, 1H) 8.23 (s, 1H) ) 8.28 (d, J = 8.0 Hz, 1H)
Example 197
Production Example 197a)
Figure 2002080899
1 g of sodium hydride was suspended in tetrahydrofuran, 3 g of acetophenone dissolved in tetrahydrofuran was added, and the mixture was stirred at room temperature for 30 minutes. Further, 3.7 g of diethyl oxalate was added and heated to reflux for 1 hour. The reaction mixture was ice-cooled, water and ammonium chloride solution were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Diisopropyl ether was added to the residue, and the crystals were filtered to obtain 2.37 g of ethyl- (Z) -4-hydroxy-2-oxo-4-phenyl-3-butanoate.
1H-NMR (DMSO-d6) Δ: 1.15 (t, J = 8.0 Hz, 3H) 4.18 (q, J = 8.0 Hz, 2H) 6.55 (s, 1H) 7.35-7.48 (m, 3H) ) 7.80 (m, 2H)
Production Example 197b)
0.67 g of ethyl- (Z) -4-hydroxy-2-oxo-4-phenyl-3-butanoate was dissolved in 10 ml of acetic acid, and 0.17 g of methyl hydrazine was added. After the reaction solution was heated to reflux for 2 hours, acetic acid was distilled off under reduced pressure. The residue was dissolved by adding ethyl acetate and tetrahydrofuran, washed with sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Ethyl 1-methyl-3-phenyl-1H-5-pyrazolecarboxylate 0.12 g in hexane: ethyl acetate 9: 1, ethyl 1-methyl in hexane: ethyl acetate 4: 1 0.55 g of -5-phenyl-1H-3-pyrazolecarboxylate was obtained.
Figure 2002080899
Ethyl 1-methyl-3-phenyl-1H-5-pyrazole carboxylate
1H-NMR (CDCl3) Δ: 1.42 (t, J = 8.0 Hz, 3H) 4.21 (s, 3H) 4.38 (q, J = 8.0 Hz, 2H) 7.11 (s, 1H) 7.32 (T, J = 8.0 Hz, 1H) 7.40 (t, J = 8.0 Hz, 2H) 8.79 (d, J = 8.0 Hz, 2H)
Figure 2002080899
Ethyl 1-methyl-5-phenyl-1H-3-pyrazole carboxylate
1H-NMR (CDCl3) Δ: 1.41 (t, J = 8.0 Hz, 3H) 3.95 (s, 3H) 4.43 (q, J = 8.0 Hz, 2H) 6.85 (s, 1H) 7.40 -7.53 (m, 5H)
Production Example 197c)
Figure 2002080899
Ethyl 1-methyl-3-phenyl-1H-5-pyrazolecarboxylate (0.12 g) was dissolved in 5 ml of ethanol, 1 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give 0.11 g of 1-methyl-3-phenyl-1H-5-pyrazolecarboxylic acid.
1H-NMR (CDCl3) Δ: 4.22 (s, 3H) 7.22 (s, 1H) 7.33 (t, J = 8.0 Hz, 1H) 7.40 (t, J = 8.0 Hz, 2H) 8.80 (D, J = 8.0Hz, 2H)
Example 197d)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(1-methyl-3-phenyl-1H-5-pyrazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 1.06 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.94 (dd, J = 7.0, 14.0 Hz, 1H) 3 .06 (dd, J = 4.5, 14.0, 1H) 3.88 (s, 3H) 4.12 (dd, J = 4.0, 7.0 Hz, 1H) 4.20 (s, 3H) ) 4.57 (d, J = 6.0 Hz, 3H) 6.57 (bs, 1H) 6.73 (s, 1H) 6.84 (d, J = 2.0 Hz, 1H) 7.16 (dd , J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.32 (d, J = 8.0 Hz, 1H) 7.39 (m, 2H) 7 .76 (m, 2H)
Example 198
Production Example 198a)
Figure 2002080899
Ethyl 1-methyl-5-phenyl-1H-3-pyrazolecarboxylate (0.55 g) was dissolved in 10 ml of ethanol, 2 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.5 g of 1-methyl-5-phenyl-1H-3-pyrazolecarboxylic acid.
1H-NMR (CDCl3): 3.91 (s, 3H) 6.82 (s, 1H) 7.34-7.45 (m, 5H)
Example 198b)
Figure 2002080899
Example 19d) In a manner similar to e), 2-isopropoxy-3- [4-methoxy-3-([(1-methyl-5-phenyl-1H-3-pyrazolyl) carbonyl] aminoethyl) phenyl] Propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.5, 14.0, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 3.88 (s, 3H) 4.09 (Dd, J = 4.0, 7.0 Hz, 1H) 4.60 (d, J = 6.0 Hz, 3H) 6.80 (d, J = 6.0 Hz, 1H) 6.84 (s, 1H ) 7.12 (dd, J = 2.0, 8.0 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.32 (bs, 1H) 7.39-7.57 (m , 5H)
Example 199
Production Example 199a)
Figure 2002080899
1 g of phenylacetylene and 1.48 g of 2-chloro-2-hydroxyiminoacetic acid ethyl ester were dissolved in 20 ml of chloroform, 1.4 g of potassium carbonate was added, and the mixture was stirred at room temperature for 16 hours. Water and ammonium chloride solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate 9: 1) to obtain 1.2 g of ethyl 5-phenyl-4-isoxazolecarboxylate.
1H-NMR (CDCl3) Δ: 1.35 (t, J = 8.0 Hz, 3H) 4.40 (q, J = 8.0 Hz, 2H) 6.85 (s, 1H) 7.36-7.50 (m, 3H) ) 7.68-7.80 (m, 2H)
Production Example 199b)
Figure 2002080899
0.4 g of ethyl 5-phenyl-4-isoxazolecarboxylate was dissolved in 10 ml of ethanol, 2 ml of 5N sodium hydroxide solution was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was neutralized with 2N hydrochloric acid and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.25 g of 5-phenyl-3-isoxazolecarboxylic acid.
1H-NMR (DMSO-d6) Δ: 7.32 (s, 1H) 7.48-7.57 (m, 3H) 7.92 (m, 2H)
Example 199c)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(5-phenyl-3-isoxazolyl) carbonyl] aminoethyl) phenyl] propanoic acid was obtained by a method similar to e).
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.5 Hz, 3H) 1.16 (d, J = 6.5 Hz, 3H) 2.90 (dd, J = 7.0, 14.0 Hz, 1H) 3 .06 (dd, J = 4.5, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.87 (s, 3H) 4.10 (dd, J = 4.5 , 7.0 Hz, 1H) 4.61 (d, J = 6.0 Hz, 2H) 6.82 (d, J = 8.0 Hz, 1H) 6.96 (s, 1H) 7.15 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.36 (bs, 1H) 7.47 (m, 3H) 7.78 (m, 2H)
Example 200
Production Example 200a)
Figure 2002080899
1-Methyl-5- (2-pyridyl) -1H-3-pyrazolecarboxylic acid was obtained in the same manner as in Production Example 197a) b) 198.
1H-NMR (DMSO-d6) Δ: 4.18 (s, 3H) 7.22 (s, 1H) 7.40 (t, J = 6.0 Hz, 1H) 7.85-7.94 (m, 2H) 8.68 (d , J = 4.0 Hz, 1H) 12.75 (s, 1H)
Example 200b)
Figure 2002080899
Example 19d) In a manner similar to e), 2-isopropoxy-3--4-methoxy-3-[([1-methyl-5- (2-pyridyl) -1H-3-pyrazolyl] carbonylamino) methyl Phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.5 Hz, 3H) 1.34 (d, J = 6.5 Hz, 3H) 2.90 (dd, J = 7.0, 14.0 Hz, 1H) 3 .05 (dd, J = 4.5, 14.0 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 3.87 (s, 3H) 4.09 (dd, J = 4.5 , 7.0 Hz, 1H) 4.24 (s, 3H) 4.60 (d, J = 6.0 Hz, 2H) 6.81 (d, J = 8.0 Hz, 1H) 7.14 (m, 2H) ) 7.23 (m, 2H) 7.34 (bs, 1H) 7.64 (d, J = 8.0 Hz, 1H) 7.85 (bs, 1H) 8.70 (d, J = 4.0 Hz) , 1H)
Example 201
Production Example 201a)
Figure 2002080899
1-Methyl-3- (2-pyridyl) -1H-5-pyrazolecarboxylic acid was obtained in the same manner as in Production Example 197a) -c).
1H-NMR (DMSO-d6) Δ: 4.13 (s, 3H) 7.26 (s, 1H) 7.32 (dd, J = 4.0, 8.0 Hz, 1H) 7.82 (t, J = 8.0 Hz, 1H) 7.91 (d, J = 8.0 Hz, 1H) 8.57 (d, J = 4.0 Hz, 1H)
Example 201b)
Figure 2002080899
Example 19d) In a manner similar to e), 2-isopropoxy-3--4-methoxy-3-[([1-methyl-3- (2-pyridyl) -1H-5-pyrazolyl] carbonylamino) methyl Phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.5 Hz, 3H) 1.10 (d, J = 6.5 Hz, 3H) 2.75-3.00 (m, 2H) 3.57 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 4.05 (dd, J = 4.5, 7.0 Hz, 1H) 4.21 (s, 3H) 4.52 (d, J = 6 0.0 Hz, 2H) 6.75 (d, J = 8.0 Hz, 1H) 7.08 (m, 2H) 7.15 (bs, 1H) 7.45 (bs, 1H) 7.84 (s, 1H ) 8.04 (t, J = 8.0 Hz, 1H) 8.24 (d, J = 8.0 Hz, 1H) 8.70 (d, J = 4.0 Hz, 1H)
Example 202
Production Example 202a)
Figure 2002080899
Ethyl 2-chloroacetoacetate (2.33 ml) and thiopropionamide (1.5 g) were dissolved in ethanol (30 ml) and stirred at room temperature for 16 hours. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate 14: 1) to obtain 0.8 g of ethyl 2-ethyl-4-methyl-1,3-thiazole-5-carboxylate.
1H-NMR (CDCl3): 1.34-1.60 (m, 6H) 2.98 (q, J = 8.0 Hz, 2H) 3.70 (s, 3H) 4.29 (q, J = 8.0 Hz, 2H) )
Production Example 202b)
Figure 2002080899
0.8 g of ethyl 2-ethyl-4-methyl-1,3-thiazole-5-carboxylate was dissolved in 10 ml of ethanol, 2 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.8 g of 2-ethyl-4-methyl-1,3-thiazole-5-carboxylic acid.
1H-NMR (CDCl3): 1.40 (t, J = 8.0 Hz, 3H) 3.74 (s, 3H) 4.03 (q, J = 8.0 Hz, 2H)
Example 202c)
Figure 2002080899
Example 19d) 3- [3-([(2-Ethyl-4-methyl-1,3-thiazol-5-yl) carbonyl] aminoethyl) -4-methoxyphenyl]- 2-Isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.5 Hz, 3H) 1.10 (d, J = 6.5 Hz, 3H) 1.30 (t, J = 8.0 Hz, 3H) 2.56 (s , 3H) 2.82-3.01 (m, 4H) 3.51 (sept, J = 6.0 Hz, 1H) 3.80 (s, 3H) 4.04 (dd, J = 4.5, 7 0.0 Hz, 1H) 4.48d, J = 6.0 Hz, 2H) 6.31 (bs, 1H) 6.75 (d, J = 8.0 Hz, 1H) 6.08 (dd, J = 2.0 , 8.0 Hz, 1H) 7.13 (d, J = 2.0 Hz, 1H)
Example 203
Production Example 203a)
Figure 2002080899
Ethyl 2-chloroacetoacetate (10 ml) and thiobenzamide (10 g) were dissolved in ethanol (100 ml) and heated under reflux for 4 hours. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate 14: 1) to obtain 17 g of ethyl 4-methyl-2-phenyl-1,3-thiazole-5-carboxylate.
1H-NMR (CDCl3) Δ: 1.39 (t, J = 8.0 Hz, 3H) 2.78 (s, 3H) 4.35 (q, J = 8.0 Hz, 2H) 7.45 (m, 3H) 7.95 (M, 2H)
Production Example 203b)
Figure 2002080899
0.8 g of ethyl 4-methyl-2-phenyl-1,3-thiazole-5-carboxylate was dissolved in 10 ml of ethanol, 2 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.8 g of 4-methyl-2-phenyl-1,3-thiazole-5-carboxylic acid.
1H-NMR (DMSO-d6) Δ: 2.66 (s, 3H) 7.52 (m, 3H) 7.96 (m, 2H)
Example 203c)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] amino was prepared in a manner similar to e). Ethyl) phenyl] propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.99 (d, J = 6.5 Hz, 3H) 1.10 (d, J = 6.5 Hz, 3H) 2.65 (s, 3H) 2.86 (dd, J = 7.0) , 14.0 Hz, 1H) 3.00 (dd, J = 4.5, 14.0 Hz, 1H) 3.52 (sept, J = 6.0 Hz, 1H) 3.82 (s, 3H) 4.05 (Dd, J = 4.5, 7.0 Hz, 1H) 4.51 (d, J = 6.0 Hz, 2H) 6.42 (bs, 1H) 6.77 (d, J = 8.0 Hz, 1H) ) 7.09 (dd, J = 2.0, 8.0 Hz, 1H) 7.16 (d, J = 2.0 Hz, 1H) 7.37 (m, 3H) 7.85 (m, 2H)
Example 204
Example 204a)
Figure 2002080899
N- (2,4-dichlorophenyl) -2- (5-formyl-2-methoxyphenyl) acetamide (3.1 g) and ethyl 2- (diethylphosphoryl) -2-ethyl acetate (3.3 g) were the same as in Example 1a). By the method, 2.6 g of 2-ethyl-3- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} phenyl) -2-propenoate was obtained.
1H-NMR (CDCl3) Δ: 1.26 (d, J = 6.0 Hz, 6H) 1.35 (t, J = 8.0 Hz, 3H) 3.75 (s, 2H) 3.94 (s, 3H) 4.27 (Q, J = 8.0 Hz, 2H) 4.41 (sept, J = 6.0 Hz, 1H) 6.95 (m, 2H) 7.20 (d, J = 8.0 Hz, 1H) 7.30 (D, J = 8.0 Hz, 1H) 7.79 (d, J = 2.0 Hz, 1H) 7.85 (dd, J = 2.0, 8.0 Hz, 1H) 8.18 (bs, 1H) ) 8.38 (d, J = 8.0 Hz, 1H)
Example 204b)
Figure 2002080899
In the same manner as in Example 196b), 2-ethyl-3- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} phenyl) -2-propenoate from 2 g of ethyl 0.3 g of 2- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} benzyl) butanoate was obtained.
1H-NMR (CDCl3) Δ: 0.88 (d, J = 6.0 Hz, 3H) 1.06 (d, J = 6.0 Hz, 3H) 1.15 (t, J = 8.0 Hz, 3H) 2.85 (m , 2H) 3.43 (sept, J = 6.0 Hz, 1H) 3.65 (s, 3H) 3.82 (s, 3H) 3.94 (dd, J = 4.0, 8.0 Hz, 1H ) 4.09 (q, J = 8.0 Hz, 2H) 6.80 (d, J = 8.0 Hz, 1H) 7.13 (m, 3H) 7.23 (d, J = 8.0 Hz, 1H) ) 8.22 (s, 1H) 8.28 (d, J = 8.0 Hz, 1H)
Example 204c)
Figure 2002080899
0.3 g of ethyl 2- (4-methoxy-3- {2-oxo-2- [2,4-dichloroanilino] ethyl} benzyl) butanoate was dissolved in 10 ml of ethanol, and 1 ml of 5N sodium hydroxide was added. The reaction solution was heated to reflux for 10 minutes and then acidified with 1N hydrochloric acid under ice cooling. The aqueous layer was extracted with ethyl acetate and washed with saturated brine. The organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure to give 2- (4-methoxy-3- {2-oxo-2- [4- (trifluoromethyl) anilino] ethyl} benzyl) butane. 0.19 g of acid was obtained.
1H-NMR (CDCl3) Δ: 0.95 (d, J = 6.0 Hz, 3H) 1.08 (d, J = 6.0 Hz, 3H) 2.86 (dd, J = 7.0, 14.0 Hz, 1H) 3 .00 (dd, J = 4.5, 14.0 Hz, 1H) 3.49 (sept, J = 6.0 Hz, 1H) 3.67 (s, 3H) 3.84 (s, 3H) 4.04 (Dd, J = 4.5, 7.0 Hz, 1H) 6.82 (d, J = 8.0 Hz, 1H) 7.12 (m, 3H) 7.23 (d, J = 8.0 Hz, 1H) ) 8.20 (s, 1H) 8.28 (d, J = 8.0 Hz, 1H)
Example 205
Production Example 205a)
Figure 2002080899
5- (2-Chlorophenyl) -4-isoxazolecarboxylic acid was obtained in the same manner as in Production Example 199.
1H-NMR (CDCl3): 7.40 (s, 1H) 7.43 (m, 2H) 7.56 (m, 1H) 8.00 (dd, J = 2.0, 8.0 Hz, 1H)
Example 205b)
Figure 2002080899
Example 19d) 3--3-[([[5- (2-Chlorophenyl) -3-isoxazolyl] carbonylamino) methyl] -4-methoxyphenyl-2-isopropoxypropanoic acid was obtained by a method similar to e). .
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.0 Hz, 3H) 1.09 (d, J = 6.0 Hz, 3H) 2.84 (dd, J = 7.0, 14.0 Hz, 1H) 3 .00 (dd, J = 4.5, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 4.05 (dd, J = 4.5 , 7.0 Hz, 1H) 4.46 (d, J = 7.0 Hz, 2H) 6.76 (d, J = 8.0 Hz, 1H) 7.08 (dd, J = 2.0, 8.0 Hz) , 1H) 7.16 (d, J = 2.0 Hz, 1H) 7.29-7.35 (m, 2H) 7.46 (dd, J = 4.0, 7.5 Hz, 1H) 7.85 (Dd, J = 4.0, 7.5 Hz, 1H)
Example 206
Production Example 206a)
2 ml of ethyl 2,4-dioxovalerate and 1.2 g of phenylhydrazine were dissolved in 20 ml of acetic acid and stirred at 100 ° C. for 2 hours. Acetic acid was distilled off under reduced pressure, ethyl acetate was added to the residue, washed with a sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was subjected to silica gel column chromatography. Ethyl 3-methyl-1-phenyl-1H-5-pyrazolecarboxylate 0.37 g in hexane: ethyl acetate 14: 1, ethyl 5-methyl in hexane: ethyl acetate 9: 1 0.46 g of -1-phenyl-1H-3-pyrazolecarboxylate was obtained.
Figure 2002080899
Ethyl 3-methyl-1-phenyl-1H-5-pyrazole carboxylate
1H-NMR (CDCl3) Δ: 1.22 (t, J = 8.0 Hz, 3H) 2.35 (s, 3H) 4.22 (q, J = 8.0 Hz, 2H) 6.80 (s, 1H) 7.42 (M, 5H)
Figure 2002080899
Ethyl 5-methyl-1-phenyl-1H-3-pyrazole carboxylate
1H-NMR (CDCl3) Δ: 1.39 (t, J = 8.0 Hz, 3H) 2.34 (s, 3H) 4.41 (q, J = 8.0 Hz, 2H) 6.74 (s, 1H) 7.40 -7.50 (m, 5H)
Production Example 206b)
Figure 2002080899
Ethyl 3-methyl-1-phenyl-1H-5-pyrazolecarboxylate (0.37 g) was dissolved in 10 ml of ethanol, 1 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.26 g of 3-methyl-1-phenyl-1H-5-pyrazolecarboxylic acid.
1H-NMR (CDCl3) Δ: 2.35 (s, 3H) 6.87 (s, 1H) 7.40 (m, 5H)
Example 206
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(3-methyl-1-phenyl-1H-5-pyrazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 0.98 (d, J = 6.0 Hz, 3H) 1.09 (d, J = 6.0 Hz, 3H) 2.62 (s, 3H) 2.84 (dd, J = 7.0) , 14.0 Hz, 1H) 2.96 (dd, J = 4.5, 14.0 Hz, 1H) 3.51 (sept, J = 6.0 Hz, 1H) 3.64 (s, 3H) 4.03 (Dd, J = 4.5, 7.0 Hz, 1H) 4.38 (d, J = 7.0 Hz, 2H) 6.23 (bs, 1H) 6.67 (d, J = 8.0 Hz, 1H) 7.07-7.08 (m, 2H) 7.24-7.32 (m, 5H)
Example 207
Production Example 207a)
Figure 2002080899
5-Methyl-1-phenyl-1H-3-pyrazolecarboxylic acid was obtained in the same manner as in Production Example 206b).
1H-NMR (CDCl3) Δ: 2.35 (s, 3H) 6.79 (s, 1H) 7.42-7.52 (m, 5H)
Example 207b)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(5-methyl-1-phenyl-1H-3-pyrazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 1.96 (d, J = 6.0 Hz, 3H) 1.09 (d, J = 6.0 Hz, 3H) 2.60 (s, 3H) 2.82 (dd, J = 7.0) , 14.0 Hz, 1H) 2.97 (dd, J = 4.5, 14.0 Hz, 1H) 3.47 (sept, J = 6.0 Hz, 1H) 3.76 (s, 3H) 4.01 (Dd, J = 4.5, 7.0 Hz, 1H) 4.51 (d, J = 7.0 Hz, 2H) 6.67 (s, 1H) 6.71 (d, J = 8.0 Hz, 1H) ) 7.04 (dd, J = 8.0, 2.0 Hz, 1H) 7.15 (d, J = 2.0 Hz, 1H) 7.27 (bs, 1H) 7.35-7.38 (m , 3H) 7.41-7.46 (m, 2H)
Example 208
Example 208a)
Figure 2002080899
N1- {5-[(2,4-Dioxo-1,3-thiazolan-5-ylidene) methyl] -2-methoxybenzyl} -2-fluoro-4 by a method analogous to Example 28a) -c) -Chlorobenzamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.74 (s, 2H) 3.85 (s, 3H) 7.12 (d, J = 8.0 Hz, 1H) 7.23 (d, J = 8.0 Hz, 1H) 7.44 (Bs, 1H) 7.50 (t, J = 8.0 Hz, 1H) 7.66 (s, 1H) 7.90 (t, J = 8.0 Hz, 1H) 9.98 (s, 1H)
Example 208b)
Figure 2002080899
N1- {5-[(2,4-dioxo-1,3-thiazolan-5-ylidene) methyl] -2-methoxybenzyl} -2-fluoro-4-chlorobenzamide 0.3 g was dissolved in 20 ml of methanol, 20 mg iodine was added. While the reaction solution was heated to reflux, 400 mg of magnesium was added in 10 portions every 10 minutes. The reaction mixture was ice-cooled, acidified with 2N hydrochloric acid, and extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Diisopropyl ether was added to the residue, and the crystals were filtered to give N1- (4-chloro-2-fluorophenyl) -2-2-2methoxy-5-[(2-methylene-4-oxo-1,3-thiazolane- 80 mg of 5-yl) methyl] phenylacetamide were obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 10.0, 14.0 Hz, 1H) 3.27 (m, 1H) 3.65 (s, 2H) 3.73 (s, 3H) 4.81 (m , 1H) 6.91 (d, J = 8.0 Hz, 1H) 7.08-7.11 (m, 2H) 7.22 (m, 1H) 7.47 (m, 1H) 7.89 (m , 1H) 9.84 (s, 1H)
Example 209
Production Example 209a)
Figure 2002080899
4-Methyl-2- (3-pyridyl) -1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 2.67 (s, 3H) 7.54 (dd, J = 4.0, 8.0 Hz, 1H) 8.31 (d, J = 8.0 Hz, 1H) 8.70 (d, J = 4.0 Hz, 1 H) 9.51 (s, 1 H)
Example 209b)
Figure 2002080899
Example 19d) 2-Isopropoxy-3--4-methoxy-3-[([4-methyl-2- (3-pyridyl) -1,3-thiazol-5-yl] carbonyl by a method analogous to e) Amino) methyl] phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.01 (d, J = 6.0 Hz, 3H) 1.11 (d, J = 6.0 Hz, 3H) 2.66 (s, 3H) 2.87 (dd, J = 7.0) , 14.0 Hz, 1H) 2.99 (dd, J = 4.5, 14.0 Hz, 1H) 3.55 (sept, J = 6.0 Hz, 1H) 3.83 (s, 3H) 4.06 (Dd, J = 4.5, 7.0 Hz, 1H) 4.52 (d, J = 7.0 Hz, 2H) 6.59 (bs, 1H) 6.78 (d, J = 8.0 Hz, 1H) 6.91 (s, 1H) 7.09-7.26 (m, 2H) 7.40 (m, 1H) 7.60 (m, 1H) 8.56 (d, J = 7.0 Hz, 1H) )
Example 210
Production Example 210a)
Figure 2002080899
3.7 g of 1-methyl-3-phenylimidazole was dissolved in tetrahydrofuran, and 18.7 ml of n-butyllithium (1.5 mol / l hexane solution) was added dropwise at −50 ° C. while cooling. The reaction temperature was raised to −20 ° C. and then cooled again to −50 ° C. After adding 3.6 ml of N, N-dimethylformamide, the cooling device was removed and the reaction temperature was raised to room temperature. An ammonium chloride solution was added to the reaction solution, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain 1.9 g of 1-methyl-5-phenyl-1H-2-imidazolecarboxaldehyde.
1H-NMR (DMSO-d6) Δ: 3.98 (s, 3H) 7.28 (t, J = 8.0 Hz, 1H) 7.40 (t, J = 8.0 Hz, 2H) 8.82 (d, J = 8.0 Hz) , 2H) 8.10 (s, 1H) 9.75 (s, 1H)
Production Example 210b)
Figure 2002080899
1 g of 1-methyl-5-phenyl-1H-2-imidazolecarboxaldehyde was dissolved in 15 ml of dimethyl sulfoxide, and 3 ml of potassium hydrogen phosphate (1 mol / l) was added. An aqueous solution of 1.5 g of sodium chlorite was added and stirred at room temperature for 20 minutes. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1 → 1: 4 → ethyl acetate: methanol = 3: 1), and 90 mg of 1-methyl-5-phenyl-1H-2-imidazolecarboxylic acid was added. Obtained.
1H-NMR (DMSO-d6) Δ: 4.00 (s, 3H) 7.26 (t, J = 8.0 Hz, 1H) 7.42 (t, J = 8.0 Hz, 2H) 7.75 (s, 1H) 8.82 (D, J = 8.0Hz, 2H)
Example 210c)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(1-methyl-5-phenyl-1H-2-imidazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.06 (d, J = 6.0 Hz, 3H) 2.84 (dd, J = 7.0, 14.0 Hz, 1H) 2 .97 (dd, J = 4.5, 14.0 Hz, 1H) 3.48 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 4.02 (m, 1H) 4.03 (S, 3H) 4.52 (d, J = 7.0 Hz, 2H) 6.75 (d, J = 8.0 Hz, 1H) 6.91 (s, 1H) 7.06 (dd, J = 2) 0.0, 8.0 Hz, 1H) 7.16 (m, 2H) 7.21 (m, 1H) 7.31 (t, J = 7.5 Hz, 2H) 7.68 (d, J = 7.5 Hz , 2H)
Example 211
Figure 2002080899
N1- (2,4-dichlorophenyl) -2--2-methoxy-5-[(2-methylene-4-oxo-1,3) was prepared in the same manner as in Examples 28a) -c), 208a), b). -Thiazolan-5-yl) methyl] phenylacetamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.00 (dd, J = 10.0, 14.0 Hz, 1H) 3.32 (m, 1H) 3.65 (s, 2H) 3.76 (s, 3H) 4.82 (dd , J = 4.5, 10.0 Hz, 1H) 6.93 (d, J = 8.0 Hz, 1H) 7.11 (m, 2H) 7.38 (dd, J = 2.5, 8.0 Hz) , 1H) 7.64 (d, J = 2.5 Hz, 1H) 7.80 (d, J = 8.0 Hz, 1H) 9.42 (s, 1H)
Example 212
Production Example 212a)
Figure 2002080899
2- (2-Ethyl-4-pyridyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 1.23 (t, J = 8.0 Hz, 3H) 2.69 (s, 3H) 2.83 (q, J = 8.0 Hz, 2H) 7.70 (d, J = 6.0 Hz) , 1H) 7.78 (s, 1H) 8.60 (d, J = 6.0 Hz, 1H)
Example 212b)
Figure 2002080899
Example 19d) 3-3-[([2- (2-Ethyl-4-pyridyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl]- 4-Methoxyphenyl-2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.18 (d, J = 6.0 Hz, 3H) 1.37 (d, J = 7.5 Hz, 3H) 2.72 (s) , 3H) 2.94 (m, 3H) 3.06 (dd, J = 4.5, 14.0 Hz, 1H) 3.61 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H 4.12 (dd, J = 4.5, 7.0 Hz, 1H) 4.59 (d, J = 7.0 Hz, 2H) 6.55 (bs, 1H) 6.84 (d, J = 7) 0.0 Hz, 1H) 7.18 (d, J = 7.0 Hz, 1H) 7.22 (s, 1H) 7.63 (m, 1H) 7.72 (s, 1H) 8.62 (d, J = 5.0Hz, 1H)
Example 213
Production Example 213a)
Figure 2002080899
6.7 g of benzamidoxime and 5 ml of ethyl propiolate were dissolved in methanol and heated to reflux for 3 hours. The solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 10: 1) and ethyl (Z) -3-([(Z) -1-amino-1-phenylmethylidene. ] 4.5 g of aminooxy) -2-propenoate was obtained.
1H-NMR (CDCl3) Δ: 1.30 (t, J = 8.0 Hz, 3H) 4.17 (q, J = 8.0 Hz, 2H) 4.90 (d, J = 6.0 Hz, 1H) 5.25 (bs) , 2H) 7.38 (d, J = 6.0 Hz, 1H) 7.40-7.50 (m, 3H) 7.65 (m, 2H)
Production Example 213b)
Figure 2002080899
4.5 g of (Z) -3-([(Z) -1-amino-1-phenylmethylidene] aminooxy) -2-propenoate was dissolved in 30 ml of diphenyl ether and heated at 200 ° C. for 5 hours. Hexane was added to the reaction mixture and the solid was filtered. The solid was purified by silica gel column chromatography, and hexane: ethyl acetate = 1: 1 → dichloromethane: methanol = 50: 1) to obtain 3.5 g of ethyl 2-phenyl-1H-5-imidazolecarboxylate.
1H-NMR (CDCl3) Δ: 1.39 (t, J = 8.0 Hz, 3H) 4.38 (q, J = 8.0 Hz, 2H) 7.43 (m, 3H) 7.78 (s, 1H) 7.90 (M, 2H)
Production Example 213c)
3.5 g of ethyl 2-phenyl-1H-5-imidazolecarboxylate was dissolved in 30 ml of N, N-dimethylformamide, 0.71 g of sodium hydride was added under ice cooling, and the mixture was stirred at room temperature for 1 hour. The reaction solution was ice-cooled again, 1.5 ml of methyl iodide was added, and the mixture was stirred at room temperature for 30 minutes. Water and ammonium chloride solution were added to the reaction mixture, and the mixture was extracted with ethyl acetate. The ethyl acetate layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography. Ethyl 1-methyl-2-phenyl-1H-4-imidazolecarboxylate (0.6 g) in hexane: ethyl acetate = 8: 1 and hexane: ethyl acetate = 1: 1 in ethyl 2.2 g of 1-methyl-2-phenyl-1H-5-imidazole carboxylate was obtained.
Figure 2002080899
Ethyl 1-methyl-2-phenyl-1H-4-imidazolecarboxylate
1H-NMR (CDCl3) Δ: 1.37 (t, J = 8.0 Hz, 3H) 3.94 (s, 3H) 4.34 (q, J = 8.0 Hz, 2H) 7.46 (m, 3H) 7.60 (M, 2H) 7.83 (s, 1H)
Figure 2002080899
Ethyl 1-methyl-2-phenyl-1H-5-imidazolecarboxylate
1H-NMR (CDCl3) Δ: 1.39 (t, J = 8.0 Hz, 3H) 3.77 (s, 3H) 4.39 (q, J = 8.0 Hz, 2H) 7.45 (m, 3H) 7.64 (M, 2H) 7.68 (s, 1H)
Production Example 213d)
Figure 2002080899
Ethyl 1-methyl-2-phenyl-1H-5-imidazolecarboxylate (2.2 g) was dissolved in ethanol (20 ml), 5N sodium hydroxide solution (2 ml) was added, and the mixture was heated to reflux for 1 hour. The reaction solution was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with a mixed solvent of ethyl acetate and tetrahydrofuran. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 1.1 g of 1-methyl-2-phenyl-1H-5-imidazolecarboxylic acid.
1H-NMR (CDCl3) Δ: 3.77 (s, 3H) 7.52 (m, 3H) 7.71 (m, 2H) 8.06 (s, 1H)
Example 213e)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(1-methyl-2-phenyl-1H-5-imidazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 0.82 (d, J = 6.0 Hz, 3H) 0.97 (d, J = 6.0 Hz, 3H) 2.66 (dd, J = 7.0, 14.0 Hz, 1H) 2 .79 (dd, J = 4.5, 14.0 Hz, 1H) 3.41 (sept, J = 6.0 Hz, 1H) 3.76 (s, 3H) 3.78 (s, 3H) 3.91 (Dd, J = 4.5, 7.0 Hz, 1H) 4.37 (d, J = 7.0 Hz, 2H) 6.87 (d, J = 8.0 Hz, 1H) 7.05-7.08 (M, 2H) 7.46-7.53 (m, 3H) 7.72 (d, J = 6.5 Hz, 1H) 7.82 (s, 1H) 8.13 (bs, 1H)
Example 214
Production Example 214a)
Figure 2002080899
0.6 g of ethyl 1-methyl-2-phenyl-1H-4-imidazolecarboxylate was dissolved in 10 ml of ethanol, 1 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate and tetrahydrofuran. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.5 g of 1-methyl-2-phenyl-1H-4-imidazolecarboxylic acid.
1H-NMR (CDCl3): 3.86 (s, 3H) 7.52 (m, 3H) 7.68 (m, 2H) 7.83 (s, 1H)
Example 214b)
Figure 2002080899
Example 19d) 2-Isopropoxy-3- [4-methoxy-3-([(1-methyl-2-phenyl-1H-4-imidazolyl) carbonyl] aminoethyl) phenyl] propane by a method similar to e) The acid was obtained.
1H-NMR (CDCl3) Δ: 0.84 (d, J = 6.0 Hz, 3H) 0.99 (d, J = 6.0 Hz, 3H) 2.70 (dd, J = 7.0, 14.0 Hz, 1H) 2 .84 (dd, J = 4.5, 14.0 Hz, 1H) 3.44 (sept, J = 6.0 Hz, 1H) 3.79 (s, 3H) 3.90 (s, 3H) 3.96 (Dd, J = 4.5, 7.0 Hz, 1H) 4.40 (d, J = 7.0 Hz, 2H) 6.90 (d, J = 8.0 Hz, 1H) 7.11 (m, 2H ) 7.56-7.64 (m, 3H) 7.70-7.76 (m, 1H) 8.10 (s, 1H) 8.97 (bs, 1H)
Example 215
Production Example 215a)
Figure 2002080899
In the same manner as in Production Example 203, 2- (2-chlorophenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.68 (s, 3H) 7.48-7.55 (m, 2H) 7.65 (d, J = 8.0 Hz, 1H) 8.24 (dd, J = 2.0, 8 .0Hz, 1H) 13.50 (bs, 1H)
Example 215b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2- Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.74 (s, 3H) 2.93 (dd, J = 7.0) , 14.0 Hz, 1H) 3.07 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H), 4. 13 (dd, J = 4.5, 7.0 Hz, 1H) 4.59 (d, J = 7.0 Hz, 2H) 6.84 (d, J = 8.0 Hz, 1H) 7.16 (dd, J = 2.0, 8.0 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.35-7.38 (m, 2H) 7.48-7.51 (m, 1H) 8.23-8.26 (m, 1H)
Example 216
Production Example 216a)
Figure 2002080899
In the same manner as in Production Example 203, 2- (4-chlorophenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.66 (s, 3H) 7.56 (d, J = 8.0 Hz, 2H) 7.98 (d, J = 8.0 Hz, 2H)
Example 216b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (4-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2- Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.70 (s, 3H) 2.93 (dd, J = 7.0) , 14.0 Hz, 1H) 3.06 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.90 (s, 3H) 4.13 (Dd, J = 4.5, 7.0 Hz, 1H) 4.58 (d, J = 7.0 Hz, 2H) 6.52 (bs, 1H) 6.84 (d, J = 8.0 Hz, 1H) 7.16 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.41 (d, J = 9.0 Hz, 2H) 7.86 (D, J = 9.0Hz, 2H)
Example 217
Production Example 217a)
Figure 2002080899
4-Methyl-2- (2-thienyl) -1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 2.60 (s, 3H) 7.08 (dd, J = 4.0, 5.0 Hz, 1H) 7.77 (d, J = 8.0 Hz, 1H) 7.80 (d, J = 5.0 Hz, 1H) 13.38 (bs, 1H)
Example 217b)
Figure 2002080899
2-Isopropoxy-3--4-methoxy-3-[([4-methyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl by a method similar to that in Example 38 Phenylpropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.05 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.67 (s, 3H) 2.93 (dd, J = 7.0) , 14.0 Hz, 1H) 3.06 (dd, J = 4.5, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H) 4.11 (Dd, J = 4.5, 7.0 Hz, 1H) 4.57 (d, J = 7.0 Hz, 2H) 6.49 (bs, 1H) 6.83 (d, J = 8.0 Hz, 1H) ) 7.08 (dd, J = 4.0, 5.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.43 (dd, J = 1.0, 5.0 Hz, 1H) 7.52 (dd, J = 1.0, 4.0 Hz, 1H)
Example 218
Production Example 218a)
Figure 2002080899
20.6 g of (±) -Z-α-phosphonoglycine trimethyl ester was dissolved in 200 ml of dichloromethane, and 8.9 ml of 1,8-diazabicyclo [5.4.0] -7-undecene was added. After the reaction solution was stirred at room temperature for 15 minutes, tert-butyl-N- (5-formyl-2-methoxybenzyl) carbamate was dissolved in 50 ml of dichloromethane and added, and the mixture was stirred at room temperature for 16 hours. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 3: 1), methyl (Z) -2-[(benzyloxy) carbonyl] amino-3- (3-[(tert-butoxycarbonyl) amino] 21 g of methyl-4-methoxyphenyl) -2-propenoate were obtained.
1H-NMR (CDCl3) Δ: 1.44 (s, 9H) 3.80 (s, 3H) 3.86 (s, 3H) 4.25 (s, 2H) 4.90 (bs, 1H) 5.13 (s, 2H) ) 6.78 (d, J = 8.0 Hz, 1H) 7.35 (m, 5H) 7.42 (m, 1H) 7.49 (m, 1H)
Production Example 218b)
Figure 2002080899
Methyl (Z) -2-[(benzyloxy) carbonyl] amino-3- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) -2-propenoate was dissolved in methanol and dissolved in 10%. Palladium carbon 0.7g was added and it stirred under hydrogen atmosphere for 16 hours. The reaction mixture was filtered, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography to obtain (ethyl acetate) methyl 2-amino-3- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxy. 3.4 g of phenyl) propanoate was obtained.
1H-NMR (CDCl3) Δ: 1.43 (s, 9H) 2.80 (dd, J = 7.0, 14.0 Hz, 1H) 3.69 (dd, J = 4.5, 14.0 Hz, 1H) 3.72 (S, 3H) 3.82 (s, 3H) 4.27 (d, J = 6.0 Hz, 2H) 5.00 (bs, 1H) 6.79 (d, J = 8.0 Hz, 1H) 7 .06 (m, 2H)
Production Example 218c)
Figure 2002080899
3.4 g of methyl 2-amino-3- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxyphenyl) propanoate was dissolved in 30 ml of chloroform, and 1.7 ml of acetic acid and 1.35 ml of isoamyl nitrite were added. And stirred at 60 ° C. for 20 minutes. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with dichloromethane. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1) and 1- [1- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxybenzyl) -2-methoxy-2. -Oxoethyl] -1-diazine-1ium 2.5 g was obtained.
1H-NMR (CDCl3) Δ: 1.43 (s, 9H) 3.78 (s, 3H) 3.82 (s, 3H) 4.27 (d, J = 6.0 Hz, 1H) 5.00 (bs, 1H) 6 .79 (d, J = 8.0 Hz, 1H) 7.11 (m, 2H)
Example 218d)
Figure 2002080899
1- [1- (3-[(tert-butoxycarbonyl) amino] methyl-4-methoxybenzyl) -2-methoxy-2-oxoethyl] -1-diazin-1ium (2 g) was dissolved in 30 ml of n-propanol, 25 mg of rhodium (II) acetate was added. After stirring at room temperature for 1 hour, the mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 9: 1). The obtained product was treated in the same manner as in Example 38 to obtain 3- (3-[(2,4-dichlorobenzoyl) amino] methyl-4-methoxyphenyl) -2-propoxypropanoic acid. .
1H-NMR (CDCl3) Δ: 0.87 (d, J = 8.0 Hz, 3H) 1.58 (q, J = 8.0 Hz, 2H) 2.97 (dd, J = 7.0, 14.0 Hz, 1H) 3 .09 (dd, J = 4.5, 14.0 Hz, 1H) 3.38 (m, 1H) 3.52 (m, 1H) 3.85 (s, 3H) 4.07 (dd, J = 4 .5, 7.0 Hz, 1H) 4.60 (d, J = 7.0 Hz, 2H) 6.82 (m, 2H) 7.16 (dd, J = 2.0, 8.0 Hz, 1H) 7 .30 (dd, J = 2.0, 8.0 Hz, 1H) 7.40 (d, J = 2.0 Hz, 1H) 7.40 (d, J = 2.0 Hz, 1H) 7.65 (d , J = 8.0Hz, 1H)
Example 219
Production Example 219a)
Figure 2002080899
In the same manner as in Production Example 203, 2- (4-methylphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 2.40 (s, 3H) 2.77 (s, 3H) 7.25 (d, J = 8.0 Hz, 2H) 7.85 (d, J = 8.0 Hz, 2H)
Example 219b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (4-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.40 (s, 3H) 2.70 (s, 3H) 2.93 (Dd, J = 7.0, 14.0 Hz, 1H) 3.07 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.89 (S, 3H) 4.13 (dd, J = 4.5, 7.0 Hz, 1H) 4.58 (d, J = 7.0 Hz, 2H) 6.49 (bs, 1H) 6.84 (d , J = 8.0 Hz, 1H) 7.16 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.24 (d, J = 8 .0Hz, 2H) 7.81 (d, J = 8.0 Hz, 2H)
Example 220
Production Example 220a)
Figure 2002080899
2- (3-Chloro-4-fluorophenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 2.80 (s, 3H) 7.23 (d, J = 8.0 Hz, 1H) 7.84 (m, 1H) 8.09 (dd, J = 2.0, 8.0 Hz, 1H) )
Example 220b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (3-chloro-4-fluorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy Phenyl-2-isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.18 (d, J = 6.0 Hz, 3H) 2.70 (s, 3H) 2.94 (dd, J = 7.0) , 14.0 Hz, 1H) 3.07 (dd, J = 4.5, 14.0 Hz, 1H) 3.61 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H) 4.13 (Dd, J = 4.5, 7.0 Hz, 1H) 4.58 (d, J = 7.0 Hz, 2H) 6.52 (bs, 1H) 6.84 (d, J = 8.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.21-7.23 (m, 2H) 7.76-7.80 (m, 1H) 8.02 (dd, J = 2.0, 8.0Hz, 1H)
Example 221
Production Example 221a)
Figure 2002080899
2- (2,4-Dichlorophenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 2.67 (s, 3H) 7.60 (dd, J = 2.0, 8.0 Hz, 1H) 7.86 (d, J = 2.0 Hz, 1H) 8.28 (d, J = 8.0Hz, 1H)
Example 221b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (2,4-dichlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl- 2-Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.72 (s, 3H) 2.94 (dd, J = 7.0) , 14.0 Hz, 1H) 3.07 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H) 4.13 (Dd, J = 4.5, 7.0 Hz, 1H) 4.59 (d, J = 7.0 Hz, 2H) 6.52 (bs, 1H) 6.84 (d, J = 8.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.36 (dd, J = 2.0, 8.0 Hz, 1H) ) 7.51 (d, J = 2.0 Hz, 1H) 8.24 (d, J = 8.0 Hz, 1H)
Example 222
Production Example 222a)
Figure 2002080899
2- (2-Methylphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 2.61 (s, 3H) 2.82 (s, 3H), 7.27-7.33 (m, 2H) 7.37 (d, J = 8.0 Hz, 1H) 7.80 ( d, J = 8.0 Hz, 1H)
Example 222b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (2-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.57 (s, 3H) 2.72 (s, 3H) 2.94 (Dd, J = 7.0, 14.0 Hz, 1H) 3.07 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.89 (S, 3H) 4.12 (dd, J = 4.5, 7.0 Hz, 1H) 4.59 (d, J = 7.0 Hz, 2H) 6.51 (bs, 1H) 6.84 (d , J = 8.0 Hz, 1H) 7.16 (dd, J = 2.0, 8.0 Hz, 1H) 7.24 (d, J = 2.0 Hz, 1H) 7.26-7.38 (m , 3H) 7.70 (dd, J = 2.0, 8.0 Hz, 1H)
Example 223
Production Example 223a)
Figure 2002080899
2- (4-Methoxyphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 2.63 (s, 3H) 3.80 (s, 3H) 7.04 (d, J = 8.0 Hz, 2H) 7.90 (d, J = 8.0 Hz, 2H)
Example 223b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (4-methoxyphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.05 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.69 (s, 3H) 2.93 (dd, J = 7.0) , 14.0 Hz, 1H) 3.05 (dd, J = 4.5, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 3.89 (S, 3H) 4.12 (dd, J = 4.5, 7.0 Hz, 1H) 4.58 (d, J = 7.0 Hz, 2H) 6.49 (bs, 1H) 6.83 (d , J = 8.0 Hz, 1H) 6.94 (d, J = 8.0 Hz, 2H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2 .0Hz, 1H) 7.86 (d, J = 8.0 Hz, 2H)
Example 224
Production Example 224a)
Figure 2002080899
2- (3-Methylphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 2.42 (s, 3H) 2.81 (s, 3H) 7.32 (m, 2H) 7.76 (dd, J = 2.0, 8.0 Hz, 1H) 7.82 (d , J = 2.0Hz, 1H)
Example 224b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (3 methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2- Isopropoxycarboxylic acid was obtained.
1H-NMR (CDCl3) Δ: 1.07 (d, J = 6.0 Hz, 3H) 1.17 (d, J = 6.0 Hz, 3H) 2.41 (s, 3H) 2.71 (s, 3H) 2.93 (Dd, J = 7.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.5, 14.0 Hz, 1H) 3.60 (sept, J = 6.0 Hz, 1H) 3.89 (S, 3H) 4.12 (dd, J = 4.5, 7.0 Hz, 1H) 4.58 (d, J = 7.0 Hz, 2H) 6.49 (bs, 1H) 6.84 (d , J = 8.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.25-7.34 (m , 2H) 7.70 (d, J = 8.0 Hz, 2H) 7.76 (bs, 1H)
Example 225
Production Example 225a)
Figure 2002080899
2- (4-Fluorophenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 2.85 (s, 3H) 7.16 (t, J = 8.0 Hz, 1H) 7.87 (t, J = 8.0 Hz, 1H)
Example 225b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([[2- (4-fluorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 was prepared. -Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) (MH+487
Example 226
Production Example 226a)
Figure 2002080899
20 g of methyl dichloroacetate and 8 g of acetaldehyde were dissolved in 50 ml of anhydrous diethyl ether, and 25 g of 28% sodium methylate was added dropwise under ice cooling. The reaction mixture was stirred for 2 hours under ice cooling, water and saturated brine were added, and the mixture was extracted with diethyl ether. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was dissolved in 60 ml of methanol, 8.5 g of thiourea was added, and the mixture was heated to reflux for 4 hours. The reaction solution was ice-cooled, water and aqueous ammonia were added to adjust the pH to 9, and dichloromethane was added for extraction. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 4: 1 → 1: 1), methyl 2-amino-5-methyl-1, 2.8 g of 3-thiazole-4-carboxylate was obtained.
1H-NMR (CDCl3) Δ: 2.61 (s, 3H) 3.88 (s, 3H) 5.02 (bs, 2H)
Production Example 226b)
Figure 2002080899
2.8 g of methyl 2-amino-5-methyl-1,3-thiazole-4-carboxylate was dissolved in 30 ml of methanol and 7 ml of hydrobromic acid, and an aqueous solution of 1.2 g of sodium nitrite was added dropwise under ice cooling. . The reaction solution was stirred for 30 minutes under ice-cooling, then added to a solution of 1.3 g of cuprous bromide previously heated to 60 ° C. in 7 ml of hydrobromic acid, and stirred at 60 ° C. for 1 hour. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with diethyl ether. The organic layer was extracted with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.47 g of methyl 2-bromo-5-methyl-1,3-thiazole-4-carboxylate.
1H-NMR (CDCl3) Δ: 2.74 (s, 3H) 3.93 (s, 3H)
Production Example 226c)
Figure 2002080899
0.3 g of methyl 2-bromo-5-methyl-1,3-thiazole-4-carboxylate and 0.2 g of 3-chlorophenylboronic acid are dissolved in toluene, 0.15 g of tetrakistriphenylphosphine palladium and 0. 7 g was added. The reaction was heated to reflux for 4 hours under a nitrogen atmosphere. The reaction mixture was cooled, filtered through celite, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography to obtain 0.2 g of methyl 2- (3-methylphenyl) -5-methyl-1,3-thiazole-4-carboxylate.
1H-NMR (CDCl3) Δ: 2.83 (s, 3H) 3.97 (s, 3H) 7.38 (m, 2H) 7.77 (dd, J = 2.0, 8.0 Hz, 1H) 7.94 (d , J = 2.0Hz, 1H)
Production Example 226d)
Figure 2002080899
0.2 g of methyl 2- (3-methylphenyl) -5-methyl-1,3-thiazole-4-carboxylate was dissolved in 10 ml of methanol, 1 ml of 5N sodium hydroxide solution was added, and the mixture was heated to reflux for 1 hour. The reaction mixture was ice-cooled, neutralized with 2N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to obtain 0.2 g of 2- (3-methylphenyl) -5-methyl-1,3-thiazole-4-carboxylic acid.
1H-NMR (DMSO-d6) Δ: 2.73 (s, 3H) 7.55 (m, 2H) 7.83 (d, J = 8.0 Hz, 1H) 7.93 (d, J = 2.0 Hz, 1H)
Example 226e)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (3-methylphenyl) -5-methyl-1,3-thiazol-4-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 503 (MH+)
Example 227
Production Example 227a)
Figure 2002080899
2- (3-5-dichlorophenyl) -5-methyl-1,3-thiazole-4-carboxylic acid was obtained in the same manner as in Production Example 226.
1H-NMR (DMSO-d6) Δ: 2.74 (s, 3H) 8.75 (s, 1H) 8.90 (s, 2H)
Example 227b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (3-5-dichlorophenyl) -5-methyl-1,3-thiazol-4-yl] carbonylamino) methyl] -4-methoxyphenyl- 2-Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 537 (MH+)
Example 228
Production Example 228a)
Figure 2002080899
5-Methyl-2- (5-methyl-2-thienyl) -1,3-thiazole-4-carboxylic acid was obtained in the same manner as in Production Example 226.
1H-NMR (CDCl3) Δ: 2.53 (s, 3H) 2.81 (s, 3H) 6.74 (d, J = 5.0 Hz, 1H) 7.28 (d, J = 5.0 Hz, 1H)
Example 228b)
Figure 2002080899
2-Isopropoxy-3--4-methoxy-3-[([5-methyl-2- (5-methyl-2-thienyl) -1,3-thiazol-4-yl] was prepared in the same manner as in Example 38. Carbonylamino) methyl] phenylpropanoic acid was obtained.
MS m / e (ESI) 489 (MH+)
Example 229
Production Example 229a)
Figure 2002080899
5-Methyl-2- (3-thienyl) -1,3-thiazole-4-carboxylic acid was obtained in the same manner as in Production Example 226.
1H-NMR (CDCl3) Δ: 2.84 (s, 3H) 7.41 (dd, J = 1.0, 5.0 Hz, 1H) 7.50 (d, J = 1.0 Hz, 1H) 7.81 (d, J = 5.0Hz, 1H)
Example 229b)
Figure 2002080899
2-Isopropoxy-3--4-methoxy-3-[([5-methyl-2- (3-thienyl) -1,3-thiazol-4-yl] carbonylamino) methyl by a method similar to that in Example 38 Phenylpropanoic acid was obtained.
MS m / e (ESI) 475 (MH+)
Example 230
Production Example 230a)
Figure 2002080899
2- (5-Chloro-2-thienyl) -5-methyl-1,3-thiazole-4-carboxylic acid was obtained in the same manner as in Production Example 226.
1H-NMR (CDCl3): 2.83 (s, 3H) 6.92 (d, J = 5.0 Hz, 1H) 7.24 (d, J = 5.0 Hz, 1H)
Example 230b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (5-chloro-2-thienyl) -5-methyl-1,3-thiazol-4-yl] carbonylamino) methyl] -4-methoxy Phenyl-2-isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 509 (MH+)
Example 231
Production Example 231a)
Figure 2002080899
2 g of 1-cyclopentanecarboxamide was dissolved in tetrahydrofuran, 4.3 g of Lawson reagent was added, and the mixture was stirred at room temperature for 16 hours. After the reaction solution was concentrated under reduced pressure, the residue was purified by silica gel column chromatography to obtain 1.8 g of 1-cyclopentanecarbothioamide.
1H-NMR (CDCl3) Δ: 1.64 (m, 2H) 1.78-1.94 (m, 4H) 2.00 (m, 2H) 2.95 (qui, J = 6.0 Hz, 1H) 6.86 (bs) , 1H) 7.50 (bs, 1H)
Production Example 231b)
Figure 2002080899
2-Cyclopentyl-4-methyl-1,3-thiazole-5-carboxylic acid was obtained by treating in the same manner as in Production Example 203 using ethyl 2-chloroacetoacetate and 1-cyclopentanecarbothioamide as raw materials.
1H-NMR (CDCl3): 1.70-1.88 (m, 6H) 2.20 (m, 2H) 2.72 (s, 3H) 3.42 (qui, J = 6.0 Hz, 1H)
Example 231c)
Figure 2002080899
In the same manner as in Example 38, 3- [3-([(2-cyclopentyl-4-methyl-1,3-thiazol-5-yl) carbonyl] aminomethyl 1) -4-methoxyphenyl] -2-iso Propoxypropanoic acid was obtained.
MS m / e (ESI) 461 (MH+)
Example 232
Production Example 232a)
Figure 2002080899
2-Cyclohexyl-4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 231.
1H-NMR (CDCl3) Δ: 1.25-1.55 (m, 5H) 1.75 (m, 1H) 1.86 (m, 2H). 213 (m, 2H) 2.72 (s, 3H) 2.96 (qui, J = 6.0 Hz, 1H)
Example 232b)
Figure 2002080899
In the same manner as in Example 38, 3- [3-([(2-cyclohexyl-4-methyl-1,3-thiazol-5-yl) carbonyl] aminomethyl 1) -4-methoxyphenyl] -2-iso Propoxypropanoic acid was obtained.
MS m / e (ESI) (MH+475
Example 233
Production Example 233a)
Figure 2002080899
2- (2-Methylphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 231.
1H-NMR (CDCl3) Δ: 2.61 (s, 3H) 2.82 (s, 3H) 7.30 (m, 2H) 7.37 (d, J = 8.0 Hz, 1H) 7.80 (dd, J = 2) .0, 8.0 Hz, 1 H)
Example 233b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (2-methylphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 482 (MH+)
Example 234
Production Example 234a)
Figure 2002080899
2- (2-Methoxyphenyl) -4-methyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 231.
1H-NMR (DMSO-d6) Δ: 2.66 (s, 3H) 4.02 (s, 3H) 7.10 (t, J = 8.0 Hz, 1H) 7.25 (d, J = 8.0 Hz, 1H) 7.55 (T, J = 8.0 Hz, 1H) 828 (d, J = 8.0 Hz, 1H)
Example 234b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (2-methoxyphenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 498 (MH+)
Example 235
Production Example 235a)
Figure 2002080899
2 g of 2-cyano-3-methylpyridine was dissolved in 30 ml of pyridine and 12 ml of triethylamine, and hydrogen sulfide gas was bubbled for 2 hours. The reaction solution was stirred in a sealed tube at 50 ° C. for 2 hours and then concentrated under reduced pressure. The residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1) to obtain 2.6 g of 3-methyl-2-pyridinecarbothioamide.
1H-NMR (CDCl3) Δ: 2.76 (s, 3H) 7.28 (m, 1H) 7.62 (d, J = 8.0 Hz, 1H) 8.37 (d, J = 4.0 Hz, 1H)
Production Example 235b)
Figure 2002080899
By treating with ethyl 2-chloroacetoacetate and 3-methyl-2-pyridinecarbothioamide in the same manner as in Production Example 203, 4-methyl-2- (3-methyl-2-pyridyl) -1,3- Thiazole-5-carboxylic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.66 (s, 3H) 2.71 (s, 3H) 7.42 (dd, J = 4.0, 8.0 Hz, 1H) 7.80 (d, J = 8.0 Hz, 1H) ) 8.44 (d, J = 4.0 Hz, 1H)
Example 235c)
Figure 2002080899
3-3-[([2- (3-Methyl-2-pyridyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy by a method similar to that in Example 38. Phenyl-2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 484 (MH+)
Example 236
Production Example 236a)
Figure 2002080899
2 g of 3-picoline was dissolved in 30 ml of dichloromethane, 5.6 g of m-chloroperbenzoic acid was added, and the mixture was stirred at room temperature for 16 hours. The reaction solution was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (ethyl acetate: methanol = 4: 1) to obtain 2.4 g of 3-pyridine N-oxide.
1H-NMR (CDCl3) Δ: 2.31 (s, 3H) 7.10 (d, J = 8.0 Hz, 1H) 7.17 (dd, J = 4.0, 8.0 Hz, 1H) 8.07 (m, 2H) )
Production Example 236b)
Figure 2002080899
2.4 g of 3-pyridine N-oxide was dissolved in 30 ml of acetonitrile, 3.5 ml of trimethylsilyl cyanide and 2.4 ml of dimethylcarbamoyl chloride were added, and the mixture was heated to reflux for 2 hours. The reaction mixture was ice-cooled, water was added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (hexane: ethyl acetate = 1: 1). The resulting product was treated according to Preparation Example 235a) to obtain 0.2 g of 5-methyl-2-pyridinecarbothioamide.
1H-NMR (CDCl3) Δ: 2.41 (s, 3H) 7.63 (d, J = 8.0 Hz, 1H) 8.34 (bs, 1H) 8.60 (d, J = 8.0 Hz, 1H)
Production Example 236c)
Figure 2002080899
2- (5-ethyl-2-pyridyl) -4-methyl-1,3-thiazole is obtained by treating in the same manner as in Production Example 203 using 2-chloroacetoacetic acid and 5-methyl-2-pyridinecarbothioamide as raw materials. -5-carboxylic acid was obtained.
1H-NMR (DMSO-d6) Δ: 2.35 (s, 3H) 2.65 (s, 3H) 7.78 (dd, J = 2.0, 8.0 Hz, 1H) 8.02 (d, J = 8.0 Hz, 1H) ) 8.48 (d, J = 2.0 Hz, 1H)
Example 236d)
Figure 2002080899
3-3-[([2- (5-Methyl-2-pyridyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy by a method similar to that in Example 38. Phenyl-2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 484 (MH+)
Example 237
Production Example 237a)
Figure 2002080899
2- (2-Chlorophenyl) -4-ethyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 1.37 (t, J = 8.0 Hz, 3H) 3.24 (q, H = 8.0 Hz, 2H) 7.40 (m, 2H) 7.52 (m, 1H) 8.35 (M, 1H)
Example 237b)
Figure 2002080899
In the same manner as in Example 38, 3-3-3-[([2- (2-chlorophenyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2- Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 517 (MH+)
Example 238
Production Example 238a)
Figure 2002080899
2- (4-Chlorophenyl) -4-ethyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 1.23 (t, J = 8.0 Hz, 3H) 3.08 (q, H = 8.0 Hz, 2H) 7.57 (d, J = 8.0 Hz, 2H) 8.00 (d , J = 8.0Hz, 2H)
Example 238b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (4-chlorophenyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2- Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 517 (MH+)
Example 239
Production Example 239a)
Figure 2002080899
2- (4-Methylphenyl) -4-ethyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (DMSO-d6) Δ: 1.23 (t, J = 8.0 Hz, 3H) 2.35 (s, 3H) 3.07 (q, H = 8.0 Hz, 2H) 7.30 (d, J = 8.0 Hz) , 2H) 7.86 (d, J = 8.0 Hz, 2H)
Example 239b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (4-methylphenyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl-2 -Isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 497 (MH+)
Example 240
Production Example 240a)
Figure 2002080899
4-Ethyl-2- (3-methyl-2-pyridyl) -1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 235.
1H-NMR (DMSO-d6) Δ: 1.27 (t, J = 8.0 Hz, 3H) 2.74 (s, 3H) 3.10 (q, H = 8.0 Hz, 2H) 7.42 (dd, J = 4.0) , 8.0 Hz, 1H) 7.81 (d, J = 8.0 Hz, 1H) 8.48 (d, J = 4.0 Hz, 1H)
Example 240b)
Figure 2002080899
3-3-[([2- (3-Methyl-2-pyridyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy by a method similar to that in Example 38. Phenyl-2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 498 (MH+)
Example 241
Production Example 241a)
Figure 2002080899
2- (5-Methyl-2-pyridyl) -4-ethyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 236a-c).
1H-NMR (DMSO-d6) Δ: 1.24 (t, J = 8.0 Hz, 3H) 2.35 (s, 3H) 3.09 (q, H = 8.0 Hz, 2H) 7.79 (d, J = 8.0 Hz) , 1H) 7.81 (d, J = 8.0 Hz, 1H) 8.49 (s, 1H)
Example 241b)
Figure 2002080899
In the same manner as in Example 38, 3--3-[([2- (5-methyl-2-pyridyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy Phenyl-2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 498 (MH+)
Example 242
Production Example 242a)
Figure 2002080899
2- (3-Chloro-4-fluorophenyl) -4-ethyl-1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 1.35 (t, J = 8.0 Hz, 3H) 3.20 (q, H = 8.0 Hz, 2H) 7.21 (d, J = 8.0 Hz, 1H) 7.83 (m , 1H) 8.10 (dd, J = 2.0, 8.0 Hz, 1H)
Example 242b)
Figure 2002080899
3-3-[([2- (3-Chloro-4-fluorophenyl) -4-ethyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxy by a method similar to that in Example 38. Phenyl-2-isopropoxycarboxylic acid was obtained.
MS m / e (ESI) 535 (MH+)
Example 243
Production Example 243a)
Figure 2002080899
4-Ethyl-2- (2-thienyl) -1,3-thiazole-5-carboxylic acid was obtained in the same manner as in Production Example 203.
1H-NMR (CDCl3) Δ: 1.33 (t, J = 8.0 Hz, 3H) 3.18 (q, H = 8.0 Hz, 2H) 7.10 (dd, J = 4.0, 5.0 Hz, 1H) 7 .47 (d, J = 4.0 Hz, 1H) 7.60 (d, J = 5.0 Hz, 1H)
Example 243b)
Figure 2002080899
2-Isopropoxy-3--4-methoxy-3-[([4-ethyl-2- (2-thienyl) -1,3-thiazol-5-yl] carbonylamino) methyl by a method similar to that in Example 38 Phenylpropanoic acid was obtained.
MS m / e (ESI) 489 (MH+)
Example 244
Example 244a)
Figure 2002080899
4-methoxy-3- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzaldehyde was used to produce ethyl 2-isopropoxy-3 in the same manner as in Production Example 1b) following Production Example 1a). -(4-Methoxy-3-2- [4- (trifluoromethyl) phenoxy] ethylphenyl) propanoate was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 7.2 Hz, 3H) 2.79 (dd , J = 8.4, 14.0 Hz, 1H) 2.95 (dd, J = 4.8, 14.0 Hz, 1H) 3.08 (t, J = 7.6 Hz, 2H) 3.50 (sept , J = 6.0 Hz, 1H) 3.82 (s, 3H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.15-4.20 (m, 4H) 6.78 (D, J = 8.0 Hz, 1H) 6.96 (d, J = 8.8 Hz, 2H) 7.09 (s, 1H) 7.10 (d, J = 8.0 Hz, 1H) 7.52 (D, J = 8.8 Hz, 2H)
Example 244b)
Figure 2002080899
Ethyl 2-isopropoxy-3- (4-methoxy-3-2- [4- (trifluoromethyl) phenoxy] ethylphenyl) propanoate was treated in the same manner as in Example 1e) to give 2-isopropoxy-3- ( 4-Methoxy-3-2- [4- (trifluoromethyl) phenoxy] ethylphenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.89 (dd, J = 7.6, 14.0 Hz, 1H) 3 .07 (dd, J = 4.0, 14.0 Hz, 1H) 3.09 (t, J = 7.6 Hz, 2H) 3.56 (sept, J = 6.0 Hz, 1H) 3.83 (s 3H) 4.10 (dd, J = 4.0, 7.6 Hz, 1H) 4.17 (t, J = 7.6 Hz, 2H) 6.80 (d, J = 8.0 Hz, 1H) 6 .96 (d, J = 8.8 Hz, 2H) 7.09 (s, 1H) 7.09 (d, J = 8.0 Hz, 1H) 7.52 (d, J = 8.8 Hz, 2H)
Example 245
Example 245a)
Figure 2002080899
4-methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzaldehyde was used in the same manner as in Production Example 1b), followed by Ethyl 2-isopropoxy- 3- [4-Methoxy-3-([4- (trifluoromethyl) benzyl] oxymethyl) phenyl] propanoate was obtained.
1H-NMR (CDCl3) Δ: 0.96 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.23 (t, J = 7.2 Hz, 3H) 2.79 (dd , J = 8.4, 14.0 Hz, 1H) 2.95 (dd, J = 4.8, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.82 (s 3H) 4.00 (dd, J = 4.8, 8.4 Hz, 1H) 4.15-4.20 (m, 2H) 4.58 (s, 2H) 4.64 (s, 2H) 6 .79 (d, J = 8.0 Hz, 1H) 7.16 (dd, J = 2.4, 8.0 Hz, 1H) 7.28 (d, J = 2.4 Hz, 1H) 7.49 (d , J = 8.0 Hz, 2H) 7.60 (d, J = 8.4 Hz, 2H)
Example 245b)
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (trifluoromethyl) benzyl] oxymethyl) phenyl] propanoate was treated in the same manner as in Example 1e) to give 2-isopropoxy-3- [4-Methoxy-3-([4- (trifluoromethyl) benzyl] oxymethyl) phenyl] propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 7.6, 14.0 Hz, 1H) 3 .09 (dd, J = 4.0, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 4.12 (dd, J = 4.0 , 7.6 Hz, 1H) 4.59 (s, 2H) 4.64 (s, 2H) 6.80 (d, J = 8.0 Hz, 1H) 7.14 (dd, J = 2.4, 8 0.0 Hz, 1H) 7.28 (d, J = 2.4 Hz, 1H) 7.50 (d, J = 8.4 Hz, 2H) 7.60 (d, J = 8.4 Hz, 2H)
Example 246
Figure 2002080899
40 mg of sodium hydride was dissolved in 2 ml of tetrahydrofuran, and 0.51 g of tetrahydrofuran (1 ml) of ethyl 3- [3- (hydroxymethyl) -4-methoxyphenyl] -2-isopropoxypropanoate and 4- Chlorobenzyl bromide (0.25 mg) was added in this order, and the mixture was stirred at room temperature for 15 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography to obtain 0.19 g from a fraction eluted with hexane-ethyl acetate (4: 1). The obtained 0.19 g is treated in the same manner as in Example 1e) to obtain 0.17 g of 3- (3-[(4-chloromethyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid. It was.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 7.6, 14.0 Hz, 1H) 3 .09 (dd, J = 4.0, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 4.12 (dd, J = 4.0 , 7.6 Hz, 1H) 4.59 (s, 2H) 4.60 (s, 2H) 6.80 (d, J = 8.0 Hz, 1H) 7.13 (dd, J = 2.4, 8 0.0 Hz, 1H) 7.27 (d, J = 2.4 Hz, 1H) 7.32 (s, 4H)
Example 247
Production Example 247a)
Figure 2002080899
Ethyl 3- [3- (hydroxymethyl) -4-methoxyphenyl] -2-isopropoxypropanoate (2.2 g) was dissolved in dimethoxyethane (15 ml), and 1.2 ml of phosphorus tribromide was added under ice cooling. For 4 hours. The reaction was diluted with ether and washed with water. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography, and 2.6 g of ethyl 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate was obtained from the fraction eluted with hexane-ethyl acetate (4: 1). Obtained.
1H-NMR (CDCl3) Δ: 0.97 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.24 (t, J = 7.2 Hz, 3H) 2.88 (dd , J = 8.4, 14.0 Hz, 1H) 2.95 (dd, J = 5.2, 14.0 Hz, 1H) 3.50 (sept, J = 6.0 Hz, 1H) 3.87 (s 3H) 4.00 (dd, J = 5.2, 8.4 Hz, 1H) 4.11-4.21 (m, 2H) 4.53 (d, J = 2.4 Hz, 2H) 6.79 (D, J = 8.8 Hz, 1H) 7.08 (d, J = 8.8 Hz, 1H) 7.12 (s, 1H)
Production Example 247b)
Figure 2002080899
87 mg of lithium aluminum hydride was dissolved in 7.5 ml of tetrahydrofuran, and 0.50 g of a solution of ethyl 5-methyl-2-phenyl-1,3-thiazole-5-carboxylate in tetrahydrofuran (2.5 ml) was added under ice cooling. And stirred at room temperature for 3 hours. The reaction mixture was ice-cooled, water and 1N hydrochloric acid were added, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.42 g of (4-methyl-2-phenyl-1,3-thiazol-5-yl) methanol was obtained from the fraction eluted with hexane-ethyl acetate (2: 1).
1H-NMR (CDCl3) Δ: 2.46 (s, 3H) 4.82 (s, 2H) 7.50-7.53 (m, 3H) 7.88-7.91 (m, 2H)
Example 247c)
Figure 2002080899
24 mg of sodium hydride was dissolved in 2 ml of tetrahydrofuran, and a solution of 0.19 g of 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in tetrahydrofuran (1 ml) and (4-methyl) was cooled with ice. A solution of 2-phenyl-1,3-thiazol-5-yl) methanol 0.12 mg in tetrahydrofuran (1 ml) was added in this order, and the mixture was stirred at room temperature for 15 hours. To the reaction solution was added 2 ml of 1N aqueous sodium hydroxide solution, and the mixture was stirred at room temperature for 2 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. After the organic layer was concentrated, it was purified by HPLC using a water-acetonitrile-trifluoroacetic acid system as an elution solvent on a reverse phase column, and 2-isopropoxy-3- (4-methoxy-3-[(4 0.13 g of -methyl-2-phenyl-1,3-thiazol-5-yl) methoxy] methylphenyl) propanoic acid was obtained.
MS m / e (ESI) 454 (MH+)
Example 248
Production Example 248a)
Figure 2002080899
(5-Butyl-2-pyridyl) methanol was obtained in the same manner as in Production Example 247b) using fusaric acid.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 8.0 Hz, 3H) 1.31-1.40 (m, 2H) 1.56-1.65 (m, 2H) 2.63 (t, J = 8) 0.0 Hz, 2H) 4.73 (s, 2H) 7.14 (d, J = 8.0 Hz, 1H) 7.50 (d, J = 8.0 Hz, 1H) 8.39 (s, 1H)
Example 248b)
Figure 2002080899
Using (5-butyl-2-pyridyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- (3 -[(5-Butyl-2-pyridyl) methoxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 416 (MH+)
Example 249
Production Example 249a)
Figure 2002080899
(4-Isopropoxyphenyl) methanol was obtained in the same manner as in Production Example 247b) using 4-isopropoxybenzoic acid.
1H-NMR (CDCl3) Δ: 1.34 (d, J = 6.4 Hz, 6H) 4.55 (sept, J = 6.4 Hz, 1H) 4.62 (s, 2H) 6.87 (d, J = 8.8 Hz) , 2H) 7.22 (d, J = 8.8 Hz, 2H)
Example 249b)
Figure 2002080899
In the same manner as in Example 247) using (4-isopropoxyphenyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate, 2-isopropoxy-3 -(3-[(4-Isopropoxybenzyl) oxy] methyl-4-methoxy) propanoic acid was obtained.
MS m / e (ESI) 417 (MH+)
Example 250
Production Example 250a)
Figure 2002080899
(4-Chloro-2-methoxyphenyl) methanol was obtained in the same manner as in Production Example 247b) using 4-chloro-2-methoxybenzoic acid.
1H-NMR (CDCl3) Δ: 3.83 (s, 3H) 4.62 (s, 2H) 6.85 (s, 1H) 6.94 (d, J = 8.0 Hz, 1H) 7.20 (d, J = 8) .0Hz, 1H)
Example 250b)
Figure 2002080899
Using (4-chloro-2-methoxyphenyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- ( 3-[(4-Chloro-2-methoxybenzyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 423 (MH+)
Example 251
Production Example 251a)
Figure 2002080899
(2-Chloro-4-methoxyphenyl) methanol was obtained in the same manner as in Production Example 247b) using 2-chloro-4-methoxybenzoic acid.
1H-NMR (CDCl3) Δ: 3.80 (s, 3H) 4.70 (s, 2H) 6.80 (d, J = 8.0 Hz, 1H) 6.95 (s, 1H) 7.37 (d, J = 8) .0Hz, 1H)
Example 251b)
Figure 2002080899
Using (2-chloro-4-methoxyphenyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- ( 3-[(2-Chloro-4-methoxybenzyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 423 (MH+)
Example 252
Production Example 252a)
Figure 2002080899
[2-Methoxy-4- (trifluoromethyl) phenyl] methanol was obtained in the same manner as in Production Example 247b) using 2-methoxy-4- (trifluoromethyl) benzoic acid.
1H-NMR (CDCl3) Δ: 3.92 (s, 3H) 4.72 (s, 2H) 7.08 (s, 1H) 7.22 (d, J = 8.0 Hz, 1H) 7.42 (d, J = 8) .0Hz, 1H)
Example 252b)
Figure 2002080899
In the same manner as in Example 247) using (2-chloro-4-methoxyphenyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate, 3- [3- 3-([2-Fluoro-4- (trifluoromethyl) benzyl] oxymethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 457 (MH+)
Example 253
Production Example 253a)
Figure 2002080899
(4-Phenoxyphenyl) methanol was obtained in the same manner as in Production Example 247b) using 4-phenoxybenzoic acid.
1H-NMR (CDCl3) Δ: 4.72 (s, 2H) 7.00-7.02 (m, 4H) 7.12 (t, J = 8.0 Hz, 1H) 7.30-7.38 (m, 4H)
Example 253b)
Figure 2002080899
In the same manner as in Example 247) using (4-phenoxyphenyl) methanol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate, 2-isopropoxy-3- (4-Methoxy-3-[(4-phenoxybenzyl) oxy] methylphenyl) propanoic acid was obtained.
MS m / e (ESI) 451 (MH+)
Example 254
Figure 2002080899
Using 2,4-dichlorobenzyl alcohol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- (3-[( 2,4-Dichlorobenzyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 427 (MH+)
Example 255
Figure 2002080899
Using 2-fluoro-4- (trifluoromethyl) benzyl alcohol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3 -[3-([2-Fluoro-4- (trifluoromethyl) benzyl] oxymethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 445 (MH+)
Example 256
Figure 2002080899
Using 4-chloro-2-fluorobenzyl alcohol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- (3- [(4-Chloro-2-fluorobenzyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 411 (MH+)
Example 257
Figure 2002080899
Using 3,4-dichlorobenzyl alcohol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 247), 3- (3-[( 3,4-Dichlorobenzyl) oxy] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 427 (MH+)
Example 258
Figure 2002080899
In the same manner as in Example 247) using 4-isopropylbenzyl alcohol and 3- [3- (bromomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate, 2-isopropoxy-3- (3 -[(4-Isopropylbenzyl) oxy] methyl-4-methoxyphenyl) propanoic acid was obtained.
MS m / e (ESI) 401 (MH+)
Example 259
Figure 2002080899
4-methoxy-3- {2- [4- (trifluoromethyl) phenoxy] ethyl} benzaldehyde and 2,4-thiazolidinedione were used in the same manner as in Example 29) following Production Example 27c). (4-Methoxy-3-2- [4- (trifluoromethyl) phenoxy] ethylbenzyl) -1,3-thiazolane-2,4-dione was obtained.
1H-NMR (DMSO-d6) Δ: 3.09 (t, J = 7.2 Hz, 2H) 3.10 (dd, J = 9.2, 14.0 Hz, 1H) 3.45 (dd, J = 4.0, 14.0 Hz) , 1H) 3.83 (s, 3H) 4.17 (t, J = 7.6 Hz, 2H) 4.49 (dd, J = 4.0, 9.2 Hz, 1H) 6.82 (d, J = 8.0 Hz, 1H) 6.96 (d, J = 8.8 Hz, 2H) 7.08-7.10 (m, 2H) 7.52 (d, J = 8.8 Hz, 2H) 8.37 (Brs, 1H)
Example 260
Figure 2002080899
4-Methoxy-3-({[4- (trifluoromethyl) benzyl] oxy} methyl) benzaldehyde and 2,4-thiazolidinedione were used in the same manner as in Example 29) following Production Example 27c). -[4-Methoxy-3-([4- (trifluoromethyl) benzyl] oxymethyl) benzyl] -1,3-thiazolane-2,4-dione was obtained.
1H-NMR (DMSO-d6) Δ: 3.11 (dd, J = 10.0, 14.0 Hz, 1H) 3.47 (dd, J = 4.0, 14.0 Hz, 1H) 3.82 (s, 3H) 4.51 (Dd, J = 4.0, 9.2 Hz, 1H) 4.58 (s, 2H) 4.66 (s, 2H) 6.82 (d, J = 8.0 Hz, 1H) 7.12 (dd , J = 2.4, 8.0 Hz, 1H) 7.24-7.28 (m, 1H) 7.50 (d, J = 8.0 Hz, 2H) 7.61 (d, J = 8.0 Hz) , 2H) 8.10 (brs, 1H)
Example 261
Production Example 261a)
Figure 2002080899
Dissolve 7.7 g of tert-butyl N- (5-formyl-2-methoxybenzyl) carbamate and 3.4 g of 2,4-thiazolidinedione in 100 ml of toluene, add 0.28 g of piperidine and 0.24 g of acetic acid, and add Dean Stark. The apparatus was attached and heated to reflux for 3 hours. After the reaction solution was cooled to room temperature, the precipitated crystals were collected by filtration, washed with toluene, dried under reduced pressure, and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolane-5. -Ilidene) methyl] -2-methoxybenzylcarbamate was obtained. Subsequently, the obtained tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-ylidene) methyl] -2-methoxybenzylcarbamate was dissolved in 80 ml of dimethylformamide, and 10% palladium carbon 8 was dissolved. .0g, 50 degrees, 15 kg / cm2The mixture was stirred for 20 hours under hydrogen pressure. The catalyst was filtered and the solvent was distilled off under reduced pressure. Water was added and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] from a fraction eluted with hexane-ethyl acetate (1: 1). There were obtained 8.2 g of 2-methoxybenzylcarbamate.
1H-NMR (CDCl3) Δ: 1.45 (s, 9H) 3.11 (dd, J = 9.2, 14.0 Hz, 1H) 3.42 (dd, J = 3.6, 14.0 Hz, 1H) 3.83 (S, 3H) 4.26 (d, J = 6.0 Hz, 2H) 4.50 (dd, J = 3.6, 9.2 Hz, 1H) 5.00-5.08 (m, 1H) 6 .79 (d, J = 8.0 Hz, 1H) 7.09-7.13 (m, 2H) 8.28-8.33 (m, 1H)
Example 261b)
Figure 2002080899
40 ml of 4M HCl-dioxane was added to 8.2 g of tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylcarbamate and stirred for 1 hour. The reaction mixture was concentrated and dried under reduced pressure, and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride 6.0 g Got. Subsequently, 0.20 g of tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride obtained and 2-methoxy-4- ( Trifluoromethyl) benzoic acid (0.15 g) was dissolved in dimethylformamide (2.5 ml), and diethyl cyanophosphonate (0.11 ml) and triethylamine (0.10 ml) were added under ice cooling. After stirring at room temperature for 16 hours, the reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and from the fraction eluted with hexane-ethyl acetate (2: 1), N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2- 0.18 g of methoxybenzyl-2-methoxy-4- (trifluoromethyl) benzamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.79 (s, 3H) 3.97 (S, 3H) 4.42 (d, J = 6.0 Hz, 2H) 4.79 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) ) 7.08-7.13 (m, 2H) 7.37 (d, J = 8.0 Hz, 1H) 7.42 (s, 1H) 7.84 (d, J = 8.0 Hz, 1H) 8 .64 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 262
Figure 2002080899
Examples using 2-chloro-4-methoxybenzoic acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride 261), N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2-chloro-4-methoxybenzamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.78 (s, 3H) 3.79 (S, 3H) 4.42 (d, J = 6.0 Hz, 2H) 4.79 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) ) 6.94-6.96 (m, 1H) 7.06 (d, J = 2.4 Hz, 1H) 7.08-7.13 (m, 2H) 7.43 (d, J = 8.0 Hz) , 1H) 8.64 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 263
Figure 2002080899
In the same manner as in Example 261), using fusaric acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride N2-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-5-butyl-2-pyridinecarboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 0.89 (t, J = 7.2 Hz, 3H) 1.25-1.33 (m, 2H) 1.53-1.60 (m, 2H) 2.67 (t, J = 8) 0.0 Hz, 2H) 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.79 (s, 3H) 4 .42 (d, J = 6.0 Hz, 2H) 4.77 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 7.03 (d , J = 2.4 Hz, 1H) 7.10 (dd, J = 2.4, 8.4 Hz, 1H) 7.81 (dd, J = 2.0, 8.0 Hz, 1H) 7.95 (d , J = 8.0 Hz, 1H) 8.49 (d, J = 2.0 Hz, 1H) 8.89 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 264
Figure 2002080899
Example 261) using 4-isopropoxybenzoic acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride In the same manner, N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-4-isopropoxybenzamide was obtained.
1H-NMR (DMSO-d6) Δ: 1.26 (d, J = 6.0 Hz, 6H) 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz) , 1H) 3.79 (s, 3H) 4.42 (d, J = 6.0 Hz, 2H) 4.69 (sept, J = 6.0 Hz, 1H) 4.79 (dd, J = 4.0 , 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 6.95 (d, J = 8.4 Hz, 2H) 7.03 (s, 1H) 7.08 (d, J = 8.4 Hz, 1H) 7.84 (d, J = 8.4 Hz, 2H) 8.63 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 265
Figure 2002080899
4-Methyl-2-phenyl-1,3-thiazole-5-carboxylic acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxy N4-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-4-methyl was prepared in the same manner as in Example 261) using benzylamine hydrochloride. -2-Phenyl-1,3-thiazole-5-carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.61 (s, 3H) 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.79 (S, 3H) 4.37 (m, 2H) 4.77 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 7.08-7 .13 (m, 2H) 7.46-7.52 (m, 3H) 7.90-7.95 (m, 2H) 8.61 (m, 1H) 12.02 (brs, 1H)
Example 266
Figure 2002080899
Similar to Example 261), using 4-phenylbenzoic acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride In this manner, N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-4-phenylbenzamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.79 (s, 3H) 4.42 (D, J = 6.0 Hz, 2H) 4.77 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 7.08-7.13 (M, 2H) 7.39 (t, J = 7.2 Hz, 1H) 7.48 (t, J = 7.6 Hz, 2H) 7.72 (d, J = 7.6 Hz, 2H) 7.76 (D, J = 8.0 Hz, 2H) 7.9 (d, J = 8.0 Hz, 2H) 8.87 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 267
Figure 2002080899
Similar to Example 261), using 4-phenoxybenzoic acid and tert-butyl N-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzylamine hydrochloride In this way, N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-4-phenoxybenzamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.99 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.79 (s, 3H) 4.42 (D, J = 6.0 Hz, 2H) 4.77 (dd, J = 4.0, 9.6 Hz, 1H) 6.93 (d, J = 8.4 Hz, 1H) 7.02 (d, J = 8.8 Hz, 2H) 7.05-7.10 (m, 4H) 7.20 (t, J = 8.0 Hz, 1H) 7.43 (t, J = 8.0 Hz, 2H) 7.92 (D, J = 8.8 Hz, 2H) 8.76 (t, J = 6.0 Hz, 1H) 12.02 (brs, 1H)
Example 268
Figure 2002080899
Using fusaric acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as Example 19e) followed by 3- [3 -([(5-Butyl-2-pyridyl) carbonyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 8.0 Hz, 3H) 1.00 (d, J = 6.0 Hz, 3H) 1.12 (d, J = 6.0 Hz, 3H) 1.31-1 .40 (m, 2H) 1.56-1.65 (m, 2H) 2.66 (t, J = 8.0 Hz, 2H) 2.88 (dd, J = 8.0, 14.0 Hz, 1H ) 3.04 (dd, J = 4.4, 14.0 Hz, 1H) 3.53 (sept, J = 6.0 Hz, 1H) 3.87 (s, 3H) 4.08 (dd, J = 4) .4, 8.0 Hz, 1H) 4.63 (d, J = 6.4 Hz, 2H) 6.80 (d, J = 8.0 Hz, 1H) 7.12 (dd, J = 2.4, 8 0.0 Hz, 1H) 7.22 (d, J = 2.4 Hz, 1H) 7.63 (dd, J = 1.6, 8.0 Hz, 1H) 8.10 (d, J = 8.0 Hz, 1H) ) 8.35 (d, J 1.6Hz, 1H)
Example 269
Figure 2002080899
Using 4-isopropoxybenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as Example 19e) following Example 19d) 2-Isopropoxy-3- (3-[(4-isopropoxybenzoyl) amino] methyl-4-methoxyphenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.34 (d, J = 6.4 Hz, 6H) 2.90 (dd , J = 8.0, 14.0 Hz, 1H) 3.05 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.86 (s 3H) 4.10 (dd, J = 4.4, 8.0 Hz, 1H) 4.58 (d, J = 6.0 Hz, 2H) 4.59-4.61 (m, 1H) 6.55 −6.61 (m, 1H) 6.80 (d, J = 8.0 Hz, 1H) 6.87 (d, J = 8.8 Hz, 2H) 7.13 (dd, J = 2.0, 8 0.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.69 (d, J = 8.8 Hz, 2H)
Example 270
Figure 2002080899
Using 4-phenylbenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as Example 19e) followed by 2 -Isopropoxy-3- (4-methoxy-3-[(4-phenylbenzoyl) amino] methylphenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 8.0, 14.0 Hz, 1H) 3 .06 (dd, J = 4.4, 14.0 Hz, 1H) 3.58 (sept, J = 6.0 Hz, 1H) 3.88 (s, 3H) 4.11 (dd, J = 4.4 , 8.0 Hz, 1H) 4.63 (d, J = 6.4 Hz, 2H) 6.68-6.73 (m, 1H) 6.82 (d, J = 8.0 Hz, 1H) 7.15 (Dd, J = 2.0, 8.0 Hz, 1H) 7.24 (d, J = 2.0 Hz, 1H) 7.35-7.40 (m, 1H) 7.46 (t, J = 7 .2 Hz, 2H) 7.59 (d, J = 7.2 Hz, 2H) 7.64 (d, J = 8.0 Hz, 2H) 7.82 (d, J = 8.0 Hz, 2H)
Example 271
Figure 2002080899
Using 4-phenoxybenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in a manner similar to Example 19e) followed by 2 -Isopropoxy-3- (4-methoxy-3-[(4-phenoxybenzoyl) amino] methylphenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.91 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.10 (dd, J = 4.4 , 8.0 Hz, 1H) 4.59 (d, J = 6.0 Hz, 2H) 6.60-6.65 (m, 1H) 6.81 (d, J = 8.0 Hz, 1H) 6.98 (D, J = 8.0 Hz, 2H) 7.03 (d, J = 8.0 Hz, 2H) 7.13-7.18 (m, 2H) 7.22 (d, J = 2.0 Hz, 1H 7.37 (t, J = 8.0 Hz, 2H) 7.72 (d, J = 8.0 Hz, 2H)
Example 272
Figure 2002080899
Using 4-isopropylbenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in a manner similar to Example 19d) followed by 2 -Isopropoxy-3- (3-[(4-isopropylbenzoyl) amino] methyl-4-methoxyphenyl) propanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.25 (d, J = 6.0 Hz, 6H) 2.90 (dd , J = 8.0, 14.0 Hz, 1H) 2.92 (sept, J = 6.0 Hz, 1H) 3.04 (dd, J = 4.4, 14.0 Hz, 1H) 3.56 (sept , J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.10 (dd, J = 4.4, 8.0 Hz, 1H) 4.60 (d, J = 6.0 Hz, 2H) 6 .66-6.70 (m, 1H) 6.81 (d, J = 8.0 Hz, 1H) 7.14 (dd, J = 2.0, 8.0 Hz, 1H) 7.23 (d, J = 2.0 Hz, 1H) 7.26 (d, J = 8.0 Hz, 2H) 7.68 (d, J = 8.0 Hz, 2H)
Example 273
Figure 2002080899
In a manner similar to Example 19e) following Example 19d) using 2,4-dimethoxybenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate 3- (3-[(2,4-dimethoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.4, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.85 (s, 3H) 3.88 (s, 3H) 3.92 (S, 3H) 4.09 (dd, J = 4.4, 8.0 Hz, 1H) 4.61-4.63 (m, 2H) 6.47 (d, J = 2.0 Hz, 1H) 6 .59 (dd, J = 2.0, 8.8 Hz, 1H) 6.81 (d, J = 8.0 Hz, 1H) 7.13 (dd, J = 2.0, 8.0 Hz, 1H) 7 .22 (d, J = 2.0 Hz, 1H) 8.19 (d, J = 8.8 Hz, 1H) 8.34-8.39 (m, 1H)
Example 274
Figure 2002080899
In the same manner as in Example 38), using 4-cyclohexylbenzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate. , 3- (3-[(4-cyclohexylbenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 454 (MH+)
Example 275
Figure 2002080899
Example 38 using 4- (4′-ethylphenyl) benzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate ) To give 2-isopropoxy-3- [4-methoxy-3-([4- (4′-ethylphenyl) benzoyl] amino) methylphenyl] propanoic acid.
MS m / e (ESI) 476 (MH+)
Example 276
Figure 2002080899
In the same manner as in Example 38), using 2-naphthalenecarboxylic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate. 2-isopropoxy-3- (4-methoxy-3-[(2-naphthylcarbonyl) amino] methylphenyl) propanoic acid was obtained.
MS m / e (ESI) 422 (MH+)
Example 277
Production Example 277a)
Figure 2002080899
1.9 g of 2-chloro-4-hydroxybenzoic acid was dissolved in 20 ml of dimethylformamide, 1.8 g of methyl iodide and 1.2 g of potassium hydrogen carbonate were added, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 1.7 g of methyl 2-chloro-4-hydroxybenzoate was obtained from the fraction eluted with hexane-ethyl acetate (3: 1).
Production Example 277b)
Figure 2002080899
0.25 g of methyl 2-chloro-4-hydroxybenzoate was dissolved in 10 ml of dimethylformamide, 0.23 g of ethyl iodide and 0.21 g of potassium carbonate were added, and the mixture was stirred for 8 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was dissolved in 6 ml of methanol, 3 ml of 1N sodium hydroxide was added, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 1.7 g of 2-chloro-4-ethoxybenzoic acid.
1H-NMR (CDCl3) Δ: 1.43 (t, J = 7.2 Hz, 3H) 4.10 (q, J = 7.2 Hz, 2H) 6.84 (dd, J = 2.8, 8.8 Hz, 1H) 6 .99 (d, J = 2.8 Hz, 1H) 8.03 (d, J = 8.8 Hz, 1H)
Example 277c)
Figure 2002080899
Similar to Example 38) using 2-chloro-4-ethoxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In this way, 3- (3-[(2-chloro-4-ethoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 450 (MH+)
Example 278
Production Example 278a)
Figure 2002080899
2-Chloro-4-propoxybenzoic acid was obtained in the same manner as in Production Example 277b) using methyl 2-chloro-4-hydroxybenzoate and propyl iodide.
1H-NMR (CDCl3) Δ: 1.05 (t, J = 7.2 Hz, 3H) 1.80-1.86 (m, 2H) 3.98 (t, J = 6.4 Hz, 2H) 6.84 (dd, J = 2.8, 8.8 Hz, 1H) 6.99 (d, J = 2.8 Hz, 1H) 8.03 (d, J = 8.8 Hz, 1H)
Example 278b)
Figure 2002080899
Similar to Example 38) using 2-chloro-4-propoxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In this manner, 3- (3-[(2-chloro-4-propoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.03 (t, J = 7.2 Hz, 3H) 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 1.76-1 .85 (m, 2H) 2.91 (dd, J = 8.0, 14.0 Hz, 1H) 3.06 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.85 (s, 3H) 3.92 (t, J = 6.4 Hz, 2H) 4.10 (dd, J = 4.4, 8.0 Hz, 1H) 4.61 (D, J = 6.0 Hz, 2H) 6.80-6.89 (m, 3H) 6.95-7.02 (m, 1H) 7.14 (dd, J = 2.0, 8.0 Hz , 1H) 7.24 (d, J = 2.0 Hz, 1H) 7.74 (d, J = 8.8 Hz, 1H)
Example 279
Production Example 279a)
Figure 2002080899
2-Chloro-4-isopropoxybenzoic acid was obtained in the same manner as in Production Example 277b) using methyl 2-chloro-4-hydroxybenzoate and isopropyl iodide.
1H-NMR (CDCl3) Δ: 1.37 (d, J = 6.0 Hz, 6H) 4.62 (sept, J = 6.0 Hz, 1H) 6.81 (dd, J = 2.8, 8.8 Hz, 1H) 6 .99 (d, J = 2.8 Hz, 1H) 8.02 (d, J = 8.8 Hz, 1H)
Example 279b)
Figure 2002080899
Example 38) with 2-chloro-4-isopropoxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In a similar manner, 3- (3-[(2-chloro-4-isopropoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 464 (MH+)
Example 280
Production Example 280a)
Figure 2002080899
2-Chloro-4-cyclopentyloxybenzoic acid was obtained in the same manner as in Production Example 277b) using methyl 2-chloro-4-hydroxybenzoate and cyclopentyl bromide.
1H-NMR (CDCl3) Δ: 1.76-1.98 (m, 8H) 4.78-4.82 (m, 1H) 6.81 (dd, J = 2.8, 8.8 Hz, 1H) 6.99 (d , J = 2.8 Hz, 1H) 8.02 (d, J = 8.8 Hz, 1H)
Example 280b)
Figure 2002080899
Example 38) with 2-chloro-4-cyclopentyloxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In a similar manner, 3- (3-[(2-chloro-4-cyclopentyloxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 1.72-1.95 (m, 8H) 2.91 (dd, J = 8.0, 14.0 Hz, 1H) 3.05 (dd, J = 4.4, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.85 (s, 3H ) 4.10 (dd, J = 4.4, 8.0 Hz, 1H) 4.60 (d, J = 6.0 Hz, 2H) 4.74-4.77 (m, 1H) 6.79-6 .86 (m, 3H) 6.95-7.01 (m, 1H) 7.14 (dd, J = 2.0, 8.0 Hz, 1H) 7.24 (d, J = 2.0 Hz, 1H) ) 7.73 (d, J = 8.8 Hz, 1H)
Example 281
Production Example 281a)
Figure 2002080899
5.0 g of 4-chloro-2-hydroxybenzoic acid was dissolved in 25 ml of dimethylformamide, 14.5 g of ethyl iodide and 12 g of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 8 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 3.8 g of ethyl 4-chloro-2-ethoxybenzoate was obtained from the fraction eluted with hexane-ethyl acetate (2: 1).
1H-NMR (CDCl3) Δ: 1.48 (t, J = 7.2 Hz, 3H) 1.59 (t, J = 7.2 Hz, 3H) 4.10 (q, J = 7.2 Hz, 2H) 4.33 (q , J = 7.2 Hz, 2H) 6.92 (d, J = 2.0 Hz, 1H) 6.94 (dd, J = 2.0, 8.8 Hz, 1H) 7.73 (d, J = 8 .8Hz, 1H)
Production Example 281b)
Figure 2002080899
0.2 g of ethyl 4-chloro-2-ethoxybenzoate was dissolved in 5 ml of methanol, 2 ml of 1N sodium hydroxide was added, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 0.20 g of 4-chloro-2-ethoxybenzoic acid.
1H-NMR (CDCl3) Δ: 1.59 (t, J = 7.2 Hz, 3H) 4.33 (q, J = 7.2 Hz, 2H) 7.04 (d, J = 2.0 Hz, 1H) 7.13 (dd , J = 2.0, 8.8 Hz, 1H) 8.13 (d, J = 8.8 Hz, 1H)
Example 281c)
Figure 2002080899
Similar to Example 38) using 4-chloro-2-ethoxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In this manner, 3- (3-[(4-chloro-2-ethoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 450 (MH+)
Example 282
Production Example 282a)
Figure 2002080899
2,4-Dihydroxybenzoic acid and ethyl iodide were used in the same manner as in Production Example 281b) following Production Example 281a) to obtain 2,4-diethoxybenzoic acid.
1H-NMR (CDCl3) Δ: 1.45 (t, J = 7.2 Hz, 3H) 1.56 (t, J = 7.2 Hz, 3H) 4.10 (q, J = 7.2 Hz, 2H) 4.28 (q , J = 7.2 Hz, 2H) 6.51 (d, J = 2.0 Hz, 1H) 6.62 (dd, J = 2.0, 8.8 Hz, 1H) 8.12 (d, J = 8 .8Hz, 1H)
Example 282b)
Figure 2002080899
Method similar to Example 38) using 2,4-diethoxybenzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate Gave 3- (3-[(2,4-diethoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid.
MS m / e (ESI) 460 (MH+)
Example 283
Production Example 283a)
Figure 2002080899
0.80 g of 2-hydroxy-4- (trifluoromethyl) benzaldehyde was dissolved in 8 ml of dimethylformamide, 0.78 g of ethyl iodide and 0.69 g of potassium carbonate were added, and the mixture was stirred at 70 ° C. for 2 hours. The reaction mixture was diluted with water and extracted with ethyl acetate. The organic layer was washed with 1N hydrochloric acid and saturated brine in that order, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.60 g of 2-ethoxy-4- (trifluoromethyl) benzaldehyde was obtained from the fraction eluted with hexane-ethyl acetate (5: 1).
1H-NMR (CDCl3) Δ: 1.57 (t, J = 7.2 Hz, 3H) 4.22 (q, J = 7.2 Hz, 2H) 7.22 (s, 1H) 7.29 (d, J = 8.0 Hz) , 1H) 7.93 (d, J = 8.0 Hz, 1H) 10.50 (s, 1H)
Production Example 283b)
Figure 2002080899
0.60 g of 2-ethoxy-4- (trifluoromethyl) benzaldehyde was dissolved in 5 ml of dimethyl sulfoxide and 67 mg aqueous solution (1 ml) of sodium dihydrogen phosphate, and 0.35 g aqueous solution of sodium chlorite (3 ml) was added dropwise. After stirring at room temperature for 12 hours, water was added and the mixture was extracted with ethyl acetate. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate, and the solvent was evaporated under reduced pressure. The residue was subjected to silica gel column chromatography, and 0.55 g of 2-ethoxy-4- (trifluoromethyl) benzoic acid was obtained from the fraction eluted with hexane-ethyl acetate (2: 1).
1H-NMR (CDCl3) Δ: 1.61 (t, J = 7.2 Hz, 3H) 4.40 (q, J = 7.2 Hz, 2H) 7.28 (s, 1H) 7.40 (d, J = 8.0 Hz) , 1H) 8.30 (d, J = 8.0 Hz, 1H)
Example 283c)
Figure 2002080899
Examples using 2-ethoxy-4- (trifluoromethyl) benzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In the same manner as in 38), 3- [3-([2-ethoxy-4- (trifluoromethyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 484 (MH+)
Example 284
Production Example 284a)
Figure 2002080899
2-Propoxy-4- (trifluoromethyl) benzaldehyde was obtained in the same manner as in Production Example 283a) using 2-hydroxy-4- (trifluoromethyl) benzaldehyde and propyl iodide.
1H-NMR (CDCl3) Δ: 1.11 (t, J = 7.2 Hz, 3H) 1.88-1.96 (m, 2H) 4.10 (t, J = 7.2 Hz, 2H) 7.22 (s, 1H) 7.29 (d, J = 8.0 Hz, 1H) 7.93 (d, J = 8.0 Hz, 1H) 10.50 (s, 1H)
Production Example 284b)
Figure 2002080899
2-propoxy-4- (trifluoromethyl) benzoic acid was obtained in the same manner as in Production Example 283b) using 2-propoxy-4- (trifluoromethyl) benzaldehyde.
1H-NMR (CDCl3) Δ: 1.15 (t, J = 7.2 Hz, 3H) 1.94-2.04 (m, 2H) 4.30 (t, J = 7.2 Hz, 2H) 7.28 (s, 1H) 7.40 (d, J = 8.0 Hz, 1H) 8.30 (d, J = 8.0 Hz, 1H)
Example 284c)
Figure 2002080899
Examples using 2-propoxy-4- (trifluoromethyl) benzoic acid and 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In the same manner as in 38), 2-isopropoxy-3- [4-methoxy-3-([2-propoxy-4- (trifluoromethyl) benzoyl] aminomethyl) phenyl] propanoic acid was obtained.
MS m / e (ESI) 498 (MH+)
Example 285
Production Example 285a)
Figure 2002080899
Using 4-bromobenzoic acid and ethyl 3- [3- (aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoate in the same manner as in Example 19d), ethyl 3-[-3- ([4-Bromobenzoyl] amino) methyl] -4-methoxyphenyl) -2-isopropoxypropanoate was obtained. Next, 1.1 g of ethyl 3-[-3-([4-bromobenzoyl] amino) methyl] -4-methoxyphenyl) -2-isopropoxypropanoate obtained, 0.64 g of bis (pinacolato) diboron, 56 mg of 1,1-bis (diphenylphosphino) ferrocenedichloropalladium and 0.68 g of potassium acetate were dissolved in 20 ml of dimethyl sulfoxide and stirred at 80 ° C. for 1 hour in a nitrogen atmosphere. The reaction mixture was cooled to room temperature, ethyl acetate and water were added, the mixture was filtered through celite, and the mother liquor was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5) was obtained from the fraction eluted with hexane-ethyl acetate (1: 1). -1.23 g of tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] propanoate were obtained.
1H-NMR (CDCl3) Δ: 0.96 (t, J = 6.4 Hz, 3H) 1.14 (d, J = 6.4 Hz, 3H) 1.21-1.27 (m, 3H) 1.35 (s, 12H) ) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 2.94 (dd, J = 4.8, 14.0 Hz, 1H) 3.50 (sept, J = 6.4 Hz, 1H) 3.86 (s, 3H) 4.02 (dd, J = 4.8, 8.4 Hz, 1H) 4.14-4.19 (m, 2H) 4.62 (d, J = 5.6 Hz) , 2H) 6.65-6.70 (m, 1H) 6.81 (d, J = 8.4 Hz, 1H) 7.16 (dd, J = 2.4, 8.4 Hz, 1H) 7.22 (D, J = 2.4 Hz, 1H) 7.73 (d, J = 8.0 Hz, 2H) 7.85 (d, J = 8.0 Hz, 2H)
Example 285b)
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 53 mg of propanoate, 21 mg of 4-bromofluorobenzene, 5.7 mg of 1,1-bis (diphenylphosphino) ferrocenedichloropalladium and 55 mg of potassium carbonate were dissolved in 1.5 ml of dimethoxyethane and stirred at 80 ° C. for 2 hours under a nitrogen atmosphere. . The reaction solution was cooled to room temperature, filtered through celite, and the mother liquor was distilled off under reduced pressure. The residue was dissolved in 2 ml of ethanol, 1 ml of 1N sodium hydroxide was added, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was neutralized with 1N hydrochloric acid and extracted with ethyl acetate. After concentrating the organic layer, it was purified by HPLC using a water-acetonitrile-trifluoroacetic acid system as an elution solvent on a reverse phase system column, and 2-isopropoxy-3--4- [methoxy-3-([4- 19 mg of (4′-fluorophenyl) benzoyl] amino) methylphenyl] propanoic acid was obtained.
MS m / e (ESI) 466 (MH+)
Example 286
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 2-Isopropoxy-3-4- [methoxy-3-([4- (4′-chlorophenyl) benzoyl] amino) methylphenyl] was prepared in the same manner as in Example 285) using propanoate and 4-bromochlorobenzene. Propanoic acid was obtained.
MS m / e (ESI) 482 (MH+)
Example 287
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 2-Isopropoxy-3-4- [methoxy-3-([4- (2′-chlorophenyl) benzoyl] amino) methylphenyl] was prepared in the same manner as in Example 285) using propanoate and 2-bromochlorobenzene. Propanoic acid was obtained.
MS m / e (ESI) 482 (MH+)
Example 288
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 2-Isopropoxy-3-4- [methoxy-3-([4- (4′-methoxyphenyl) benzoyl] amino) methylphenyl in the same manner as in Example 285) using propanoate and 4-bromoanisole Propanoic acid was obtained.
MS m / e (ESI) 478 (MH+)
Example 289
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 2-Isopropoxy-3-4- (methoxy-3-[(4- [4 ′-(trifluoromethyl) phenyl]) in the same manner as in Example 285) using propanoate and 4-bromobenzotrifluoride. Benzoyl) amino] methylphenyl) propanoic acid was obtained.
MS m / e (ESI) 516 (MH+)
Example 290
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] In a manner similar to Example 285) using propanoate and 2-bromothiazole, 2-isopropoxy-3- [4-methoxy-3-[([4- (1,3-thiazol-2-yl) benzoyl] Amino) methyl] phenyl) propanoic acid was obtained.
MS m / e (ESI) 455 (MH+)
Example 291
Figure 2002080899
Ethyl 2-isopropoxy-3- [4-methoxy-3-([4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoyl] aminomethyl) phenyl] 2-Isopropoxy-3- [4-methoxy-3-[([4- (2-pyridyl) benzoyl] amino) methyl] phenyl in the same manner as in Example 285) using propanoate and 2-bromopyridine ) Propanoic acid was obtained.
MS m / e (ESI) 449 (MH+)
Example 292
Production Example 292a)
Figure 2002080899
Methyl 2-chloro-4- (4,4,5,5-tetramethyl) was prepared in the same manner as in Production Example 285) following Production Example 277a) using 1.0 g of 4-bromo-2-chlorobenzoic acid. 0.91 g of -1,3,2-dioxaborolan-2-yl) benzoate was obtained.
1H-NMR (CDCl3) Δ: 1.25 (s, 6H) 1.36 (s, 6H) 1.14 (d, J = 6.4 Hz, 3H) 3.94 (s, 3H) 7.70 (d, J = 8) .0Hz, 1H) 7.79 (d, J = 8.0 Hz, 1H) 7.84 (s, 1H)
Production Example 292b)
Figure 2002080899
Methyl 2-chloro-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoate 0.30 g, bromobenzene 0.19 g, 1,1-bis (diphenylphos Fino) ferrocenedichloropalladium (57 mg) and potassium carbonate (0.55 g) were dissolved in dimethoxyethane (15 ml) and heated under reflux for 1 hour under a nitrogen atmosphere. The reaction mixture was cooled to room temperature, ethyl acetate and water were added, the mixture was filtered through celite, and the mother liquor was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and methyl 2-chloro-4-phenylbenzoate was obtained from the fraction eluted with hexane-ethyl acetate (5: 1). Next, the obtained methyl 2-chloro-4-phenylbenzoate was dissolved in 4 ml of methanol, 2 ml of 1N sodium hydroxide was added, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 0.12 g of 2-chloro-4-phenylbenzoic acid.
1H-NMR (CDCl3): 7.44-7.52 (m, 3H) 7.56-7.63 (m, 3H) 7.73 (d, J = 1.6 Hz, 3H) 8.05 (d, J = 8) .0Hz, 1H)
Example 292c)
Figure 2002080899
Example 38) with 2-chloro-4-phenylbenzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In a similar manner, 3- (3-[(2-chloro-4-phenylbenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 482 (MH+)
Example 293
Production Example 293a)
Figure 2002080899
Methyl 2-chloro-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoate and 4-bromochlorobenzene were used in the same manner as in Production Example 292b). 2-Chloro-4- (4′-chlorophenyl) benzoic acid was obtained.
1H-NMR (DMSO-d6) Δ: 7.54 (d, J = 8.8 Hz, 2H) 7.72 (dd, J = 1.6, 8.0 Hz, 2H) 7.78 (d, J = 8.8 Hz, 2H) 7 .84 (d, J = 1.6 Hz, 2H) 7.87 (d, J = 8.0 Hz, 1H)
Example 293b)
Figure 2002080899
Using 2-chloro-4- (4′-chlorophenyl) benzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate, In the same manner as in Example 38), 3- (3- [2-chloro-4- (4′-chlorophenyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 516 (MH+)
Example 294
Production Example 294a)
Figure 2002080899
Methyl 2-chloro-4- (4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl) benzoate and 4-bromotoluene were used in the same manner as in Preparation Example 292b). 2-Chloro-4- (4′-methylphenyl) benzoic acid was obtained.
1H-NMR (CDCl3) Δ: 2.42 (s, 3H) 7.29 (d, J = 8.0 Hz, 2H) 7.52 (d, J = 8.0 Hz, 2H) 7.56 (dd, J = 1.6) , 8.4 Hz, 1H) 7.71 (d, J = 1.6 Hz, 1H) 8.09 (d, J = 8.4 Hz, 1H)
Example 294b)
Figure 2002080899
Using 2-chloro-4- (4′-methylphenyl) benzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In the same manner as in Example 38), 3- (3- [2-chloro-4- (4′-methylphenyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained. It was.
MS m / e (ESI) 496 (MH+)
Example 295
Production Example 295a)
Figure 2002080899
Dissolve 0.50 g of ethyl 4-chloro-2-ethoxybenzoate, 0.31 g of phenylboronic acid, 85 mg of 1,1-bis (diphenylphosphino) ferrocenedichloronickel and 1.4 g of potassium phosphate in 8 ml of dioxane, Stir at 95 ° C. for 1 hour under atmosphere. The reaction mixture was cooled to room temperature, ethyl acetate and water were added, the mixture was filtered through celite, and the mother liquor was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and ethyl 2-ethoxy-4-phenylbenzoate was obtained from the fraction eluted with hexane-ethyl acetate (9: 1). Next, the obtained ethyl 2-ethoxy-4-phenylbenzoate was dissolved in 4 ml of ethanol, 2 ml of 1N sodium hydroxide was added, and the mixture was stirred at room temperature for 6 hours. The reaction mixture was ice-cooled, neutralized with 1N hydrochloric acid, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to obtain 0.22 g of 2-ethoxy-4-phenylbenzoic acid.
1H-NMR (CDCl3) Δ: 1.61 (t, J = 7.2 Hz, 3H) 4.42 (q, J = 7.2 Hz, 2H) 7.21 (d, J = 1.6 Hz, 1H) 7.36 (dd , J = 1.6, 8.4 Hz, 1H) 7.43-7.51 (m, 3H) 7.59-7.61 (m, 1H) 8.25 (d, J = 8.4 Hz, 1H) )
Example 295b)
Figure 2002080899
Example 38) with 2-ethoxy-4-phenylbenzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In a similar manner, 3- (3-[(2-ethoxy-4-phenylbenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid was obtained.
MS m / e (ESI) 492 (MH+)
Example 296
Production Example 296a)
Figure 2002080899
2-Ethoxy-4- (4'-fluorophenyl) benzoic acid was obtained in the same manner as in Production Example 295) using ethyl 4-chloro-2-ethoxybenzoate and 4-fluorobenzeneboronic acid.
1H-NMR (CDCl3) Δ: 1.61 (t, J = 7.2 Hz, 3H) 4.42 (q, J = 7.2 Hz, 2H) 7.15-7.20 (m, 3H) 7.30 (dd, J = 1.6, 8.0 Hz, 1H) 7.55-7.59 (m, 2H) 8.24 (d, J = 8.0 Hz, 1H)
Example 296b)
Figure 2002080899
Using 2-ethoxy-4- (4′-fluorophenyl) benzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In the same manner as in Example 38), 3- (3- [2-ethoxy-4- (4′-fluorophenyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained. It was.
MS m / e (ESI) 510 (MH+)
Example 297
Production Example 297a)
Figure 2002080899
2-Ethoxy-4- (4′-methoxyphenyl) benzoic acid was obtained in the same manner as in Production Example 295 using ethyl 4-chloro-2-ethoxybenzoate and 4-methoxybenzeneboronic acid.
1H-NMR (CDCl3) Δ: 1.61 (t, J = 7.2 Hz, 3H) 3.87 (s, 3H) 4.41 (q, J = 7.2 Hz, 2H) 7.01 (d, J = 8.0 Hz) , 2H) 7.17 (d, J = 1.6 Hz, 1H) 7.31 (dd, J = 1.6, 8.4 Hz, 1H) 7.55 (d, J = 8.0 Hz, 2H) 8 .22 (d, J = 8.4 Hz, 1H)
Example 297b)
Figure 2002080899
Using 2-ethoxy-4- (4′-methoxyphenyl) benzoic acid and ethyl 3- [3-([(tert-butoxycarbonyl) amino] methyl) -4-methoxyphenyl] -2-isopropoxypropanoate In the same manner as in Example 38, 3- (3- [2-ethoxy-4- (4′-methoxyphenyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid was obtained. .
MS m / e (ESI) 522 (MH+)
Example 298
Figure 2002080899
In the same manner as in Example 218, 3- [3-([2-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-propoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.86 (t, J = 7.2 Hz, 3H) 1.51-1.61 (m, 2H) 2.97 (dd, J = 8.0, 14.0 Hz, 1H) 3.07 (Dd, J = 4.4, 14.0 Hz, 1H) 3.35 (dt, J = 6.4, 8.8 Hz, 1H) 3.50 (dt, J = 6.4, 8.8 Hz, 1H) 3.89 (s, 3H) 4.04 (dd, J = 4.4, 8.0 Hz, 1H) 4.64 (d, J = 6.0 Hz, 2H) 6.82 (d, J = 8) 0.0 Hz, 1H) 7.17 (dd, J = 2.0, 8.0 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.38 (d, J = 12.0 Hz, 1H) ) 7.37-7.45 (m, 1H) 7.52 (d, J = 8.0 Hz, 1H) 8.23 (t, J = 8.0 Hz, 1H)
Example 299
Figure 2002080899
In the same manner as in Example 218, 3- (3-[(4-chloro-2-fluorobenzoyl) amino] methyl-4-methoxyphenyl) -2-propoxypropanoic acid was obtained.
MS m / e (ESI) 424 (MH+)
Example 300
Figure 2002080899
In the same manner as in Example 218), 3- [4-methoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl] -2- Propoxypropanoic acid was obtained.
MS m / e (ESI) 469 (MH+)
Example 301
Figure 2002080899
In the same manner as in Example 218, 3- (3-[(2-chloro-4-propoxy) amino] methyl-4-methoxyphenyl) -2-propoxypropanoic acid was obtained.
MS m / e (ESI) 464 (MH+)
Example 302
Figure 2002080899
In the same manner as in Example 218, 3- [3-([2-chloro-4- (cyclopentyloxy) benzoyl] aminomethyl) -4-methoxyphenyl] -2-propoxypropanoic acid was obtained.
MS m / e (ESI) 490 (MH+)
Example 303
Figure 2002080899
In the same manner as in Example 218, 3- (3-[(4-cyclohexylbenzoyl) amino] methyl-4-methoxyphenyl) -2-propoxypropanoic acid was obtained.
MS m / e (ESI) 454 (MH+)
Example 304
Figure 2002080899
In the same manner as in Example 218), 3-3-3-[([2- (2-chlorophenyl) -4-methyl-1,3-thiazol-5-yl] carbonylamino) methyl] -4-methoxyphenyl- 2-propoxypropanoic acid was obtained.
MS m / e (ESI) 503 (MH+)
Example 305
Figure 2002080899
In the same manner as in Example 218), 3-4-methoxy-3-[([4-methyl-2- (4-methylphenyl) -1,3-thiazol-5-yl] carbonylamino) methyl] phenyl -2-Propoxypropanoic acid was obtained.
MS m / e (ESI) 483 (MH+)
Example 306
Figure 2002080899
In the same manner as in Example 218, 3- (3-[(2,4-dichlorobenzoyl) amino] methyl-4-methoxyphenyl) -2-ethoxypropanoic acid was obtained.
MS m / e (ESI) 426 (MH+)
Example 307
Figure 2002080899
In a manner similar to Example 218), 2-ethoxy-3- [4-methoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl Propanoic acid was obtained.
MS m / e (ESI) 455 (MH+)
Example 308
Figure 2002080899
In the same manner as in Example 218, 3- (3-[(2,4-dichlorobenzoyl) amino] methyl-4-methoxyphenyl) -2-isobutoxypropanoic acid was obtained.
MS m / e (ESI) 454 (MH+)
Example 309
Figure 2002080899
In the same manner as in Example 218), 2-isobutoxy-3- [4-methoxy-3-([(4-methyl-2-phenyl-1,3-thiazol-5-yl) carbonyl] aminomethyl) phenyl Propanoic acid was obtained.
MS m / e (ESI) 483 (MH+)
Example 310
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- [4-methoxy-3-([4- (trifluoromethoxy) benzoyl] aminomethyl) benzyl] butanoic acid.
δ: 0.94 (t, J = 7.2 Hz, 3H) 1.51-1.71 (m, 2H) 2.51-2.58 (m, 1H) 2.70 (dd, J = 5. 8.14.0 Hz, 1H) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 3.84 (s, 3H) 4.57 (d, J = 5.6 Hz, 2H) 75 (t, J = 5.6 Hz, 1H) 6.80 (d, J = 8.4 Hz, 1H) 7.09 (dd, J = 2.0, 8.4 Hz, 1H) 7.15 (d, J = 2.0 Hz, 1H) 7.23 (d, 8.4 Hz, 2H) 7.79 (dt, J = 2.0, 8.4 Hz, 2H)
Example 311
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (4-methoxy-3-[(2-naphthylcarbonyl) amino] methylbenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.96 (t, J = 7.2 Hz, 3H) 2.53-2.62 (m, 1H) 2.73 (dd, J = 5.8, 14.0 Hz, 1H) 2.89 (Dd, J = 8.6, 14.0 Hz, 1H) 2.89 (dd, J = 8.6, 14.0 Hz, 1H) 3.87 (s, 3H) 4.64 (d, J = 6 0.0 Hz, 2H) 6.82 (d, J = 8.4 Hz, 1H) 6.85 (t, J = 6.0 Hz, 1H) 7.10 (dd, 2.2, 8.4 Hz, 1H) 7 .22 (d, J = 2.2 Hz, 1H), 7.4-7.58 (m, 2H) 7.78-7.94 (m, 4H) 8.27 (s, 1H)
Example 312
Figure 2002080899
Treatment in the same manner as in Example 1d), 1e) gives 2- [4-methoxy-3-([(1-methyl-1H-2-indolyl) carbonyl] aminomethyl) benzyl] butanoic acid. It was.
1H-NMR (CDCl3) Δ: 0.95 (t, J = 7.2 Hz, 3H) 1.51-1.62 (m, 2H) 2.53-2.62 (m, 1H) 2.72 (dd, J = 6) .4, 14.0 Hz, 1H) 2.89 (dd, J = 4.4, 14.0 Hz, 1H) 3.86 (s, 3H) 4.04 (s, 3H) 4.57 (d, J = 5.6 Hz, 2H) 6.77 (t, J = 5.6 Hz, 1H) 6.79-6.83 (m, 2H) 7.06-7.18 (m, 3H) 7.27-7 .33 (m, 1H) 7.37 (d, J = 8.4 Hz, 1H) 7.61 (d, J = 8.0 Hz, 1H)
Example 313
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (3-[(2,4-dimethoxybenzoyl) amino] methyl-4-methoxybenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 7.2 Hz, 3H) 1.50-1.71 (m, 2H) 2.49-2.58 (m, 1H) 2.70 (dd, J = 6) 0.0, 14.0 Hz, 1H) 2.86 (dd, J = 4.4, 14.0 Hz, 1H) 3.84 (s, 3H) 3.86 (s, 3H) 3.90 (s, 3H ) 4.59 (d, J = 6.0 Hz, 1H) 4.60 (d, J = 6.0 Hz, 1H) 6.46 (d, J = 2.4 Hz, 1H) 6.58 (dd, J = 2.4, 8.8 Hz, 1H) 6.78 (d, J = 8.4 Hz, 1H) 7.05 (dd, J = 2.4, 8.4 Hz, 1H) 7.17 (d, J = 2.4 Hz, 1H) 8.16 (d, J = 8.8 Hz, 1H) 8.35 (t, J = 6.0 Hz, 1H)
Example 314
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- [3-([(5-butyl-2-pyridyl) carbonyl] aminomethyl) -4-methoxybenzyl] butanoic acid.
1H-NMR (CDCl3): 0.90 to 1.00 (m, 6H) 1.30 to 1.42 (m, 2H) 1.50 to 1.71 (m, 4H) 2.50 to 2.59 (m, 1H) ) 2.65 (t, J = 8.0 Hz, 2H) 2.70 (dd, J = 6.4, 14.0 Hz, 1H) 2.86 (dd, J = 8.4, 14.0 Hz, 1H) 3.86 (s, 3H) 4.61 (d, J = 6.4 Hz, 2H) 6.78 (d, J = 8.4 Hz, 1H) 7.06 (dd, J = 2.4, 8) .4 Hz, 1H) 7.17 (d, J = 2.4 Hz, 1H) 7.62 (dd, J = 2.0, 8.0 Hz, 1H) 8.10 (d, J = 8.0 Hz, 1H) ) 8.35 (d, J = 2.0 Hz, 1H) 8.42 (t, J = 6.4 Hz, 1H)
Example 315
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (4-methoxy-3-[(2,4,5-trimethoxybenzoyl) amino] methylbenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 7.6 Hz, 3H) 1.50-1.70 (m, 2H) 2.50-2.58 (m, 1H) 2.69 (dd, J = 6) 0.0, 13.6 Hz, 1H) 2.88 (dd, J = 8.4, 13.6 Hz, 1H) 3.86 (s, 3H) 3.88 (s, 3H) 3.91 (s, 3H 3.92 (s, 3H) 4.60 (d, J = 6.0 Hz, 2H) 6.49 (s, 1H) 6.78 (d, J = 8.0 Hz, 1H) 7.06 (dd , J = 2.0, 8.0 Hz, 1H) 7.17 (d, J = 2.0 Hz, 1H) 7.75 (s, 1H) 8.45 (t, J = 6.0 Hz, 1H)
Example 316
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (3-[(2,4-dimethylbenzoylamino] methyl-4-methoxybenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 7.2 Hz, 3H) 1.50-1.71 (m, 2H) 2.31 (s, 3H) 2.36 (s, 3H) 2.50-2 .59 (m, 1H) 2.70 (dd, J = 6.6, 14.0 Hz, 1H) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 3.81 (s, 3H ) 4.54 (d, J = 6.0 Hz, 1H) 4.55 (d, J = 6.0 Hz, 1H) 6.29 (t, J = 6.0 Hz, 1H) 6.78 (d, J = 8.6 Hz, 1H) 6.98 (d, J = 7.6 Hz, 1H) 7.00 (s, 1H) 7.08 (dd, J = 2.0, 8.6 Hz, 1H) 7.18 (D, J = 2.0 Hz, 1H) 7.24 (d, J = 7.6 Hz, 1H)
Example 317
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- [4-methoxy-3-([(5-methyl-2-pyrazinyl) carbonyl] aminomethyl) benzyl] butanoic acid.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 7.2 Hz, 3H) 1.50-1.70 (m, 2H) 2.50-2.58 (m, 1H) 2.69 (dd, J = 6) .8, 14.0 Hz, 1H) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 3.85 (s, 3H) 4.61 (d, J = 6.0 Hz, 2H) 6 .79 (d, J = 8.4 Hz, 1H) 7.08 (dd, J = 2.0, 8.4 Hz, 1H) 7.15 (d, J = 2.0 Hz, 1H) 8.21 (t , J = 6.0 Hz, 1H) 8.36 (s, 1H) 9.26 (s, 1H)
Example 318
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (4-methoxy-3-[(2-quinolylcarbonyl) amino] methylbenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.93 (t, J = 7.2 Hz, 3H) 1.50-1.70 (m, 2H) 2.51-2.60 (m, 1H) 2.70 (dd, J = 6) .4, 13.4 Hz, 1H) 2.89 (dd, J = 8.6, 13.4 Hz, 1H) 3.87 (s, 3H) 4.68 (d, J = 6.4 Hz, 2H) 6 .80 (d, J = 8.2 Hz, 1H) 7.07 (dd, J = 2.2, 8.2 Hz, 1H) 7.21 (d, J = 2.2 Hz, 1H) 7.69 (t , J = 8.0 Hz, 1H) 7.76 (t, J = 8.0 Hz, 1H) 7.97 (d, J = 8.0 Hz, 1H) 8.01 (d, J = 8.0 Hz, 1H) ) 8.62 (s, 1H) 8.67 (t, J = 6.4 Hz, 1H) 9.15 (s, 1H)
Example 319
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 2- (4-methoxy-3-[(6-quinolylcarbonyl) amino] methylbenzyl) butanoic acid.
1H-NMR (CDCl3) Δ: 0.91 (t, J = 7.6 Hz, 3H) 1.47-1.70 (m, 2H) 2.47-2.56 (m, 1H) 2.69 (dd, J = 6) 0.0, 14.0 Hz, 1H) 2.84 (dd, J = 8.8, 14.0 Hz, 1H) 3.79 (s, 3H) 4.57 (d, J = 6.0 Hz, 2H) 6 .75 (d, J = 8.0 Hz, 1H) 6.84 (t, J = 6.0 Hz, 1H) 7.05 (dd, J = 2.0, 8.0 Hz, 1H) 7.17 (d , J = 2.0 Hz, 1H) 7.34 (dd, J = 4.4, 8.4 Hz, 1H) 7.88 (dd, J = 2.0, 8.8 Hz, 1H) 7.96 (t , J = 8.8 Hz, 1H) 8.06 (d, J = 8.4 Hz, 1H) 8.10 (s, 1H) 8.86 (d, J = 2.8 Hz, 1H)
Example 320
Figure 2002080899
2- (3-[(2,6-difluoro-4-methoxybenzoyl) amino] methyl-4-methoxybenzyl) butanoic acid was obtained.
1H-NMR (CDCl3) Δ: 0.95 (t, J = 7.6 Hz, 3H) 1.53-1.71 (m, 2H) 2.52-2.59 (m, 1H) 2.70 (dd, J = 6) .6, 14.0 Hz, 1H) 2.88 (dd, J = 8.4, 14.0 Hz, 1H) 3.79 (s, 3H) 3.83 (s, 3H) 4.57 (d, J = 5.6 Hz, 1H) 4.57 (d, J = 5.6 Hz, 1H) 6.44 (s, 1H) 6.46 (s, 1H) 6.78 (d, J = 8.0 Hz, 1H) 7.07 (dd, J = 2.0, 8.0 Hz, 1H) 7.17 (d, J = 2.0 Hz, 1H)
Example 321
Figure 2002080899
Treatment in the same manner as in Example 1d) and 1e) gave 2- [4-methoxy-3-([(5-methoxypyridyl-2-pyridyl) carbonyl] aminomethyl) benzyl] butanoic acid. .
1H-NMR (CDCl3) Δ: 0.93 (t, J = 7.2 Hz, 3H) 1.48-1.70 (m, 2H) 2.48-2.57 (m, 1H) 2.69 (dd, J = 6) .6, 13.6 Hz, 1H) 2.87 (dd, J = 8.4, 13.6 Hz, 1H) 3.85 (s, 3H) 3.89 (s, 3H) 4.59 (d, J = 6.0 Hz, 2H) 6.78 (d, J = 8.0 Hz, 1H) 7.06 (dd, J = 2.0, 8.0 Hz, 1H) 7.16 (d, J = 2.0 Hz) , 1H) 7.26 (dd, J = 3.2, 8.4 Hz, 1H) 8.14 (d, J = 8.4 Hz, 1H) 8.19 (d, J = 3.2 Hz, 1H) 8 .30 (t, J = 6.0 Hz, 1H)
Example 322
Figure 2002080899
Treatment in the same manner as in Example 1d), 1e) gives 2- [3-([(3,5-dichloro-2-pyridyl) carbonyl] aminomethyl) -4-methoxybenzyl] butanoic acid. It was.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 7.2 Hz, 3H) 1.51-1.70 (m, 2H) 2.50-2.59 (m, 1H) 2.69 (dd, J = 6) .4, 13.6 Hz, 1H) 2.87 (dd, J = 8.4, 13.6 Hz, 1H) 3.85 (s, 3H) 4.57 (d, J = 6.4 Hz, 2H) 6 .78 (d, J = 8.4 Hz, 1H) 7.07 (dd, J = 2.2, 8.4 Hz, 1H) 7.16 (s, 1H) 7.82 (d, J = 2.0 Hz) , 1H) 8.09 (t, J = 6.4 Hz, 1H) 8.40 (d, J = 2.0 Hz, 1H)
Example 323
Figure 2002080899
Treated in the same manner as Example 1d), 1e) to give 2- [3-([(4-chlorobenzo [b] furan-7-yl) carbonyl] aminomethyl) -4-methoxybenzyl] butanoic acid. Got.
1H-NMR (CDCl3) Δ: 0.94 (t, J = 7.2 Hz, 3H) 1.50-1.71 (m, 2H) 2.50-2.60 (m, 1H) 2.71 (dd, J = 6) 0.0, 13.8 Hz, 1H) 2.87 (dd, J = 8.8, 13.8 Hz, 1H) 3.89 (s, 3H) 4.69 (d, J = 6.0 Hz, 1H) 4 .70 (d, J = 6.0 Hz, 1H) 6.81 (d, J = 8.4 Hz, 1H) 6.96 (d, J = 2.0 Hz, 1H) 7.08 (dd, J = 2) 0.0, 8.4 Hz, 1H) 7.20 (d, J = 2.0 Hz, 1H) 7.33 (d, J = 8.0 Hz, 1H) 7.71 (d, J = 2.0 Hz, 1H) ) 8.01 (t, J = 6.0 Hz, 1H) 8.04 (d, J = 8.0 Hz, 1H)
Example 324
Figure 2002080899
The product was treated in the same manner as in Example 1d) and 1e) to obtain 3- (3-[(4-cyanobenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 7.2, 14.0 Hz, 1H) 3 .03 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.11 (dd, J = 4.4 , 7.2 Hz, 1H) 4.60 (d, J = 6.0 Hz, 2H) 6.77 (br, 1H) 6.82 (d, J = 8.4 Hz, 1H) 7.16 (dd, J = 2.0, 8.4 Hz, 1H) 7.21 (d, J = 2.0 Hz, 1H) 7.70 (d, J = 8.0 Hz, 2H) 7.84 (d, J = 8.0 Hz) , 2H)
Example 325
Figure 2002080899
Treatment in a manner similar to Example 1d), 1e) and 3- [3-([3-fluoro-4- (trifluoromethyl) benzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxyprop Obtained a Noic Acid.
1H-NMR (CDCl3) Δ: 1.03 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.92 (dd, J = 7.4, 14.0 Hz, 1H) 3 .03 (dd, J = 4.6, 14.0 Hz, 1H) 3.58 (sept, J = 6.0 Hz, 1H) 3.87 (s, 3H) 4.11 (dd, J = 4.6 , 7.4 Hz, 1H) 4.60 (d, J = 6.0 Hz, 2H) 6.75 (br, 1H) 6.83 (d, J = 8.4 Hz, 1H) 7.17 (dd, J = 2.0, 8.4 Hz, 1H) 7.21 (d, J = 2.0 Hz, 1H) 7.56-7.70 (m, 3H)
Example 326
Figure 2002080899
Treatment in the same manner as in Example 1d), 1e) to give 3- (3-[(2-fluoro-4-methoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid Obtained.
1H-NMR (CDCl3) Δ: 1.00 (d, J = 6.0 Hz, 3H) 1.14 (d, J = 6.0 Hz, 3H) 2.89 (dd, J = 8.0, 14.0 Hz, 1H) 3 .04 (dd, J = 4.0, 14.0 Hz, 1H) 3.54 (sept, J = 6.0 Hz, 1H) 3.83 (s, 3H) 3.86 (s, 3H) 4.09 (Dd, J = 4.0, 8.0 Hz, 1H) 4.62 (d, J = 6.0 Hz, 2H) 6.59 (dd, J = 2.4, 14.0 Hz, 1H) 6.77 (Dd, J = 2.4, 8.8 Hz, 1H) 6.81 (d, J = 8.0 Hz, 1H) 7.13 (dd, J = 2.0, 8.4 Hz, 1H) 7.21 (D, J = 2.0 Hz, 1H) 7.27-7.36 (m, 1H) 8.05 (t, J = 8.8 Hz, 1H)
Example 327
Figure 2002080899
Example 1d) is treated in the same manner as 1e) to give 3- (3-[(2-chloro-4-methoxybenzoyl) amino] methyl-4-methoxyphenyl) -2-isopropoxypropanoic acid. Obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.6, 14.0 Hz, 1H) 3 .05 (dd, J = 4.4, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.81 (s, 3H) 3.84 (s, 3H) 4.09 (Dd, J = 4.4, 7.6 Hz, 1H) 4.61 (d, J = 5.6 Hz, 2H) 6.59 (dd, J = 2.4, 14.0 Hz, 1H) 6.80 (D, J = 8.4 Hz, 1H) 6.84 (dd, J = 2.8, 8.8 Hz, 1H) 6.88 (d, J = 2.8 Hz, 1H) 6.97 (t, J = 5.6 Hz, 1H) 7.14 (dd, J = 2.0, 8.4 Hz, 1H) 7.24 (d, J = 2.0 Hz, 1H) 7.74 (d, J = 8.8 Hz) , 1H)
Example 328
Figure 2002080899
Treatment in the same manner as Example 1d), 1e) gave 2-isopropoxy-3- (4-methoxy-3-[(2,4,6-trichlorobenzoyl) amino] methylphenyl) propanoic acid. Obtained.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.91 (dd, J = 7.6, 14.0 Hz, 1H) 3 .05 (dd, J = 4.4, 14.0 Hz, 1H) 3.57 (sept, J = 6.0 Hz, 1H) 3.82 (s, 3H) 4.11 (dd, J = 4.4 , 7.6 Hz, 1H) 4.61 (d, J = 6.0 Hz, 2H) 6.40 (br, 1H) 6.80 (d, J = 8.4 Hz, 1H) 7.16 (dd, J = 2.4, 8.4 Hz, 1H) 7.27 (d, J = 2.4 Hz, 1H) 7.26 (s, 1H) 7.32 (s, 1H)
Example 329
Figure 2002080899
Treated in the same manner as Example 1d), 1e) to give 2-isopropoxy-3--4-methoxy-3-[([6- (trifluoromethyl) -3-pyridyl] carbonylamino) methyl] phenylprop Obtained a Noic Acid.
1H-NMR (CDCl3) Δ: 1.05 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.93 (dd, J = 7.2, 14.0 Hz, 1H) 3 .04 (dd, J = 4.4, 14.0 Hz, 1H) 3.59 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.10 (dd, J = 4.4 , 7.2 Hz, 1H) 4.63 (d, J = 6.0 Hz, 2H) 6.83 (d, J = 8.4 Hz, 1H) 6.93 (br, 1H) 7.17 (dd, J = 2.0, 8.4 Hz, 1H) 7.22 (d, J = 2.0 Hz, 1H) 7.75 (d, J = 8.4 Hz, 1H) 8.29 (dd, J = 1.2 , 8.4 Hz, 1H) 9.02 (s, 1H)
Example 330
Figure 2002080899
3- [3-[([3-Chloro-5- (trifluoromethyl) -2-pyridyl] carbonylamino) methyl] -4-methoxyphenyl-2-isopropoxypropanoic acid was obtained.
1H-NMR (CDCl3) Δ: 1.02 (d, J = 6.0 Hz, 3H) 1.15 (d, J = 6.0 Hz, 3H) 2.90 (dd, J = 7.6, 14.0 Hz, 1H) 3 .04 (dd, J = 4.4, 14.0 Hz, 1H) 3.56 (sept, J = 6.0 Hz, 1H) 3.86 (s, 3H) 4.09 (dd, J = 4.4 , 7.6 Hz, 1H) 4.61 (d, J = 6.0 Hz, 2H) 6.82 (d, J = 8.2 Hz, 1H) 7.15 (dd, J = 2.0, 8.2 Hz) , 1H) 7.23 (d, J = 2.0 Hz, 1H) 8.05 (d, J = 0.8 Hz, 1H) 8.14 (t, J = 6.0 Hz, 1H) 8.70 (d , J = 0.8Hz, 1H)
Example 331
Figure 2002080899
Treatment in a manner similar to Example 1d), 1e) yields 3- [3-([(2,4-dimethoxy-5-pyrimidinyl) carbonyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxyprop Obtained a Noic Acid.
1H-NMR (CDCl3) Δ: 1.04 (d, J = 6.0 Hz, 3H) 1.16 (d, J = 6.0 Hz, 3H) 2.91 (dd, J = 7.4, 14.0 Hz, 1H) 3 .04 (dd, J = 4.2, 14.0 Hz, 1H) 3.58 (sept, J = 6.0 Hz, 1H) 3.89 (s, 3H) 4.10 (dd, J = 4.2 , 7.4 Hz, 1H) 4.60 (d, J = 6.0 Hz, 2H) 6.82 (d, J = 8.4 Hz, 1H) 7.14 (dd, J = 2.0, 8.4 Hz) , 1H) 7.19 (d, J = 2.0 Hz, 1H) 7.96 (t, J = 6.0 Hz, 1H) 9.10 (s, 1H)
Example 332
Production Example 332a)
Figure 2002080899
25 g of 3-bromo-4-fluorobenzaldehyde was dissolved in 300 ml of methanol, 40 g of trimethyl orthoformate and 3 g of paratosylic acid were added, and the mixture was heated to reflux for 6 hours. The reaction mixture was ice-cooled and 5 g of sodium bicarbonate was added. Concentrated under reduced pressure, ethyl acetate was added to the residue, the organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, the solvent was concentrated under reduced pressure, and 30 g of 2-bromo-4- (dimethoxymethyl) benzene. Got. This crude product was dissolved in 300 ml of tetrahydrofuran and cooled to −78 ° C. under a nitrogen atmosphere. 60 ml of butyl lithium (2.47 M hexane solution) was added. After stirring for 1 hour, 20 ml of N, N-dimethylformamide was added and the temperature was raised to room temperature. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was concentrated under reduced pressure to obtain 25 g of 2-fluoro-5- (dimethoxymethyl) benzaldehyde. This crude product was dissolved in 200 ml of ethanol, and 3.3 g of sodium borohydride was added under ice cooling. The mixture was stirred at room temperature for 2 hours, water was added, and the mixture was extracted with ethyl acetate. After drying over anhydrous magnesium sulfate, the solvent was concentrated under reduced pressure to obtain 25 g of 2-fluoro-5- (dimethoxymethyl) benzyl alcohol. This crude product was dissolved in 400 ml of toluene, 32 ml of diphenylphosphoryl azide and 22 ml of diazabicyclo [5.4.0] undecene were added, and the mixture was stirred at room temperature for 12 hours. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. 30 g of 2-azidomethyl-4- (dimethoxymethyl) fluorobenzene was obtained. This crude product was dissolved in 500 ml of tetrahydrofuran, 50 ml of water and 45 g of triphenylphosphine were added, and the mixture was stirred at 50 ° C. for 3 hours. The solvent was distilled off under reduced pressure to obtain 70 g of 2-fluoro-5- (dimethoxymethyl) benzylamine. The crude product was dissolved in 200 ml of N, N-dimethylformamide, 55 g of tert-butyl dicarbonate and 43 ml of triethylemine were added, and the mixture was stirred at room temperature for 4 days. Water was added to the reaction mixture, and the mixture was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. The residue was subjected to silica gel column chromatography, and 30 g of tert-butyl N- [5- (dimethoxymethyl) -2-fluorobenzyl] carbamate was obtained from the fraction eluted with hexane-ethyl acetate (10: 1 → 2: 1). .
1H-NMR (CDCl3) Δ: 1.44 (s, 9H) 3.30 (s, 6H) 4.36 (d, J = 5.2 Hz, 2H) 4.90 (br, 1H) 5.34 (s, 1H) 7 0.02 (t, J = 9.2 Hz, 1H) 7.16-7.46 (m, 2H)
Production Example 332b)
Figure 2002080899
Tertiary butyl N- [5- (dimethoxymethyl) -2-fluorobenzyl] carbamate (30 g) was dissolved in tetrahydrofuran (300 ml), 1N hydrochloric acid (80 ml) was added, and the mixture was stirred under ice-cooling for 20 minutes. Saturated aqueous sodium bicarbonate solution was added and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure to obtain 25 g of tert-butyl N- (2-fluoro-5-formyl) carbamate.
1H-NMR (CDCl3) Δ: 1.45 (s, 9H) 4.43 (d, J = 5.6 Hz, 2H) 4.98 (br, 1H) 7.19 (t, J = 8.8 Hz, 1H) 7.79 −7.85 (m, 1H) 7.90 (dd, J = 2.0, 7.2 Hz, 1H)
Production Example 332c)
Figure 2002080899
Treatment with tert-butyl N- (2-fluoro-5-formyl) carbamate in the same manner as in Production Example 261 gave tert-butyl N-5-[(2,4-dioxo-1,3-thiazolane). -5-yl) methyl] -2-fluorobenzyl carbamate was obtained.
1H-NMR (DMSO-d6) Δ: 1.38 (s, 9H) 3.06 (dd, J = 9.2, 14.0 Hz, 1H) 3.34 (dd, J = 4.0, 14.0 Hz, 1H) 4.12. (D, J = 5.6 Hz, 2H) 4.81 (dd, J = 4.0, 9.2 Hz) 7.05-7.20 (m, 2H) 7.35 (t, J = 5.6 Hz) , 1H) 7.93 (s, 1H)
Example 332d)
Figure 2002080899
Treatment in the same manner as in Example 261 gave N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2,4-dichlorobenzamide. .
1H-NMR (CDCl3) Δ: 3.17 (dd, J = 8.4, 14.4 Hz, 1H) 3.26 (dd, J = 4.4, 14.4 Hz, 1H) 4.45 (dd, J = 4.4 , 8.4 Hz) 4.59 (d, J = 6.0 Hz, 2H) 6.61 (br, 1H) 6.96 (t, J = 9.2 Hz, 1H) 7.04-7.11 (m , 1H) 7.20-7.29 (m, 2H) 7.36 (d, J = 2.0 Hz, 1H) 7.80 (d, J = 8.4 Hz, 1H)
Example 333
Figure 2002080899
Treatment in the same manner as in Example 261 gave N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2-chloro-4-methoxybenzamide. Obtained.
1H-NMR (CDCl3) Δ: 3.15 (dd, J = 8.6, 14.0 Hz, 1H) 3.32 (dd, J = 4.2, 14.0 Hz, 1H) 3.76 (s, 3H) 4.44 (Dd, J = 4.2, 8.6 Hz, 1H) 4.59 (d, J = 6.4 Hz, 2H) 6.76-6.86 (m, 3H) 6.95 (t, J = 8 .4 Hz, 1H) 7.03-7.08 (m, 1H) 7.27 (dd, J = 2.0, 7.2 Hz, 1H) 7.69 (d, J = 8.4 Hz, 1H) 8 .46 (br, 1H)
Example 334
Figure 2002080899
Treatment in the same manner as in Example 261 gave N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-4-chloro-2-methoxybenzamide. Obtained.
1H-NMR (DMSO-d6) Δ: 3.07 (dd, J = 8.8, 14.0 Hz, 1H) 3.34 (dd, J = 4.4, 14.0 Hz, 1H) 3.90 (s, 3H) 4.47 (D, J = 6.0 Hz, 2H) 4.82 (dd, J = 4.4, 8.8 Hz, 1H) 7.00-7.30 (m, 5H) 7.70 (d, J = 8 0.0 Hz, 1H) 8.63 (t, J = 5.6 Hz, 1H) 12.03 (s, 1H)
Example 335
Figure 2002080899
Treatment in the same manner as in Example 261 gave N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2-methoxynicotinamide. .
1H-NMR (CDCl3) Δ: 3.07 (dd, J = 9.6, 14.0 Hz, 1H) 3.34 (dd, J = 4.4, 14.0 Hz, 1H) 3.97 (s, 3H) 4.50 (D, J = 6.0 Hz, 2H) 4.83 (dd, J = 4.4, 9.2 Hz, 1H) 7.08-7.20 (m, 3H) 8.07-8.14 (m , 1H) 8.26-8.33 (m, 1H) 8.74 (t, J = 6.0 Hz, 1H) 12.03 (s, 1H)
Example 336
Figure 2002080899
Treatment with a method similar to that in Example 261 and N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2-methoxy-6-methylnicotinami I got it.
1H-NMR (CDCl3) Δ: 2.43 (3H, s) 3.07 (dd, J = 9.4, 14.0 Hz, 1H) 3.40 (dd, J = 4.0, 14.0 Hz, 1H) 3.96 (S, 3H) 4.49 (d, J = 5.6 Hz, 2H) 4.82 (dd, J = 4.0, 9.4 Hz, 1H) 6.94-7.00 (m, 1H) 7 10-7.30 (m, 3H) 8.02-8.10 (m, 1H) 8.64 (t, J = 5.6 Hz, 1H) 12.02 (s, 1H)
Example 337
Figure 2002080899
The same treatment as in Example 261 was carried out to give N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2,6-dimethoxynicotinamide. Obtained.
1H-NMR (CDCl3) Δ: 3.02-3.10 (m, 1H) 3.27-3.36 (m, 1H) 3.90 (d, J = 2.0 Hz, 3H) 4.10 (d, J = 2) 0.0 Hz, 3H) 4.49 (d, J = 5.6 Hz, 2H) 4.79-4.84 (m, 1H) 6.48 (d, J = 8.0 Hz, 1H) 7.08-7 .27 (m, 3H) 8.13 (d, J = 8.0 Hz, 1H) 8.48 (t, J = 5.6 Hz, 1H) 12.01 (s, 1H)
Example 338
Figure 2002080899
Treatment in the same manner as in Example 261 gave N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2-ethoxynicotinamide. .
1H-NMR (DMSO-d6) Δ: 1.33 (t, J = 7.2 Hz, 3H) 3.07 (dd, J = 9.6, 14.0 Hz, 1H) 3.35 (dd, J = 4.4, 14.0 Hz) , 1H) 4.43 (q, J = 7.2 Hz, 2H) 4.49 (d, J = 5.6 Hz, 2H) 4.85 (dd, J = 4.4, 9.6 Hz, 1H) 7 .06-7.30 (m, 4H) 8.12 (dd, J = 2.0, 7.6 Hz, 1H) 8.27 (dd, J = 2.0, 4.8 Hz, 1H) 8.63 (T, J = 5.6Hz, 1H)
Example 339
Figure 2002080899
N4-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-4-methyl-2-phenyl-1 was treated in the same manner as in Example 261. , 3-thiazole-5-carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.61 (s, 3H) 3.09 (dd, J = 9.6, 14.0 Hz, 1H) 3.35 (dd, J = 4.4, 14.0 Hz, 1H) 4.44 (D, J = 5.6 Hz, 2H) 4.85 (dd, J = 4.4, 9.6 Hz, 1H) 7.10-7.29 (m, 3H) 7.46-7.55 (m , 3H) 7.90-7.96 (m, 2H) 8.81 (t, J = 5.6 Hz, 1H) 12.03 (s, 1H)
Example 340
Figure 2002080899
The reaction solution was treated in the same manner as in Example 261 to give N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-4-isopropylbenzamide.
1H-NMR (CDCl3) Δ: 1.25 (d, J = 7.2 Hz, 6H) 2.94 (sept, J = 7.2 Hz, 1H) 3.19 (dd, J = 8.8, 14.0 Hz, 1H) 3 .36 (dd, J = 4.4, 14.0 Hz, 1H) 4.50 (dd, J = 4.4, 8.8 Hz, 1H) 4.64 (d, J = 6.0 Hz, 2H) 6 .61 (t, J = 6.0 Hz, 1H) 7.00 (dd, J = 8.6, 9.6 Hz, 1H) 7.08-7.14 (m, 1H) 7.25-7.35 (M, 3H) 7.68-7.74 (m, 2H) 9.04 (br, 1H)
Example 341
Figure 2002080899
N7-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-4-chlorobenzo [b] furan-7 was treated in the same manner as in Example 261. -Carboxamide was obtained.
1H-NMR (CDCl3) Δ: 3.19 (dd, J = 8.8, 14.0 Hz, 1H) 3.39 (dd, J = 4.4, 14.0 Hz, 1H) 4.50 (dd, J = 4.4 , 8.8 Hz, 1H) 4.76 (d, J = 6.0 Hz, 2H) 6.98 (d, J = 2.0 Hz, 1H) 7.03 (t, J = 9.0 Hz, 1H) 7 .10-7.16 (m, 1H) 7.30-7.42 (m, 2H) 7.77 (d, J = 2.0 Hz, 1H) 7.83 (t, J = 6.0 Hz, 1H) ) 8.06 (d, J = 8.8 Hz, 1H)
Example 342
Figure 2002080899
Treatment with a method similar to that in Example 261 and N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-fluorobenzyl-2-fluoro-4- (trifluoro Methyl) benzamide was obtained.
1H-NMR (CDCl3) Δ: 3.14 (dd, J = 8.8, 14.0 Hz, 1H) 3.33 (dd, J = 4.4, 14.0 Hz, 1H) 4.44 (dd, J = 4.4 , 8.8 Hz, 1H) 4.62 (d, J = 5.6 Hz, 2H) 6.97 (t, J = 9.0 Hz, 1H) 7.04-7.16 (m, 2H) 7.23 (Dd, J = 2.2, 7.2 Hz, 1H) 7.35 (d, J = 11.6 Hz, 2H) 7.48 (d, J = 8.0 Hz, 1H) 8.17 (t, J = 8.0Hz, 1H)
Example 343
Figure 2002080899
The same treatment as in Example 261 was carried out to give N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2,6-dimethoxynicotinamide. Obtained.
1H-NMR (DMSO-d6) Δ: 3.00 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.4, 14.0 Hz, 1H) 3.84 (s, 3H) 3.91 (S, 3H) 4.03 (s, 3H) 4.42 (d, J = 5.6 Hz, 2H) 4.80 (dd, J = 4.0, 9.6 Hz, 1H) 6.49 (d , J = 8.4 Hz, 1H) 6.95 (d, J = 8.4 Hz, 1H) 7.06-7.15 (m, 2H) 8.17 (d, J = 8.4 Hz, 1H) 8 .40 (t, J = 5.6 Hz, 1H)
Example 344
Figure 2002080899
Treatment in the same manner as in Example 261 gave N3-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2-methoxynicotinamide. .
1H-NMR (DMSO-d6) Δ: 3.03 (dd, J = 9.6, 14.0 Hz, 1H) 3.30 (dd, J = 4.0, 14.0 Hz, 1H) 3.87 (s, 3H) 3.99 (S, 3H) 4.43 (d, J = 6.0 Hz, 2H) 4.80 (dd, J = 4.0, 9.6 Hz, 1H) 6.95 (d, J = 8.8 Hz, 1H) ) 7.05-7.20 (m, 3H) 8.13-8.20 (m, 1H) 8.27-8.33 (m, 1H) 8.63 (t, J = 6.0 Hz, 1H) ) 12.01 (br, 1H)
Example 345
Figure 2002080899
The reaction mixture was treated in the same manner as in Example 261 to give N2-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-6-methyl-2-pyridinecarboxamide. Obtained.
1H-NMR (DMSO-d6) Δ: 2.54 (s, 3H) 2.98 (dd, J = 9.6, 14.0 Hz, 1H) 3.24-3.31 (m, 1H) 3.82 (s, 3H) 4 .44 (d, J = 6.4 Hz, 2H) 4.79 (dd, J = 4.4, 9.6 Hz, 1H) 6.95 (d, J = 8.4 Hz, 1H) 7.05 (d , J = 1.6 Hz, 1H) 7.11 (dd, J = 1.6, 8.4 Hz, 1H) 7.45 (dd, J = 1.6, 6.8 Hz, 1H) 7.80-7 .90 (m, 2H) 8.85 (t, J = 6.4 Hz, 1H) 11.99 (br, 1H)
Example 346
Figure 2002080899
N2-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-3,5-dichloro-2-pyridine was treated in the same manner as in Example 261. Carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.98 (dd, J = 9.6, 14.0 Hz, 1H) 3.30 (dd, J = 4.6, 14.0 Hz, 1H) 3.79 (s, 3H) 4.38 (D, J = 6.0 Hz, 2H) 4.78 (dd, J = 4.6, 9.6 Hz, 1H) 6.94 (d, J = 8.2 Hz, 1H) 7.13 (d, J = 8.2 Hz, 1H) 7.15 (s, 1H) 8.35 (d, J = 2.0 Hz, 1H) 8.64 (s, 1H) 8.94 (t, J = 6.0 Hz, 1H) ) 12.02 (br, 1H)
Example 347
Figure 2002080899
N2-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-3,5-dimethyl-2-pyridine was treated in the same manner as in Example 261. Carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 2.31 (s, 3H) 2.52 (s, 3H) 2.97 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 3.8, 14) 0.0 Hz, 1H) 3.80 (s, 3H) 4.38 (d, J = 6.4 Hz, 2H) 4.77 (dd, J = 3.8, 9.6 Hz, 1H) 6.93 (d , J = 8.4 Hz, 1H) 7.06 (s, 1H) 7.10 (d, J = 8.4 Hz, 1H) 7.55 (s, 1H) 8.28 (s, 1H) 8.79 (T, J = 6.4Hz, 1H)
Example 348
Figure 2002080899
Treatment with a method similar to that in Example 261 and N1-5-[(2,4-dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-4- (trifluoromethyl) -1 -Benzenesulfonamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.03 (dd, J = 9.0, 14.0 Hz, 1H) 3.30 (dd, J = 4.0, 14.0 Hz, 1H) 3.69 (s, 3H) 4.16 (D, J = 6.4 Hz, 2H) 4.46 (dd, J = 4.0, 9.6 Hz, 1H) 5.59 (t, J = 6.4 Hz, 1H) 6.63 (d, J = 8.4 Hz, 1H) 6.95 (d, J = 2.0 Hz, 1H) 7.03 (dd, J = 2.0, 8.4 Hz, 1H) 7.64 (d, J = 8.4 Hz) , 2H) 7.85 (d, J = 8.4 Hz, 2H) 8.95 (s, 1H)
Example 349
Figure 2002080899
N5-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2,4-dimethyl-5-pyrimidine was treated in the same manner as in Example 261. Carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.14 (s, 6H) 3.03 (dd, J = 9.6, 14.0 Hz, 1H) 3.30 (dd, J = 4.4, 14.0 Hz, 1H) 3.79 (S, 3H) 4.36-4.40 (m, 2H) 4.82 (dd, J = 4.4, 9.6 Hz, 1H) 6.94 (d, J = 8.8 Hz, 1H) 7 .06-7.16 (m, 2H) 8.63 (s, 1H) 8.88 (t, J = 5.6 Hz, 1H) 12.00 (br, 1H)
Example 350
Figure 2002080899
N5-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2,4-dimethoxy-5-pyrimidine was treated in the same manner as in Example 261. Carboxamide was obtained.
1H-NMR (DMSO-d6) Δ: 3.00 (dd, J = 9.6, 14.0 Hz, 1H) 3.28 (dd, J = 4.0, 14.0 Hz, 1H) 3.82 (s, 3H) 3.94 (S, 3H) 4.03 (s, 3H) 4.40 (d, J = 6.0 Hz, 2H) 4.79 (dd, J = 4.0, 9.6 Hz, 1H) 6.94 (d , J = 8.4 Hz, 1H) 7.05-7.15 (m, 2H) 8.36 (t, J = 6.0 Hz, 1H) 8.72 (s, 1H) 12.00 (br, 1H) )
Example 351
Figure 2002080899
N1-5-[(2,4-Dioxo-1,3-thiazolan-5-yl) methyl] -2-methoxybenzyl-2,4-dichloro-1-benzene was treated in the same manner as in Example 261. Sulfonamide was obtained.
1H-NMR ((DMSO-d6) Δ: 2.96 (dd, J = 9.2, 14.4 Hz, 1H) 3.26 (dd, J = 4.0, 14.4 Hz, 1H) 3.79 (s, 3H) 4.15 (D, J = 5.6 Hz, 2H) 4.39 (dd, J = 4.0, 9.2 Hz, 1H) 5.82 (t, J = 5.6 Hz, 1H) 6.67 (d, J = 8.4 Hz, 1H) 6.70 (s, 1H) 7.02 (d, J = 8.4 Hz, 1H) 7.28 (d, J = 8.4 Hz, 1H) 7.88 (d, J = 8.4 Hz, 1H) 8.16 (br, 1H)

Claims (32)

一般式
Figure 2002080899
〔式中、Rは水素原子、水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基、炭素数1ないし6のアルキルチオ基、炭素数1ないし6のハイドロキシアルキル基、炭素数1ないし6のハイドロキシアルコキシ基、炭素数1ないし6のハイドロキシアルキルチオ基、炭素数1ないし6のアミノアルキル基、炭素数1ないし6のアミノアルコキシ基、炭素数1ないし6のアミノアルキルチオ基、炭素数1ないし6のハロゲン化アルキル基、炭素数1ないし6のハロゲン化アルコキシ基、炭素数1ないし6のハロゲン化アルキルチオ基、炭素数2ないし12のアルコキシアルキル基、炭素数2ないし12のアルコキシアルコキシ基、炭素数2ないし12のアルコキシアルキルチオ基、炭素数3ないし7のシクロアルキル基、炭素数3ないし7のシクロアルキルオキシ基、炭素数3ないし7のシクロアルキルチオ基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルケニルオキシ基、炭素数2ないし6のアルケニルチオ基、炭素数2ないし6のアルキニル基、炭素数2ないし6のアルキニルオキシ基、炭素数2ないし6のアルキニルチオ基、炭素数6ないし12のアリール基、炭素数6ないし12のアリールオキシ基、炭素数6ないし12のアリールチオ基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアルキルアリールオキシ基、炭素数7ないし18のアルキルアリールチオ基、炭素数7ないし18のアラルキル基、炭素数7ないし18のアラルキルオキシ基もしくは炭素数7ないし18のアラルキルチオ基を;Lは単結合または二重結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Mは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Tは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし3のアルキレン基、炭素数2ないし3のアルケニレン基もしくは炭素数2ないし3のアルキニレン基を;Wは2,4−ジオキソチアゾリジン−5−イル基、2,4−ジオキソチアゾリジン−5−イリデン基、カルボキシル基、または−CON(Rw1)Rw2(ここでRW1、Rw2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Wが2,4−ジオキソチアゾリジン−5−イル基、または2,4−ジオキソチアゾリジン−5−イリデン基である場合を除く。;
Figure 2002080899
は、単結合または二重結合を;Xは酸素原子、1以上の置換基を有していてもよい炭素数2ないし6のアルケニレン基、もしくはハイドロキシメチレン基、または一般式−CQ−(ここでQは酸素原子または硫黄原子を示す)、−CQNR−(ここでQは前記定義に同じ基を、Rは水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)、−NRCQ−(ここでQ、Rはそれぞれ前記定義に同じ基を示す)、−SONR−(ここでRは前記定義に同じ基を示す)、−NRSO−(Rは前記定義に同じ基を示す)、もしくは−NRx1CQNRx2−(ここでQは前記定義に同じ基を、Rx1またはRx2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Xが酸素原子である場合を除く。;Yは1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし12の芳香族炭化水素基、または炭素数3ないし7の脂環式炭化水素基を;環Zはさらに0から4の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし6の芳香族炭化水素基をそれぞれ示し;一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基は、環Z上で3個の原子を介して互いに結合するものとする。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を有効成分とする消化器疾患の予防・治療剤。
General formula
Figure 2002080899
[Wherein, R 1 represents a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms, each of which may have one or more substituents. An alkylthio group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkylthio group having 1 to 6 carbon atoms, an aminoalkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. An aminoalkoxy group, an aminoalkylthio group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, a halogenated alkoxy group having 1 to 6 carbon atoms, a halogenated alkylthio group having 1 to 6 carbon atoms, and 2 carbon atoms An alkoxyalkyl group having 1 to 12 carbon atoms, an alkoxyalkoxy group having 2 to 12 carbon atoms, an alkoxy group having 2 to 12 carbon atoms Alkylthio group, cycloalkyl group having 3 to 7 carbon atoms, cycloalkyloxy group having 3 to 7 carbon atoms, cycloalkylthio group having 3 to 7 carbon atoms, alkenyl group having 2 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms Oxy group, alkenylthio group having 2 to 6 carbon atoms, alkynyl group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkynylthio group having 2 to 6 carbon atoms, aryl group having 6 to 12 carbon atoms An aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, an alkylaryloxy group having 7 to 18 carbon atoms, an alkylarylthio group having 7 to 18 carbon atoms Group, aralkyl group having 7 to 18 carbon atoms, aralkyloxy group having 7 to 18 carbon atoms, or carbon number An aralkylthio group having 1 to 18 carbon atoms; L is a single bond or a double bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, each of which may have one or more substituents; An alkynylene group having 2 to 6 carbon atoms; M is a single bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or a carbon number, each of which may have one or more substituents; An alkynylene group having 2 to 6 carbon atoms; T is a single bond or an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or 2 to 3 carbon atoms each optionally having one or more substituents; 3 is an alkynylene group; W is a 2,4-dioxothiazolidine-5-yl group, a 2,4-dioxothiazolidine-5-ylidene group, a carboxyl group, or CON (R w1) R w2 (where R W1, R w2 are the same or different and each is a hydrogen atom, a formyl group or each may have one or more substituents, an alkyl group having 1 to 6 carbon atoms, A group having 2 to 7 carbon atoms or an aromatic acyl group having 7 to 19 carbon atoms, respectively). However, in the above definition, the case where T is a single bond and W is a 2,4-dioxothiazolidine-5-yl group or a 2,4-dioxothiazolidine-5-ylidene group is excluded. ;
Figure 2002080899
Represents a single bond or a double bond; X represents an oxygen atom, an alkenylene group having 2 to 6 carbon atoms which may have one or more substituents, or a hydroxymethylene group, or a group represented by the general formula —CQ— Q represents an oxygen atom or a sulfur atom), -CQNR x- (where Q is the same group as defined above, R x may be a hydrogen atom, a formyl group, or each may have one or more substitutions; An alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or an aromatic acyl group having 7 to 19 carbon atoms, -NR x CQ- (where Q and R x are respectively -SO 2 NR x- (wherein R x represents the same group as defined above), -NR x SO 2- (R x represents the same group as defined above), or -NR x1 CQNR x2 - Where Q is the same group as defined above, R x1 and R x2 are the same or different and each is a hydrogen atom, a formyl group or each may have one or more substituents, an alkyl group having 1 to 6 carbon atoms, And an aliphatic acyl group having 2 to 7 carbon atoms or an aromatic acyl group having 7 to 19 carbon atoms, respectively. However, in the above definition, the case where T is a single bond and X is an oxygen atom is excluded. Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms or an alicyclic group having 3 to 7 carbon atoms, which may have one or more substituents and may have one or more heteroatoms; The ring Z may further have a substituent of 0 to 4 and may have one or more heteroatoms, and each of an aromatic hydrocarbon group having 5 to 6 carbon atoms, Indication: general formula
Figure 2002080899
Wherein the symbols in the formula represent the same groups as defined above, and the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z via three atoms. ] The prophylactic / therapeutic agent of digestive organ disease which uses the carboxylic acid derivative represented by these, its salt or its ester, or those hydrates as an active ingredient.
一般式(I)において、Wがカルボン酸である請求項1記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 1, wherein W is carboxylic acid in the general formula (I). 一般式(I)において、Rがそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基である請求項1または2記載の消化器疾患の予防・治療剤。3. The general formula (I), wherein R 1 is an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, each of which may have one or more substituents. A prophylactic / therapeutic agent for digestive diseases. 一般式(I)において、環Zがさらに0から4の置換基を有していてもよいベンゼン環である請求項1または2記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for digestive system diseases according to claim 1 or 2, wherein in general formula (I), ring Z is a benzene ring which may further have 0 to 4 substituents. 一般式(I)において、Xが一般式−CQNR−(ここでQ、Rは前記定義に同じ基を示す)または−NRCQ−(ここでQ、Rは前記定義に同じ基を示す)で示される基である請求項1または2記載の消化器疾患の予防・治療剤。In the general formula (I), X is represented by the general formula -CQNR x- (where Q and R x are the same as defined above) or -NR x CQ- (where Q and R x are the same as defined above). The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 1 or 2, which is a group represented by 一般式(I)において、Yが1以上の置換基を有していてもよい、炭素数5ないし12の芳香族炭化水素基である請求項1または2記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 1 or 2, wherein in general formula (I), Y is an aromatic hydrocarbon group having 5 to 12 carbon atoms which may have one or more substituents. . 一般式(I)において、LまたはMが炭素数1ないし6のアルキレン基である請求項1または2記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 1 or 2, wherein in the general formula (I), L or M is an alkylene group having 1 to 6 carbon atoms. 一般式(I)において、Tが炭素数1ないし3のアルキレン基である請求項1または2記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 1 or 2, wherein T in the general formula (I) is an alkylene group having 1 to 3 carbon atoms. 一般式(I)において、Rがそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基であり、環Zがさらに0から4の置換基を有していてもよいベンゼン環である請求項1または2記載の消化器疾患の予防・治療剤。In the general formula (I), R 1 is an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, each of which may have one or more substituents, and the ring Z is further from 0 to The prophylactic / therapeutic agent for digestive system diseases according to claim 1 or 2, which is a benzene ring optionally having 4 substituents. 一般式(I)において、Xが一般式−CQNR−(ここでQ、Rは前記定義に同じ基を示す)または−NRCQ−(ここでQ、Rは前記定義に同じ基を示す)で示される基であり、Yが1以上の置換基を有していてもよい、炭素数5ないし12の芳香族炭化水素基である請求項1または9記載の消化器疾患の予防・治療剤。In the general formula (I), X is represented by the general formula -CQNR x- (where Q and R x are the same as defined above) or -NR x CQ- (where Q and R x are the same as defined above). The prophylaxis of digestive system diseases according to claim 1 or 9, wherein Y is an aromatic hydrocarbon group having 5 to 12 carbon atoms, optionally having one or more substituents.・ Therapeutic agent. 一般式(I)で表される化合物が(2S)−3−[3−([2,4−ジクロロベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸である請求項1ないし10記載の消化器疾患の予防・治療剤。The compound represented by the general formula (I) is (2S) -3- [3-([2,4-dichlorobenzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid. Or a prophylactic / therapeutic agent for digestive organ disease according to any one of 10 to 10; 消化器疾患が、1)消化管の炎症性疾患、2)消化管の増殖性疾患、および3)消化管の潰瘍性疾患から選ばれる1の疾患である請求項1ないし11記載の消化器疾患の予防・治療剤。12. The gastrointestinal disease according to claim 1, wherein the gastrointestinal disease is one disease selected from 1) an inflammatory disease of the gastrointestinal tract, 2) a proliferative disease of the gastrointestinal tract, and 3) an ulcerative disease of the gastrointestinal tract. Preventive and therapeutic agent. 消化器疾患が消化管の炎症性疾患である請求項1ないし12記載の消化器疾患の予防・治療剤。13. The preventive / therapeutic agent for digestive tract disease according to claim 1, wherein the digestive tract disease is an inflammatory disease of the digestive tract. 消化管の炎症性疾患が、1)潰瘍性大腸炎、2)クローン病、3)膵炎、および4)胃炎から選ばれる1の疾患である請求項13記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for digestive tract disease according to claim 13, wherein the inflammatory disease of the digestive tract is one disease selected from 1) ulcerative colitis, 2) Crohn's disease, 3) pancreatitis, and 4) gastritis. 消化管の炎症性疾患が、潰瘍性大腸炎である請求項14記載の消化器疾患の予防・治療剤。The prophylactic / therapeutic agent for digestive tract diseases according to claim 14, wherein the inflammatory disease of the digestive tract is ulcerative colitis. 消化器疾患が消化管の増殖性疾患である請求項1ないし12記載の消化器疾患の予防・治療剤。13. The preventive / therapeutic agent for digestive tract disease according to claim 1, wherein the digestive tract disease is a proliferative disease of the digestive tract. 消化管の増殖性疾患が、1)消化管の良性腫瘍、2)消化管のポリープ、3)遺伝的ポリポーシス症候群、4)結腸癌、5)直腸癌、および6)胃癌から選ばれる1の疾患である請求項16記載の消化器疾患の予防・治療剤。Gastrointestinal proliferative disease is one disease selected from 1) benign tumors of the gastrointestinal tract, 2) gastrointestinal polyps, 3) genetic polyposis syndrome, 4) colon cancer, 5) rectal cancer, and 6) gastric cancer The prophylactic / therapeutic agent for gastrointestinal diseases according to claim 16. 消化器疾患が消化管の潰瘍性疾患である請求項1ないし12記載の消化器疾患の予防・治療剤。13. The preventive / therapeutic agent for digestive tract disease according to claim 1, wherein the digestive tract disease is an ulcerative disease of the digestive tract. 消化管の潰瘍性疾患が、1)十二指腸潰瘍、2)胃潰瘍、3)食道潰瘍、4)逆流性食道炎、5)ストレス潰瘍およびびらん、6)薬剤によるびらん、ならびに7)Zollinger−Ellison症候群から選ばれる1の疾患である請求項18記載の消化器疾患の予防・治療剤。Ulcerative diseases of the gastrointestinal tract are from 1) duodenal ulcer, 2) gastric ulcer, 3) esophageal ulcer, 4) reflux esophagitis, 5) stress ulcer and erosion, 6) drug erosion, and 7) Zollinger-Ellison syndrome The prophylactic / therapeutic agent for digestive tract diseases according to claim 18, which is one disease selected. 薬理学上有効な量の請求項1記載のカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物、および薬理学的に許容されるキャリアーを含んでなる医薬組成物。A pharmaceutical composition comprising a pharmacologically effective amount of the carboxylic acid derivative according to claim 1, a salt or ester thereof, or a hydrate thereof, and a pharmacologically acceptable carrier. 直腸投与用の製剤である請求項20記載の医薬組成物。The pharmaceutical composition according to claim 20, which is a preparation for rectal administration. 一般式
Figure 2002080899
〔式中、Rは水素原子、水酸基、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキル基、炭素数1ないし6のアルコキシ基、炭素数1ないし6のアルキルチオ基、炭素数1ないし6のハイドロキシアルキル基、炭素数1ないし6のハイドロキシアルコキシ基、炭素数1ないし6のハイドロキシアルキルチオ基、炭素数1ないし6のアミノアルキル基、炭素数1ないし6のアミノアルコキシ基、炭素数1ないし6のアミノアルキルチオ基、炭素数1ないし6のハロゲン化アルキル基、炭素数1ないし6のハロゲン化アルコキシ基、炭素数1ないし6のハロゲン化アルキルチオ基、炭素数2ないし12のアルコキシアルキル基、炭素数2ないし12のアルコキシアルコキシ基、炭素数2ないし12のアルコキシアルキルチオ基、炭素数3ないし7のシクロアルキル基、炭素数3ないし7のシクロアルキルオキシ基、炭素数3ないし7のシクロアルキルチオ基、炭素数2ないし6のアルケニル基、炭素数2ないし6のアルケニルオキシ基、炭素数2ないし6のアルケニルチオ基、炭素数2ないし6のアルキニル基、炭素数2ないし6のアルキニルオキシ基、炭素数2ないし6のアルキニルチオ基、炭素数6ないし12のアリール基、炭素数6ないし12のアリールオキシ基、炭素数6ないし12のアリールチオ基、炭素数7ないし18のアルキルアリール基、炭素数7ないし18のアルキルアリールオキシ基、炭素数7ないし18のアルキルアリールチオ基、炭素数7ないし18のアラルキル基、炭素数7ないし18のアラルキルオキシ基もしくは炭素数7ないし18のアラルキルチオ基を;Lは単結合または二重結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Mは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし6のアルキレン基、炭素数2ないし6のアルケニレン基もしくは炭素数2ないし6のアルキニレン基を;Tは単結合、またはそれぞれ1以上の置換基を有していてもよい、炭素数1ないし3のアルキレン基、炭素数2ないし3のアルケニレン基もしくは炭素数2ないし3のアルキニレン基を;Wは2,4−ジオキソチアゾリジン−5−イル基、2,4−ジオキソチアゾリジン−5−イリデン基、カルボキシル基、または−CON(Rw1)Rw2(ここでRw1、Rw2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Wが2,4−ジオキソチアゾリジン−5−イル基、または2,4−ジオキソチアゾリジン−5−イリデン基である場合を除く。;
Figure 2002080899
は、単結合または二重結合を;Xは酸素原子、1以上の置換基を有していてもよい炭素数2ないし6のアルケニレン基、もしくはハイドロキシメチレン基、または一般式−CQ−(ここでQは酸素原子または硫黄原子を示す)、−CQNR−(ここでQは前記定義に同じ基を、Rは水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)、−NRCQ−(ここでQ、Rはそれぞれ前記定義に同じ基を示す)、−SONR−(ここでRは前記定義に同じ基を示す)、−NRSO−(Rは前記定義に同じ基を示す)、もしくは−NRx1CQNRx2−(ここでQは前記定義に同じ基を、Rx1またはRx2はそれぞれ同一または異なって水素原子、ホルミル基、またはそれぞれ1以上の置換を有していても良い、炭素数1ないし6のアルキル基、炭素数2ないし7の脂肪族アシル基、もしくは炭素数7ないし19の芳香族アシル基をそれぞれ示す)で示される基を示す。但し、上記の定義において、Tが単結合であり、Xが酸素原子である場合を除く。;Yは1以上の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし12の芳香族炭化水素基、または炭素数3ないし7の脂環式炭化水素基を;環Zはさらに0から4の置換基を有していてもよく、1以上のヘテロ原子を有していてもよい、炭素数5ないし6の芳香族炭化水素基をそれぞれ示し;一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基と、一般式
Figure 2002080899
(ここで式中の記号は前記定義に同じ基を示す)で示される基は、環Z上で3個の原子を介して互いに結合するものとする。〕で表されるカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を有効成分とする炎症性疾患の予防・治療剤。
General formula
Figure 2002080899
[Wherein, R 1 represents a hydrogen atom, a hydroxyl group, or an alkyl group having 1 to 6 carbon atoms, an alkoxy group having 1 to 6 carbon atoms, or 1 to 6 carbon atoms, each of which may have one or more substituents. An alkylthio group having 1 to 6 carbon atoms, a hydroxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkylthio group having 1 to 6 carbon atoms, an aminoalkyl group having 1 to 6 carbon atoms, and an alkyl group having 1 to 6 carbon atoms. An aminoalkoxy group, an aminoalkylthio group having 1 to 6 carbon atoms, a halogenated alkyl group having 1 to 6 carbon atoms, a halogenated alkoxy group having 1 to 6 carbon atoms, a halogenated alkylthio group having 1 to 6 carbon atoms, and 2 carbon atoms An alkoxyalkyl group having 1 to 12 carbon atoms, an alkoxyalkoxy group having 2 to 12 carbon atoms, an alkoxy group having 2 to 12 carbon atoms Alkylthio group, cycloalkyl group having 3 to 7 carbon atoms, cycloalkyloxy group having 3 to 7 carbon atoms, cycloalkylthio group having 3 to 7 carbon atoms, alkenyl group having 2 to 6 carbon atoms, alkenyl group having 2 to 6 carbon atoms Oxy group, alkenylthio group having 2 to 6 carbon atoms, alkynyl group having 2 to 6 carbon atoms, alkynyloxy group having 2 to 6 carbon atoms, alkynylthio group having 2 to 6 carbon atoms, aryl group having 6 to 12 carbon atoms An aryloxy group having 6 to 12 carbon atoms, an arylthio group having 6 to 12 carbon atoms, an alkylaryl group having 7 to 18 carbon atoms, an alkylaryloxy group having 7 to 18 carbon atoms, an alkylarylthio group having 7 to 18 carbon atoms Group, aralkyl group having 7 to 18 carbon atoms, aralkyloxy group having 7 to 18 carbon atoms, or carbon number An aralkylthio group having 1 to 18 carbon atoms; L is a single bond or a double bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, each of which may have one or more substituents; An alkynylene group having 2 to 6 carbon atoms; M is a single bond, or an alkylene group having 1 to 6 carbon atoms, an alkenylene group having 2 to 6 carbon atoms, or a carbon number, each of which may have one or more substituents; An alkynylene group having 2 to 6 carbon atoms; T is a single bond or an alkylene group having 1 to 3 carbon atoms, an alkenylene group having 2 to 3 carbon atoms, or 2 to 3 carbon atoms each optionally having one or more substituents; 3 is an alkynylene group; W is a 2,4-dioxothiazolidine-5-yl group, a 2,4-dioxothiazolidine-5-ylidene group, a carboxyl group, or CON (R w1) R w2 (wherein R w1, R w2 are the same or different and each is a hydrogen atom, a formyl group or each may have one or more substituents, an alkyl group having 1 to 6 carbon atoms, A C2 to C7 aliphatic acyl group or a C7 to C19 aromatic acyl group). However, in the above definition, the case where T is a single bond and W is a 2,4-dioxothiazolidine-5-yl group or a 2,4-dioxothiazolidine-5-ylidene group is excluded. ;
Figure 2002080899
Represents a single bond or a double bond; X represents an oxygen atom, an alkenylene group having 2 to 6 carbon atoms which may have one or more substituents, or a hydroxymethylene group, or a group represented by the general formula —CQ— Q represents an oxygen atom or a sulfur atom), -CQNR x- (where Q is the same group as defined above, R x may be a hydrogen atom, a formyl group, or each may have one or more substitutions; An alkyl group having 1 to 6 carbon atoms, an aliphatic acyl group having 2 to 7 carbon atoms, or an aromatic acyl group having 7 to 19 carbon atoms, -NR x CQ- (where Q and R x are respectively -SO 2 NR x- (wherein R x represents the same group as defined above), -NR x SO 2- (R x represents the same group as defined above), or -NR x1 CQNR x2 - Where Q is the same group as defined above, R x1 and R x2 are the same or different and each is a hydrogen atom, a formyl group or each may have one or more substituents, an alkyl group having 1 to 6 carbon atoms, And an aliphatic acyl group having 2 to 7 carbon atoms or an aromatic acyl group having 7 to 19 carbon atoms, respectively. However, in the above definition, the case where T is a single bond and X is an oxygen atom is excluded. Y represents an aromatic hydrocarbon group having 5 to 12 carbon atoms or an alicyclic group having 3 to 7 carbon atoms, which may have one or more substituents and may have one or more heteroatoms; The ring Z may further have a substituent of 0 to 4 and may have one or more heteroatoms, and each of an aromatic hydrocarbon group having 5 to 6 carbon atoms, Indication: general formula
Figure 2002080899
Wherein the symbols in the formula represent the same groups as defined above, and the general formula
Figure 2002080899
(Wherein the symbols in the formula indicate the same groups as defined above) are bonded to each other on the ring Z via three atoms. ] The prophylactic / therapeutic agent of the inflammatory disease which uses the carboxylic acid derivative represented by these, its salt or its ester, or those hydrates as an active ingredient.
一般式(I)で表される化合物が(2S)−3−[3−([2,4−ジクロロベンゾイル]アミノメチル)−4−メトキシフェニル]−2−イソプロポキシプロパン酸である請求項22記載の炎症性疾患の予防・治療剤。The compound represented by the general formula (I) is (2S) -3- [3-([2,4-dichlorobenzoyl] aminomethyl) -4-methoxyphenyl] -2-isopropoxypropanoic acid. The preventive / therapeutic agent for inflammatory diseases described. 炎症性疾患が、1)関節炎リウマチ、2)多発性硬化症、3)免疫不全、4)悪液質、5)骨関節炎、6)骨粗鬆症、7)喘息疾患、および8)アレルギー疾患から選ばれる1の疾患である請求項22または23記載の炎症性疾患の予防・治療剤。The inflammatory disease is selected from 1) rheumatoid arthritis, 2) multiple sclerosis, 3) immunodeficiency, 4) cachexia, 5) osteoarthritis, 6) osteoporosis, 7) asthma disease, and 8) allergic disease 24. The preventive / therapeutic agent for inflammatory diseases according to claim 22 or 23, which is a disease of 1. 請求項1に記載したカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物の薬理学上有効量を患者に投与することにより、消化器疾患を予防・治療する方法。A method for preventing or treating gastrointestinal diseases by administering to a patient a pharmacologically effective amount of the carboxylic acid derivative, salt or ester thereof or hydrate thereof according to claim 1. 消化器疾患が、潰瘍性大腸炎、クローン病、膵炎および胃炎消化管を含む炎症性疾患、消化管の良性腫瘍、消化管のポリープ、遺伝的ポリポーシス症候群、結腸癌、直腸癌および胃癌を含む消化管の増殖性疾患、または十二指腸潰瘍、胃潰瘍、食道潰瘍、逆流性食道炎、ストレス潰瘍およびびらん、薬剤によるびらん、ならびにZollinger−Ellison症候群を含む消化管の潰瘍性疾患である請求項25に記載した方法。Digestive system diseases include ulcerative colitis, Crohn's disease, pancreatitis and gastritis inflammatory diseases including gastrointestinal tract, gastrointestinal benign tumors, gastrointestinal polyps, genetic polyposis syndrome, digestion including colon cancer, rectal cancer and gastric cancer 26. A proliferative disease of the duct, or a gastrointestinal ulcer disease including duodenal ulcer, gastric ulcer, esophageal ulcer, reflux esophagitis, stress ulcer and erosion, drug erosion, and Zollinger-Ellison syndrome Method. 請求項1に記載したカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を、消化器疾患の予防・治療剤の製造のために用いる用途。The use which uses the carboxylic acid derivative of Claim 1, its salt or its ester, or those hydrates for manufacture of the preventive / therapeutic agent of a digestive organ disease. 消化器疾患が、潰瘍性大腸炎、クローン病、膵炎および胃炎消化管を含む炎症性疾患、消化管の良性腫瘍、消化管のポリープ、遺伝的ポリポーシス症候群、結腸癌、直腸癌および胃癌を含む消化管の増殖性疾患、または十二指腸潰瘍、胃潰瘍、食道潰瘍、逆流性食道炎、ストレス潰瘍およびびらん、薬剤によるびらんならびにZollinger−Ellison症候群を含む消化管の潰瘍性疾患である請求項27に記載した用途。Digestive system diseases include ulcerative colitis, Crohn's disease, pancreatitis and gastritis inflammatory diseases including gastrointestinal tract, gastrointestinal benign tumors, gastrointestinal polyps, genetic polyposis syndrome, digestion including colon cancer, rectal cancer and gastric cancer 28. Use according to claim 27, which is a proliferative disease of the duct, or a gastrointestinal ulcerative disease including duodenal ulcer, gastric ulcer, esophageal ulcer, reflux esophagitis, stress ulcer and erosion, drug erosion and Zollinger-Ellison syndrome . 請求項1に記載したカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物の薬理学上有効量を患者に投与することにより、炎症性疾患を予防・治療する方法。A method for preventing or treating an inflammatory disease by administering to a patient a pharmacologically effective amount of the carboxylic acid derivative, salt or ester thereof or hydrate thereof according to claim 1. 炎症性疾患が、関節炎リウマチ、多発性硬化症、免疫不全、悪液質、骨関節炎、骨粗鬆症、喘息疾患またはアレルギー疾患である請求項29に記載した方法。30. The method according to claim 29, wherein the inflammatory disease is rheumatoid arthritis, multiple sclerosis, immunodeficiency, cachexia, osteoarthritis, osteoporosis, asthma disease or allergic disease. 請求項1に記載したカルボン酸誘導体、その塩もしくはそのエステルまたはそれらの水和物を、炎症性疾患の予防・治療剤の製造のために用いる用途。The use which uses the carboxylic acid derivative of Claim 1, its salt or its ester, or those hydrates for manufacture of the preventive / therapeutic agent of an inflammatory disease. 炎症性疾患が、関節炎リウマチ、多発性硬化症、免疫不全、悪液質、骨関節炎、骨粗鬆症、喘息疾患またはアレルギー疾患である請求項31に記載した用途。The use according to claim 31, wherein the inflammatory disease is rheumatoid arthritis, multiple sclerosis, immunodeficiency, cachexia, osteoarthritis, osteoporosis, asthma disease or allergic disease.
JP2002578938A 2001-03-30 2002-03-27 Gastrointestinal disease treatment Pending JPWO2002080899A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001101465 2001-03-30
JP2001101465 2001-03-30
JP2001105131 2001-04-03
JP2001105131 2001-04-03
PCT/JP2002/003006 WO2002080899A1 (en) 2001-03-30 2002-03-27 Remedial agent for digestive disease

Publications (1)

Publication Number Publication Date
JPWO2002080899A1 true JPWO2002080899A1 (en) 2005-01-06

Family

ID=26612853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002578938A Pending JPWO2002080899A1 (en) 2001-03-30 2002-03-27 Gastrointestinal disease treatment

Country Status (2)

Country Link
JP (1) JPWO2002080899A1 (en)
WO (1) WO2002080899A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7176204B2 (en) * 2000-12-05 2007-02-13 Kyorin Pahrmaceutical Co., Ltd. Substituted carboxylic acid derivatives
US7244861B2 (en) 2001-03-30 2007-07-17 Eisai Co., Ltd. Benzene compound and salt thereof
TWI311133B (en) 2001-04-20 2009-06-21 Eisai R&D Man Co Ltd Carboxylic acid derivativeand the salt thereof
CA2449256A1 (en) * 2001-06-07 2002-12-19 Eli Lilly And Company Modulators of peroxisome proliferator activated receptors
US7371777B2 (en) 2001-08-17 2008-05-13 Eisai Co., Ltd. Cyclic compound and PPAR agonist
EP1745014B1 (en) 2004-05-05 2011-07-06 High Point Pharmaceuticals, LLC Novel compounds, their preparation and use
US7968723B2 (en) 2004-05-05 2011-06-28 High Point Pharmaceuticals, Llc Compounds, their preparation and use
BRPI0612730A2 (en) 2005-06-30 2010-11-30 Novo Nordisk As compounds, their preparations and their use
CA2631390C (en) 2005-12-22 2014-03-11 Per Sauerberg Phenoxy acetic acids as ppar delta activators
KR101394245B1 (en) * 2005-12-30 2014-05-14 에스케이바이오팜 주식회사 Isoxazole Derivatives and Use thereof
US7943612B2 (en) 2006-03-09 2011-05-17 High Point Pharmaceuticals, Llc Compounds that modulate PPAR activity, their preparation and use
WO2008004341A1 (en) * 2006-07-03 2008-01-10 The University Of Tokyo α-SUBSTITUTED PHENYLPROPIONIC ACID DERIVATIVES
RU2528406C2 (en) * 2008-11-21 2014-09-20 Раквалиа Фарма Инк. New pyrazole-3-carboxamide derivative possessing antagonist activity on 5-нт2в receptor
SI3354650T1 (en) 2008-12-19 2022-06-30 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase
RU2012153675A (en) 2010-05-12 2014-06-20 Вертекс Фармасьютикалз Инкорпорейтед COMPOUNDS USED AS ATR KINASE INHIBITORS
DE202011110963U1 (en) 2010-11-05 2017-11-07 Senomyx, Inc. Compounds useful as modulators of TRPM8
IN2014KN00929A (en) 2011-09-30 2015-08-21 Vertex Pharma
CN108685922A (en) 2011-09-30 2018-10-23 沃泰克斯药物股份有限公司 With ATR inhibitor for treating cancer of pancreas and non-small cell lung cancer
PL2833973T3 (en) 2012-04-05 2018-02-28 Vertex Pharmaceuticals Incorporated Compounds useful as inhibitors of atr kinase and combination therapies thereof
DK2904406T3 (en) 2012-10-04 2018-06-18 Vertex Pharma METHOD OF DETERMINING THE ATR INHIBITION, INCREASED DNA DAMAGE
CN105829305B (en) 2013-12-18 2018-11-30 葛兰素史密斯克莱知识产权发展有限公司 NRF2 regulator
CN108112251B (en) 2015-06-15 2021-03-05 葛兰素史克知识产权发展有限公司 NRF2 modulators
EP3307729B1 (en) 2015-06-15 2020-09-02 GlaxoSmithKline Intellectual Property Development Limited Nrf2 regulators
EP3355926A4 (en) 2015-09-30 2019-08-21 Vertex Pharmaceuticals Inc. Method for treating cancer using a combination of dna damaging agents and atr inhibitors
MX2018004049A (en) 2015-10-01 2018-09-28 Senomyx Inc Compounds useful as modulators of trpm8.
US10364256B2 (en) 2015-10-06 2019-07-30 Glaxosmithkline Intellectual Property Development Limited Biaryl pyrazoles as NRF2 regulators
EP3596064B1 (en) * 2017-03-14 2021-03-03 Boehringer Ingelheim International GmbH Tosylacetate based compounds and derivatives thereof as phgdh inhibitors
WO2020153414A1 (en) 2019-01-24 2020-07-30 武田薬品工業株式会社 Heterocyclic compound and use thereof
CN113717045A (en) * 2021-10-11 2021-11-30 梧州学院 Copper (II) p-hydroxybenzoate complex and synthesis method and application thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998043081A1 (en) * 1997-03-26 1998-10-01 Ligand Pharmaceuticals Incorporated Treatment of gastrointestinal disease with ppar modulators
JP4618845B2 (en) * 1999-06-09 2011-01-26 杏林製薬株式会社 Substituted phenylpropionic acid derivatives as human peroxisome proliferator-activated receptor (PPAR) alpha agonists
CA2385083C (en) * 1999-09-17 2007-06-05 Kyorin Pharmaceutical Co., Ltd. O-anisamide derivatives
TWI262185B (en) * 1999-10-01 2006-09-21 Eisai Co Ltd Carboxylic acid derivatives having anti-hyperglycemia and anti-hyperlipemia action, and pharmaceutical composition containing the derivatives

Also Published As

Publication number Publication date
WO2002080899A1 (en) 2002-10-17

Similar Documents

Publication Publication Date Title
JP4571766B2 (en) Carboxylic acid derivative and pharmaceutical comprising the derivative
JPWO2002080899A1 (en) Gastrointestinal disease treatment
US7687664B2 (en) Carboxylic acid derivative, a salt thereof or an ester of them, and medicament comprising it
CA2442319C (en) Carboxylic acid derivative and salt thereof
US6506757B1 (en) Carboxylic acid derivatives and drugs containing the same as the active ingredient
JP3490704B2 (en) Thiazole and oxazole derivatives and their pharmaceutical use
JP4549021B2 (en) Benzene compounds and their salts
DE60216094T2 (en) MODULATORS OF PEROXISOM PROLIFERATOR ACTIVATED RECEPTORS (PPAR)
AU758758B2 (en) Substituted oxazoles and thiazoles derivatives as HPPAR alpha activators
JPWO2003016265A1 (en) Cyclic compounds and PPAR agonists
JP2004182657A (en) Agent for promoting elevation of hdl level
US20060287304A1 (en) Dihydronaphthalene derivative compounds and agent comprising the derivative as active ingredient
JPWO2002046176A1 (en) Activator of peroxisome proliferator-activated receptor
KR20090077091A (en) New peroxisom proliferator-activated receptor compounds and preparing method thereof
ES2352071T3 (en) THIROSINE DERIVATIVES REPLACED WITH N-PHENYLACROLOYL AS AGONOSTAS OF HPPAR ALFA AND HPPAR RANGE.
JP4062204B2 (en) Dihydronaphthalene derivative compound and drug containing the compound as an active ingredient

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050203

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090224