JPWO2002053571A1 - Novel ferrocenated polycyclic hydrocarbon derivative, novel ferrocenated naphthalenediimide derivative, method for producing the same, intercalator comprising the derivative, and method for electrochemically detecting gene - Google Patents

Novel ferrocenated polycyclic hydrocarbon derivative, novel ferrocenated naphthalenediimide derivative, method for producing the same, intercalator comprising the derivative, and method for electrochemically detecting gene Download PDF

Info

Publication number
JPWO2002053571A1
JPWO2002053571A1 JP2002555094A JP2002555094A JPWO2002053571A1 JP WO2002053571 A1 JPWO2002053571 A1 JP WO2002053571A1 JP 2002555094 A JP2002555094 A JP 2002555094A JP 2002555094 A JP2002555094 A JP 2002555094A JP WO2002053571 A1 JPWO2002053571 A1 JP WO2002053571A1
Authority
JP
Japan
Prior art keywords
group
derivative
naphthalenediimide
compound
ferrocenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002555094A
Other languages
Japanese (ja)
Other versions
JP4043362B2 (en
Inventor
竹中 繁織
高宮 裕樹
高木 誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPWO2002053571A1 publication Critical patent/JPWO2002053571A1/en
Application granted granted Critical
Publication of JP4043362B2 publication Critical patent/JP4043362B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • C07F17/02Metallocenes of metals of Groups 8, 9 or 10 of the Periodic System

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本発明は、合成反応後の分離操作及び精製操作等が容易で、しかも収率が高く、特に、二重らせん構造を構成するDNA、RNA等の核酸塩基に対するインターカレータとして有用な新規化合物を提供することを課題とする。本発明は、下記式(1)で表される新規なフェロセン化多環式炭化水素誘導体を提供することにより、上記課題を解決したものである。(Aは多環式炭化水素若しくはその誘導体、R1はC1〜3のアルキル基等、R2,R3は水溶液中で電子供与基又は電子求引基となる基、R4はC1〜6のアルキレン基、n,mは0〜2。1分子中の二つの同一表示基は互いに同一又は異なる。R1と結合のNはカチオン化可能。)The present invention provides a novel compound which is easy to separate and purify after a synthesis reaction and has a high yield, and is particularly useful as an intercalator for nucleic acid bases such as DNA and RNA constituting a double helix structure. The task is to The present invention has solved the above-mentioned problems by providing a novel ferrocene polycyclic hydrocarbon derivative represented by the following formula (1). (A is a polycyclic hydrocarbon or a derivative thereof, R1 is a C1-3 alkyl group or the like, R2 and R3 are groups that become an electron donating group or an electron withdrawing group in an aqueous solution, R4 is a C1-6 alkylene group, n and m are 0 to 2. Two identically indicating groups in one molecule are the same or different from each other. N of the bond to R1 can be cationized.)

Description

技術分野
本発明は、特に、二重らせん構造を構成するDNA、RNA等の核酸塩基に対するインタカレータとして有用で、遺伝子治療や遺伝子診断等に利用できる新規な化合物に関する。
背景技術
従来から、特定の配列を有するDNA等の核酸を電気化学的に検出する方法が種々提供されており、この検出方法の媒体として、インターカレータが利用されている(特開平9−288080号公報等参照)。このようなインターカレータとしては、下記式(2)で表されるピペラジン環含有フェロセン化ナフタレンジイミド誘導体等が利用されている。

Figure 2002053571
しかし、これまでに利用されてきたインターカレータとしての上記ピペラジン環含有フェロセン化ナフタレンジイミド誘導体は、合成反応後の分離操作及び精製操作等が煩雑であり、また収率も10%前後と低収率であった。
そこで、本発明の目的は、合成反応後の分離操作及び精製操作等が容易で、しかも収率が高く、特にインターカレータとして有用な化合物を提供することにある。
発明の開示
本発明は、下記式(1)で表される新規なフェロセン化多環式炭化水素誘導体を提供することにより、前記目的を達成したものである。
Figure 2002053571
(式中、Aは多環式炭化水素若しくはその誘導体を示し、Rは炭素数1〜3のアルキル基、アルケニル基若しくはアルキニル基、炭素数7〜9のアリールアルキル基若しくはアリールアルケニル基、又は炭素数2若しくは3のアルキルカルボニル基を示し、R及びRはそれぞれ独立に水溶液中で電子供与基又は電子求引基となる基を示し、Rは炭素数1〜6のアルキレン基を示し、m及びnはそれぞれ独立に0〜2の数を示す。1分子中の二つの同一表示基は互いに同一でも異なっていてもよい。また、Rと結合しているNはカチオン化されてもよい。)
また、本発明は、下記式(1’)で表される新規なフェロセン化ナフタレンジイミド誘導体を提供するものである。
Figure 2002053571
(式中、Rは炭素数1〜3のアルキル基、アルケニル基若しくはアルキニル基、炭素数7〜9のアリールアルキル基若しくはアリールアルケニル基、又は炭素数2若しくは3のアルキルカルボニル基を示し、R及びRはそれぞれ独立に水溶液中で電子供与基又は電子求引基となる基を示し、Rは炭素数1〜6のアルキレン基を示し、m及びnはそれぞれ独立に0〜2の数を示す。1分子中の二つの同一表示基は互いに同一でも異なっていてもよい。また、Rと結合しているNはカチオン化されてもよい。)
また、本発明は、二重らせん構造を構成する核酸塩基に対するインターカレータとして使用される前記フェロセン化ナフタレンジイミド誘導体を提供するものである。
また、本発明は、前記フェロセン化ナフタレンジイミド誘導体を製造する方法であって、下記反応式(A)に示すように、1,4,5,8−ナフタレンテトラカルボン酸二無水物とアルキレンジアミン誘導体とを反応させて、N,N’−ジ(アミノアルキル)ナフタレンジイミド誘導体を得る第一工程と、下記反応式(B)に示すように、前記ナフタレンジイミド誘導体と、(フェロセニルメチル)アンモニウム沃化物塩とを反応させて、目的物を得る第二工程と、を含むフェロセン化ナフタレンジイミド誘導体の製造方法を提供するものである。
Figure 2002053571
(各式中、R、R、R、R、m及びn並びに同一表示基については、前記式(1’)中の当該基と同義である。)
また、本発明は、前記フェロセン化ナフタレンジイミド誘導体を使用して、特定の配列を有する核酸を検出する、遺伝子の電気化学的検出方法を提供するものである。
発明を実施するための最良の形態
以下、本発明の新規なフェロセン化多環式炭化水素誘導体を、その好ましい実施形熊に基づいて詳細に説明する。
本発明のフェロセン化多環式炭化水素誘導体は、その一実施形態として、新規なフェロセン化ナフタレンジイミド誘導体を好ましく提供するものである。以下、この実施形態につき詳述する。
本発明のフェロセン化ナフタレンジイミド誘導体(以下、「本発明の化合物」ともいう。)は、前記化学構造式(1’)で表される新規物質である。そして、本発明の化合物は、特に、二重らせん構造を構成するDNAやRNA等の核酸塩基に対するインターカレータとして有用なものである。
本発明の化合物は、前記式(1’)に示されるように、ナフタレンジイミド部と、フェロセン部と、両部を繋ぐリンカー部分である「−R−NR−CH−」の部分(以下、この部分を「R置換イミノ基部」という。)とから構成されている。そして、上記ナフタレンジイミド部は、DNA断片の二本鎖(二重らせん)等の塩基対間に平行に挿入される芳香族板状分子構造の縫い込み型インターカレータ部分として機能し、上記フェロセン部は、酸化還元活性部分として機能する。これにより、本発明の化合物は、電気化学活性縫い込み型インターカレータとしての機能を発現することができる。而して、本発明の化合物は、上記リンカー部分を前記式(1’)に示す構造のR置換イミノ基部としたことにより、合成反応後の分離操作及び精製操作等が容易で、しかも収率が高く、とりわけインターカレータとして有用な化合物としての効果を奏することができる。
ここで、前記式(1’)中、Rで示されるアルキル基としては、メチル基、エチル基及びプロピル基等が挙げられ、アルケニル基としては、2−プロペニル基等が挙げられ、アルキニル基としては、エチニル基及び2−プロピニル基等が挙げられ、アリールアルキル基としては、ベンジル基及びメチルベンジル基等が挙げられ、アリールアルケニル基としては、3−フェニル−2−プロペニル基等が挙げられ、アルキルカルボニル基としては、アセチル基等が挙げられる。特に、本発明の化合物をインターカレータとして使用する場合には、Rは、核酸に対する結合時の障害を回避できる点で、立体的に嵩高くない基、例えば、メチル基等であることが好ましい。
また、前記式(1’)中、m及びnが0ではなく1又は2である場合において、R及びRが示す、水溶液中で電子供与基又は電子求引基となる基としては、メチル基、メトキシ基、メトキシカルボニル基、ニトロ基、カルボキシル基、ジメチルアミノメチル基及びジメチルアミノエチルアミノカルボニル基等が挙げられる。例えば、ジメチルアミノメチル基の場合には、水溶液中でプロトン化して電子求引基であるジメチルアンモニウムメチル基として機能する。特に、本発明の化合物をインターカレータとして水溶液中で使用する場合には、無置換のフェロセニル基を含む化合物も好ましいが、R及びRとして上記の水溶液中で電子供与基又は電子求引基となる基を含む化合物は、水溶液中での電子供与基又は電子求引基によって電流量の測定時の電位が変化し、その利用価値も高いため好ましい。
また、前記式(1’)中、Rが示すアルキレン基としては、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基及びヘキシレン基が挙げられる。
また、前記式(1’)中、R置換イミノ基部のイミノ基の代わりに、四級アミン基を導入することもできる。この四級アミン基を導入した化合物は、反応溶液中のpHに関わらずカチオン性となるために、核酸とより強く結合する。
特に、本発明の化合物のうち、前記式(1’)中のRがメチル基であり、m及びnが何れも0(R及びRの置換基を有さず無置換;即ち、R及びRが水素原子)であり且つRがエチレン基又はプロピレン基である化合物、即ち、下記式(3)で表される化合物は、特に、インターカレータとして使用する場合において、核酸に対する結合効率をより向上させる点で好ましい。
Figure 2002053571
本発明の化合物は、その製造方法に特に制限されないが、次のようにして製造することが、特に収率を向上させる点で好ましい。
即ち、下記反応式(A)に示すように、1,4,5,8−ナフタレンテトラカルボン酸二無水物とアルキレンジアミン誘導体とを反応させて、N,N’−ジ(アミノアルキル)ナフタレンジイミド誘導体を得、次いで、下記反応式(B)に示すように、得られた前記ナフタレンジイミド誘導体と(フェロセニルメチル)アンモニウム沃化物塩とを反応させることにより、目的物である本発明の化合物を得ることが好ましい。
Figure 2002053571
ここで、前記反応式(A)に係る反応においては、例えば、テトラヒドロフラン(THF)等の溶媒中で反応物を加熱還流し、その後、生成物を再結晶等により分離・精製する等の通常の合成法で行われる操作を必要に応じて行う。また、前記反応式(B)に係る反応においては、例えば、ジメチルホルムアミド(DMF)等の溶媒中で反応物を加熱攪拌し、減圧での溶媒除去や再結晶等により分離・精製する等の通常の合成法で行われる操作を必要に応じて行う。
特に、前記製造方法における合成反応後に、分離操作及び精製操作を行うことにより、本発明の化合物として、より高純度なものを高収率に得ることができる。この際、分離操作及び精製操作は、容易に行うことが可能である。
本発明の化合物は、従来公知のフェロセン化ナフタレンジイミド誘導体、中でも、従来のインターカレータとしての前記ピペラジン環含有フェロセン化ナフタレンジイミド誘導体に比して、合成反応後の分離操作及び精製操作が容易で、しかも、高い収率で得ることが可能なものである。
本発明の化合物は、その用途に特に制限されず、種々の用途に応用できるが、前述の通り、二重らせん構造を構成するDNA、RNA等の核酸塩基に対するインターカレータとして用いることが好適である。
本発明の化合物をインターカレータとして使用する際には、核酸との相互作用効果について、紫外可視吸収スペクトル解析やScatchard(スキャッチャード)解析等により評価でき、二本鎖核酸の電気的検出効果について、ディファレンシャルパルスボルタモグラフィー(DPV)による測定等により評価することができる。
また、本発明の化合物は、該インターカレータとして、特定の配列を有するDNA、RNA等の核酸を検出する、遺伝子の電気化学的検出方法に適用することができる。
本発明の化合物を使用して、特定の配列を有する核酸を検出する方法としては、例えば、特開平9−288080号公報に記載の検出方法及び検出装置において、インターカレータとして本発明の化合物を使用する方法等が挙げられる。このような検出方法によれば、本発明の化合物をインターカレータとして使用するため、前記ピペラジン環含有フェロセン化ナフタレンジイミド誘導体等の従来のインターカレータを用いた場合に比して、より簡便且つ高感度、ハイスループット(高速大量)に特定配列の核酸を検出することが可能となる。
また、本発明の化合物を使用して、特定の配列を有する核酸を検出する手段を備えてなる、遺伝子の電気化学的検出システム(電気化学的検出装置を含む)も、前記検出方法と同様に、より簡便且つ高感度、ハイスループット(高速大量)に特定配列の核酸を検出することが可能となるため有用である。
本発明の化合物は、遺伝子の検出方法、検出システム、解析方法、解析システム等に適用することにより、広く生物学、医学分野等において、遺伝子治療、遺伝子診断、食品衛生検査、家畜診断、植物病(感染症診断)、親子鑑定、放医学診断等に利用することができる。
例えば、本発明の化合物は、前記の検出方法等に適用することにより、薬剤代謝酵素、癌抑制遺伝子等の特定の遺伝子を解析したり、病気の発症と関連する一塩基置換SNPや点突然変異を同定して、癌、高血圧等の成人病の予防等に役立てることができる。
以上、本発明の好ましい実施形態について詳述したが、本発明はかかる実施形態に限定されず、種々の変更形態を採用することができる。具体的には、前記式(1’)におけるN,N’−ジ置換ナフタレンジイミド〔前記式(1)におけるAに相当〕を、その他の種々の多環式炭化水素若しくはその誘導体、例えば、芳香属炭化水素、脂肪属複素環、芳香属複素環、脂環式炭化水素等の環を複数有する化合物又はその誘導体、具体的には、1,5−、2,6−、9,10−ジ置換アントラセン、1,5−、2,6−ジ置換アントラキノン、1,5−、2,6−、4,9−ジ置換アクリジン誘導体等に変更することが可能である。
特に、前記式(1)におけるAを9,10−ジ置換アントラセンとした新規なフェロセン化アントラセン誘導体も同様に好ましく提供できる。
このフェロセン化アントラセン誘導体は、例えば、下記に示す合成例によって得ることができる。
Figure 2002053571
前記フェロセン化アントラセン誘導体も、前述した前記式(1’)で表されるフェロセン化ナフタレンジイミド誘導体と同様に、合成反応後の分離操作及び精製操作等が容易で、しかも単離・精製収率が30%と高く、特にインターカレータとして有用な化合物として提供できる。尚、このフェロセン化アントラセン誘導体に関して特に詳述しない点については、前述のフェロセン化ナフタレンジイミド誘導体と同様である。従って、該フェロセン化アントラセン誘導体における各置換基の例や、用途等については、前述のフェロセン化ナフタレンジイミド誘導体について説明した事項が適宜適用される。
以下、実施例を挙げて、本発明を更に詳細に説明する。しかしながら、本発明はこれらの実施例に何等限定されるものではない。
〔実施例1〕
化合物1(前駆体)の合成
本実施例のフェロセン化ナフタレンジイミド誘導体である後述の化合物2を合成するための前駆体として、化合物1を下記の合成スキームに従って合成した。
Figure 2002053571
1,4,5,8−ナフタレンテトラカルボン酸二無水物6.0g(22.4mol)と、N−メチル−1,3−プロパンジアミン60ml(0.58mol)とを、THF80ml中で8時間加熱還流した。その後、室温にて一晩放冷した。析出した沈殿物を吸引濾過し、エタノールで再結晶を行い、橙色結晶を得た。
得られた結晶について、H−NMR測定を行った。その結果、表1に示すH−NMRスペクトルデータが得られた。また、この結晶の性状は、光沢のある橙色葉状晶であり、この結晶の融点を測定したところ、198〜200℃であった。
Figure 2002053571
以上の結果より、得られた粉末が下記化学構造の化合物1(前駆体)であることを確認(同定)した(収量;4.53g、収率;49%)。
Figure 2002053571
尚、上記構造式中のa、b、c、d及びeは、表1中のケミカルシフト(δ値)に対応する水素(プロトン)それぞれの位置を示す。
化合物2(実施例1のフェロセン化ナフタレンジイミド誘導体)の合成
本実施例のフェロセン化ナフタレンジイミド誘導体としての化合物2を、下記の合成スキームに従って合成した。
Figure 2002053571
(フェロセニルメチル)トリメチルアンモニウム沃化物塩4.67g(13.15mmol)、化合物1 2.27g(5.54mmol)及びトリエチルアミン1.9mlを、DMF67mlに溶解し、60℃で6日間加熱攪拌した。この際、TLCにより反応を追跡した(展開溶媒 クロロホルム:メタノール:トリエチルアミン=10:1:1)。その後、加熱を止め、室温になるまで放冷し、DMFを減圧留去した。溶媒留去後の反応液を100mlの純水に注ぎ、pHを10に調整した。これに、クロロホルム80mlを加えて抽出洗浄することを5回行い、生成物が抽出された有機相を得た。得られた有機相に硫酸マグネシウムを加えて乾燥させた。乾燥後の有機相を自然濾過し、濾液中の溶媒を減圧留去して、茶色固体を得た。更に、得られた茶色固体をアセトニトリルで再結晶した。析出した結晶を吸引濾過し、減圧乾燥して粉末を得た。
得られた粉末について、H−NMR測定及び元素分析を行った。その結果、表2に示すH−NMRスペクトルデータが得られ、また表3に示す元素分析結果が得られた。また、この粉末の性状は、黄土色粉末であり、この粉末の融点を測定したところ、182〜185℃であった。
Figure 2002053571
Figure 2002053571
以上の結果より、得られた粉末が下記化学構造の化合物2(本実施例の化合物)であることを確認(同定)した(収量;2.11g、収率;45%)。
Figure 2002053571
尚、上記構造式中のa、b、c、d、e、f、g、h及びiは、表2中のケミカルシフト(δ値)に対応する水素(プロトン)のそれぞれの位置を示す。
〔試験例1〕(DNAとの相互作用効果)
一般に、インターカレータの紫外可視吸収スペクトルは、DNA添加に伴って、小さな長波長シフトと、大きな淡色効果を示す。また、インターカレータの濃度を一定に保ってDNAを種々変化させたとき、インターカレータの紫外可視吸収スペクトルが等吸収点を通る二つの状態間で変化すれば、Scatchard(スキャッチャード)解析により、結合の詳細が評価できる。
1−1.〔Calf thymus−DNA(CT−DNA)の添加に伴うフェロセン化ナフタレンジイミド(化合物2)の紫外可視吸収スペクトル変化の測定〕
下記サンプル溶液中に、下記DNA滴下剤をその滴下全量が第1図右欄に示す滴下量(3μl、6μl、…300μl)となるように少量ずつ滴下し、滴下終了後、4分間攪拌し、更に1分間放置した。滴下中、DNA滴下剤の各滴下ごとに、フェロセン化ナフタレンジイミド(化合物2)の紫外可視測定を行った。その全測定に6分間要した。また、紫外可視スペクトル測定温度は、25℃である。このときのDNA添加に伴うフェロセン化ナフタレンジイミド(化合物2)の紫外可視吸収スペクトル変化を第1図に示す。
・サンプル溶液;フェロセン化ナフタレンジイミド(化合物2)25.7μM、
2−モルホリノ・エタン・スルホン酸(MES)10mM(pH6.2)、EDTA 1mM、及びNaCl 100mM。
・DNA滴下剤;CT−DNA 3mM、フェロセン化ナフタレンジイミド(化合物2)25.7μM、MES 10mM(pH6.2)、EDTA 1mM、及びNaCl 100mM。
1−2.〔Scatchard解析による結合定数の算出〕
前記1−1.の測定における紫外可視吸収スペクトルの変化から、結合率を算出した。この結合率に基づいて、Scatchard Plot(スキャッチャードプロット)したものを第2図に示す。下記式(I)により、第2図に基づく実験データと理論データを最適化(fitting)させることによって、結合定数K、座位数nを算出した。尚、数値として使用する波長は、382nmである。
r/L=K(1−nr)〔(1−nr)/{1−(n−1)r}〕n−1…(I)
その結果、結合定数Kとして4.09×10−1、座位数nとして2.0が算出された。
〔試験例2〕(二本鎖DNAの電気化学的検出)
2−1.〔DNAプローブの電極への固定化〕
10pmol/μlの特定配列を有するDNA溶液1μLを金電極表面に滴下し、乾燥しないようにキャップをして、25℃で、2時間放置し、DNAを金電極に固定した。その後、1mMの2−メルカプトエタノール1μLを、DNAを固定した金電極に滴下して、25℃で、2時間放置し、電極固定化DNAプローブを得た。
得られたDNAプローブ(以下、「一本鎖DNA」ともいう。)は、後述のDPV測定に供した。
2−2.〔電極に固定化したDNA(プローブ)とサンプルDNAとのハイブリダイゼーション(二本鎖形成反応)〕
20pmol/μlの特定配列を有するDNA(サンプルDNA)溶液1μLを、前記の金電極表面に滴下し、乾燥しないようにキャップをして、25℃で、30分間放置した。
得られたDNAは、下記に示される配列を有するもの(以下、このDNAを「二本鎖DNA」ともいう。)で、下記状態のように硫黄原子を介して金電極に固定される。この二本鎖DNAは、後述のDPV測定に供した。
Figure 2002053571
2−3.〔DPV測定〕
0.1Mの酢酸緩衝液(pH5.6)、0.1MのKCl水溶液及び50μMのインターカレータ溶液からなる電解液を用いて、測定温度25℃で、フェロセン化ナフタレンジイミド誘導体(化合物2)のDPV測定を行った。その結果を第3図に示す。また、比較例として、前記式(2)で表されるピペラジン環含有フェロセン化ナフタレンジイミド誘導体のDPV測定を、化合物2と同様の測定条件で行った。その結果を第4図に示す。
第3図及び第4図に示す測定結果から明らかなように、本実施例のフェロセン化ナフタレンジイミド誘導体(化合物2)は、一本鎖DNAを用いたときの電流値に対する二本鎖DNAを用いたときの電流値の増加率(二本鎖形成に伴う電流増加割合)が67%であり、比較例のピペラジン環含有フェロセン化ナフタレンジイミド誘導体(52%)に比して、特定塩基を有する核酸の識別能が非常に高いことが判る。
ここで、電流値の増加率について詳述すると、一本鎖又は二本鎖修飾電極を用いてDPVを測定した際のピーク電流値をそれぞれi0、iとしたときに、二本鎖形成に伴うピーク電流の増加割合(測定条件での二本鎖形成に伴う電流増加を意味し、化合物の性能を評価できる。)を、Δi=(i/i0−1)×100(%)として評価したものである。尚、比較例のピーク電位は約460mV、化合物2のピーク電位は約420mVであった。
〔実施例2〕
前記式(1’)のリンカー部分における2つのRをプロピレン基からエチレン基に変えた以外は、実施例1の化合物2と同様のフェロセン化ナフタレンジイミド誘導体(化合物4)を以下の合成例に従って合成した。
化合物3(前駆体)の合成
本実施例のフェロセン化ナフタレンジイミド誘導体である後述の化合物4を合成するための前駆体として、化合物3を下記の合成スキームに従って合成した。
Figure 2002053571
1,4,5,8−ナフタレンテトラカルボン酸二無水物1.34g(5mmol)と、N−メチルエチレンジアミン2.2ml(25mmol)とを、THF20ml中で混合し、16時間還流した。その後、反応溶液を室温まで冷やし、溶媒を減圧留去した。残渣にクロロホルム100mlを加え、不要物をろ過した。ろ液を減圧濃縮し、ヘキサンを加えると沈殿が生じた。これに超音波照射し、約1時間冷蔵して沈殿生成を促した。生成した沈殿を吸引ろ過し、赤褐色粉末を得た。
得られた粉末について、H−NMR測定を行った。その結果、表4に示すH−NMRスペクトルデータが得られ、得られた粉末が下記化学構造の化合物3(前駆体)であることを同定した(収量;130mg、収率;10%)。
Figure 2002053571
化合物4(実施例2のフェロセン化ナフタレンジイミド誘導体)の合成
本実施例のフェロセン化ナフタレンジイミド誘導体としての化合物4を、下記の合成スキームに従って合成した。
Figure 2002053571
化合物3 0.12g(0.32mmol)と(フェロセニルメチル)トリメチルアンモニウム沃化物塩0.75g(1.9mmol)を、DMF3ml/トリエチルアミン1mlに溶かし、約70℃で5日間加熱攪拌した。溶媒を減圧留去し、残渣をクロロホルム50mlに溶かし、飽和炭酸水素ナトリウムで洗浄した(50ml、4回)。有機相を無水硫酸マグネシウムで乾燥した後、溶媒を減圧留去して、黒色固体を得た。これをシリカゲルカラムクロマトグラフィーによって精製した。目的物を含むフラクションを集め、溶媒を減圧留去して褐色固体を得た。
得られた物質について、TOF−MASS測定を行った。その結果、目的化合物(化合物4)の分子量776.48に相当するピークが776.77に見られた。これにより、この物質が化合物4であることを同定した(収量;250mg、収率;5%)。
〔試験例3〕(二本鎖DNAの電気化学的検出)
化合物4についても、化合物2と同様に試験例2に準じて同様の評価をしたところ、ピーク電位;約420mV、Δi=90%が得られた。
産業上の利用可能性
本発明によれば、合成反応後の分離操作及び精製操作等が容易で、しかも収率が高く、特に、二重らせん構造を構成するDNA、RNA等の核酸塩基に対するインターカレータとして有用な、新規なフェロセン化多環式炭化水素誘導体及び新規なフェロセン化ナフタレンジイミド誘導体が提供される。
また、本発明によれば、前記フェロセン化ナフタレンジイミド誘導体をインターカレータとして使用することにより、特定の配列を有するDNA、RNA等の核酸をより簡便且つ高感度、ハイスループット(高速大量)に検出することが可能な遺伝子の電気化学的検出方法が提供される。
【配列表】
Figure 2002053571

【図面の簡単な説明】
第1図は、本発明のフェロセン化ナフタレンジイミド誘導体の一実施形態(化合物2)のDNA添加に伴う紫外可視吸収スペクトル変化を示すグラフである。第2図は、第1図の紫外可視吸収スペクトルの変化から算出した結合率に基づくScatchard解析により得られたグラフである。第3図は、本発明のフェロセン化ナフタレンジイミド誘導体の一実施形態(化合物2)のDPV測定結果を示すグラフである。第4図は、比較例のフェロセン化ナフタレンジイミド誘導体のDPV測定結果を示すグラフである。TECHNICAL FIELD The present invention relates to a novel compound which is particularly useful as an intercalator for nucleobases such as DNA and RNA constituting a double helix structure and can be used for gene therapy, gene diagnosis and the like.
BACKGROUND ART Conventionally, various methods for electrochemically detecting nucleic acids such as DNA having a specific sequence have been provided, and an intercalator has been used as a medium for this detection method (JP-A-9-288080). Gazette). As such an intercalator, a piperazine ring-containing ferrocenated naphthalenediimide derivative represented by the following formula (2) is used.
Figure 2002053571
However, the above-mentioned piperazine ring-containing ferrocene-containing naphthalenediimide derivative as an intercalator that has been used so far requires complicated operations such as separation operation and purification operation after the synthesis reaction, and has a low yield of about 10%. Met.
Therefore, an object of the present invention is to provide a compound which can be easily separated and purified after the synthesis reaction, has a high yield, and is particularly useful as an intercalator.
DISCLOSURE OF THE INVENTION The present invention has achieved the above object by providing a novel ferrocene polycyclic hydrocarbon derivative represented by the following formula (1).
Figure 2002053571
(Wherein, A represents a polycyclic hydrocarbon or a derivative thereof, and R 1 represents an alkyl group having 1 to 3 carbon atoms, an alkenyl group or an alkynyl group, an arylalkyl group or an arylalkenyl group having 7 to 9 carbon atoms, or R 2 and R 3 each independently represent an electron donating group or an electron withdrawing group in an aqueous solution, and R 4 represents an alkylene group having 1 to 6 carbon atoms. And m and n each independently represent a number from 0 to 2. Two identical indicating groups in one molecule may be the same or different from each other, and N bonded to R 1 is cationized. May be.)
Further, the present invention provides a novel ferrocene naphthalenediimide derivative represented by the following formula (1 ′).
Figure 2002053571
(Wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms, an alkenyl group or an alkynyl group, an arylalkyl group or an arylalkenyl group having 7 to 9 carbon atoms, or an alkylcarbonyl group having 2 or 3 carbon atoms; 2 and R 3 each independently represent a group that becomes an electron donating group or an electron withdrawing group in an aqueous solution, R 4 represents an alkylene group having 1 to 6 carbon atoms, and m and n each independently represent 0 to 2 (Two identical indicating groups in one molecule may be the same or different from each other, and N bonded to R 1 may be cationized.)
Further, the present invention provides the above-mentioned ferrocene naphthalenediimide derivative used as an intercalator for a nucleic acid base constituting a double helix structure.
The present invention also relates to a method for producing the ferrocene-containing naphthalenediimide derivative, wherein the 1,4,5,8-naphthalenetetracarboxylic dianhydride and the alkylene diamine derivative are represented by the following reaction formula (A). To obtain an N, N'-di (aminoalkyl) naphthalenediimide derivative; and, as shown in the following reaction formula (B), the naphthalenediimide derivative and (ferrocenylmethyl) ammonium A method of producing a ferrocene-containing naphthalenediimide derivative, which comprises reacting an iodide salt with an iodide salt to obtain an intended product.
Figure 2002053571
(In each formula, R 1 , R 2 , R 3 , R 4 , m and n, and the same indicating group are the same as those in the formula (1 ′).)
The present invention also provides a method for electrochemically detecting a gene, wherein a nucleic acid having a specific sequence is detected using the ferrocene-containing naphthalenediimide derivative.
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the novel ferrocenated polycyclic hydrocarbon derivative of the present invention will be described in detail based on its preferred embodiments.
The ferrocene polycyclic hydrocarbon derivative of the present invention preferably provides a novel ferrocene naphthalenediimide derivative as one embodiment. Hereinafter, this embodiment will be described in detail.
The ferrocene naphthalenediimide derivative of the present invention (hereinafter, also referred to as “the compound of the present invention”) is a novel substance represented by the chemical structural formula (1 ′). The compound of the present invention is particularly useful as an intercalator for nucleic acid bases such as DNA and RNA constituting a double helix structure.
As shown in the above formula (1 ′), the compound of the present invention comprises a naphthalenediimide portion, a ferrocene portion, and a portion of “—R 4 —NR 1 —CH 2 —” that is a linker portion connecting both portions ( or less, and is made from this portion of "R 1 substituted imino base".) and. The naphthalenediimide portion functions as a threaded intercalator portion of an aromatic plate-like molecular structure inserted in parallel between base pairs such as a double strand (double helix) of a DNA fragment, and the ferrocene portion. Functions as a redox-active moiety. Thereby, the compound of the present invention can exhibit a function as an electrochemically active embroidery intercalator. And Thus, the compounds of the present invention, the by a linker moiety to the R 1 substituted imino base of the structure shown in the formula (1 '), easy separation operation and purification operation after the synthesis reaction and the like, yet yield The rate is high, and the effect as a compound useful as an intercalator can be exhibited.
Here, in the formula (1 ′), examples of the alkyl group represented by R 1 include a methyl group, an ethyl group, and a propyl group, and examples of the alkenyl group include a 2-propenyl group and an alkynyl group. Include an ethynyl group and a 2-propynyl group; an arylalkyl group includes a benzyl group and a methylbenzyl group; and an arylalkenyl group includes a 3-phenyl-2-propenyl group and the like. Examples of the alkylcarbonyl group include an acetyl group. In particular, when the compound of the present invention is used as an intercalator, R 1 is preferably a sterically non-bulky group, for example, a methyl group or the like, from the viewpoint of avoiding an obstacle at the time of binding to a nucleic acid. .
In the formula (1 ′), when m and n are not 0 but 1 or 2, the groups represented by R 2 and R 3 that become an electron donating group or an electron withdrawing group in an aqueous solution include: Examples include a methyl group, a methoxy group, a methoxycarbonyl group, a nitro group, a carboxyl group, a dimethylaminomethyl group and a dimethylaminoethylaminocarbonyl group. For example, in the case of a dimethylaminomethyl group, it protonates in an aqueous solution and functions as a dimethylammoniummethyl group which is an electron withdrawing group. In particular, when the compound of the present invention is used in an aqueous solution as an intercalator, a compound containing an unsubstituted ferrocenyl group is also preferable, but R 2 and R 3 may be an electron donating group or an electron withdrawing group in the above aqueous solution. The compound containing a group that is preferred is preferable because the potential at the time of measuring the amount of current changes due to an electron donating group or an electron withdrawing group in an aqueous solution, and its utility value is high.
In the formula (1 ′), examples of the alkylene group represented by R 4 include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
Further, in the formula (1 '), instead of the imino group of R 1 substituted imino base, can be introduced quaternary amine groups. The compound into which the quaternary amine group has been introduced becomes cationic regardless of the pH in the reaction solution, so that it binds more strongly to the nucleic acid.
In particular, among the compounds of the present invention, R 1 in the above formula (1 ′) is a methyl group, and m and n are each 0 (no substituents of R 2 and R 3 and unsubstituted; A compound in which R 2 and R 3 are hydrogen atoms) and R 4 is an ethylene group or a propylene group, that is, a compound represented by the following formula (3), particularly when used as an intercalator, It is preferable in that the coupling efficiency is further improved.
Figure 2002053571
The method of producing the compound of the present invention is not particularly limited, but it is preferable to produce the compound as follows, particularly in terms of improving the yield.
That is, as shown in the following reaction formula (A), 1,4,5,8-naphthalenetetracarboxylic dianhydride is reacted with an alkylenediamine derivative to give N, N′-di (aminoalkyl) naphthalenediimide. A derivative of the present invention is obtained by reacting the obtained naphthalenediimide derivative with (ferrocenylmethyl) ammonium iodide salt as shown in the following reaction formula (B). It is preferable to obtain
Figure 2002053571
Here, in the reaction according to the reaction formula (A), for example, the reaction product is heated to reflux in a solvent such as tetrahydrofuran (THF), and then the product is separated and purified by recrystallization or the like. The operations performed in the synthesis method are performed as necessary. In the reaction according to the reaction formula (B), for example, the reaction product is heated and stirred in a solvent such as dimethylformamide (DMF), and separated and purified by removing the solvent under reduced pressure, recrystallization, or the like. The operations performed in the synthesis method of are performed as necessary.
In particular, by performing a separation operation and a purification operation after the synthesis reaction in the production method, a compound of higher purity can be obtained in a high yield as the compound of the present invention. At this time, the separation operation and the purification operation can be easily performed.
The compound of the present invention is a conventionally known ferrocene naphthalenediimide derivative, among which, compared to the piperazine ring-containing ferrocene naphthalenediimide derivative as a conventional intercalator, separation operation and purification operation after the synthesis reaction are easy, In addition, it can be obtained in a high yield.
The compound of the present invention is not particularly limited in its use, and can be applied to various uses. As described above, it is preferable to use the compound of the present invention as an intercalator for nucleobases such as DNA and RNA constituting a double helix structure. .
When the compound of the present invention is used as an intercalator, the effect of interaction with nucleic acids can be evaluated by ultraviolet-visible absorption spectrum analysis, Scatchard analysis, and the like, and the effect of electrical detection of double-stranded nucleic acids can be evaluated. And differential pulse voltammography (DPV).
Further, the compound of the present invention can be applied to a method for electrochemically detecting a gene, which detects a nucleic acid such as DNA or RNA having a specific sequence as the intercalator.
As a method for detecting a nucleic acid having a specific sequence using the compound of the present invention, for example, the method of using the compound of the present invention as an intercalator in a detection method and a detection apparatus described in JP-A-9-288080 And the like. According to such a detection method, since the compound of the present invention is used as an intercalator, it is simpler and more sensitive than when a conventional intercalator such as the piperazine ring-containing ferrocene-containing naphthalenediimide derivative is used. Thus, it is possible to detect a nucleic acid having a specific sequence with high throughput (high-speed and large-volume).
In addition, a gene electrochemical detection system (including an electrochemical detection device) comprising means for detecting a nucleic acid having a specific sequence using the compound of the present invention is also similar to the above-described detection method. This is useful because it is possible to detect a nucleic acid of a specific sequence more simply, with high sensitivity, and with high throughput (high-speed large-volume).
The compound of the present invention can be applied to gene detection methods, detection systems, analysis methods, analysis systems, and the like, and widely used in the fields of biology, medicine, etc., for gene therapy, genetic diagnosis, food hygiene inspection, livestock diagnosis, plant disease, and the like. (Diagnosis of infectious diseases), paternity testing, radiological diagnosis, etc.
For example, by applying the compound of the present invention to the above-described detection method or the like, a specific gene such as a drug metabolizing enzyme or a tumor suppressor gene can be analyzed, or a single nucleotide substitution SNP or point mutation associated with the onset of disease can be analyzed. Can be identified and used for prevention of adult diseases such as cancer and hypertension.
As described above, the preferred embodiments of the present invention have been described in detail, but the present invention is not limited to such embodiments, and various modifications can be adopted. Specifically, N, N'-disubstituted naphthalenediimide [corresponding to A in the above formula (1)] in the above formula (1 ') is replaced with other various polycyclic hydrocarbons or derivatives thereof, for example, aromatic compounds. Compounds having a plurality of rings, such as a genus hydrocarbon, an aliphatic heterocycle, an aromatic heterocycle, and an alicyclic hydrocarbon, or derivatives thereof, specifically 1,5-, 2,6-, 9,10-di It can be changed to substituted anthracene, 1,5-, 2,6-disubstituted anthraquinone, 1,5-, 2,6-, 4,9-disubstituted acridine derivative and the like.
In particular, a novel ferrocenated anthracene derivative in which A in the above formula (1) is 9,10-disubstituted anthracene can also be preferably provided.
This ferrocene anthracene derivative can be obtained, for example, by the following synthesis example.
Figure 2002053571
The ferrocene-modified anthracene derivative is also easy to separate and purify after the synthesis reaction, as in the case of the ferrocene-containing naphthalenediimide derivative represented by the formula (1 ′), and has a high isolation and purification yield. As high as 30%, it can be provided as a compound particularly useful as an intercalator. The points not particularly described in detail with respect to the ferrocenated anthracene derivative are the same as those of the above-described ferrocenated naphthalenediimide derivative. Therefore, as to examples of each substituent in the ferrocene-modified anthracene derivative, applications thereof, and the like, the items described for the ferrocene-modified naphthalenediimide derivative are appropriately applied.
Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
[Example 1]
Synthesis of Compound 1 (Precursor) Compound 1 was synthesized according to the following synthesis scheme as a precursor for synthesizing the below-described compound 2 which is a ferrocene-containing naphthalenediimide derivative of this example.
Figure 2002053571
6.0 g (22.4 mol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride and 60 ml (0.58 mol) of N-methyl-1,3-propanediamine were heated in 80 ml of THF for 8 hours. Refluxed. Then, it was left to cool at room temperature overnight. The deposited precipitate was filtered by suction and recrystallized from ethanol to obtain an orange crystal.
The obtained crystal was subjected to 1 H-NMR measurement. As a result, 1 H-NMR spectrum data shown in Table 1 was obtained. The properties of the crystals were glossy orange leaf-like crystals. The melting point of the crystals was 198 to 200 ° C.
Figure 2002053571
From the above results, it was confirmed (identified) that the obtained powder was Compound 1 (precursor) having the following chemical structure (yield: 4.53 g, yield: 49%).
Figure 2002053571
Note that a, b, c, d, and e in the above structural formulas indicate the positions of hydrogen (protons) corresponding to the chemical shifts (δ values) in Table 1.
Synthesis of Compound 2 (ferrocenated naphthalenediimide derivative of Example 1) Compound 2 as a ferrocenated naphthalenediimide derivative of this example was synthesized according to the following synthesis scheme.
Figure 2002053571
4.67 g (13.15 mmol) of (ferrocenylmethyl) trimethylammonium iodide salt, 2.27 g (5.54 mmol) of Compound 1 and 1.9 ml of triethylamine were dissolved in 67 ml of DMF, and heated and stirred at 60 ° C. for 6 days. . At this time, the reaction was monitored by TLC (developing solvent: chloroform: methanol: triethylamine = 10: 1: 1). Thereafter, the heating was stopped, the mixture was allowed to cool to room temperature, and DMF was distilled off under reduced pressure. After distilling off the solvent, the reaction solution was poured into 100 ml of pure water, and the pH was adjusted to 10. To this, 80 ml of chloroform was added and extraction washing was performed five times to obtain an organic phase from which the product was extracted. Magnesium sulfate was added to the obtained organic phase and dried. The organic phase after drying was subjected to gravity filtration, and the solvent in the filtrate was distilled off under reduced pressure to obtain a brown solid. Further, the obtained brown solid was recrystallized from acetonitrile. The precipitated crystals were filtered by suction and dried under reduced pressure to obtain a powder.
The obtained powder was subjected to 1 H-NMR measurement and elemental analysis. As a result, 1 H-NMR spectrum data shown in Table 2 was obtained, and element analysis results shown in Table 3 were obtained. The properties of the powder were ocher powder, and the melting point of the powder was 182 to 185 ° C.
Figure 2002053571
Figure 2002053571
From the above results, it was confirmed (identified) that the obtained powder was Compound 2 having the following chemical structure (compound of this example) (yield: 2.11 g, yield: 45%).
Figure 2002053571
Here, a, b, c, d, e, f, g, h, and i in the above structural formula indicate the respective positions of hydrogen (proton) corresponding to the chemical shift (δ value) in Table 2.
[Test Example 1] (Effect of interaction with DNA)
In general, the UV-visible absorption spectrum of the intercalator shows a small long wavelength shift and a large light color effect with the addition of DNA. In addition, when the concentration of the intercalator is kept constant and the DNA is variously changed, if the ultraviolet-visible absorption spectrum of the intercalator changes between two states passing through the equal absorption point, Scatchard analysis is used. The details of the connection can be evaluated.
1-1. [Measurement of UV-visible absorption spectrum change of ferrocene-naphthalenediimide (compound 2) accompanying addition of Calthmus-DNA (CT-DNA)]
Into the following sample solution, the following DNA dripping agent was added dropwise little by little so that the total amount of the DNA drops becomes the drop amount (3 μl, 6 μl,... 300 μl) shown in the right column of FIG. It was left for another one minute. During the dropping, the ultraviolet-visible measurement of the ferrocene-naphthalenediimide (Compound 2) was performed for each drop of the DNA dropping agent. It took 6 minutes for all the measurements. The ultraviolet-visible spectrum measurement temperature is 25 ° C. FIG. 1 shows the change in the ultraviolet-visible absorption spectrum of the ferrocene naphthalenediimide (Compound 2) accompanying the addition of DNA at this time.
A sample solution; ferrocenated naphthalenediimide (compound 2) 25.7 μM,
2-morpholino ethane sulfonic acid (MES) 10 mM (pH 6.2), EDTA 1 mM, and NaCl 100 mM.
-DNA dripping agent: CT-DNA 3 mM, ferrocene-naphthalenediimide (compound 2) 25.7 µM, MES 10 mM (pH 6.2), EDTA 1 mM, and NaCl 100 mM.
1-2. [Calculation of binding constant by Scatchard analysis]
1-1. The binding rate was calculated from the change in the ultraviolet-visible absorption spectrum in the measurement of. FIG. 2 shows a Scatchard Plot based on this binding ratio. By the following formula (I), the experimental data and theoretical data based on FIG. 2 were optimized (fitting) to calculate the binding constant K and the number of loci n. The wavelength used as a numerical value is 382 nm.
r / L = K (1-nr) [(1-nr) / {1- (n-1) r}] n-1 (I)
As a result, 4.09 × 10 5 M −1 as the binding constant K and 2.0 as the number of loci were calculated.
[Test Example 2] (Electrochemical detection of double-stranded DNA)
2-1. [Immobilization of DNA probe on electrode]
1 μL of a DNA solution having a specific sequence of 10 pmol / μl was dropped on the surface of the gold electrode, capped so as not to dry, left at 25 ° C. for 2 hours, and the DNA was fixed to the gold electrode. Thereafter, 1 μL of 1 mM 2-mercaptoethanol was dropped onto the DNA-immobilized gold electrode and left at 25 ° C. for 2 hours to obtain an electrode-immobilized DNA probe.
The obtained DNA probe (hereinafter, also referred to as “single-stranded DNA”) was subjected to the DPV measurement described below.
2-2. [Hybridization of DNA (probe) immobilized on electrode with sample DNA (duplex formation reaction)]
1 μL of a DNA (sample DNA) solution having a specific sequence of 20 pmol / μl was dropped on the surface of the gold electrode, capped so as not to dry, and left at 25 ° C. for 30 minutes.
The obtained DNA has a sequence shown below (hereinafter, this DNA is also referred to as “double-stranded DNA”), and is fixed to a gold electrode via a sulfur atom as shown below. This double-stranded DNA was subjected to the DPV measurement described below.
Figure 2002053571
2-3. [DPV measurement]
DPV of ferrocenated naphthalenediimide derivative (compound 2) at a measurement temperature of 25 ° C. using an electrolytic solution consisting of a 0.1 M acetate buffer (pH 5.6), a 0.1 M aqueous KCl solution and a 50 μM intercalator solution. A measurement was made. The results are shown in FIG. As a comparative example, the DPV measurement of the piperazine ring-containing ferrocenated naphthalenediimide derivative represented by the formula (2) was performed under the same measurement conditions as for compound 2. The results are shown in FIG.
As is clear from the measurement results shown in FIGS. 3 and 4, the ferrocene naphthalenediimide derivative (Compound 2) of this example uses double-stranded DNA with respect to the current value when single-stranded DNA is used. The rate of increase in the current value (current increase rate due to the formation of a double strand) is 67% when compared with the nucleic acid having a specific base as compared with the piperazine ring-containing ferrosenated naphthalenediimide derivative (52%) of the comparative example. It can be seen that the discriminating ability of is very high.
Here, the rate of increase in the current value will be described in detail. When the peak current values when the DPV is measured using a single-stranded or double-stranded modified electrode are i0 and i, respectively, The rate of increase in peak current (meaning the increase in current associated with the formation of a double strand under the measurement conditions, which can evaluate the performance of the compound) was evaluated as Δi = (i / i0-1) × 100 (%). It is. The peak potential of the comparative example was about 460 mV, and the peak potential of compound 2 was about 420 mV.
[Example 2]
A ferrocene naphthalenediimide derivative (Compound 4) similar to Compound 2 of Example 1 was prepared according to the following synthesis example, except that two R 4 in the linker moiety of the formula (1 ′) were changed from a propylene group to an ethylene group. Synthesized.
Synthesis of Compound 3 (Precursor) Compound 3 was synthesized according to the following synthesis scheme as a precursor for synthesizing the below-described compound 4 which is a ferrocene naphthalenediimide derivative of this example.
Figure 2002053571
1.34 g (5 mmol) of 1,4,5,8-naphthalenetetracarboxylic dianhydride and 2.2 ml (25 mmol) of N-methylethylenediamine were mixed in 20 ml of THF and refluxed for 16 hours. Thereafter, the reaction solution was cooled to room temperature, and the solvent was distilled off under reduced pressure. 100 ml of chloroform was added to the residue, and unnecessary substances were filtered. The filtrate was concentrated under reduced pressure, and hexane was added, whereby a precipitate was formed. This was irradiated with ultrasonic waves and refrigerated for about 1 hour to promote generation of a precipitate. The generated precipitate was subjected to suction filtration to obtain a reddish brown powder.
About the obtained powder, < 1 > H-NMR measurement was performed. As a result, 1 H-NMR spectrum data shown in Table 4 was obtained, and it was identified that the obtained powder was Compound 3 (precursor) having the following chemical structure (yield; 130 mg, yield; 10%).
Figure 2002053571
Synthesis of Compound 4 (ferrocenated naphthalenediimide derivative of Example 2) Compound 4 as a ferrocenated naphthalenediimide derivative of this example was synthesized according to the following synthesis scheme.
Figure 2002053571
0.13 g (0.32 mmol) of compound 3 and 0.75 g (1.9 mmol) of (ferrocenylmethyl) trimethylammonium iodide were dissolved in 3 ml of DMF / 1 ml of triethylamine, and the mixture was heated and stirred at about 70 ° C. for 5 days. The solvent was distilled off under reduced pressure, the residue was dissolved in 50 ml of chloroform, and washed with saturated sodium hydrogen carbonate (50 ml, 4 times). After the organic phase was dried over anhydrous magnesium sulfate, the solvent was distilled off under reduced pressure to obtain a black solid. This was purified by silica gel column chromatography. Fractions containing the target compound were collected, and the solvent was distilled off under reduced pressure to obtain a brown solid.
The obtained substance was subjected to TOF-MASS measurement. As a result, a peak corresponding to the molecular weight of 776.48 of the target compound (compound 4) was found at 776.77. This identified the substance to be Compound 4 (yield; 250 mg, yield; 5%).
[Test Example 3] (Electrochemical detection of double-stranded DNA)
Compound 4 was evaluated in the same manner as in Compound 2 in the same manner as in Test Example 2. As a result, a peak potential of about 420 mV and Δi = 90% were obtained.
INDUSTRIAL APPLICABILITY According to the present invention, separation operation and purification operation after a synthesis reaction are easy, and the yield is high. A novel ferrocenated polycyclic hydrocarbon derivative and a novel ferrocenated naphthalenediimide derivative useful as a curator are provided.
Further, according to the present invention, nucleic acids such as DNAs and RNAs having a specific sequence can be detected more easily, with high sensitivity, and with high throughput (high-speed mass) by using the ferrocene-modified naphthalenediimide derivative as an intercalator. A method for electrochemical detection of a gene is provided.
[Sequence list]
Figure 2002053571

[Brief description of the drawings]
FIG. 1 is a graph showing a change in the ultraviolet-visible absorption spectrum of one embodiment (compound 2) of the ferrocene-containing naphthalenediimide derivative of the present invention with addition of DNA. FIG. 2 is a graph obtained by the Scatchard analysis based on the coupling ratio calculated from the change in the ultraviolet-visible absorption spectrum of FIG. FIG. 3 is a graph showing the results of DPV measurement of one embodiment (compound 2) of the ferrocene naphthalenediimide derivative of the present invention. FIG. 4 is a graph showing the results of DPV measurement of a ferrocene-containing naphthalenediimide derivative of a comparative example.

Claims (5)

下記式(1)で表される新規なフェロセン化多環式炭化水素誘導体。
Figure 2002053571
(式中、Aは多環式炭化水素若しくはその誘導体を示し、Rは炭素数1〜3のアルキル基、アルケニル基若しくはアルキニル基、炭素数7〜9のアリールアルキル基若しくはアリールアルケニル基、又は炭素数2若しくは3のアルキルカルボニル基を示し、R及びRはそれぞれ独立に水溶液中で電子供与基又は電子求引基となる基を示し、Rは炭素数1〜6のアルキレン基を示し、m及びnはそれぞれ独立に0〜2の数を示す。1分子中の二つの同一表示基は互いに同一でも異なっていてもよい。また、Rと結合しているNはカチオン化されてもよい。)
A novel ferrocenated polycyclic hydrocarbon derivative represented by the following formula (1):
Figure 2002053571
(Wherein, A represents a polycyclic hydrocarbon or a derivative thereof, and R 1 represents an alkyl group having 1 to 3 carbon atoms, an alkenyl group or an alkynyl group, an arylalkyl group or an arylalkenyl group having 7 to 9 carbon atoms, or R 2 and R 3 each independently represent an electron donating group or an electron withdrawing group in an aqueous solution, and R 4 represents an alkylene group having 1 to 6 carbon atoms. And m and n each independently represent a number from 0 to 2. Two identical indicating groups in one molecule may be the same or different from each other, and N bonded to R 1 is cationized. May be.)
下記式(1’)で表される新規なフェロセン化ナフタレンジイミド誘導体。
Figure 2002053571
(式中、Rは炭素数1〜3のアルキル基、アルケニル基若しくはアルキニル基、炭素数7〜9のアリールアルキル基若しくはアリールアルケニル基、又は炭素数2若しくは3のアルキルカルボニル基を示し、R及びRはそれぞれ独立に水溶液中で電子供与基又は電子求引基となる基を示し、Rは炭素数1〜6のアルキレン基を示し、m及びnはそれぞれ独立に0〜2の数を示す。1分子中の二つの同一表示基は互いに同一でも異なっていてもよい。また、Rと結合しているNはカチオン化されてもよい。)
A novel ferrocenated naphthalenediimide derivative represented by the following formula (1 ′).
Figure 2002053571
(Wherein, R 1 represents an alkyl group having 1 to 3 carbon atoms, an alkenyl group or an alkynyl group, an arylalkyl group or an arylalkenyl group having 7 to 9 carbon atoms, or an alkylcarbonyl group having 2 or 3 carbon atoms; 2 and R 3 each independently represent a group that becomes an electron donating group or an electron withdrawing group in an aqueous solution, R 4 represents an alkylene group having 1 to 6 carbon atoms, and m and n each independently represent 0 to 2 The two same indicating groups in one molecule may be the same or different from each other, and N bonded to R 1 may be cationized.)
二重らせん構造を構成する核酸塩基に対するインターカレータとして使用される請求の範囲第2項に記載のフェロセン化ナフタレンジイミド誘導体。3. The ferrocene naphthalenediimide derivative according to claim 2, which is used as an intercalator for a nucleic acid base constituting a double helix structure. 請求の範囲第2項又は第3項記載のフェロセン化ナフタレンジイミド誘導体を製造する方法であって、
下記反応式(A)に示すように、1,4,5,8−ナフタレンテトラカルボン酸二無水物とアルキレンジアミン誘導体とを反応させて、N,N’−ジ(アミノアルキル)ナフタレンジイミド誘導体を得る第一工程と、
下記反応式(B)に示すように、前記ナフタジイミド誘導体と(フェロセニルメチル)アンモニウム沃化物塩とを反応させて、目的物を得る第二工程と、
を含むフェロセン化ナフタレンジイミド誘導体の製造方法。
Figure 2002053571
(各式中、R、R、R、R、m及びn並びに同一表示基については、前記式(1’)中の当該基と同義である。)
A method for producing a ferrocene naphthalenediimide derivative according to claim 2 or claim 3,
As shown in the following reaction formula (A), 1,4,5,8-naphthalenetetracarboxylic dianhydride is reacted with an alkylenediamine derivative to form an N, N′-di (aminoalkyl) naphthalenediimide derivative. The first step of obtaining
As shown in the following reaction formula (B), a second step of reacting the naphthaldiimide derivative with a (ferrocenylmethyl) ammonium iodide salt to obtain an intended product;
A method for producing a ferrocene naphthalenediimide derivative comprising:
Figure 2002053571
(In each formula, R 1 , R 2 , R 3 , R 4 , m and n, and the same indicating group are the same as those in the formula (1 ′).)
請求の範囲第3項記載のフェロセン化ナフタレンジイミド誘導体を使用して、特定の配列を有する核酸を検出する、遺伝子の電気化学的検出方法。A method for electrochemically detecting a gene, comprising detecting a nucleic acid having a specific sequence using the ferrocene-containing naphthalenediimide derivative according to claim 3.
JP2002555094A 2000-12-28 2001-12-28 Novel ferrocene polycyclic hydrocarbon derivative, novel ferrocene naphthalene diimide derivative, production method thereof, intercalator comprising the derivative, and electrochemical detection method of gene Expired - Fee Related JP4043362B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000402076 2000-12-28
JP2000402076 2000-12-28
PCT/JP2001/011653 WO2002053571A1 (en) 2000-12-28 2001-12-28 Novel ferrocene-type polycyclic hydrocarbon derivatives, novel ferrocene-type naphthalenediimide derivatives, process for producing the same, intercaltors comprising these derivatives and method of electrochemically detecting gene

Publications (2)

Publication Number Publication Date
JPWO2002053571A1 true JPWO2002053571A1 (en) 2004-05-13
JP4043362B2 JP4043362B2 (en) 2008-02-06

Family

ID=18866426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002555094A Expired - Fee Related JP4043362B2 (en) 2000-12-28 2001-12-28 Novel ferrocene polycyclic hydrocarbon derivative, novel ferrocene naphthalene diimide derivative, production method thereof, intercalator comprising the derivative, and electrochemical detection method of gene

Country Status (2)

Country Link
JP (1) JP4043362B2 (en)
WO (1) WO2002053571A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004096824A2 (en) 2003-05-02 2004-11-11 Centrum Mikrobiologii I Wirusologii Polskiej Akademii Nauk Nucleoside derivative, modified oligonucleotide, method for their synthesis and applications thereof
DE102004011234B4 (en) 2004-03-04 2007-11-29 Infineon Technologies Ag Method for reducing the ignition sensitivity of a thyristor
US7479557B2 (en) 2004-06-10 2009-01-20 Agency For Science, Technology +Research DNA threading intercalators
JP2018203652A (en) * 2017-05-31 2018-12-27 島根県 Ferrocenylnaphthalene diimide derivative, telomerase activity detection kit, and telomerase activity detection method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233851B2 (en) * 1996-04-24 2001-12-04 繁織 竹中 Electrochemical detection method of gene and its device

Also Published As

Publication number Publication date
JP4043362B2 (en) 2008-02-06
WO2002053571A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
CN104781269B (en) 1,1 &#39; [[(substituted alkyl) imino group] double (alkylidenes)] di-ferrocenes and its by mark substrate interested and electrochemistry calibrating in purposes
Browne et al. Simultaneous quantification of multiple nucleic acid targets using chemiluminescent probes
JP5419278B2 (en) Fluorogenic molecule
JP4043362B2 (en) Novel ferrocene polycyclic hydrocarbon derivative, novel ferrocene naphthalene diimide derivative, production method thereof, intercalator comprising the derivative, and electrochemical detection method of gene
JP3705975B2 (en) Mismatch recognition molecule
US6368807B2 (en) Threading intercalator having oxidation-reduction activity
CN107417598B (en) Fluorescent probe for detecting G-quadruplex DNAs (deoxyribonucleic acids) and preparation method thereof
US20020155470A1 (en) Methods and compositions for detecting polynucleotide duplex damage and errors
JP4138773B2 (en) Novel ferroceneated polycyclic hydrocarbon derivative, method for producing the same, and method for detecting target nucleic acid
Boto et al. Synthesis and characterization of novel mono-and dicarboxyalkylthiacarbocyanines and their ester derivatives
JP2002327130A (en) New fluorescent pigment and method for measuring nucleic acid
EP3247710B1 (en) Coumarin-based compounds and related methods
CN113308131B (en) Carboxyl modified near-infrared squaric acid dye and preparation method and application thereof
WO2007084380A2 (en) Compounds and methods for nucleic acid mismatch detection
EP0209996A2 (en) Nucleic acid probes comprising N4 -(substituted amino)cytidines
KR100381457B1 (en) Intercalator compound useful in electrochemical detection of double stranded dna, process for preparation thereof and intermediate used in said process
JP2020176108A (en) Guanine quadruplex-binding ligand
Gogritchiani et al. Photochromic nucleic base units suitable for nucleic acid labelling
Cavigiolio et al. Fluorescent sugar and uridine conjugates of 1, 8-naphthalimides with methyl and ferrocenyl headgroups
JP4011937B2 (en) Mismatch detection molecule
JP4309037B2 (en) Sewing type intercalator with redox activity
Kostelansky et al. Thermal stabilisation of the short DNA duplexes by acridine-4-carboxamide derivatives
Singh et al. Syntheses, characterisation and fluorescence study of some novel naphthalimide derivatives
JP2001165894A (en) Sewing-in type intercalator, detecting method for nucleic acid fragment, and detecting kit therefor
EP0602524A1 (en) Chemiluminescence marked sequences and their use in sequence testing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071029

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111122

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121122

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131122

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees