JPS64991B2 - - Google Patents

Info

Publication number
JPS64991B2
JPS64991B2 JP5429081A JP5429081A JPS64991B2 JP S64991 B2 JPS64991 B2 JP S64991B2 JP 5429081 A JP5429081 A JP 5429081A JP 5429081 A JP5429081 A JP 5429081A JP S64991 B2 JPS64991 B2 JP S64991B2
Authority
JP
Japan
Prior art keywords
resin
polyarylene sulfide
polyethylene terephthalate
sulfide resin
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5429081A
Other languages
Japanese (ja)
Other versions
JPS57168945A (en
Inventor
Hitoshi Izutsu
Ryoichi Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP5429081A priority Critical patent/JPS57168945A/en
Publication of JPS57168945A publication Critical patent/JPS57168945A/en
Publication of JPS64991B2 publication Critical patent/JPS64991B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はポリアリーレンサルフアイド樹脂およ
びポリエチレンテレフタレート樹脂からなる組成
物に関するものである。 ポリアリーレンサルフアイド樹脂およびポリエ
チレンテレフタレート樹脂は耐熱性、耐薬品性に
優れ、エンジニアリングプラスチツクとして各種
の用途に使用されている。しかしながら、更に広
い用途に使用されるためにはおのおのの樹脂の改
良が必要である。即ち、ポリアリーレンサルフア
イド樹脂は伸びが少なく脆弱であるため耐衝撃性
を重視する用途には使用できない欠点がある。か
かる点についてはポリアリーレンサルフアイド樹
脂をガラス繊維などで補強することによつて耐衝
撃性を高めることができるが、末だ充分なもので
はない。又、ポリアリーレンサルフアイド樹脂は
茶色の着色度が大きく、用途に応じて各種の着色
を行ないたい場合、多量の白色系充填材が必要で
あり、そのためポリアリーレンサルフアイド樹脂
の機械的強度を損う結果となつている。更にポリ
アリーレンサルフアイド樹脂の用途拡大を制限し
ているもう1つの点は価格である。価格引き下げ
のために充填材が配合されるがガラス繊維などの
繊維状強化材はその添加量に限界があり、その他
の充填材では大きな機械的強度の低下を伴う。特
に知らねばならないのはこのような充填材配合に
よりみかけの価格は低下するものの実質的価格で
ある容積コストの低下は小さい。 他方、ポリエチレンテレフタレート樹脂は単体
では繊維、モノフイラメント、シート、フイルム
に多量に用いられているものの、射出成形におい
ては70〜130℃の金型温度で離型性が悪く、これ
はガラス繊維で強化しても同様である。更に、ポ
リエチレンテレフタレート樹脂はエステル型重合
体であるため、加水分解し易く熱水や水蒸気に接
する部品には使用できない。又、ポリエチレンテ
レフタレート樹脂は熱変形温度が低くガラス繊維
で強化してはじめて高い熱変形温度を与えるが、
長期耐熱性は充分と云えない。 ポリアリーレンサルフアイド樹脂とポリエチレ
ンテレフタレート樹脂とのブレンドは、従来、お
のおの樹脂に比較して機械的強度の低下が大き
く、商業的に注目すべきものでなかつたが、本発
明に依れば機械的強度の低下がないばかりでな
く、ポリアリーレンサルフアイド樹脂の伸びを改
善し耐衝撃性を高め、更に茶色の着色が少なくな
り容易に種々の着色が可能となると同時に価格的
にも安価なものとなることが判明した。更に、本
発明に依ればポリエチレンテレフタレート樹脂の
機械的性質や射出成形時の離型性を改善するだけ
でなく耐加水分解性、耐熱性をも改善することが
明らかとなつた。 即ち、本発明はポリアリーレンサルフアイド樹
脂2ないし95重量部とポリエチレンテレフタレー
ト樹脂98ないし5重量部とを含んでなり、該ポリ
アリーレンサルフアイド樹脂が熱的架橋構造を実
質的に有していないか又は有していてもASTM
D1238−70Tで定めるメルトフローレイトが300
℃,2160gの荷重下で15以上であり、かつ該ポリ
エチレンテレフタレート樹脂が極限粘度0.4〜2.0
を有することを特徴とする樹脂組成物に関する。 本発明のポリアリーレンサルフアイド樹脂は、
例えば極性溶媒中、ポリハロ芳香族化合物とアル
カリ金属の硫化物の反応によつて得ることができ
る。代表的な構造は
The present invention relates to a composition comprising a polyarylene sulfide resin and a polyethylene terephthalate resin. Polyarylene sulfide resin and polyethylene terephthalate resin have excellent heat resistance and chemical resistance, and are used as engineering plastics for various purposes. However, each resin needs to be improved in order to be used in a wider range of applications. That is, polyarylene sulfide resin has a drawback that it cannot be used in applications where impact resistance is important because it has low elongation and is brittle. Regarding this point, impact resistance can be improved by reinforcing the polyarylene sulfide resin with glass fiber, but this is still not sufficient. In addition, polyarylene sulfide resin has a high degree of brown coloration, and if you want to apply various colors depending on the application, a large amount of white filler is required, which reduces the mechanical strength of polyarylene sulfide resin. The results are as follows. Another point that limits the expansion of the uses of polyarylene sulfide resins is the price. Fillers are added to reduce prices, but there is a limit to the amount of fibrous reinforcing materials such as glass fiber that can be added, and other fillers result in a significant decrease in mechanical strength. What is particularly important to know is that although the apparent price is reduced by such a filler combination, the reduction in the volumetric cost, which is the real price, is small. On the other hand, although polyethylene terephthalate resin alone is used in large quantities for fibers, monofilaments, sheets, and films, it has poor mold release properties at mold temperatures of 70 to 130°C in injection molding, and this is because it is reinforced with glass fiber. The same is true even if Furthermore, since polyethylene terephthalate resin is an ester type polymer, it is easily hydrolyzed and cannot be used for parts that come into contact with hot water or steam. In addition, polyethylene terephthalate resin has a low heat distortion temperature, and a high heat distortion temperature can only be achieved by reinforcing it with glass fiber.
Long-term heat resistance cannot be said to be sufficient. Conventionally, a blend of polyarylene sulfide resin and polyethylene terephthalate resin had a large decrease in mechanical strength compared to each resin and was not commercially noteworthy, but according to the present invention, the mechanical strength Not only does it not cause any deterioration, it also improves the elongation of the polyarylene sulfide resin and increases its impact resistance.Furthermore, the brown coloring is reduced, making it easier to apply various colors, and at the same time, it is inexpensive. It has been found. Furthermore, it has been revealed that the present invention not only improves the mechanical properties and mold release properties of polyethylene terephthalate resin during injection molding, but also improves its hydrolysis resistance and heat resistance. That is, the present invention comprises 2 to 95 parts by weight of a polyarylene sulfide resin and 98 to 5 parts by weight of a polyethylene terephthalate resin, and the polyarylene sulfide resin does not substantially have a thermally crosslinked structure. or even if it has ASTM
Melt flow rate defined by D1238-70T is 300
℃, 15 or more under a load of 2160g, and the polyethylene terephthalate resin has an intrinsic viscosity of 0.4 to 2.0.
The present invention relates to a resin composition characterized by having the following. The polyarylene sulfide resin of the present invention is
For example, it can be obtained by reacting a polyhaloaromatic compound with an alkali metal sulfide in a polar solvent. The typical structure is

【式】であるが[Formula]

【式】で示される単位(ここでXは O,SO2,SO,C(CH32,R1,R2,R3,R4
水素原子又はアルキル基)が含まれていてもよ
い。ポリアリーレンサルフアイド樹脂の代表例は
ポリフエニレンサルフアイド樹脂であり、フイリ
ツプスペトロリアム社から「ライトン」と云う商
品で市場に供せられているが、従来、射出成形用
途に供せられていたものは「ライトンP−4」又
は「ライトンR−6」でありこれらは重合で得ら
れたポリフエニレンサルフアイド樹脂の低分子量
物を融点(285℃)以下で加熱し架橋したもので
あり、その溶融粘度は300℃,2160g荷重で0.5〜
15のメルトフローレイト(ASTM D1238−70T)
を有している。 本発明に於ては、ポリアリーレンサルフアイド
樹脂が熱的架橋構造を実質的に有しないか又は有
していても高度なものとなつていないことが必要
であり、これによつて、ポリエチレンテレフタレ
ート樹脂との相溶性を高めることができ、相分離
のない優れた性質のポリマーアロイを得ることが
できる。即ち、このようなポリアリーレンサルフ
アイド樹脂はたとえば特開昭50−84698号により
開示されている方法で得ることができる。このよ
うな方法で得られたポリアリーレンサルフアイド
樹脂は重合によつて高分子量物となるので、従来
のポリアリーレンサルフアイド樹脂と違つて熱架
橋をする必要がない。本発明では熱的な架橋構造
を有していないポリアリーレンサルフアイド樹脂
が特に好ましいが、熱的架橋構造を有していて
も、300℃、2160g荷重下で15以上のメルトフロ
ーレイト(ASTM D1238−70T)を有するだけ
の架橋構造にとどめたポリアリーレンサルフアイ
ド樹脂が好ましい。このようなポリアリーレンサ
ルフアイド樹脂は例えば特公昭45−3368号に開示
された方法でえられる低分子量物をポリマーの融
点以下あるいは以上で加熱することにより熱架橋
させ高分子量物としたものも含まれる。又、特開
昭50−84698号で開示された方法で高分子量物と
なる前に重合を終了し、その後、ポリマーの融点
以下あるいは以上で加熱することにより目的の高
分子量物としてもよい。いずれにしても、該熱架
橋のための加熱温度、時間を選択することによ
り、目的のメルトフローレイトを有するポリアリ
ーレンサルフアイド樹脂を得ることができる。該
ポリアリーレンサルフアイド樹脂のメルトフロー
レイトが15以下では高度な架橋構造となりポリエ
チレンテレフタレート樹脂との相溶性が悪くなり
物性が低下するので好ましくない。該メルトフロ
ーレイトは18以上が特に好ましい。 本発明でのポリエチレンテレフタレート樹脂は
テレフタル酸又はテレフタル酸ジメチルとエチレ
ングリコール又はエチレンオキサイドとの溶融あ
るいは固相重合反応によつて得られるものであ
り、極限粘度が0.4以上で2.0以下のものである。
該極限粘度が2.0を越えるとポリアリーレンサル
フアイド樹脂との相溶が困難となり、機械的性質
が低下する。又、該極限粘度が0.4未満ではポリ
エチレンテレフタレート樹脂の優れた靫性を失う
ので好ましくない。ポリエチレンテレフタレート
樹脂の特性を失わない範囲の共重合体を用いても
よい。 本発明でのポリアリーレンサルフアイド樹脂と
ポリエチレンテレフタレート樹脂とのブレンドは
1軸又は2軸押出機で260〜400℃で行うことがで
き、280〜360℃で行うのが好ましい。 ポリアリーレンサルフアイド樹脂とポリエチレ
ンテレフタレート樹脂の配合量はポリアリーレン
サルフアイド樹脂2ないし95重量部、好ましくは
5ないし90重量部とポリエチレンテレフタレート
樹脂98ないし5重量部、好ましくは95〜10重量部
との割合であり、ポリアリーレンサルフアイド樹
脂が2重量部未満、ポリエチレンテレフタレート
が5重量部未満となるとブレンドの効果が実質的
に失われる。 本発明組成物はガラス繊維、炭素繊維、チタン
酸カリウム、アスベスト、炭化ケイ素、セラミツ
ク繊維、金属繊維、窒化ケイ素などの繊維状強化
剤および硫酸バリウム、硫酸カルシウム、カオリ
ン、クレー、パイロフイライト、ベントナイト、
セリサイト、ゼオライト、マイカ、雲母、ネフエ
リンシナイト、タルク、アタルパルジヤイト、ウ
オラストナイト、PMF、フエライト、硅酸カル
シウム、炭酸カルシウム、炭酸マグネシウム、ド
ロマイト、三酸化アンチモン、酸化亜鉛、酸化チ
タン、酸化マグネシウム、酸化鉄、二硫化モリブ
デン、黒鉛、石コウ、ガラスビーズ、ガラスバル
ーンなどの無機充填材を組成物中0.1〜70重量%
まで含有せしめることができる。これらの強化剤
又は充填材を加える場合、公知のシランカツプリ
ング剤を用いることができる。 本発明組成物においてエポキシ樹脂、酸無水
物、イソシアネートなどの多官能性化合物を樹脂
成分に対し0.1〜10重量%添加することが好まし
い。特にエポキシ樹脂は機械的性質を高めること
ができるので好ましいものであり、ビスフエノー
ル型エポキシ樹脂、脂環族系エポキシ樹脂、ノボ
ラツク型エポキシ樹脂などの種々の公知エポキシ
樹脂が使用できる。 本発明のポリアリーレンサルフアイド樹脂とポ
リエチレンテレフタレート樹脂との組成物は射出
成形、圧縮成形用途だけでなく、押出成形、中空
成形、発泡成形も可能であり、フイルム、シー
ト、モノフイラメント、繊維に加工することがで
きる。又、成形加工後、200〜300℃で真空下又は
酸素ガス存在下で加熱することにより耐熱性を更
に改善することができる。 本発明組成物は離型剤、滑剤、着色剤、耐熱安
定剤、紫外線吸収剤、発泡剤、防錆剤などの添加
剤を添加することができる。 次に実施例により本発明を詳細に説明する。
尚、例中の%および部は重量基準によるものであ
る。 参考例 1 硫化ナトリウム(60%純度)984g、水酸化ナ
トリウム47g、酢酸リチウム2水塩765gをN−
メチルピロリドン3080g中に加え、205℃まで脱
水しつつ昇温したのちパラジクロルベンゼン1113
g、1,2,4−トリクロルベンゼン1.13g、N
−メチルピロリドン510gを加え260℃で5時間加
熱し、冷却後、水洗し乾燥した。得られたポリフ
エニンサルフアイドはメルトフローレイト(300
℃、2160g荷重)が25であつた。これをポリマー
Aとする。 参考例 2 参考例1で酢酸リチウム2水塩を加えず同様に
重合し、得られたポリフエニレンサルフアイドは
メルトフローレイト(300℃、2160g荷重)で
1840を示した。該ポリマーを空気中で270℃、3
時間、4時間、5時間、6時間熱架橋したものの
メルトフローレイトはそれぞれ50(ポリマーB)、
17(ポリマーC)、8(ポリマーD)、2(ポリマー
E)であつた。 実施例 1 参考例1でえられたポリフエニレンサルフアイ
ド樹脂(ポリマーA)と極限粘度1.03のポリエチ
レンテレフタレート樹脂を2軸押出機で310℃に
て溶融混練した。得られたペレツトを310℃で射
出成形(金型温度130℃)した試験片は試験後も
相分離を起こさず、第1表の物性を示した。ポリ
フエニレンサルフアイド樹脂とポリエチレンテレ
フタレート樹脂とのアロイはポリアリーレンサル
フアイド樹脂に比較して伸びが向上し耐衝撃性が
高くなりポリエチレンテレフタレート樹脂に比較
して機械的強度および熱変形温度が増大する。
Even if it contains a unit represented by the formula (where X is O, SO 2 , SO, C(CH 3 ) 2 , R 1 , R 2 , R 3 , R 4 is a hydrogen atom or an alkyl group), good. A typical example of polyarylene sulfide resin is polyphenylene sulfide resin, which is offered on the market as a product called "Ryton" by Phillips Petroleum, which was previously used for injection molding. is "Ryton P-4" or "Ryton R-6", which are made by heating and crosslinking low molecular weight polyphenylene sulfide resins obtained by polymerization below the melting point (285°C). Melt viscosity is 0.5~ at 300℃ and 2160g load
Melt flow rate of 15 (ASTM D1238−70T)
have. In the present invention, it is necessary that the polyarylene sulfide resin has substantially no thermal crosslinking structure, or even if it does have it, it is not highly developed. The compatibility with the resin can be increased, and a polymer alloy with excellent properties without phase separation can be obtained. That is, such a polyarylene sulfide resin can be obtained, for example, by the method disclosed in JP-A-50-84698. Since the polyarylene sulfide resin obtained by such a method becomes a high molecular weight product through polymerization, there is no need for thermal crosslinking unlike conventional polyarylene sulfide resins. In the present invention, polyarylene sulfide resins that do not have a thermally crosslinked structure are particularly preferred; A polyarylene sulfide resin having only a crosslinked structure having -70T) is preferable. Such polyarylene sulfide resins also include those obtained by thermally crosslinking a low molecular weight product obtained by the method disclosed in Japanese Patent Publication No. 45-3368 at a temperature below or above the melting point of the polymer to form a high molecular weight product. It will be done. Alternatively, the desired high molecular weight product may be obtained by completing the polymerization before forming a high molecular weight product by the method disclosed in JP-A No. 50-84698, and then heating at a temperature below or above the melting point of the polymer. In any case, by selecting the heating temperature and time for the thermal crosslinking, a polyarylene sulfide resin having a desired melt flow rate can be obtained. If the melt flow rate of the polyarylene sulfide resin is 15 or less, it is not preferable because it becomes a highly crosslinked structure, resulting in poor compatibility with the polyethylene terephthalate resin and poor physical properties. The melt flow rate is particularly preferably 18 or more. The polyethylene terephthalate resin in the present invention is obtained by a melt or solid phase polymerization reaction of terephthalic acid or dimethyl terephthalate and ethylene glycol or ethylene oxide, and has an intrinsic viscosity of 0.4 or more and 2.0 or less.
If the intrinsic viscosity exceeds 2.0, it becomes difficult to be compatible with the polyarylene sulfide resin, and the mechanical properties deteriorate. Further, if the intrinsic viscosity is less than 0.4, the excellent eyelash properties of the polyethylene terephthalate resin will be lost, which is not preferable. A copolymer within a range that does not lose the properties of the polyethylene terephthalate resin may be used. Blending of the polyarylene sulfide resin and polyethylene terephthalate resin in the present invention can be carried out at 260 to 400°C using a single screw or twin screw extruder, preferably at 280 to 360°C. The blending amount of the polyarylene sulfide resin and the polyethylene terephthalate resin is 2 to 95 parts by weight, preferably 5 to 90 parts by weight of the polyarylene sulfide resin and 98 to 5 parts by weight, preferably 95 to 10 parts by weight of the polyethylene terephthalate resin. If the amount of polyarylene sulfide resin is less than 2 parts by weight and the amount of polyethylene terephthalate is less than 5 parts by weight, the blending effect will be substantially lost. The composition of the present invention includes fibrous reinforcing agents such as glass fiber, carbon fiber, potassium titanate, asbestos, silicon carbide, ceramic fiber, metal fiber, silicon nitride, and barium sulfate, calcium sulfate, kaolin, clay, pyrofluorite, bentonite. ,
Sericite, zeolite, mica, mica, nephelinsinite, talc, attalpargite, wollastonite, PMF, ferrite, calcium silicate, calcium carbonate, magnesium carbonate, dolomite, antimony trioxide, zinc oxide, titanium oxide , magnesium oxide, iron oxide, molybdenum disulfide, graphite, gypsum, glass beads, glass balloons and other inorganic fillers in the composition by 0.1 to 70% by weight.
It is possible to contain up to When adding these reinforcing agents or fillers, known silane coupling agents can be used. In the composition of the present invention, it is preferable to add a polyfunctional compound such as an epoxy resin, an acid anhydride, and an isocyanate in an amount of 0.1 to 10% by weight based on the resin component. Epoxy resins are particularly preferred because they can improve mechanical properties, and various known epoxy resins such as bisphenol epoxy resins, alicyclic epoxy resins, and novolak epoxy resins can be used. The composition of polyarylene sulfide resin and polyethylene terephthalate resin of the present invention can be used not only for injection molding and compression molding, but also for extrusion molding, blow molding, and foam molding, and can be processed into films, sheets, monofilaments, and fibers. can do. Further, after the molding process, heat resistance can be further improved by heating at 200 to 300°C under vacuum or in the presence of oxygen gas. Additives such as a mold release agent, a lubricant, a colorant, a heat stabilizer, an ultraviolet absorber, a foaming agent, and a rust preventive can be added to the composition of the present invention. Next, the present invention will be explained in detail with reference to Examples.
Note that % and parts in the examples are based on weight. Reference example 1 984g of sodium sulfide (60% purity), 47g of sodium hydroxide, and 765g of lithium acetate dihydrate
Paradichlorobenzene 1113 was added to 3080g of methylpyrrolidone and heated to 205℃ while dehydrating.
g, 1,2,4-trichlorobenzene 1.13 g, N
- 510 g of methylpyrrolidone was added, heated at 260°C for 5 hours, cooled, washed with water and dried. The obtained polyphenin sulfide has a melt flow rate (300
℃, 2160g load) was 25. This is called Polymer A. Reference Example 2 Polyphenylene sulfide obtained by polymerizing in the same manner as in Reference Example 1 without adding lithium acetate dihydrate was melt flow rate (300℃, 2160g load).
Showed 1840. The polymer was heated in air at 270°C for 3
The melt flow rate after thermal crosslinking for 4 hours, 5 hours, and 6 hours was 50 (Polymer B), respectively.
17 (Polymer C), 8 (Polymer D), and 2 (Polymer E). Example 1 The polyphenylene sulfide resin (polymer A) obtained in Reference Example 1 and the polyethylene terephthalate resin having an intrinsic viscosity of 1.03 were melt-kneaded at 310°C in a twin-screw extruder. A test piece obtained by injection molding the pellets obtained at 310°C (mold temperature: 130°C) showed no phase separation even after the test, and exhibited the physical properties shown in Table 1. An alloy of polyphenylene sulfide resin and polyethylene terephthalate resin has improved elongation and impact resistance compared to polyarylene sulfide resin, and has increased mechanical strength and heat distortion temperature compared to polyethylene terephthalate resin. .

【表】 実施例 2 参考例2で得られたポリフエニレンサルフアイ
ド樹脂(ポリマーB〜E)50部と極限粘度0.65の
ポリエチレンテレフタレート樹脂50部を2軸押出
機で310℃にて溶融混練した。得られたペレツト
を310℃で射出成形(金型温度120℃)した試験片
について第2表の結果をえた。
[Table] Example 2 50 parts of the polyphenylene sulfide resin (Polymer B to E) obtained in Reference Example 2 and 50 parts of a polyethylene terephthalate resin with an intrinsic viscosity of 0.65 were melt-kneaded at 310°C in a twin-screw extruder. . The results shown in Table 2 were obtained for test pieces obtained by injection molding the obtained pellets at 310°C (mold temperature: 120°C).

【表】 (注) No.7および8は本発明のものであり、他
は比較のためのものである。
参考例2で得られたポリフエニレンサルフアイ
ド樹脂(ポリマーB)と極限粘度1.2のポリエチ
レンテレフタレート樹脂(核剤としてタルク1%
含有)との混合物70部に対し6mm長のガラス繊維
30部およびエポキシ樹脂(大日本インキ化学工業
(株)製;エピクロン1050)0〜2部を加え、2軸押
出機で300℃にて溶融混練した。得られらたペレ
ツトを320℃で射出成形(金型温度100℃)した試
験片について第3表の結果をえた。
[Table] (Note) Nos. 7 and 8 are of the present invention, and the others are for comparison.
Polyphenylene sulfide resin (polymer B) obtained in Reference Example 2 and polyethylene terephthalate resin with an intrinsic viscosity of 1.2 (1% talc as a nucleating agent)
6 mm long glass fiber for 70 parts of the mixture (containing)
30 parts and epoxy resin (Dainippon Ink Chemical Industry Co., Ltd.
0 to 2 parts of Epiclon 1050 (manufactured by Co., Ltd.) were added, and the mixture was melt-kneaded at 300°C using a twin-screw extruder. The results shown in Table 3 were obtained for test pieces obtained by injection molding the obtained pellets at 320°C (mold temperature: 100°C).

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 ポリアリーレンサルフアイド樹脂2ないし95
重量部とポリエチレンテレフタレート樹脂98ない
し5重量部とを含んでなり、該ポリアリーレンサ
ルフアイド樹脂が熱的架橋構造を実質的に有して
いないか又は有していてもASTM D1238−70T
で定めるメルトフローレイトが300℃、2160gの
荷重下で15以上であり、かつ該ポリエチレンテレ
フタレート樹脂が極限粘度0.4〜2.0を有すること
を特徴とする樹脂組成物。
1 Polyarylene sulfide resin 2 to 95
parts by weight and 98 to 5 parts by weight of a polyethylene terephthalate resin, and even if the polyarylene sulfide resin has substantially no thermally crosslinked structure or has a thermally crosslinked structure, it still meets ASTM D1238-70T.
A resin composition having a melt flow rate of 15 or more at 300° C. and a load of 2160 g as defined by the polyethylene terephthalate resin and having an intrinsic viscosity of 0.4 to 2.0.
JP5429081A 1981-04-13 1981-04-13 Resin composition Granted JPS57168945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5429081A JPS57168945A (en) 1981-04-13 1981-04-13 Resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5429081A JPS57168945A (en) 1981-04-13 1981-04-13 Resin composition

Publications (2)

Publication Number Publication Date
JPS57168945A JPS57168945A (en) 1982-10-18
JPS64991B2 true JPS64991B2 (en) 1989-01-10

Family

ID=12966429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5429081A Granted JPS57168945A (en) 1981-04-13 1981-04-13 Resin composition

Country Status (1)

Country Link
JP (1) JPS57168945A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0384191A3 (en) * 1989-02-07 1991-09-18 Mitsubishi Rayon Company, Ltd. Polyarylene sulfide resin composition
JPH02215855A (en) * 1989-02-17 1990-08-28 Mitsubishi Rayon Co Ltd Polyarylene sulfide resin composition
JP2707714B2 (en) * 1989-04-25 1998-02-04 東レ株式会社 Polyphenylene sulfide resin composition
KR930008743B1 (en) * 1989-07-05 1993-09-13 아사히가세이고오교 가부시끼가이샤 Polyphenylene sulfide resin composition
KR910020112A (en) * 1990-05-01 1991-12-19 최준식 Blend film of polyphenylene sulfide and polyester
JP5644038B2 (en) * 2008-07-16 2014-12-24 東レ株式会社 Resin composition

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212240A (en) * 1975-07-18 1977-01-29 Matsushita Electric Ind Co Ltd Process for preparing transparent coating compounds
JPS5364265A (en) * 1976-11-22 1978-06-08 Unitika Ltd Resin composition
JPS5366565A (en) * 1976-11-26 1978-06-14 Asahi Glass Co Ltd Method of sealing electronic parts
JPS5398356A (en) * 1977-02-10 1978-08-28 Asahi Glass Co Ltd Polyphenylene sulfide resin molding material and its production
JPS5439856A (en) * 1977-09-02 1979-03-27 Nippon Electric Co Method of making solid electrolytic capacitor
US4140671A (en) * 1977-12-30 1979-02-20 General Electric Company Warp-resistant flame-retarded reinforced thermoplastic compositions
JPS54155300A (en) * 1978-05-30 1979-12-07 Asahi Glass Co Ltd Injection molding material of polyphenylene sulfide
JPS5792044A (en) * 1980-11-28 1982-06-08 Toray Ind Inc Thermoplastic polyester composition
JPS57137346A (en) * 1981-02-18 1982-08-24 Toray Ind Inc Thermoplastic polyester resin

Also Published As

Publication number Publication date
JPS57168945A (en) 1982-10-18

Similar Documents

Publication Publication Date Title
JP4269198B2 (en) Polyarylene sulfide resin composition
JPS6121156A (en) Polyarylene sulfide resin composition
JPH03197562A (en) Polyphenylene sulfide resin composition
JPS64991B2 (en)
JP3019108B2 (en) Resin composition
JPH05502055A (en) Blend of carboxy-functionalized polyphenylene resin and ethylene-glycidyl methacrylate copolymer
JP6180075B2 (en) Polyarylene sulfide resin composition
JPH07742B2 (en) Polyphenylene sulfide resin composition
JP3019107B2 (en) Polyphenylene sulfide resin composition
JPH04318067A (en) Polyphenylene sulfide resin composition
JP4090880B2 (en) Polyarylene sulfide resin
JP3501165B2 (en) Polyarylene sulfide resin composition
EP0482179B1 (en) Blends from amino-functionalized polyphenylene resins and ethylene-glycidyl methacrylate copolymers
JPH02196858A (en) Polyphenylene sulfide composition for injection molding
JPH0361702B2 (en)
JPS5964655A (en) Thermoplastic resin composition
JP3151823B2 (en) Polyarylene sulfide resin composition
JP3038794B2 (en) Resin composition
JPH0586293A (en) Polyphenylene sulfide resin composition
JP2001172500A (en) Polyarylene sulfide resin composition
JP3147463B2 (en) Polyphenylene sulfide resin composition
JP2913827B2 (en) Polyarylene sulfide-based resin-lined metal tube
JP3094963B2 (en) Resin composition
JPH04372658A (en) Thermoplastic resin composition
JPH0343452A (en) Polyphenylene sulfide resin composition