JPS649361B2 - - Google Patents

Info

Publication number
JPS649361B2
JPS649361B2 JP55091053A JP9105380A JPS649361B2 JP S649361 B2 JPS649361 B2 JP S649361B2 JP 55091053 A JP55091053 A JP 55091053A JP 9105380 A JP9105380 A JP 9105380A JP S649361 B2 JPS649361 B2 JP S649361B2
Authority
JP
Japan
Prior art keywords
powder
density
smco
ferromagnetic
ferromagnetic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55091053A
Other languages
Japanese (ja)
Other versions
JPS5716101A (en
Inventor
Tadaharu Tomita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP9105380A priority Critical patent/JPS5716101A/en
Publication of JPS5716101A publication Critical patent/JPS5716101A/en
Publication of JPS649361B2 publication Critical patent/JPS649361B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、脂肪酸で潤滑性を付与したことを特
徴とする潤滑層付強磁性粉末の製造方法に関する
ものであり、強磁性粉末と脂肪酸との密着性を高
めるために、中間層として脂肪酸と化学反応をす
る金属を表面被覆することを特徴とする。 周知の如く、磁石の製造法は、鋳造法と粉末法
に大別できる。最近は、フエライト、希土類コバ
ルト、焼結アルニコ等粉末法による磁石が急増し
ている。前記粉末法は、種々のメリツトがある
が、次のデメリツトを持つている。即ち、密度が
バルクより小さいこと、および強磁性粉末の配向
性が低いことである。 密度および配向性を低下させている主原因の一
つに、強磁性粉末の表面摩擦がある。強磁性粉末
をプレス成形した場合、成形体の密度はプレス圧
力が大きくなる程大きくなるが、プレス圧力が大
きくなると粉末間又は粉末と型表面間の摩擦力が
大きくなる。このため、密度が高くなつても配向
性が低下するという矛盾が生じる。プレス圧力が
大きい条件で、強磁性粉末の表面摩擦係数を減少
させることが必要となる。強磁性粉末の表面摩擦
係数を減少させる方法として、フエライト等では
粉末に少量のパラフインを混合する方法が常用さ
れている。しかし、前記従来方法では、高圧力下
では配向性が低くなり、磁気特性を高性能化する
には、いま一歩密度と配向性を高めるためには強
磁性粉末の表面摩擦係数を更に1ランク下げる必
要がある。 一方、周知の通り、粉末の規則的充填は、
Horsfield充填で5次球より小さいFillerをあてる
と、計算上は空間率は3.9%となる。しかし現実
の空間率は、粉末粒度分布を調整し、更に潤滑剤
としてパラフイン等を少量添加しても、15〜20%
より小さくなり難しい。粉末成形で一面加圧よ
り、上下双方の面から加圧する方が密度は高くな
る。又、粉末粒径が小さくなり過ぎると、粉末成
形後の密度は小さくなる。これらの原因は、粉末
の摩擦に起因する。 一方、永久磁石の場合、単磁区粒子の臨界半径
Rcは、Rc=9γ/4πMs(γ:磁壁エネルギー,
Ms:自発磁化の大きさ)で、二、三の実例を、
表1に示す。単磁区は通常サブミクロンのオーダ
ーの大きさで、粒径が大きさになると磁気特性、
就中、保磁力は向上するが、密度は低下する。そ
の状況を、表2に示す。磁石において、単位体積
当りの磁化の強さは密度に比例し、最大エネルギ
ー積(BHmax)は密度の2乗に比例するため、
粉末磁石の性能向上には密度の増大が不可欠の要
素の一つである。特に、樹脂、金属結合磁石にお
いては、密度の影響が極めて大である。一方、焼
結型磁石は、焼結過程で20〜30%の収縮が起こり
密度が増加するため、空孔により受ける影響は小
さくなる。
The present invention relates to a method for producing a ferromagnetic powder with a lubricating layer characterized by imparting lubricity with fatty acids. It is characterized by coating the surface with a metal that reacts. As is well known, magnet manufacturing methods can be broadly divided into casting methods and powder methods. Recently, the number of magnets manufactured using powder methods such as ferrite, rare earth cobalt, and sintered alnico has rapidly increased. Although the powder method has various advantages, it also has the following disadvantages. That is, the density is lower than the bulk, and the orientation of the ferromagnetic powder is low. One of the main causes of decreased density and orientation is surface friction of ferromagnetic powder. When ferromagnetic powder is press-molded, the density of the compact increases as the press pressure increases, but as the press pressure increases, the frictional force between the powders or between the powder and the mold surface increases. For this reason, a contradiction arises in that even if the density increases, the orientation decreases. Under conditions of high press pressure, it is necessary to reduce the surface friction coefficient of ferromagnetic powder. As a method for reducing the surface friction coefficient of ferromagnetic powder, a method commonly used for ferrite and the like is to mix a small amount of paraffin into the powder. However, in the conventional method, the orientation deteriorates under high pressure, and in order to improve the magnetic properties, it is necessary to further lower the surface friction coefficient of the ferromagnetic powder by one rank in order to increase the density and orientation. There is a need. On the other hand, as is well known, regular packing of powder
If we apply a filler smaller than the 5th sphere using Horsfield filling, the calculated void ratio will be 3.9%. However, the actual void ratio is 15 to 20% even if the powder particle size distribution is adjusted and a small amount of paraffin is added as a lubricant.
It's smaller and more difficult. In powder compaction, the density will be higher if pressure is applied from both the top and bottom surfaces rather than from one side. Moreover, if the powder particle size becomes too small, the density after powder compaction will become small. These causes are due to powder friction. On the other hand, for permanent magnets, the critical radius of a single domain particle is
Rc is Rc=9γ/4πMs (γ: domain wall energy,
Ms: magnitude of spontaneous magnetization), here are a few examples:
It is shown in Table 1. Single magnetic domains are usually on the order of submicrons, and as the grain size increases, magnetic properties change.
Among other things, the coercive force increases, but the density decreases. The situation is shown in Table 2. In a magnet, the strength of magnetization per unit volume is proportional to the density, and the maximum energy product (BHmax) is proportional to the square of the density, so
Increasing the density is one of the essential elements for improving the performance of powder magnets. In particular, the influence of density is extremely large in resin- and metal-bonded magnets. On the other hand, sintered magnets shrink by 20 to 30% during the sintering process, increasing their density, so they are less affected by pores.

【表】【table】

【表】 又、プレス圧力の及ぼす配向性について、表3
に筆者らの実験結果を示す。供粉末は
Hexagonal結晶構造をとつている。磁場をかけ
ながらプレス成形し、成形品の指定面で、結晶の
(220)面と(006)面からのX線回析強度220
006を測定し、その比220006を配向指数と
し、表3に示す。強力な磁場をかけても、プレス
圧力が1ton/cm2以上では、磁化容易軸がそろわ
ず、かなりの粒子の容易軸と磁場の方向とのずれ
が大きくなることが判かる。容易
[Table] Table 3 also shows the orientation caused by press pressure.
The experimental results of the authors are shown below. The supplied powder is
It has a hexagonal crystal structure. Press molding is performed while applying a magnetic field, and the X-ray diffraction intensity from the (220) and (006) planes of the crystal is measured at 220 ,
006 was measured, and the ratio 220/006 was taken as the orientation index, which is shown in Table 3. Even when a strong magnetic field is applied, if the pressing pressure is 1 ton/cm 2 or more, the easy axes of magnetization are not aligned, and the deviation between the easy axis of the particles and the direction of the magnetic field becomes large. easy

【表】 軸と外部磁界のなす角をθとした時、θと保磁
力、θと残留磁束密度の関係をStonen−
Wohlfathの理論で計算すると、第1,2図とな
る。保磁力及び残留磁束密度は、θ=0でそれぞ
れ1となるよう規格化されている。θが0より少
しでもシフトすると、保磁力及び残留磁束密度と
も低下し、その割合は保磁力が著しい。磁化容易
軸を揃えるには、磁場を大きくすることと磁性粉
末の表面摩擦係数を小さくすることが肝要であ
る。25KOe以上の磁場発生は、装置を大型化す
るか超電導コイルを使用せざるをえず、工業的に
は現水準が限界である。 他方、磁場成形中に磁性粉末が受けるモーメン
トは、 磁場によるモーメント=vMsHSinθ 摩擦力によるモーメント=Kμrp v:強磁性粉末の体積 Ms:単位体積当りの磁化の大きさ H:外部磁界 θ:外部磁界と自発磁化のなす角度 K:強磁性粉末にかかる応力のアンバランス
係数 μ:強磁性粉末の表面摩擦係数 r:強磁性粉末の半径 P:プレス応力 で、磁場容易方向(自発磁化の方向)と外部磁界
とのなす角が0゜で完全に一致している時は、磁場
によるモーメントは0で、θが0゜より少しずれて
も磁場による角度復帰のためのモーメントは大き
くは働らかない。従つて、大きな外部磁界を掛け
ても、摩擦力による小さなモーメントによつて、
磁化容易軸は回転させられ、しかも元に復帰しな
い。摩擦力によるモーメントを小さくするには、
表面摩擦係数μ以外にKを下げることも効果的で
ある。Kは粉末の形状を球形に近づけることによ
つて減少し、μは強磁性粉末の表面摩擦係数を下
げることによつて減少する。しかし、Kは強磁性
体の結晶性によつて大きく左右されるので、これ
を大幅に改善することは難しい。 本発明の目的は、高い圧力の条件下で強磁性粉
末の表面摩擦係数を下げることにある。 本発明における脂肪酸とは、カルボキシル基1
個をもつカルボン酸RCOOHのうち、鎖式構造を
もつものを総称していう。RはCnHm(n:5以
上の整数、m:正の整数)であり、飽和及び不飽
和のアルキル基である。又、本発明において脂肪
酸と化学反応する金属とは、Cu,Ag,Se,Te,
As,Sb,Bi,Sn,Pb,Al,Ga,In,Zn,Cd,
Mg,Lanthanideで実験を行ない定めたものであ
る。更に、本発明における強磁性粉末とは、永久
磁石材料及びフエライトの粉末を指す。 以下、実施例をあげ具体的に本発明について詳
述する。 実施例 1 SmCo5粉末100grをメタルクリーナーで脱脂洗
浄した後、フエーリング液で銅で無電解メツキを
行なう。用いたフエーリング液組成は 硫酸銅 70gr/l 酒石酸カリウムナトリウム 350 〃 水酸化ナトリウム 100 〃 37%ホルマリン 150c.c./l で、この液中で1分間SmCo粉末を良く撹拌す
る。SmCo5の表面に約0.1〜0.2μのCuが析出する。
メツキされたSmCo5粉末を水洗乾燥させた後、
ステアリン酸0.2grとを70℃、アルゴン雰囲気中
で十分混合反応させ冷却後取り出す。その後、結
合剤としてエポキシ樹脂を2.5gr添加し、良く撹
拌混合させ摩擦係数を測定した。強磁性粉末の摩
擦係数は0.1で、現行の0.3〜0.4と比較して良い結
果が得られた。 実施例 2 SmCo5粉末100grをメタルクリーナーで脱脂洗
浄した後、次の組成の無電解錫メツキを行なう。 硫酸第一錫 2gr/l 硫 酸 10 〃 温 度 90℃ この液中で30秒間SmCo5粉末を良く撹拌する。
SmCo5表面に約0.1〜0.2μのSnが析出する。メツ
キされたSmCo5粉末を水洗乾燥させた後、ステ
アリン酸0.2grとを70℃、アルゴン雰囲気中で十
分に混合反応させ、冷却後、結合剤としてエポキ
シ樹脂を2.5gr添加し良く撹拌混合させた後、摩
擦係数を測定した。強磁性粉末SmCo5の摩擦係
数は0.1で、現行の0.3〜0.4と比較して良い結果が
得られた。 実施例 3 SmCo5粉末100grをメタルクリーナーで脱脂洗
浄した後、Zn粉末0.5grと混合し、500℃、アルゴ
ン雰囲気中で撹拌混合し、SmCo5粉末の表面に
0.1〜0.2μのZnを付着させる。冷却後、ステアリ
ン酸0.2grとを70℃、アルゴン雰囲気中で十分に
混合反応させ、冷却後、結合剤としてエポキシ樹
脂を2.5gr添加し良く撹拌混合させた後、摩擦係
数を測定した。強磁性粉末SmCo5の摩擦係数は
0.1で、現行の0.3〜0.4と比較して良い結果を得
た。 実施例において、現行のものはSmCo5にステ
アリン酸と反応する金属をつけず、SmCo5に直
接ステアリン酸をつけ、その後エポキシ樹脂と混
合したものをいう。 現行と本発明の差は、カルボキシル基が粉末と
反応し化学結合しているため、エポキシ樹脂と混
合してもステアリン酸が粉末表面に強固に付着し
ているためである。 又、脂肪酸が単に物理吸着のみの場合、強磁性
粉末を1ton/cm2以上でプレスすると、脂肪酸の膜
が切れて強磁性粉末相互の接触が起こる。しかし
脂肪酸が化学反応して吸着している場合は、プレ
ス時に脂肪酸の膜が切れて、強磁性粉末相互の接
触は起こらない。 さて、実施例1〜3は、本発明の一部を記した
に過ぎない。強磁性粉末を被覆する金属は、上記
以外にAg,Se,Te,As,Sb,Bi,Pb,Al,
Ga,In,Cd,Mg,Lanthanideで実施例と同様
な方法で、粉末の表面摩擦係数をほぼ0.1にする
ことができる。これら被覆金属の厚みは0.001μ〜
1μが好ましい。0.001μ未満では金属被覆が不均一
となり、無被覆の部分ができ、1μ以上では非磁
性部が大きくなり過ぎ、磁気特性が著しく低下す
る。 又、強磁性粉末として、実施例では一例として
SmCo5を記したが、RmTn(R:希土類元素、
T:遷移元素、m,n:正の整数)、フエライト、
アルニコ、Mn−Al−C、Mn−Bi等、その材質
には限定されない。RmTnとしては、(SmPr)
(Co,Fe,Cu,Zr)5,(MMA)(Co,Fe,Cu,
Zr)5,(Smpr)2(Co,Fe,Cu,Zr)17等、具体的
には数多くある。これらでR、Tの元素を少量づ
つ変更することにより様々の磁石が生まれ、それ
らは本発明に属するものである。 更に脂肪酸として、ステアリン酸を実施例で示
したが、リノール酸(C17)、オレイン酸(C17)、
エルカ酸(C21)、ステンアリン酸(C17)、ナデカ
ン酸(C18)、アラギン酸(C19)等C20前後の鎖状
脂肪酸が摩擦係数の低減に適している。C10未満
は室温で液体で、低温での潤滑性は優れる。又、
不飽和脂肪酸は、二重結合がカルボキシル基に近
いと強い酸性を示し、金属との反応性が高まり、
好ましいものが多くなる。 潤滑に必要な脂肪酸の量は、粉末の表面を最低
1分子で覆えれば良く、実施例の0.2grを拘泥す
るものではない。 これら本発明になる潤滑層付強磁性粉末は、有
機高分子(エポキシ、ナイロン、塩化ビニル、ポ
リプロピレン、EPラバー、ジエン系ゴム、ウレ
タンゴム、アクリル系重合物、ポリビニル系重合
物、ポリエステル系重合物、フエノール系重合
物、キシレン系重合物、メラミン系重合物)、無
機高分子(シリコン系重合物、リン系重合物、サ
ルフアー系重合物)、金属(Sn、Pb、In、Sb、
Bi、Zn、Cd、Al、Mg)等を単独あるいは複合
した結合剤で結合される。更に結合剤なしで、高
配向のgreen bodyをそのまま焼結し、高密度、
高配向の磁石をつくることができる。 実施例において、従来方法では、磁石の最大エ
ネルギー積が、8.2MGOeであつたが、実施例1
では試料4個の平均で9.1MGOe、実施例2では
9.8MGOe、実施例3では9.5MGOeをえ、大幅に
磁気特性を改善しえた。 以上の通り本発明は、強磁性粉末の潤滑に関し
全く新規な知見を応用し、これまで無駄にしてき
た非配向粒を有効に活用せしめる製造方法を提供
するものであり、粉末磁石の高性能化に大きく貢
献するものである。
[Table] When the angle between the axis and the external magnetic field is θ, the relationship between θ and coercive force, and between θ and residual magnetic flux density is expressed as Stonen−
When calculated using Wohlfath's theory, the results are shown in Figures 1 and 2. The coercive force and the residual magnetic flux density are each normalized to be 1 when θ=0. If θ shifts even slightly from 0, both the coercive force and the residual magnetic flux density decrease, and the proportion of the coercive force is significant. In order to align the axes of easy magnetization, it is important to increase the magnetic field and decrease the surface friction coefficient of the magnetic powder. To generate a magnetic field of 25 KOe or more, it is necessary to increase the size of the device or use superconducting coils, which is the limit of the current industrial level. On the other hand, the moment that the magnetic powder receives during magnetic field compaction is: Moment due to magnetic field = vMsHSinθ Moment due to frictional force = Kμrp v: Volume of ferromagnetic powder Ms: Magnetization size per unit volume H: External magnetic field θ: External magnetic field Angle formed by spontaneous magnetization K: Unbalance coefficient of stress applied to the ferromagnetic powder μ: Coefficient of surface friction of the ferromagnetic powder r: Radius of the ferromagnetic powder P: Press stress between the easy direction of the magnetic field (direction of spontaneous magnetization) and the external When the angle with the magnetic field is 0°, the moment due to the magnetic field is 0, and even if θ deviates slightly from 0°, the moment due to the magnetic field to restore the angle does not work much. Therefore, even if a large external magnetic field is applied, due to the small moment due to frictional force,
The axis of easy magnetization is rotated and does not return to its original state. To reduce the moment due to frictional force,
In addition to the surface friction coefficient μ, it is also effective to lower K. K can be decreased by making the powder shape more spherical, and μ can be decreased by lowering the surface friction coefficient of the ferromagnetic powder. However, since K is greatly influenced by the crystallinity of the ferromagnetic material, it is difficult to significantly improve this. The object of the present invention is to reduce the surface friction coefficient of ferromagnetic powder under conditions of high pressure. The fatty acid in the present invention refers to carboxyl group 1
Among the carboxylic acids RCOOH, which have a chain structure, it is a general term for those that have a chain structure. R is CnHm (n: an integer of 5 or more, m: a positive integer), and is a saturated or unsaturated alkyl group. In addition, in the present invention, metals that chemically react with fatty acids include Cu, Ag, Se, Te,
As, Sb, Bi, Sn, Pb, Al, Ga, In, Zn, Cd,
This was established through experiments with Mg and Lanthanide. Furthermore, the ferromagnetic powder in the present invention refers to permanent magnet material and ferrite powder. Hereinafter, the present invention will be specifically described in detail with reference to Examples. Example 1 After degreasing and cleaning 100g of SmCo 5 powder with a metal cleaner, it was electrolessly plated with copper using a Fehling liquid. The composition of Fehling's liquid used was as follows: copper sulfate 70 gr/l potassium sodium tartrate 350 sodium hydroxide 100 37% formalin 150 c.c./l, and the SmCo powder was stirred well in this liquid for 1 minute. Approximately 0.1-0.2 μ of Cu is deposited on the surface of SmCo 5 .
After washing and drying the plated SmCo 5 powder,
Mix and react thoroughly with 0.2gr of stearic acid at 70°C in an argon atmosphere, and then remove after cooling. Thereafter, 2.5g of epoxy resin was added as a binder, stirred and mixed well, and the coefficient of friction was measured. The coefficient of friction of the ferromagnetic powder was 0.1, which is a better result than the current coefficient of 0.3 to 0.4. Example 2 After degreasing and cleaning 100g of SmCo 5 powder with a metal cleaner, electroless tin plating with the following composition was performed. Stannous sulfate 2gr/l Sulfuric acid 10 Temperature 90℃ Stir the SmCo 5 powder in this solution for 30 seconds.
Approximately 0.1-0.2 μ of Sn is precipitated on the SmCo 5 surface. After washing and drying the plated SmCo 5 powder, it was thoroughly mixed and reacted with 0.2gr of stearic acid at 70℃ in an argon atmosphere. After cooling, 2.5gr of epoxy resin was added as a binder and mixed with good stirring. After that, the friction coefficient was measured. The coefficient of friction of the ferromagnetic powder SmCo 5 was 0.1, which is a better result than the current coefficient of 0.3 to 0.4. Example 3 After degreasing and cleaning 100g of SmCo 5 powder with a metal cleaner, it was mixed with 0.5g of Zn powder, stirred and mixed in an argon atmosphere at 500℃, and the surface of the SmCo 5 powder was
Deposit 0.1-0.2μ of Zn. After cooling, the mixture was sufficiently mixed with 0.2 gr of stearic acid at 70° C. in an argon atmosphere, and after cooling, 2.5 gr of epoxy resin was added as a binder, stirred and mixed well, and the coefficient of friction was measured. The friction coefficient of ferromagnetic powder SmCo 5 is
0.1 gave better results compared to the current 0.3-0.4. In the examples, the current one is one in which stearic acid is not attached to SmCo 5 and a metal that reacts with stearic acid is not attached, but stearic acid is directly attached to SmCo 5 , and then mixed with an epoxy resin. The difference between the current method and the present invention is that the carboxyl group reacts with the powder and forms a chemical bond, so even when mixed with the epoxy resin, stearic acid remains firmly attached to the powder surface. In addition, in the case where fatty acids are simply physically adsorbed, when ferromagnetic powders are pressed at a pressure of 1 ton/cm 2 or more, the fatty acid film is cut and the ferromagnetic powders come into contact with each other. However, if the fatty acids are adsorbed through a chemical reaction, the fatty acid film is broken during pressing, and the ferromagnetic powders do not come into contact with each other. Now, Examples 1 to 3 only describe a part of the present invention. In addition to the above, the metals that coat the ferromagnetic powder include Ag, Se, Te, As, Sb, Bi, Pb, Al,
Using Ga, In, Cd, Mg, and Lanthanide, the surface friction coefficient of the powder can be made approximately 0.1 using the same method as in the example. The thickness of these coated metals is 0.001μ~
1μ is preferred. If it is less than 0.001μ, the metal coating will be non-uniform and there will be uncoated areas, and if it is more than 1μ, the non-magnetic portion will become too large and the magnetic properties will deteriorate significantly. In addition, as a ferromagnetic powder, as an example in the example
Although SmCo 5 was written, RmTn (R: rare earth element,
T: transition element, m, n: positive integer), ferrite,
The material is not limited to alnico, Mn-Al-C, Mn-Bi, etc. As RmTn, (SmPr)
(Co, Fe, Cu, Zr) 5 , (MMA) (Co, Fe, Cu,
There are many examples, such as Zr) 5 , (Smpr) 2 (Co, Fe, Cu, Zr) 17 , etc. By changing the elements R and T in small amounts, various magnets are created, and these belong to the present invention. Furthermore, stearic acid was shown in the example as a fatty acid, but linoleic acid (C 17 ), oleic acid (C 17 ),
Chain fatty acids around C 20 such as erucic acid (C 21 ), stearic acid (C 17 ), napecanoic acid (C 18 ), and aragic acid (C 19 ) are suitable for reducing the coefficient of friction. C less than 10 is liquid at room temperature and has excellent lubricity at low temperatures. or,
Unsaturated fatty acids exhibit strong acidity when the double bond is close to the carboxyl group, increasing their reactivity with metals.
There are many desirable things. The amount of fatty acid required for lubrication is not limited to 0.2 gr as in the example, as long as it can cover the surface of the powder with at least one molecule. These ferromagnetic powders with a lubricating layer according to the present invention are made of organic polymers (epoxy, nylon, vinyl chloride, polypropylene, EP rubber, diene rubber, urethane rubber, acrylic polymer, polyvinyl polymer, polyester polymer). , phenolic polymers, xylene polymers, melamine polymers), inorganic polymers (silicon polymers, phosphorus polymers, sulfur polymers), metals (Sn, Pb, In, Sb,
Bi, Zn, Cd, Al, Mg), etc. alone or in combination as a binder. Furthermore, the highly oriented green body is sintered as is without a binder, resulting in high density,
Highly oriented magnets can be created. In the example, in the conventional method, the maximum energy product of the magnet was 8.2MGOe, but in Example 1
Then, the average of the four samples was 9.1MGOe, and in Example 2
9.8MGOe, and 9.5MGOe in Example 3, which significantly improved the magnetic properties. As described above, the present invention applies completely new knowledge regarding the lubrication of ferromagnetic powder to provide a manufacturing method that makes effective use of non-oriented grains that have been wasted in the past, and improves the performance of powder magnets. This will greatly contribute to the

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、保持力の方位依存性を示す。第2図
は、残留磁束密度の方位依存性を示す。
FIG. 1 shows the orientation dependence of the holding force. FIG. 2 shows the orientation dependence of the residual magnetic flux density.

Claims (1)

【特許請求の範囲】[Claims] 1 強磁性粉末の表面に脂肪酸と化学反応する金
属を0.001〜1μの厚みに被覆する工程及び前記脂
肪酸と化学反応する金属を被覆された強磁性粉末
に脂肪酸を被覆する工程からなることを特徴とす
る潤滑層付強磁性粉末の製造方法。
1 A method comprising the steps of coating the surface of ferromagnetic powder with a metal that chemically reacts with fatty acids to a thickness of 0.001 to 1 μm, and coating the ferromagnetic powder coated with the metal that chemically reacts with fatty acids with fatty acids. A method for producing ferromagnetic powder with a lubricating layer.
JP9105380A 1980-07-03 1980-07-03 Magnetic powder covered by lubricating layer Granted JPS5716101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9105380A JPS5716101A (en) 1980-07-03 1980-07-03 Magnetic powder covered by lubricating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9105380A JPS5716101A (en) 1980-07-03 1980-07-03 Magnetic powder covered by lubricating layer

Publications (2)

Publication Number Publication Date
JPS5716101A JPS5716101A (en) 1982-01-27
JPS649361B2 true JPS649361B2 (en) 1989-02-17

Family

ID=14015756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9105380A Granted JPS5716101A (en) 1980-07-03 1980-07-03 Magnetic powder covered by lubricating layer

Country Status (1)

Country Link
JP (1) JPS5716101A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0217347B1 (en) * 1985-09-30 1993-02-03 Kabushiki Kaisha Toshiba Use of polycrystalline magnetic substances for magnetic refrigeration
US5166039A (en) * 1988-02-25 1992-11-24 Hoya Corporation Peeling solution for photo- or electron beam-sensitive resin and process for peeling off said resin
CN105931777B (en) * 2016-05-31 2017-09-08 宁波宁港永磁材料有限公司 A kind of preparation method of high tenacity samarium cobalt permanent magnet body

Also Published As

Publication number Publication date
JPS5716101A (en) 1982-01-27

Similar Documents

Publication Publication Date Title
JP3278647B2 (en) Rare earth bonded magnet
JPWO2003015109A1 (en) Ferrite-coated fine metal particle compression molded composite magnetic material and method for producing the same
US10910153B2 (en) Superparamagnetic iron cobalt alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JP3709292B2 (en) Resin bonded rare earth magnet
KR100374398B1 (en) HIGH CORROSION-RESISTANT R-Fe-B BASE BONDED MAGNET AND METHOD OF MANUFACTURING THE SAME
Ding et al. Magnetic properties of Ba-and Sr-hexaferrite prepared by mechanical alloying
US20130153088A1 (en) Method for producing a rare earth-based magnet
US6068785A (en) Method for manufacturing oil-based ferrofluid
JPS649361B2 (en)
JP2019080055A (en) Composite magnetic material, magnet, motor, and method of producing composite magnetic material
US5286308A (en) Magnetically anisotropic R-T-B magnet
JPH03163805A (en) Super paramagnetic compound material
JPS61124038A (en) Deflection yoke for electromagnetic deflection type cathode ray tube and manufacture thereof
EP1028438B1 (en) METHOD OF MANUFACTURING R-Fe-B BOND MAGNETS OF HIGH CORROSION RESISTANCE
JPH0254504A (en) Highly corrosion-resistant rare earth permanent bonded magnet and manufacture thereof
WO2004064086A1 (en) Oxidation-resistant rare earth based magnet powder and method for production thereof, compound for rare earth based bonded magnet, rare earth based bonded magnet and method for production thereof
JP3236813B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
JP3236815B2 (en) High corrosion resistance R-Fe-B bonded magnet and method for producing the same
US10984933B2 (en) Superparamagnetic iron cobalt ternary alloy and silica nanoparticles of high magnetic saturation and a magnetic core containing the nanoparticles
JPS5919964B2 (en) Method for producing ferromagnetic metal powder
JP2004266093A (en) Method of manufacturing rare earth bonded magnet
JPS62256411A (en) Permanent magnet with outstanding resistance to oxidation
KR20230137517A (en) Method of manufacturing lightweight conductive powder with magnetic properties and conductive powder produced therefrom
JP3218028B2 (en) Surface treatment method for an object to be treated having a hollow portion communicating with the outside and a ring-shaped bonded magnet treated by the method
Mukasa et al. Magnetic Properties of Electrodeposited Nickel‐Iron‐Phosphorus Thin Films