JPS647973B2 - - Google Patents

Info

Publication number
JPS647973B2
JPS647973B2 JP59015678A JP1567884A JPS647973B2 JP S647973 B2 JPS647973 B2 JP S647973B2 JP 59015678 A JP59015678 A JP 59015678A JP 1567884 A JP1567884 A JP 1567884A JP S647973 B2 JPS647973 B2 JP S647973B2
Authority
JP
Japan
Prior art keywords
group
ketone
optically active
reaction
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59015678A
Other languages
Japanese (ja)
Other versions
JPS60161927A (en
Inventor
Kenzo Saai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP59015678A priority Critical patent/JPS60161927A/en
Publication of JPS60161927A publication Critical patent/JPS60161927A/en
Publication of JPS647973B2 publication Critical patent/JPS647973B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、光学活性アルコールの製造に有利な
ケトンの不斉還元方法に関し、更に詳しくは鎖状
又は環状のケトンを光学活性なアミノ酸誘導体お
よび低級脂肪族アルコールの存在下、不活性有機
溶媒中で金属水素化物を用いて還元し、これによ
つて光学活性な二級アルコールを製造するように
したものである。 本発明方法によれば、例えば種々の薬理作用を
示すことが知られているプロスタグランジン類の
製造中間体となる光学活性な4−ヒドロキシシク
ロペンテノン類を高収率で得ることができる。ま
た、プロスタグランジン類、トロンボキサン類、
イコトリエン類およびその類似化合物の鎖状部分
構造に含まれる光学活性アルコール部分を容易に
得ることができる。更に、農薬のピレスロリン、
制癌剤のアントラサイクリン合成中間体等も効率
よく合成することができるようになる。 従来、ケトン構造を有する化合物のオキソ基を
水酸基に還元する方法として水素化アルミニウム
リチウム、水素化トリ−t−ブトキシアルミニウ
ムリチウム、水素化ホウ素リチウム、水素化ホウ
素ナトリウム等が知られているが、これらの試薬
では生成するアルコール体がラセミ体として得ら
れる。しかし、上述のように医薬や農薬として使
用する場合には、その一方のみが必要であつて他
方は不要な場合が多く、例えばプロスタグランジ
ン類を製造する場合には一方の立体配置のみが顕
著な薬理作用を示すことが知られている。 一方、光学活性アルコールを得る方法が種々提
案されている(“Asymmetric Organic
Reactions”、J.D.Morrison、H.S.Mosher
Practice−Hall、Englewood−Cliffs、N.J
(1972))。 また、最近では、(1)水素化アルミニウムリチウ
ムを修飾する方法(J.Chem.Soc.(c).、197
(1967)、J.Org.Chem.、38、1870(1973)、
Tetrahedron、32、939(1976)、Heterocycles、
12、499(1979)、J.Am.Chem.Soc.、101、3129
(1979))、(2)ボランを修飾する方法(J.Chem.
Soc.、Chem.Commun.、42、2534、2996
(1977))、(3)酵素や微生物を用いる方法(J.Am.
Chem.Soc.、97(1975))、(1)水素化ホウ素ナトリ
ウムを修飾する方法(J.Chem.Soc.、Chem.
Commun.、926(1978)、438(1976))等が知られ
ている。しかし、これらの方法では、修飾剤の調
製、使用後の回収および分離精製の面で難点があ
つたり、あるいは化学収率、光学収率が低く、工
業的生産に適用するには問題があつた。 本発明者等は、上記問題に鑑みて、入手容易な
化合物を用いて、反応操作および分離精製が簡単
で化学収率、光学収率共に高く、工業的に有利な
ケトンの不斉還元方法を見出すべく鋭意研究を重
ねた結果、工業的に入手容易な光学活性アミノ酸
誘導体およびアルコールの存在下に、ケトンを金
属水素化物と反応せしめて還元することによりケ
トンが選択的に不斉還元され、これによつて光学
活性アルコールを高収率、高純度でしかも容易に
得られると共に反応に使用した光学活性アミノ酸
誘導体を効率よく回収できることを見出し、本発
明を完成するに至つた。 本発明において対象とするケトンは、一般式
()で表わされる鎖状または還状のケトンであ
る。 (式中、R1、R2は、アルキル基、アルケニル基、
アルキニル基、アリール基またはアラルキル基を
示し、R1とR2とは互に異なつていて、閉環して
いてもよい。) アルキル基、アルケニル基、アルキニル基とし
ては炭素数1〜50の直鎖もしくは分岐状の飽和ま
たは不飽和の炭化水素基で、これらの炭化水素基
は更にハロゲン、アミド、アミン、エーテル、ニ
トリル、ウレタン、ニトロ基等で置換されていて
もよい。アリール基としては、フエニル、ビフエ
ニル、ナフチル基等が挙げれ、フエニル基はハロ
ゲン、トリフルオルメチル、低級アルキル、ニト
ロ、アミド、アミン、エーテル、ニトリル、ウレ
タン基等の1種または2種以上の置換基を有して
いてもよい。また、アラルキル基としては、1個
または2個以上の水素が上記アリール基で置換さ
れた低級アルキル基を意味する。 このケトン()を、一般式() (式中、R3は一般にもちいられるアミノ基の保
護基、R4はCOOHまたはCH2OHを示しYはS、
O原子またはNHを示す。) で表わされる光学活性アミノ酸誘導体とアルコー
ルの存在下に不活性溶媒中で金属水素化物と反応
せしめる。式()中のR4基およびYH基の活性
水素と金属水素化物との反応により、安定な6員
環構造を有する不斉な金属水素化物が生成する。
ここで用いるアミノ基の保護基としては通常用い
られるもので良く、例えばベンゾイル、アセチ
ル、トシル、ベンジルオキシカルボニル、t−ブ
トキシカルボニル、t−アミルオキシカルボニ
ル、2−ナフトイル、p−ニトロカルボベンゾキ
シ基等を表わす。 これらの光学活性アミノ酸誘導体の好ましい例
としては、アミノ基が通常の保護基であるベンゾ
イルで保護されたセリン、システイン、シスチン
またはそれらのカルボキシル基がアルコールに環
元された誘導体が挙げられる。これらのアミノ酸
誘導体の光学活性体は工業的に容易に入手するこ
とができるうえに、アルカリ水溶液に溶解するの
で反応終了後は洗浄により簡単に回収することが
できる。また、システインの酸化型であるシスチ
ンは、反応系内で還元されてシステインを与える
ので、システインと同様の効果を奏する。従つ
て、比較的高価な光学活性アミノ酸のモル数を半
減することができ、光学収率も高いので有利であ
る。 これらの光学活性アミノ酸誘導体はケトンに対
して1〜5モル倍、好ましくは2〜3モル倍用い
る。そして、L−アミノ酸を用いた場合とD−ア
ミノ酸を用いた場合とでは得られるアルコールの
立体配置(RまたはS)が逆になる。従つて、用
いるアミノ酸の立体配置は、目的とする生成物の
立体配置に応じて任意に選択することができる。 本発明において使用する直鎖もしくは分岐状の
低級脂肪族アルコールとしては、メタノール、エ
タノール、イソプロパノール、t−ブタノール等
の炭素数1〜6の直鎖もしくは分岐状の低級脂肪
族アルコールが挙げられるが、iso−プロピルア
ルコール、t−ブタノール等の分岐基を有する低
級脂肪族アルコールが好ましい。該アルコールの
使用量はケトンに対し1〜5モル倍、好ましくは
1〜2モル倍である。 また、本発明に使用する還元剤としては、水素
化ホウ素リチウム、水素化ホウ素ナトリウム、水
素化アルミニウムリチウム等の金属水素化物が挙
げられるが、好ましくは水素化ホウ素リチウムで
ある。その使用量は、ケトンに対し1〜5モル
倍、好ましくは3〜4モル倍である。 溶媒としては、反応に関与しない不活性溶媒で
あればよく、例えばヘキサン等の炭化水素系溶
媒、ベンゼン、トルエン、キシレン等の芳香族系
溶媒、エチルエーテル、テトラヒドロフラン、ジ
オキサン、ジグリム等のエーテル系溶媒が挙げら
れるが、これらは単独もしくは適宜混合して用い
ることができる。 次に、本発明方法はより得られる光学活性アル
コールの調製について説明する。 先ず、窒素、アルゴン等の不活性ガス雰囲気下
で、光学活性アミノ酸誘導体と直鎖もしくは分岐
状の低脂肪族アルコールとを不活性溶媒中に溶解
し、還元剤を加えて必要に応じて加熱(第1反
応)し、次いで反応温度を下げ、ケトンを加える
ことにより還元が進行する(第2反応)。第1反
応では、反応温度は室温ないし溶媒還流温度で10
分〜5時間反応を行わせる。次いで、第2反応で
は反応温度を−150〜0℃、好ましくは−100〜−
30℃として1〜10時間反応させる。 反応は、ケトンの消失を確認した後、1規定の
塩酸水溶液を加えることにより停止し、停当な後
処理、精製により目的とする光学活性アルコール
が得られる。この後処理としては、例えば反応停
止液に5%炭酸水素ナトリウム等の炭酸アルカリ
水溶液を加えて、PHを10前後に調整し、次いで生
成物をエーテルで抽出し、乾燥する。 このようにして得られた粗生成物は、通常の精
製方法、例えばカラムクロマトグラフイー、再結
晶、蒸留等により精製される。そして、得られた
光学活性アルコールの純度は、(S)−(−)−α−
メトキシ−α−トリフルオロメチルフエニル酢酸
のエステルとする公知の方法(MTPA法)に従
い、ガスクロマトグラフイーおよび 1H−NMR
を用いて決定した。 一方、光学活性アミノ酸誘導体はそのまゝ未反
応の状態で残るので、上記の後処理、精製手段と
組合せることにより効率よく回収することができ
る。例えば、光学活性なN−ベンゾイルシステイ
ンを用いた場合には、上記後処理工程におけるエ
ール抽出後の水層を酸性にし、これをエーテルで
抽出することにより高収率で回収される。 本発明によれば、上記のように工業的に入手容
易な光学活性アミノ酸誘導体を用いることによ
り、ケトンが選択的に不斉還元されるので、光学
活性アルコールを対応するケトンから簡単な反応
操作で効率よく製造することができる。 以下、本発明を実施例により具体的に説明す
る。 実施例 1 (R)−N−ベンゾイルシステイン540mg(2.4
mmol)およびt−ブタノール0.15ml(1.6m
mol)をTHF8.5mlに溶解し、アルゴン雰囲気下
に水素化ホウ素リチウムのTHF溶液(1.07M溶
液)3.37ml(3.6mmol)を室温で加えた。この混
合物を30分間加熱還流した後、−78℃に冷却し、
プロピオフエノン134mg(1mmol)のTHF溶液
2mlを加えた。反応温度を−78℃から−40℃に
徐々に加温しながら反応溶液を4.5時間撹拌した。
反応を1規定塩酸水3mlを加えて停止し、5%炭
酸水素ナトリウム水溶液を加え、液のPHを10に調
整した。生成物をエーテルで抽出し、有機層を5
%炭酸水素ナトリウム水で洗浄し、無水硫酸ナト
リウムで乾燥後、減圧下に溶媒を留去した。残さ
をシリカゲルのTLCを用いて精製し、無色油状
の(R)−(+)−1−フエニルプロパノール96mg
が得られた。 収率71%、b.p107℃/15mmHg、〔α〕20 D=+
41.45゜(c=5.09、クロロホルム)、光学純度91%
(基準旋光度より算出した)であつた。 一方、エーテル抽出後の水層を酸性にし、次い
でエーテル抽出、乾燥、溶媒留去により原料の
(R)−N−ベンゾイルシステインが459mg回収さ
れた(回収率85%)。 実施例 2 実施例1において、プロピオフエノンの代わり
にアセトフエノン120mgを用い、反応温度を−100
℃から−78℃にした以外は全て同様の操作、処理
を行ない、(R)−(+)−1−フエニルエタノール
80mgを得た。 収率66%、光学純度87%。 実施例 3 実施例1において、(R)−N−ベンゾイルシス
テインの代わりに(R、R′)−N,N′−ジベンゾ
イルシスチン548mg(1.2mmol)を、プロピオフ
エノンの代わりにメチルβ−フエニルビニルケト
ン148mg(1、1mmol)を用いた以外は全て同
様の操作、処理を行ない、(R)−(+)−4−フエ
ニル−3−ブテン−2−オール67mgを得た。収率
44%、光学純度76%。 実施例 4 実施例1において、プロピオフエノンの代わり
に2−シクロヘキセン−1−オン96mg(1m
mol)を用いた以外は全て同様の操作、処理を行
ない2−シクロヘキセン−1−オール29mgを得
た。収率40%、光学純度73%。 実施例 5〜14 実施例1において(R)−N−ベンゾイルシス
テインの代わりに(R,R′)−N,N′ジベンゾイ
ルシスチン548mg(1.2mmol)を、プロピオフエ
ノンの代りに第1表に示したα−、又はβ−ハロ
ケトン(1.0mmol)を用いた以外は全て同様の
操作、処理を行つた。各々の原料として用いたα
−、又はβ−ハロケトンに対応する光学活性なハ
ロヒドリンを第1表に示した収率で得た。 実施例 15 (R,R′)−N,N′ジベンゾイルシスチンの代
りに(S,S′)−N,N′ジベンゾイルシスチンを
用いて実施例6とまつたく同様の操作、処理を行
つた。実施例6の光学対掌体(R)−2−ブロモ
−1−フエニルエタノールを得た。収率80%、光
学純度82%、旋光度[α]20 D:−40.1゜(C8.12、
CHCl3)。 【表】 【表】 実施例 16 実施例3において、t−ブタノールの代わりに
メタール(1.6mmol)を用いた以外は全て同様
の操作、処理を行い、(R)−(+)−4−フエニル
−3−ブテン−2−オールを111mg得た。収率75
%、光学純度21%。 実施例 17 実施例3において、t−ブタノールの代わりに
エタノール(1.6mmol)を用いた以外は全て同
様の操作、処理を行い、(R)−(+)−4−フエニ
ル−3−ブテン−2−オールを105mg得た。収率
71%、光学純度49%。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for asymmetric reduction of ketones, which is advantageous for producing optically active alcohols, and more specifically relates to a method for asymmetric reduction of ketones, which is advantageous for producing optically active alcohols. , in which an optically active secondary alcohol is produced by reduction using a metal hydride in an inert organic solvent. According to the method of the present invention, optically active 4-hydroxycyclopentenones, which are intermediates for producing prostaglandins, which are known to exhibit various pharmacological effects, can be obtained in high yield. In addition, prostaglandins, thromboxanes,
Optically active alcohol moieties contained in the chain partial structures of icotrienes and their analogous compounds can be easily obtained. In addition, the pesticide pyrethroline,
It also becomes possible to efficiently synthesize intermediates for the synthesis of anthracyclines, which are anticancer drugs. Conventionally, lithium aluminum hydride, lithium tri-t-butoxyaluminum hydride, lithium borohydride, sodium borohydride, etc. have been known as methods for reducing the oxo group of a compound having a ketone structure to a hydroxyl group. With this reagent, the resulting alcohol is obtained as a racemate. However, as mentioned above, when used as a medicine or agrochemical, only one of these configurations is necessary and the other is often unnecessary. For example, when producing prostaglandins, only one configuration is prominent. It is known to exhibit pharmacological effects. On the other hand, various methods for obtaining optically active alcohols have been proposed (“Asymmetric Organic
Reactions”, JDMorrison, H.S.Mosher
Practice-Hall, Englewood-Cliffs, NJ
(1972)). Recently, (1) a method for modifying lithium aluminum hydride (J.Chem.Soc.(c)., 197
(1967), J.Org.Chem., 38 , 1870 (1973),
Tetrahedron, 32 , 939 (1976), Heterocycles,
12, 499 (1979), J.Am.Chem.Soc., 101 , 3129
(1979)), (2) Method for modifying borane (J.Chem.
Soc., Chem.Commun., 42 , 2534, 2996
(1977)), (3) Method using enzymes and microorganisms (J.Am.
Chem.Soc., 97 (1975)), (1) Method for modifying sodium borohydride (J.Chem.Soc., Chem.
Commun., 926 (1978), 438 (1976)), etc. are known. However, these methods have problems in the preparation of modifiers, recovery after use, separation and purification, or low chemical and optical yields, making it difficult to apply them to industrial production. . In view of the above problems, the present inventors have developed an industrially advantageous asymmetric reduction method for ketones that uses readily available compounds, is simple in reaction operation, separation and purification, and has high chemical and optical yields. As a result of extensive research to find out, ketones are selectively reduced asymmetrically by reacting them with metal hydrides in the presence of industrially easily available optically active amino acid derivatives and alcohols, and this The present inventors have discovered that an optically active alcohol can be easily obtained in high yield and with high purity, and that the optically active amino acid derivative used in the reaction can be efficiently recovered, leading to the completion of the present invention. The ketone targeted in the present invention is a chain or cyclic ketone represented by the general formula (). (In the formula, R 1 and R 2 are an alkyl group, an alkenyl group,
It represents an alkynyl group, an aryl group, or an aralkyl group, R 1 and R 2 are different from each other, and may be ring-closed. ) Alkyl, alkenyl, and alkynyl groups are linear or branched saturated or unsaturated hydrocarbon groups having 1 to 50 carbon atoms, and these hydrocarbon groups may further include halogen, amide, amine, ether, nitrile, It may be substituted with urethane, nitro group, etc. Examples of the aryl group include phenyl, biphenyl, and naphthyl groups, and the phenyl group has one or more substituents such as halogen, trifluoromethyl, lower alkyl, nitro, amide, amine, ether, nitrile, and urethane groups. It may have. Moreover, the aralkyl group means a lower alkyl group in which one or more hydrogen atoms are substituted with the above-mentioned aryl group. This ketone () has the general formula () (In the formula, R 3 is a commonly used amino group protecting group, R 4 is COOH or CH 2 OH, and Y is S,
Indicates an O atom or NH. ) is reacted with a metal hydride in the presence of an alcohol in an inert solvent. An asymmetric metal hydride having a stable 6-membered ring structure is produced by the reaction of the active hydrogen of the R 4 group and the YH group in formula () with the metal hydride.
The protecting group for the amino group used here may be one commonly used, such as benzoyl, acetyl, tosyl, benzyloxycarbonyl, t-butoxycarbonyl, t-amyloxycarbonyl, 2-naphthoyl, p-nitrocarbobenzoxy group. etc. Preferred examples of these optically active amino acid derivatives include serine, cysteine, and cystine in which the amino group is protected with benzoyl, which is a common protecting group, or derivatives in which the carboxyl group thereof is converted into an alcohol. These optically active amino acid derivatives are easily available industrially and are soluble in alkaline aqueous solutions, so they can be easily recovered by washing after the reaction is completed. Further, cystine, which is an oxidized form of cysteine, is reduced within the reaction system to give cysteine, and therefore has the same effect as cysteine. Therefore, the number of moles of relatively expensive optically active amino acids can be halved, and the optical yield is also high, which is advantageous. These optically active amino acid derivatives are used in a molar amount of 1 to 5 times, preferably 2 to 3 times, relative to the ketone. The steric configuration (R or S) of the resulting alcohol is reversed between when an L-amino acid is used and when a D-amino acid is used. Therefore, the configuration of the amino acid used can be arbitrarily selected depending on the configuration of the desired product. The straight chain or branched lower aliphatic alcohol used in the present invention includes straight chain or branched lower aliphatic alcohols having 1 to 6 carbon atoms such as methanol, ethanol, isopropanol, and t-butanol. Lower aliphatic alcohols having a branched group such as iso-propyl alcohol and t-butanol are preferred. The amount of alcohol used is 1 to 5 times, preferably 1 to 2 times by mole, relative to the ketone. Further, examples of the reducing agent used in the present invention include metal hydrides such as lithium borohydride, sodium borohydride, and lithium aluminum hydride, but lithium borohydride is preferred. The amount used is 1 to 5 times, preferably 3 to 4 times by mole, relative to the ketone. The solvent may be any inert solvent that does not participate in the reaction, such as hydrocarbon solvents such as hexane, aromatic solvents such as benzene, toluene, and xylene, and ether solvents such as ethyl ether, tetrahydrofuran, dioxane, and diglyme. These can be used alone or in a suitable mixture. Next, the preparation of the optically active alcohol obtained by the method of the present invention will be explained. First, under an inert gas atmosphere such as nitrogen or argon, an optically active amino acid derivative and a linear or branched low aliphatic alcohol are dissolved in an inert solvent, a reducing agent is added, and if necessary, the mixture is heated ( (first reaction), and then reduction proceeds by lowering the reaction temperature and adding a ketone (second reaction). In the first reaction, the reaction temperature was between room temperature and solvent reflux temperature.
Allow the reaction to run for minutes to 5 hours. Then, in the second reaction, the reaction temperature is -150 to 0°C, preferably -100 to -
React at 30°C for 1 to 10 hours. After confirming the disappearance of the ketone, the reaction is stopped by adding a 1N aqueous hydrochloric acid solution, and the desired optically active alcohol is obtained through appropriate post-treatment and purification. As for this post-treatment, for example, an aqueous alkali carbonate solution such as 5% sodium bicarbonate is added to the reaction stop solution to adjust the pH to around 10, and then the product is extracted with ether and dried. The crude product thus obtained is purified by conventional purification methods such as column chromatography, recrystallization, distillation, etc. The purity of the obtained optically active alcohol is (S)-(-)-α-
Gas chromatography and 1 H-NMR were performed according to the known method (MTPA method) to convert methoxy-α-trifluoromethylphenylacetic acid into an ester.
It was determined using On the other hand, since the optically active amino acid derivative remains in an unreacted state, it can be efficiently recovered by combining it with the above-mentioned post-treatment and purification means. For example, when optically active N-benzoylcysteine is used, it can be recovered in high yield by acidifying the aqueous layer after ale extraction in the post-treatment step and extracting it with ether. According to the present invention, a ketone is selectively asymmetrically reduced by using an optically active amino acid derivative that is industrially easily available as described above, so that an optically active alcohol can be converted from a corresponding ketone through a simple reaction operation. It can be manufactured efficiently. Hereinafter, the present invention will be specifically explained with reference to Examples. Example 1 (R)-N-benzoylcysteine 540 mg (2.4
mmol) and t-butanol 0.15 ml (1.6 mmol)
mol) was dissolved in 8.5 ml of THF, and 3.37 ml (3.6 mmol) of a THF solution (1.07 M solution) of lithium borohydride was added at room temperature under an argon atmosphere. The mixture was heated to reflux for 30 minutes, then cooled to -78°C.
A solution of 134 mg (1 mmol) of propiophenone in 2 ml of THF was added. The reaction solution was stirred for 4.5 hours while gradually increasing the reaction temperature from -78°C to -40°C.
The reaction was stopped by adding 3 ml of 1N hydrochloric acid, and the pH of the liquid was adjusted to 10 by adding 5% aqueous sodium hydrogen carbonate. The product was extracted with ether and the organic layer was
After washing with % sodium bicarbonate water and drying over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure. The residue was purified using silica gel TLC to obtain 96 mg of (R)-(+)-1-phenylpropanol as a colorless oil.
was gotten. Yield 71%, b.p107℃/15mmHg, [α] 20 D = +
41.45゜(c=5.09, chloroform), optical purity 91%
(calculated from the standard optical rotation). On the other hand, the aqueous layer after ether extraction was acidified, followed by ether extraction, drying, and solvent distillation to recover 459 mg of the raw material (R)-N-benzoylcysteine (recovery rate 85%). Example 2 In Example 1, 120 mg of acetophenone was used instead of propiophenone, and the reaction temperature was changed to -100
All the same operations and treatments were performed except that the temperature was changed from ℃ to -78℃, and (R)-(+)-1-phenylethanol
Got 80mg. Yield 66%, optical purity 87%. Example 3 In Example 1, 548 mg (1.2 mmol) of (R,R')-N,N'-dibenzoylcystine was used instead of (R)-N-benzoylcysteine, and methyl β- The same operations and treatments were carried out except that 148 mg (1.1 mmol) of phenyl vinyl ketone was used to obtain 67 mg of (R)-(+)-4-phenyl-3-buten-2-ol. yield
44%, optical purity 76%. Example 4 In Example 1, 96 mg of 2-cyclohexen-1-one (1 m
29 mg of 2-cyclohexen-1-ol was obtained by performing all the same operations and treatments except that 2-cyclohexen-1-ol was used. Yield 40%, optical purity 73%. Examples 5 to 14 In Example 1, 548 mg (1.2 mmol) of (R,R')-N,N'dibenzoylcystine was used instead of (R)-N-benzoylcysteine, and the compounds shown in Table 1 were used instead of propiophenone. The same operations and treatments were performed except that the α- or β-haloketone (1.0 mmol) shown in . α used as each raw material
Optically active halohydrins corresponding to - or β-haloketones were obtained in the yields shown in Table 1. Example 15 The same operations and treatments as in Example 6 were carried out using (S,S')-N,N'dibenzoylcystine instead of (R,R')-N,N'dibenzoylcystine. Ivy. The optical antipode (R)-2-bromo-1-phenylethanol of Example 6 was obtained. Yield 80%, optical purity 82%, optical rotation [α] 20D : -40.1° (C8.12,
CHCl3 ). [Table] [Table] Example 16 The same operations and treatments as in Example 3 were performed except that metal (1.6 mmol) was used instead of t-butanol, and (R)-(+)-4-phenyl 111 mg of -3-buten-2-ol was obtained. Yield 75
%, optical purity 21%. Example 17 The same operations and treatments as in Example 3 were performed except that ethanol (1.6 mmol) was used instead of t-butanol, and (R)-(+)-4-phenyl-3-butene-2 -105 mg of ol was obtained. yield
71%, optical purity 49%.

Claims (1)

【特許請求の範囲】 1 ケトンを金属水素化物と反応せしめて還元す
る方法において、下記一般式() (式中、R3はアミノ基の保護基、R4はCOOH基
またはCH2OH基を示し、YはS、O原子、また
はNHを示す。)で表わされる光学活性アミノ酸
誘導体および直鎖もしくは分岐状の低級脂肪族ア
ルコールの存在下に反応せしめることを特徴とす
るケトンの不斉還元方法。 2 ケトンが一般式() (式中、R1、R2はアルキル基、アルケニル基、
アルキニル基、アリール基またはアラルキル基を
示し、R1とR2は互に異なつていて、閉鎖してい
てもよい。)で表わされる鎖状または環状ケトン
であることを特徴とする特許請求の範囲第1項記
載のケトンの不斉還元方法。
[Claims] 1. In a method for reducing a ketone by reacting with a metal hydride, the following general formula () (In the formula, R 3 is a protecting group for an amino group, R 4 is a COOH group or a CH 2 OH group, and Y is an S, O atom, or NH.) A method for asymmetric reduction of ketones, characterized by carrying out the reaction in the presence of a branched lower aliphatic alcohol. 2 Ketone has the general formula () (In the formula, R 1 and R 2 are an alkyl group, an alkenyl group,
It represents an alkynyl group, an aryl group, or an aralkyl group, and R 1 and R 2 are different from each other and may be closed. ) The method for asymmetric reduction of a ketone according to claim 1, wherein the ketone is a chain or cyclic ketone represented by:
JP59015678A 1984-01-31 1984-01-31 Asymmetric reduction method of ketone Granted JPS60161927A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59015678A JPS60161927A (en) 1984-01-31 1984-01-31 Asymmetric reduction method of ketone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59015678A JPS60161927A (en) 1984-01-31 1984-01-31 Asymmetric reduction method of ketone

Publications (2)

Publication Number Publication Date
JPS60161927A JPS60161927A (en) 1985-08-23
JPS647973B2 true JPS647973B2 (en) 1989-02-10

Family

ID=11895401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59015678A Granted JPS60161927A (en) 1984-01-31 1984-01-31 Asymmetric reduction method of ketone

Country Status (1)

Country Link
JP (1) JPS60161927A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4912265A (en) * 1988-08-26 1990-03-27 Akzo America Inc. Phase transfer catalyzed process for borohydride reductions of carbonyl compounds
JP2646521B2 (en) * 1992-01-10 1997-08-27 田辺製薬株式会社 Preparation of optically active benzothiazepines by asymmetric reduction method

Also Published As

Publication number Publication date
JPS60161927A (en) 1985-08-23

Similar Documents

Publication Publication Date Title
CA1340549C (en) Method of preparing sphingosine derivatives
US6392073B1 (en) Intermediates and processes for the preparation of optically active octanoic acid derivatives
EP0084377B1 (en) Process for preparing biotin
JPS647973B2 (en)
IL147668A (en) Process for the preparation of venlafaxin
KR100915551B1 (en) Process for the efficient preparation of 3-hydroxy pyrrolidine and derivatives thereof
EP0025370B1 (en) Preparation of fluorinated methylaminoalkanoic acids, process intermediates and their preparation
US5380849A (en) Process for optically pure decahydroisoqiunolines
JP3121656B2 (en) Optically active glycidol derivative and method for producing the same
JP3081854B2 (en) Method for producing optically active levobunolol synthetic intermediate
JP3063371B2 (en) Oxime derivatives and their production
KR100241263B1 (en) Process for preparing n-alkyloxycarbonyl-beta-alkylsufonvaline
JPS62126164A (en) 4-alkoxy-2-oxo-pyrrolidine-1 acetic acid alkyl ester and manufacture
JP2558301B2 (en) Method for producing terpene diol derivative
JP3770678B2 (en) Optically active alcohol and its carboxylic acid ester
KR100461571B1 (en) A process for preparing (S)-1,2,4-butanetriol
JP4159767B2 (en) Method for producing lactone
JP2001002667A (en) Purification of optically active glycidol derivative
JPS61155354A (en) Method of asymmetric reduction of beta-keto ester
JPH0812629A (en) Production of optically active dihydroxylamine derivative and intermediate thereof
JPH01319496A (en) Uracil derivative
KR20030025394A (en) Preparing Method for N-[3-{3-(1-Piperidinylmethyl)phenoxy}propyl]acetoxyacetamide
JPH0532619A (en) Production of aziridine compound
JPH0713051B2 (en) Process for producing aminobutene dicarboxylic acid derivative
KR20040004745A (en) Piperidine compound, process for the production