JPS647871B2 - - Google Patents

Info

Publication number
JPS647871B2
JPS647871B2 JP6856879A JP6856879A JPS647871B2 JP S647871 B2 JPS647871 B2 JP S647871B2 JP 6856879 A JP6856879 A JP 6856879A JP 6856879 A JP6856879 A JP 6856879A JP S647871 B2 JPS647871 B2 JP S647871B2
Authority
JP
Japan
Prior art keywords
liquid
heat
temperature
orifice
recording head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6856879A
Other languages
Japanese (ja)
Other versions
JPS55161664A (en
Inventor
Toshitami Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP6856879A priority Critical patent/JPS55161664A/en
Priority to US06/149,429 priority patent/US4313124A/en
Priority to DE3051241A priority patent/DE3051241C2/en
Priority to DE3051240A priority patent/DE3051240C2/en
Priority to DE3051239A priority patent/DE3051239C2/en
Priority to DE3051238A priority patent/DE3051238C2/en
Priority to DE19803018852 priority patent/DE3018852A1/en
Priority to DE3051237A priority patent/DE3051237C2/en
Publication of JPS55161664A publication Critical patent/JPS55161664A/en
Publication of JPS647871B2 publication Critical patent/JPS647871B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04563Control methods or devices therefor, e.g. driver circuits, control circuits detecting head temperature; Ink temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2/14016Structure of bubble jet print heads
    • B41J2/14088Structure of heating means
    • B41J2/14112Resistive element
    • B41J2/14129Layer structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D15/00Component parts of recorders for measuring arrangements not specially adapted for a specific variable
    • G01D15/16Recording elements transferring recording material, e.g. ink, to the recording surface
    • G01D15/18Nozzles emitting recording material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/11Embodiments of or processes related to ink-jet heads characterised by specific geometrical characteristics

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、液体を噴射し、飛翔液滴を形成して
記録を行う液体噴射記録方法に関する。 ノンインパクト記録法は、記録時に於ける騒音
の発生が無視し得る程度に極めて小さいという点
に於いて、最近関心を集めている。その中で、高
速記録が可能であり、而も所謂普通紙に定着とい
う特別な処理を必要とせずに記録の行える所謂イ
ンクジエツト記録法(液体噴射記録方法)は、極
めて有力な記録方法であつて、これ迄にも様々な
方式の提案とそれを具現化する装置が考案され、
改良が加えられて商品化されたものもあれば、現
在も尚実用化への努力が続けられているものもあ
る。 その中で、例えば特開昭54−51837号公報、ド
イツ公開(DOLS)第2843064号公報に記載され
てある液体噴射記録方法は、熱エネルギーを液体
に作用させて、液滴吐出の為の原動力を得るとい
う点に於いて、他の液体噴射記録方法とは、異な
る特徴を有している。 即ち、上記の公報に開示されてある記録方法
は、熱エネルギーの作用を受けた液体が急峻な体
積の増大を伴う状態変化を起し、該状態変化に基
く作用力によつて、記録ヘツド部先端のオリフイ
スより液滴が吐出、飛翔して被記録部材に付着し
記録が行われるという特徴である。 殊に、DOLS2843064に開示されている液体噴
射記録法は、所謂drop−on demand記録方法に
極めて有効に適用されるばかりではなく、記録ヘ
ツド部をfull lineタイプで高密度マルチオリフイ
ス化として容易に具現化出来るので、高解像度、
高品質の画像を高速で得られるという特徴を有し
ている。 この様に、上記の液体噴射記録方法は、優れた
特徴を有するものであるが、高解像度、高品質の
画像を更に高速で記録するには、1つのオリフイ
スから吐出される液滴の単位時間当りの個数No.を
増大させる必要がある。 つまり、上記の液体噴射記録方法は、熱作用に
よる気泡の発生とその急峻な体積の増大と減衰に
基く急激な状態変化によつて記録ヘツドのオリフ
イスより液滴を飛翔的に吐出させて記録するが、
この体積の増大と減衰の繰返し時間を短かくして
Noを増大させる(繰返し液滴吐出性の向上)必
要がある。この繰返し液滴吐出性を向上させるに
は、律速段階となつている増大した気泡体積の減
衰速度を向上させることが提案されている。即
ち、液体に作用させる熱の発生源である電気熱変
換体よりの熱が熱作用部にある液体に作用し、該
液体と接触する表面である熱作用面の温度の時間
的変化の減衰カーブを、例えば、具体的にはペル
チエ素子等の冷却手段を使用して、電気熱変換体
の熱発生部や液体を強制的に冷却する(強制冷
却)ことにより急峻なものとし、結果的にNoを
増大させ様とする工夫である。而乍ら、上記の様
に特別に冷却手段を記録ヘツドに設けることは、
装置自体の複雑化とコスト上昇を招き、殊にマル
チオリフイス化の記録ヘツドとした場合には、そ
の点が著しいものとなる。況してや、高密度化マ
ルチオリフイス記録ヘツドを作成するとなると、
構造上、加工上、組立上等に於いて高度な微細精
密技術を要求され、コスト上昇、歩留りの低下、
保守上の問題が生じ、好ましい結果とはならな
い。 更に、前記の如き冷却手段を用いて強制冷却す
ることによつて発生した気体の体積を減少させる
ことを加速し様としても、発生する気泡周辺にあ
る液体の冷却を介して気泡を冷却する為に冷却効
率が低い、冷却手段と電気熱変換体とを同期させ
て駆動する必要がある。冷却手段の応答性が遅い
為に繰返し液滴吐出性を向上させるのに限度があ
る、冷却速度を上げ様とすると冷却手段周辺の液
体を必要以上に冷却して仕舞うことによる極度の
液体の物性変化に基く液滴吐出特性の低下、等々
の不都合さを生ずる。 これ等の不都合さは、記録ヘツドに設けられて
ある熱作用部への液体の補給不安定、吐出液滴量
の不均一、液滴吐出方向の乱れ、液滴吐出スピー
ドの不均一、記録信号に対する応答の忠実性及び
確実性の低下等を招来し、記録画像の品質低下、
強いては記録停止の原因となる。 本発明は、この点に鑑み成されたものであつ
て、連続的長時間記録に於いても常時安定して高
速で且つより高解像度、より高品質の画像を記録
することが出来る液体噴射記録方法を提供する事
を目的とする。 本発明は、上記の目的を達成する為に、諸々の
角度から検討し、実際に多種多様の記録ヘツドを
設計製造し、種々の角度からの実験を繰返し行つ
ている過程で、熱作用面の温度の時間変化の減衰
カーブが加熱時の増加カーブに大きく依存するこ
とを突止め熱作用面の温度波形が後述する波形状
態をとれば、強制冷却しなくとも前記の諸問題を
生ぜずに本発明の目的が達成される事を見出した
点に基いて成されたものである。 本発明者の実験検討の結果に因れば、記録ヘツ
ドに設けられてある電気熱変換体に電気信号を入
力して、熱エネルギーを発生させ、該熱エネルギ
ーの作用によつて熱作用部にある液体中に気泡を
発生させる場合、発生した気泡表面上に周りより
は比較的高い温度を有する高温液層が形成され、
この高温液層の層厚が厚くなるに従つて気泡体積
Vの減少速度が著しく低下し、この高温液層の冷
却は、前記した様な冷却手段によつて外部的に行
つても左程効果が上がらないこと、高温液層の層
厚は熱作用部にある液体の加熱速度に大いに依存
していることが判明している。 本発明はこの点の総合的実験を検討の上に築か
れたものである。 本発明の液体噴射記録方法は、熱エネルギーの
作用によつて液体に状態変化を生じせしめ該状態
変化に基づいて液体を吐出して液滴を形成するた
めのオリフイス及び該オリフイスに連通し前記熱
エネルギーが液体に作用する部分である熱作用部
を有する液吐出部と、前記熱エネルギーを発生す
るための電気熱交換体とを具備する記録ヘツドを
使用する液体噴射記録方法であつて、前記電気熱
変換体よりの熱が前記熱作用部にある液体に作用
し、該液体と接触する表面である熱作用面の温度
の立上り開始温度Tiより最高温度Tpに至るまで
の温度の時間変化率の平均値を1×106℃/sec以
上とする電圧とパルス幅成分を有するパルス波を
入力して記録を実行することを特徴とする。 この様に熱作用面の温度の、立上り開始温度
Tiより最高温度Tpに至る迄の時間変化率dT/dtの 平均値(dT/dt)を1×106℃/sec以上となる様に して記録を実行すれば吐出液滴量の均一化、液滴
吐出方向の安定化、液滴吐出スピードの均一化、
及び記録信号に対する応答の忠実性と確実性の向
上を計ることが出来、高解像度で高品質の画像を
高速記録することが極めて容易に行える。更に
は、前記熱作用面の温度変化を波形状とすること
によつて、熱作用部に於いて、電気信号の電気熱
変換体への入力によつて発生される熱エネルギー
が、該熱作用部にある液体に高効率で作用し、そ
の結果生じた液滴吐出の為の原動力が液滴吐出に
有効に消費される様になるので省液滴吐出エネル
ギー化を実現することが容易となる。 以下、本発明を図面に従つて、更に具体的に説
明する。 第1図aは、本発明が適用される液体噴射記録
ヘツドのオリフイス側から見た正面部分図、第1
図bは、第1図aに一点鎖線XYで示す部分で切
断した場合の切断面部分図である。 図に示される記録ヘツド1は、その表面に電気
熱変換体2が設けられている基板3の表面に、所
定の線密度で所定の巾と深さの溝が所定数設けら
れている溝付板4で覆う様に接合することによつ
て、オリフイス5と液滴吐出部6が形成された構
造を有している。図に示す記録ヘツドの場合、オ
リフイス5を複数有するものとして示されてある
が、勿論本発明は、これに限定されるものではな
く単一オリフイスの場合の記録ヘツドへの適用の
場合も本発明の範囲にはいるものである。 液吐出部6は、その終端に液滴を吐出させる為
のオリフイス5と、電気熱変換体2より発生され
る熱エネルギーが液体に作用して気泡を発生し、
その体積の膨脹と収縮に依る急激な状態変化を引
起す処である熱作用部7とを有する。 熱作用部7は、電気熱変換体2の熱発生部8の
上部に位置し、熱発生部8の液体と接触する熱作
用面9をその底面としている。 熱発生部8は、基板3上に設けられた下部層1
0、該下部層10上に設けられた発熱抵抗層1
1、該発熱抵抗層11上に設けられた上部層12
とで構成される。発熱抵抗層11には、熱を発生
させる為に該層11に通電する為の電極13,1
4がその表面に設けられてある。電極13は、各
液吐出部の熱発生部に共通の電極であり、電極1
4は、各液吐出部の熱発生部を選択して発熱させ
る為の選択電極であつて、液吐出部の流路に沿つ
て設けられてある。 上部層12は、発熱抵抗層11を、使用する液
体から化学的・物理的に保護する為に発熱抵抗層
11と液吐出部6にある液体とを隔絶すると共
に、液体を通じて電極13,14間が短絡するの
を防止する発熱抵抗層11の保護的機能を有して
いる。 上部層12は、上記の様な機能を有するもので
あるが、発熱抵抗層11が、耐液性があり、且つ
液体を通じて電極13,14間が電気的に短絡す
る心配が全くない場合には、必ずしも設ける必要
はなく、発熱抵抗層11の表面に直ちに液体が接
触する構造の電気熱変換体として設計しても良
い。 下層部10は、主に熱流量制御機能を有する。
即ち、液滴吐出の際には、発熱抵抗層11で発生
する熱が基板3側の方に伝導するよりも、熱作用
部7側の方に伝導する割合が出来る限り多くな
り、液滴吐出後、詰り発熱抵抗層11への通電が
OFFされた後には、熱作用部7及び熱発生部8
にある熱が速やかに基板3側に放出されて、熱作
用部7にある液体及び発生した気泡が急冷される
為に設けられる。 この様に、液滴吐出の際には、熱作用部7側へ
の熱流量の割合が出来る限り大きく、発熱抵抗層
11への通電がOFFされた際には、基板3側へ
の熱流量の割合が出来る限り大きくなる様にし
て、液滴吐出エネルギーの高効率化と高熱応答性
及び連続的繰返し液滴吐出性の向上、液滴吐出周
波数の向上、吐出液滴量の均一化、液滴吐出方向
の安定化、液滴吐出スピードの均一化、及び記録
信号に対する応答の忠実性と確実性の向上を実現
させるには、熱作用面の温度変化カーブに於い
て、前記した関係が成立する様にして記録を実行
すれば良いものである。 この点を更に具体的に説明する。 第2図には、記録ヘツドに設けられた電気熱変
換体2に記号Pで示すパルス波形の電気信号を入
力した際の熱作用面9の表面温度の時間的変化が
示される。 今、電気熱変換体2に時刻toと時刻tpに於いて
ON−OFFされるパルス状の電気信号Pが入力さ
れると、熱作用面9の表面温度Tは、時刻toに於
いて立上り開始温度Tiより上昇し始め、時刻tp
に於いて最高温度Tpに到達する。なお、前記開
始温度Tiは使用するインクの物性および記録ヘ
ツドがおかれている環境温度により支配されて自
ずから定まるものであり、また前記最高温度Tp
は記録ヘツドに印加される電気信号の電圧および
パルス幅によつて定まりかつインクが加熱される
ことによつて急峻な体積の増大を伴う状態変化を
おこすのに必要な温度を意味する。次いで前記時
刻tpに於いて電気信号pがOFFされると表面温
度Tは減衰し始める。電気信号pがOFFされて
表面温度Tが減少する減少速度は時間toに於ける
表面温度Tの時間的変化率によつて大きく左右さ
れる。即ち、本発明で云う様に加熱時のその時間
変化率の平均値が1×106℃/sec以上である様な
温度カーブにすることによつて電気信号pを
OFFした場合の熱作用面の表面温度の減衰カー
ブを特別に冷却手段を用いずとも効果的に急峻に
する事が出来、前記した如きの本発明の目的が十
二分に達成することが出来る。 本発明に於いては、前記した時間変化率の平均
値(dT/dt)が1×106℃/sec以上とするものであ るが、更に好適には3×106℃/sec以上、最適に
は1×107℃/sec以上とされる。 以下本発明を実施例に従つて具体的に説明す
る。 実施例 アルミナ基板上にSiO2層(下部層)をスパツ
タリングにより3μm厚に形成、続いて発熱抵抗
層としてHfB2を1000Å厚に、アルミニウムを電
極として3000Å厚に積層した後、選択エツチング
によつて80μm×200μmの発熱抵抗体パターンを
形成した。次にSiO2層をスパツタリングにより
0.5μm厚に保護層(上部層)として積層して基板
上に電気熱変換体を形成した後幅80μm×深さ
80μmの溝を刻んだガラス板を溝と発熱抵抗体が
合致するように接合した。引続いて発熱抵抗体の
先端とオリフイスの距離が300μmになるようオ
リフイス端面を研磨して記録ヘツドを作成した。
黒色染料とエタノールを主成とするインクを0.1
気圧の背圧で熱作用部に供給しながら、10μs、
40Vの矩形電圧パルス印字信号を200μsの周期で
電気熱変換体に10時間連続して印加したところ、
印字信号に従つて忠実且つ確実に液滴が吐出し
た。電圧印加時と同期させ乍らストロボを点滅
し、記録ヘツドのオリフイスからの液滴の吐出状
況及び熱作用面上に形成される気泡の体積の時間
変化を測定した結果、及び熱作用面の表面温度の
変化を赤外温度計で測定した結果を第1表に示
す。又同時に印加パルス幅を変化させることによ
り(dT/dT)を種々に変化させた場合の吐出状況、 最高応答周波数、消費エネルギー、吐出速度をも
同時に示した。 この結果から本発明の範囲が特に優れた吐出性
能を示すことが明らかになつた。
The present invention relates to a liquid jet recording method that performs recording by jetting liquid and forming flying droplets. Non-impact recording methods have recently attracted attention because the noise generated during recording is so small that it can be ignored. Among these, the so-called inkjet recording method (liquid jet recording method), which is capable of high-speed recording and does not require special processing such as fixing on so-called plain paper, is an extremely powerful recording method. Until now, various methods have been proposed and devices that embody them have been devised.
Some have been improved and commercialized, while others are still being put into practical use. Among them, for example, the liquid jet recording method described in Japanese Patent Application Laid-Open No. 54-51837 and German Opening Publication (DOLS) No. 2843064 applies thermal energy to the liquid to create a driving force for ejecting droplets. This method has a different feature from other liquid jet recording methods in that it obtains the following information. That is, in the recording method disclosed in the above-mentioned publication, the liquid subjected to the action of thermal energy undergoes a state change accompanied by a sharp increase in volume, and the acting force based on the state change causes the recording head portion to The feature is that droplets are ejected from an orifice at the tip, fly, and adhere to the recording member to perform recording. In particular, the liquid jet recording method disclosed in DOLS2843064 is not only very effectively applicable to the so-called drop-on demand recording method, but also can be easily implemented as a full line type recording head with high density multi-orifices. high resolution,
It has the characteristic of being able to obtain high-quality images at high speed. In this way, the liquid jet recording method described above has excellent features, but in order to record high-resolution, high-quality images at even higher speeds, it is necessary to It is necessary to increase the number of hits. In other words, the liquid jet recording method described above records by ejecting liquid droplets from the orifice of the recording head in a flying manner due to the generation of bubbles due to thermal action, rapid increase in volume, and sudden change in state due to attenuation. but,
By shortening the repetition time of this volume increase and decay,
It is necessary to increase No. (improve the ability to repeatedly eject droplets). In order to improve the repeatability of droplet ejection, it has been proposed to improve the attenuation rate of the increased bubble volume, which is the rate-determining step. In other words, the heat from the electrothermal converter, which is the source of heat acting on the liquid, acts on the liquid in the heat acting part, and the attenuation curve of the temperature change over time of the heat acting surface, which is the surface that comes into contact with the liquid. For example, by forcibly cooling the heat generating part of the electrothermal converter and the liquid using a cooling means such as a Peltier element (forced cooling), the result is a No. This is a device designed to increase the However, providing a special cooling means to the recording head as described above
This increases the complexity and cost of the device itself, and this problem becomes especially noticeable when a multi-orifice recording head is used. However, when creating a high-density multi-orifice recording head,
Advanced micro-precision technology is required in structure, processing, assembly, etc., resulting in higher costs, lower yields,
Maintenance problems arise and the result is not desirable. Furthermore, even if the volume of the generated gas is accelerated by forced cooling using the cooling means described above, it is not possible to cool the bubbles by cooling the liquid around the generated bubbles. The cooling efficiency is low, and it is necessary to drive the cooling means and the electrothermal converter in synchronization. Due to the slow response of the cooling means, there is a limit to the ability to repeatedly eject droplets.If you try to increase the cooling rate, the liquid around the cooling means will be cooled more than necessary, resulting in extreme physical properties of the liquid. This causes inconveniences such as a drop in droplet ejection characteristics due to the change. These inconveniences include unstable replenishment of liquid to the heat-acting section provided in the recording head, non-uniformity in the amount of ejected droplets, disturbance in the direction of droplet ejection, non-uniformity in droplet ejection speed, and problems with recording signals. This results in a decrease in the fidelity and reliability of responses to
This may even cause recording to stop. The present invention has been made in view of this point, and is a liquid jet recording method that can consistently record images at high speed, higher resolution, and higher quality even during continuous long-term recording. The purpose is to provide a method. In order to achieve the above object, the present invention was developed by examining various angles, actually designing and manufacturing a wide variety of recording heads, and repeatedly conducting experiments from various angles. If we find out that the attenuation curve of temperature change over time is largely dependent on the increase curve during heating, and if the temperature waveform of the heat-active surface takes the waveform state described later, we can solve the problem without forced cooling without causing the above problems. This invention was made based on the discovery that the object of the invention could be achieved. According to the results of experimental studies conducted by the inventor, an electric signal is input to an electrothermal converter provided in a recording head to generate thermal energy, and the thermal effect is applied to a heat acting section by the action of the thermal energy. When bubbles are generated in a liquid, a high-temperature liquid layer is formed on the surface of the generated bubbles, which has a relatively higher temperature than the surrounding area.
As the layer thickness of this high-temperature liquid layer increases, the rate of decrease in the bubble volume V decreases markedly. It has been found that the layer thickness of the high-temperature liquid layer is highly dependent on the heating rate of the liquid in the heat-acting zone. The present invention is based on comprehensive experimental studies in this regard. The liquid jet recording method of the present invention includes an orifice for causing a state change in the liquid by the action of thermal energy and ejecting the liquid to form a droplet based on the state change; A liquid jet recording method using a recording head comprising a liquid discharge part having a heat acting part, which is a part where energy acts on the liquid, and an electric heat exchanger for generating the thermal energy. Heat from the heat converter acts on the liquid in the heat acting part, and the time rate of change in temperature of the heat acting surface, which is the surface in contact with the liquid, from the rising start temperature Ti to the maximum temperature Tp. The recording is performed by inputting a pulse wave having a voltage and a pulse width component whose average value is 1×10 6 °C/sec or more. In this way, the temperature at which the temperature of the heat acting surface starts to rise
If recording is performed with the average value of the time rate of change dT/dt (dT/dt) from Ti to reaching the maximum temperature Tp at 1×10 6 °C/sec or more, the amount of ejected droplets can be made uniform. Stabilization of droplet discharge direction, uniformity of droplet discharge speed,
It is also possible to improve the fidelity and reliability of responses to recording signals, and it is extremely easy to record high-resolution, high-quality images at high speed. Furthermore, by making the temperature change of the heat effecting surface wave-like, the thermal energy generated by inputting an electric signal to the electrothermal converter in the heat effect part can be caused by the heat effect. It acts with high efficiency on the liquid in the area, and the resulting motive force for ejecting droplets is effectively consumed for ejecting droplets, making it easy to save energy for ejecting droplets. . Hereinafter, the present invention will be explained in more detail with reference to the drawings. FIG. 1a is a front partial view of a liquid jet recording head to which the present invention is applied, as seen from the orifice side;
FIG. 1B is a partial cross-sectional view taken along the dashed line XY in FIG. 1A. The recording head 1 shown in the figure has a grooved surface in which a predetermined number of grooves of a predetermined width and depth are provided at a predetermined linear density on the surface of a substrate 3 on which an electrothermal transducer 2 is provided. It has a structure in which an orifice 5 and a droplet discharge part 6 are formed by joining the plate 4 so as to cover it. Although the recording head shown in the figure is shown as having a plurality of orifices 5, the present invention is of course not limited to this, and the present invention can also be applied to a recording head with a single orifice. It falls within the range of The liquid discharge part 6 has an orifice 5 at its end for discharging liquid droplets, and thermal energy generated by the electrothermal converter 2 acts on the liquid to generate bubbles.
It has a heat acting part 7 which causes a rapid state change due to expansion and contraction of its volume. The heat acting part 7 is located above the heat generating part 8 of the electrothermal converter 2, and has a heat acting surface 9 that contacts the liquid of the heat generating part 8 as its bottom surface. The heat generating section 8 is a lower layer 1 provided on the substrate 3.
0, heating resistance layer 1 provided on the lower layer 10
1. Upper layer 12 provided on the heating resistance layer 11
It consists of The heating resistance layer 11 includes electrodes 13, 1 for supplying electricity to the layer 11 to generate heat.
4 is provided on its surface. The electrode 13 is an electrode common to the heat generating part of each liquid discharge part, and
Reference numeral 4 denotes a selection electrode for selectively generating heat in the heat generating section of each liquid discharge section, and is provided along the flow path of the liquid discharge section. The upper layer 12 isolates the heating resistance layer 11 from the liquid in the liquid discharge part 6 in order to chemically and physically protect the heating resistance layer 11 from the liquid used, and also connects the electrodes 13 and 14 through the liquid. The heating resistor layer 11 has a protective function of preventing short circuits. The upper layer 12 has the above-mentioned functions, but if the heating resistance layer 11 is liquid resistant and there is no fear of electrical short circuit between the electrodes 13 and 14 through liquid, , it is not necessarily necessary to provide it, and it may be designed as an electrothermal transducer having a structure in which the liquid comes into immediate contact with the surface of the heat generating resistance layer 11. The lower part 10 mainly has a heat flow control function.
That is, when ejecting a droplet, the proportion of heat generated in the heat generating resistor layer 11 being conducted toward the heat acting section 7 side is as large as possible than being conducted toward the substrate 3 side, and the droplet is ejected. After that, electricity is not applied to the clogged heat generating resistor layer 11.
After being turned off, the heat acting part 7 and the heat generating part 8
This is provided so that the heat present in the heat acting portion 7 is quickly released to the substrate 3 side, and the liquid in the heat acting portion 7 and the generated bubbles are rapidly cooled. In this way, when discharging a droplet, the proportion of the heat flow toward the heat acting part 7 side is as large as possible, and when the power to the heating resistor layer 11 is turned off, the heat flow rate toward the substrate 3 side is as large as possible. In order to increase the ratio of In order to stabilize the droplet ejection direction, equalize the droplet ejection speed, and improve the fidelity and reliability of the response to the recording signal, the above relationship must be established in the temperature change curve of the heat acting surface. All you have to do is record as shown below. This point will be explained more specifically. FIG. 2 shows the temporal change in the surface temperature of the heat acting surface 9 when an electric signal having a pulse waveform indicated by the symbol P is input to the electrothermal converter 2 provided in the recording head. Now, at time to and time tp, the electrothermal converter 2
When a pulsed electric signal P that is turned ON and OFF is input, the surface temperature T of the heat acting surface 9 starts to rise from the rising start temperature Ti at time to, and at time tp
The maximum temperature Tp is reached at . Note that the starting temperature Ti is determined automatically by the physical properties of the ink used and the environmental temperature in which the recording head is placed, and the maximum temperature Tp
is determined by the voltage and pulse width of the electrical signal applied to the recording head, and means the temperature necessary for heating the ink to cause a change in state accompanied by a sharp increase in volume. Then, at the time tp, the electric signal p is turned off, and the surface temperature T begins to decrease. The speed at which the surface temperature T decreases when the electric signal p is turned off is largely influenced by the temporal rate of change in the surface temperature T over time to. That is, as mentioned in the present invention, the electric signal p can be changed by creating a temperature curve such that the average value of the rate of change over time during heating is 1×10 6 °C/sec or more.
It is possible to effectively steepen the attenuation curve of the surface temperature of the heat-acting surface when it is turned off without using any special cooling means, and the object of the present invention as described above can be more than achieved. . In the present invention, the average value of the time rate of change (dT/dt) described above is 1×10 6 °C/sec or more, more preferably 3×10 6 °C/sec or more, most preferably 1×10 7 °C/sec or higher. The present invention will be specifically described below with reference to Examples. Example Two layers of SiO (lower layer) were formed on an alumina substrate by sputtering to a thickness of 3 μm, then HfB 2 was layered to a thickness of 1000 Å as a heating resistance layer, and aluminum was laminated to a thickness of 3000 Å as an electrode, followed by selective etching. A heating resistor pattern of 80 μm x 200 μm was formed. Next, two layers of SiO are added by sputtering.
Laminated as a protective layer (upper layer) to a thickness of 0.5 μm to form an electrothermal converter on the substrate, then width 80 μm x depth
A glass plate with a groove of 80 μm cut thereon was bonded so that the groove and the heating resistor matched. Subsequently, the end face of the orifice was polished so that the distance between the tip of the heating resistor and the orifice was 300 μm, thereby creating a recording head.
0.1 ink mainly composed of black dye and ethanol
10 μs while supplying the heat acting part with atmospheric back pressure.
When a 40V rectangular voltage pulse printing signal was continuously applied to the electrothermal converter at a cycle of 200μs for 10 hours,
Droplets were faithfully and reliably ejected according to the print signal. The results of measuring the discharge status of droplets from the orifice of the recording head and the time change in the volume of bubbles formed on the heat-active surface by blinking the strobe while synchronizing with the voltage application, and the surface of the heat-active surface. Table 1 shows the results of measuring temperature changes using an infrared thermometer. At the same time, we also showed the discharge status, maximum response frequency, energy consumption, and discharge speed when (dT/dT) was varied in various ways by varying the applied pulse width. These results revealed that the range of the present invention exhibited particularly excellent ejection performance.

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図aは、本発明の適用される液体噴射記録
ヘツドの好適な実施態様の1つのオリフイス側か
らの正面部分図、第1図bは、第1図aの一点鎖
線XYで示す部分で切断した場合の切断面部分
図、第2図は、記録ヘツドに入力される電気信号
と熱作用面9の表面温度の時間的変化を示すタイ
ミングチヤートである。 1……液体噴射記録ヘツド、2……電気熱変換
体、3……基板、4……溝付板、5……オリフイ
ス、6……液吐出部、7……熱作用部、8……熱
発生部、9……熱作用面、10……下層部、11
……発熱抵抗層、12……上部層、13……共通
電極、14……選択電極。
FIG. 1a is a partial front view of a preferred embodiment of a liquid jet recording head to which the present invention is applied, as viewed from the orifice side, and FIG. 1b is a portion indicated by a dashed line XY in FIG. FIG. 2, which is a partial cross-sectional view of the recording head, is a timing chart showing temporal changes in the electric signal input to the recording head and the surface temperature of the heat-active surface 9. DESCRIPTION OF SYMBOLS 1... Liquid jet recording head, 2... Electrothermal converter, 3... Substrate, 4... Grooved plate, 5... Orifice, 6... Liquid discharge section, 7... Heat acting section, 8... Heat generating part, 9...Heat action surface, 10...Lower part, 11
...Heating resistance layer, 12... Upper layer, 13... Common electrode, 14... Selective electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 熱エネルギーの作用によつて液体に状態変化
を生じせしめ該状態変化に基づいて液体を吐出し
て液滴を形成するためのオリフイス及び該オリフ
イスに連通し前記熱エネルギーが液体に作用する
部分である熱作用部を有する液吐出部と、前記熱
エネルギーを発生するための電気熱変換体とを具
備する記録ヘツドを使用する液体噴射記録方法で
あつて、前記電気熱変換体よりの熱が前記熱作用
部にある液体に作用し、該液体と接触する表面で
ある熱作用面の温度の立上り開始温度Tiより最
高温度Tpに至るまでの温度の時間変化率の平均
値を1×106℃/sec以上とする電圧とパルス幅成
分を有するパルス波を入力して記録を実行するこ
とを特徴とする液体噴射記録方法。
1. An orifice for causing a state change in a liquid by the action of thermal energy and ejecting the liquid to form droplets based on the state change, and a part communicating with the orifice where the thermal energy acts on the liquid. A liquid jet recording method using a recording head comprising a liquid discharge section having a heat acting section and an electrothermal converter for generating the thermal energy, wherein the heat from the electrothermal converter generates the heat energy. The average value of the rate of change over time of the temperature of the heat action surface, which is the surface that acts on the liquid in the heat action part and comes into contact with the liquid, from the start temperature Ti to the maximum temperature Tp is 1 × 10 6 °C. A liquid jet recording method characterized in that recording is performed by inputting a pulse wave having a voltage and a pulse width component of /sec or more.
JP6856879A 1979-05-18 1979-06-01 Liquid injection recording method Granted JPS55161664A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP6856879A JPS55161664A (en) 1979-06-01 1979-06-01 Liquid injection recording method
US06/149,429 US4313124A (en) 1979-05-18 1980-05-13 Liquid jet recording process and liquid jet recording head
DE3051241A DE3051241C2 (en) 1979-05-18 1980-05-16 Recording head for ejecting liquid droplets onto a recording medium
DE3051240A DE3051240C2 (en) 1979-05-18 1980-05-16 Inkjet print head
DE3051239A DE3051239C2 (en) 1979-05-18 1980-05-16 Print head for an inkjet printer
DE3051238A DE3051238C2 (en) 1979-05-18 1980-05-16 Print head for ink jet printer
DE19803018852 DE3018852A1 (en) 1979-05-18 1980-05-16 METHOD FOR INK-JET PRINTING AND WRITING HEAD FOR AN INK-JET PRINTER
DE3051237A DE3051237C2 (en) 1979-05-18 1980-05-16 Ink jet recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6856879A JPS55161664A (en) 1979-06-01 1979-06-01 Liquid injection recording method

Publications (2)

Publication Number Publication Date
JPS55161664A JPS55161664A (en) 1980-12-16
JPS647871B2 true JPS647871B2 (en) 1989-02-10

Family

ID=13377493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6856879A Granted JPS55161664A (en) 1979-05-18 1979-06-01 Liquid injection recording method

Country Status (1)

Country Link
JP (1) JPS55161664A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717065B2 (en) * 1986-11-27 1995-03-01 富士ゼロックス株式会社 Inkjet recording device
JPH021317A (en) * 1988-02-18 1990-01-05 Ricoh Co Ltd Liquid jet recording head
US5980024A (en) * 1993-10-29 1999-11-09 Hitachi Koki Co, Ltd. Ink jet print head and a method of driving ink therefrom

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451837A (en) * 1977-09-30 1979-04-24 Ricoh Co Ltd Ink jet head device
JPS5459139A (en) * 1977-10-19 1979-05-12 Canon Inc Recording head
JPS5459936A (en) * 1977-10-03 1979-05-15 Canon Inc Recording method and device therefor

Also Published As

Publication number Publication date
JPS55161664A (en) 1980-12-16

Similar Documents

Publication Publication Date Title
US4313124A (en) Liquid jet recording process and liquid jet recording head
JP3320825B2 (en) Recording device
JPH0117862B2 (en)
JPH0344912B2 (en)
JPS6345308B2 (en)
JPS609908B2 (en) liquid jet recording head
JPS647871B2 (en)
JPH0379190B2 (en)
JPH0237301B2 (en) EKITAIFUNSHAKIROKUHO
JPH0237302B2 (en) EKITAIFUNSHAKIROKUHO
JPS5849188B2 (en) liquid jet recording method
JP2907338B2 (en) Liquid jet recording method
JPH0466703B2 (en)
JP2658020B2 (en) Ink jet recording device
JPS635271B2 (en)
JPH0234785B2 (en)
JPS5934506B2 (en) liquid jet recording head
JP3277203B2 (en) Liquid jet recording apparatus and recording head
JPS6342577B2 (en)
US5980024A (en) Ink jet print head and a method of driving ink therefrom
JPS59124863A (en) Liquid jetting recorder
JPS59187870A (en) Liquid injection recorder
JPH023312A (en) Ink jet recording method
JPS6246358B2 (en)
JP2001088305A (en) Recorder