JP2907338B2 - Liquid jet recording method - Google Patents

Liquid jet recording method

Info

Publication number
JP2907338B2
JP2907338B2 JP62308866A JP30886687A JP2907338B2 JP 2907338 B2 JP2907338 B2 JP 2907338B2 JP 62308866 A JP62308866 A JP 62308866A JP 30886687 A JP30886687 A JP 30886687A JP 2907338 B2 JP2907338 B2 JP 2907338B2
Authority
JP
Japan
Prior art keywords
ink
liquid
bubble
jet recording
droplets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62308866A
Other languages
Japanese (ja)
Other versions
JPH02511A (en
Inventor
卓朗 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP62308866A priority Critical patent/JP2907338B2/en
Publication of JPH02511A publication Critical patent/JPH02511A/en
Application granted granted Critical
Publication of JP2907338B2 publication Critical patent/JP2907338B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04516Control methods or devices therefor, e.g. driver circuits, control circuits preventing formation of satellite drops
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/0458Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on heating elements forming bubbles

Description

【発明の詳細な説明】 技術分野 本発明は、液体噴射記録方法、より詳細には、バブル
を利用してインク滴を噴射させて記録を行う液体噴射記
録装置における記録ヘッドの駆動方法に関する。 従来技術 液滴を吐出オリフィスから噴射させるに当って、発熱
抵抗体等を用いて熱エネルギー液体に付与し、エネルギ
ーが付与された液体に急峻な体積増大を伴う状態変化を
生じせしめ、その体積増大に基づく作用力によって液体
を吐出噴射せしめて記録を行う所謂バブル液体噴射記録
装置は、例えば、特開昭55−16166号公報において公知
である。而して、上記特開昭55−161665号公報に記載さ
れた発明においては、気泡の体積増加のスピードを規定
して効果的な吐出性能を得るようにしているが、インク
吐出性能に大きな影響を及ぼす気泡収縮に関する具体的
な記載があまりなく、単に、体積増加の条件だけで、効
果的な吐出性能が得られると考えているようである。 しかし、インク吐出性能には、気泡収縮が影響を及ぼ
す性能もあり、例えば、気泡収縮が影響を及ぼす性能と
して、インク滴の切れのよい吐出、サテライト滴のない
吐出、1滴吐出後の次のインク供給スピード(応答周波
数スピードに関係する)等があり、これらを抜きにして
効果的なインク吐出性能は語れない。 目的 本発明は、上述のごとき実情に鑑みてなされたもの
で、特に、バブルジェット型液体噴射記録装置におい
て、インクの吐出性能を向上させることを目的としてな
されたものである。 構成 本発明は、上記目的を達成するために、液滴を吐出す
るために設けられたオリフィスと、該オリフィスに連通
し、液滴を吐出するための熱エネルギーが液体に作用す
る部分である熱作用部とを有する液吐出部と、熱エネル
ギーを発生する手段としての電気熱変換体とを具備する
記録ヘッドを使用する液体噴射記録方法であって、熱伝
導性の高い基板の上に、熱伝導性の低い薄層である蓄熱
層と、電気熱変換体としての電気抵抗体層を形成し、該
電気抵抗体層に通電することによって、数μsecの高熱
流束をインクに与え、気泡を発生させ、該気泡の体積増
加にともなう作用力で、前記電気抵抗体層が形成された
平面とほぼ平行に、前記オリフィスより液滴を吐出、飛
翔させ、被記録面に付着させて記録を行なう液体噴射記
録方法において、前記気泡が発生してから最大体積にな
るまでの時間をti、最大体積になってから消滅するま
での時間をtdとする時、気泡の発生〜成長、収縮〜消
滅にともなうインクの移動が追従する範囲内で、 なる関係式を満足して記録することを特徴としたもので
ある。以下、本発明の実施例に基いて説明する。 第4図は、本発明が適用される液体噴射記録ヘッドの
一例を示す斜視図、第5図は、該記録ヘッドを構成する
蓋基板(第5図(a))と基板(第5図(b))の分解
斜視図、第6図は、蓋基板を裏側から見た斜視図で、図
中、1は蓋基板(流路板)、2は基板、3は液体流入
口、4は液体吐出口、5は溝、6はインク部屋を形成す
るための領域、7は個別(独立)電極、8は共通電極、
9は発熱体で、基板2の表面には、発熱体9が共通電極
8とともに形成されており、蓋基板1と、基板2とを接
合することにより、溝5は液体(インク)流路及び吐出
口4を形成し、領域6は流入口3から導入される記録液
体(インク)を収容するためのインク部屋を形成する。
周知のように、基板2上に流路板1を接合した時に、流
路板1の溝5と基板2の上面とでインク流路が形成さ
れ、このインク流路のインク吐出側下面の一部に発熱体
9が配設された構造となり、該発熱体9によってインク
を加熱して該インク中に気泡(バブル)を発生せしめ、
その気泡の体積変化によってインク流路の端部よりイン
ク滴を噴射させるものである。 第18図(a)〜(g)は、上述のごときバブル利用の
インクジェットドロップジェネレータにおけるインク滴
生成過程を示す図で、図中、10はインク、20は気泡、30
は生成されたインク滴で、その他流路板1、基板2、独
立電極7、共通電極8、発熱体9等は第16図に示した通
りであり、周知のように、発熱体9を一時的に加熱する
ことによってインク滴30を噴射させる。バブルインクジ
ェットは、上述のようにして、流路内の液体(インク)
を薄膜抵抗体によって通電加熱してインクを急激に沸騰
させ、発生した気泡の圧力作用によって吐出口からイン
ク液滴を吐出し、吐出した液滴を紙などの被記録物に着
弾して、記録画素を形成する。 本発明は、上述のごときバブルジェット型インクジェ
ットの気泡の発生時間、収縮時間とインク吐出性能、と
りわけ、インク滴の切れのよい吐出、サテライト滴のな
い吐出、1滴の吐出後の次のインク供給スピード等との
関係について、実験データにもとづき、最適となるよう
にしたものであるが、最初に、バブルジェットの一般原
理について説明する。 気泡の発生・消滅過程は、ヒーター・流路の構成、通
電加熱条件等によって変化し、インクジェット記録装置
として実用的であるためには、次のような条件を満足す
ることが必要である。 (1)吐出に充分な圧力が得られること。 (2)現象の再現性(気泡安定性)が良いこと。 (3)応答周波数が高いこと。 このような条件は、日常的に見られる沸騰現象から考
えると、達成困難であるように思われる。なぜなら、 (1)液滴を吐出させるためには、吐出口の液面の表面
張力に打ち勝って滴形成をさせる必要がある。ところ
が、通常の沸騰現象では、沸騰開始温度は液体の沸点+
数℃以下であり、対応する蒸気圧は大気圧に比べてそん
なに高くない。 (2)沸騰は、相変化と流れを伴なう複雑な伝熱現象で
あり、電気的・機械的現象に比べてはるかにランダムで
ある。また、高周波数で繰り返し駆動するためには、発
泡から消泡までの応答時間が短くなければならない。と
ころが、通常の沸騰条件下で温度上昇・下降の時定数を
減少させるには限界がある。 バブルジェット記録装置においては、熱伝導性の高い
基板の上に熱伝導性の低い薄い層(蓄熱層)および薄い
電気抵抗体層(ヒーター)を形成し、極めて短い加熱パ
ルス(〜数μsec)で高熱流束をインクに与えることに
よって、上の条件を満足させている。すなわち、 (1)薄膜技術によって形成された平滑な伝熱面に高熱
流束を与えることによって、非常に高い温度(水系イン
クの場合〜300℃)までインクを過熱することができ
る。このときの蒸気圧は、大気圧の数10倍に達し、液滴
を吐出させるのに充分である。 (2)バブルジェットにおける発泡は、ヒーター面のく
ぼみなどに捕捉された気体が発泡の核になる通常の沸騰
現象と異なり、伝熱面近くのインクが過熱限界に到達す
ることによって一斉に気化するので、現象の再現性が高
い。 (3)加熱時には、蓄熱層の効果によってインクが充分
に加熱される。加熱時間が短いためごく一部のインク
(ヒーター上〜数μm)しか加熱されないうえ、気泡形
成後は、蒸気の断熱効果によってヒーターからの伝熱は
ほとんど停止する。従って、気泡の成長とともにインク
の温度および気泡内の圧力は、急激に低下し、キャビテ
ーション気泡の状態となる。気泡の消滅速度は極めて大
きく、消泡時に衝撃によるヒーターの破壊が問題となる
ほどである。余分の熱は、蓄熱層を通過して基板に逃げ
る。 第1図は、本発明の一実施例を説明するための要部拡
大断面図、第2図は、熱作用部(ヒーター部)に発生す
る気泡の体積Vの時間的変化を示す一例を示す図で、第
2図に示すように、気泡が発生してから、最大気泡体積
Vmaxになるまでの時間をti、最大気泡体積Vmaxになっ
てから消滅するまでの時間をtdとする。 第1図は、インク滴吐出後の液室内(オリフィス近
傍)の状態を示すが、気泡20は最大気泡に達した後、矢
印Aの方向に収縮する。それにともない、オリフィス側
ではメニスカスが矢印Bのように引き込む。一方、右側
のインク供給側からは、気泡収縮にともなう作用力で矢
印Cのようにインクが移動(供給)する。メニスカスの
移動或いはインクの移動(供給)は、気泡の収縮スピー
ドに大きく依存し、そのスピードがある範囲内にない
時、次のような不具合が生ずる。たとえば、メニスカス
の移動に起因するものとしては、吐出インク滴の切れの
悪さ、サテライト滴の発生、オリフィスからの不要空気
の吸い込み、オリフィス面でのインクだれ等、又、イン
クの移動(供給)に関しては、あまりに気泡収縮スピー
ドが速いとそれにインク供給が追従しなかったり(応答
スピードが追いつかない)、又、逆におそいと、記録ス
ピードが遅くなり好ましくない。 本発明は、気泡の発生、収縮の実験、観察を行なって
いるうちに、上記の現象(不具合点)が、気泡の発生、
収縮の挙動に大きく依存していることをつきとめ、好ま
しい気泡の発生、収縮挙動条件を見いだすために、諸々
の角度から検討し、実際に多種多様の記録ヘッドを設
計、製作し、種々の角度からの実験を繰り返して、以下
の条件を見いだしたものである。すなわち、 となるような関係に、気泡の発生及び収縮スピードを規
定したものであるが、更に好適には、 とされ、最適には、 とされる。 気泡の発生及び収縮スピードは、加える信号電圧、パ
ルス巾、パルス波形、パルス電流、インク物性、インク
温度、液室ディメンション、発熱部構成、発熱部材料、
発熱部ディメンション等によって変えられる。 第3図は、各パラメータを変化させ、td/tiの値を変
えて、それと吐出性能の関係を調べ、安定吐出領域(良
好印字品質領域)を示したデータの一例で、A−B領域
は使用不可領域、B−E領域は実用印字品質領域、C−
E領域は良好印字品質領域、D−E領域は最良印字品質
領域、E−F領域は使用不可領域である。上式で、td/
tiの上限を3,5,10という数字で示したが、これはあくま
でも平均値で、実際には、3±0.3,5±0.3,10±0.3のバ
ラツキの範囲をもっている。この理由としては、上記の
気泡の発生及び収縮スピードを決定する各々の因子が実
際に実験するうえにおいて、バラツキをもっているから
と考えられる。 効果 以上の説明から明らかなように、本発明によると、気
泡の発生、収縮スピードの条件を上記(1)式の範囲内
に設定することにより、 イ.インク滴の切れのよい吐出、 ロ.サテライト滴のない吐出、 ハ.ミスト状にならない均一液滴の吐出、 ニ.オリフィスからの不要空気の吸い込みのない吐出、 ホ.オリフィス面でのインクだれのない吐出、 ヘ.応答周波数の高速化吐出 を行うことができる。
Description: TECHNICAL FIELD The present invention relates to a liquid jet recording method, and more particularly, to a method of driving a recording head in a liquid jet recording apparatus that performs recording by ejecting ink droplets using bubbles. Prior art When a droplet is ejected from a discharge orifice, it is applied to a thermal energy liquid using a heating resistor or the like, causing a state change accompanied by a steep volume increase in the energy-applied liquid, and the volume increase. A so-called bubble liquid ejection recording apparatus which performs recording by ejecting and ejecting a liquid by an action force based on the above is known, for example, from JP-A-55-16166. Thus, in the invention described in Japanese Patent Application Laid-Open No. 55-161665, an effective ejection performance is obtained by regulating the speed of the increase in the volume of bubbles, but this has a significant effect on the ink ejection performance. It seems that there is not much specific description about the bubble shrinkage that exerts an effect, and it is thought that effective discharge performance can be obtained only by the condition of volume increase. However, the ink ejection performance also has a performance that is affected by bubble contraction. For example, as the performance that is affected by bubble contraction, the ejection of ink droplets with good sharpness, the ejection without satellite droplets, and the next There is an ink supply speed (related to the response frequency speed) and the like. SUMMARY OF THE INVENTION The present invention has been made in view of the above-described circumstances, and has been made to improve ink ejection performance in a bubble jet type liquid jet recording apparatus. Configuration In order to achieve the above object, the present invention provides an orifice provided for discharging liquid droplets, and a heat communicating with the orifice and serving as a portion where thermal energy for discharging liquid droplets acts on the liquid. A liquid ejecting recording method using a recording head including a liquid discharging section having an action section and an electrothermal transducer as a means for generating thermal energy, comprising: By forming a heat storage layer, which is a thin layer with low conductivity, and an electric resistor layer as an electric heat converter, and applying a current to the electric resistor layer, a high heat flux of several μsec is given to the ink to remove bubbles. The droplets are ejected and ejected from the orifice substantially parallel to the plane on which the electric resistance layer is formed by the action force accompanying the increase in the volume of the bubbles, and the recording is performed by attaching the droplets to the recording surface. In the liquid jet recording method, Assuming that the time from the occurrence of the bubble to the maximum volume is ti and the time from the maximum volume to the disappearance is td, the movement of the ink accompanying the bubble generation, growth, shrinkage, and disappearance follows. To the extent that It is characterized in that recording is performed while satisfying the following relational expression. Hereinafter, a description will be given based on an example of the present invention. FIG. 4 is a perspective view showing an example of a liquid jet recording head to which the present invention is applied, and FIG. 5 is a lid substrate (FIG. 5A) and a substrate (FIG. 5 ( 6) is an exploded perspective view of b)), and FIG. 6 is a perspective view of the lid substrate as viewed from the back side, in which 1 is a lid substrate (flow path plate), 2 is a substrate, 3 is a liquid inlet, and 4 is a liquid inlet. Discharge port, 5 a groove, 6 a region for forming an ink chamber, 7 an individual (independent) electrode, 8 a common electrode,
Reference numeral 9 denotes a heating element. On the surface of the substrate 2, a heating element 9 is formed together with a common electrode 8. By joining the lid substrate 1 and the substrate 2, the groove 5 forms a liquid (ink) flow path and The discharge port 4 is formed, and the area 6 forms an ink chamber for containing a recording liquid (ink) introduced from the inlet 3.
As is well known, when the flow path plate 1 is joined to the substrate 2, an ink flow path is formed by the groove 5 of the flow path plate 1 and the upper surface of the substrate 2, and one of the lower surfaces of the ink flow path on the ink ejection side is formed. The heating element 9 is disposed in the portion, and the ink is heated by the heating element 9 to generate a bubble in the ink.
The ink droplet is ejected from the end of the ink flow path by the change in the volume of the bubble. FIGS. 18 (a) to 18 (g) are diagrams showing an ink droplet generation process in the ink jet drop generator using a bubble as described above, where 10 is ink, 20 is air bubbles, and 30 is air bubbles.
Is a generated ink droplet, and the other flow path plate 1, substrate 2, independent electrode 7, common electrode 8, heating element 9 and the like are as shown in FIG. The ink droplets 30 are ejected by the heating. As described above, the bubble ink jet is used for the liquid (ink) in the flow path.
The thin film resistor energizes and heats the ink to rapidly boil the ink, and the ink droplets are ejected from the ejection ports by the pressure action of the generated bubbles, and the ejected droplets land on a recording material such as paper to record. Form pixels. The present invention relates to the bubble jet type ink jet as described above, in which bubble generation time, contraction time, and ink ejection performance, particularly, ink droplets with good sharpness, no satellite droplets, and the next ink supply after one droplet is ejected The relationship with speed and the like is optimized based on experimental data. First, the general principle of bubble jet will be described. The process of generating and extinguishing bubbles changes depending on the configuration of the heater and flow path, the conditions of heating, and the like. In order to be practical as an ink jet recording apparatus, the following conditions must be satisfied. (1) Sufficient pressure for ejection is obtained. (2) Good reproducibility of the phenomenon (bubble stability). (3) High response frequency. Such conditions seem to be difficult to achieve in view of the boiling phenomena seen on a daily basis. This is because (1) In order to discharge a droplet, it is necessary to form a droplet overcoming the surface tension of the liquid surface of the discharge port. However, in a normal boiling phenomenon, the boiling start temperature is equal to the boiling point of the liquid +
It is below a few degrees Celsius and the corresponding vapor pressure is not so high compared to atmospheric pressure. (2) Boiling is a complex heat transfer phenomenon involving phase change and flow, and is much more random than electrical and mechanical phenomena. Further, in order to drive repeatedly at a high frequency, the response time from foaming to defoaming must be short. However, there is a limit to reducing the time constant of temperature rise / fall under normal boiling conditions. In a bubble jet recording apparatus, a thin layer having low thermal conductivity (heat storage layer) and a thin electric resistance layer (heater) are formed on a substrate having high thermal conductivity, and the layer is formed by an extremely short heating pulse (up to several μsec). The above conditions are satisfied by applying a high heat flux to the ink. (1) By applying a high heat flux to the smooth heat transfer surface formed by the thin film technology, the ink can be heated to a very high temperature (up to 300 ° C. for water-based ink). The vapor pressure at this time reaches several tens of times the atmospheric pressure, and is sufficient to discharge droplets. (2) Bubbling in a bubble jet is different from a normal boiling phenomenon in which gas trapped in a dent on a heater surface or the like becomes a nucleus of foaming, and ink near a heat transfer surface vaporizes at once by reaching an overheating limit. Therefore, the reproducibility of the phenomenon is high. (3) At the time of heating, the ink is sufficiently heated by the effect of the heat storage layer. Since the heating time is short, only a small part of the ink (up to several μm above the heater) is heated, and after the bubbles are formed, the heat transfer from the heater almost stops due to the heat insulating effect of steam. Accordingly, the temperature of the ink and the pressure inside the bubble rapidly decrease with the growth of the bubble, and the state becomes a cavitation bubble. The rate of bubble disappearance is extremely high, and the destruction of the heater due to impact at the time of bubble disappearance becomes a problem. Excess heat escapes to the substrate through the heat storage layer. FIG. 1 is an enlarged cross-sectional view of an essential part for explaining an embodiment of the present invention, and FIG. 2 shows an example showing a temporal change of a volume V of bubbles generated in a heat acting portion (heater portion). In the figure, as shown in FIG. 2, the maximum bubble volume after the bubble is generated
The time until Vmax is reached is ti, and the time from when the maximum bubble volume Vmax is reached to when it disappears is td. FIG. 1 shows the state of the liquid chamber (in the vicinity of the orifice) after the ejection of ink droplets. The bubble 20 contracts in the direction of arrow A after reaching the maximum bubble. Accordingly, the meniscus retracts as indicated by arrow B on the orifice side. On the other hand, from the right ink supply side, the ink moves (supplies) as indicated by arrow C by the action force accompanying the bubble contraction. The movement of the meniscus or the movement (supply) of the ink greatly depends on the contraction speed of the bubbles. When the speed is not within a certain range, the following problems occur. For example, the movement of the meniscus may be caused by poor disconnection of the ejected ink droplets, generation of satellite droplets, suction of unnecessary air from the orifice, dripping of ink at the orifice surface, and movement (supply) of ink. If the bubble contraction speed is too high, the ink supply does not follow the response (the response speed cannot keep up), and if it is too slow, the recording speed is undesirably low. In the present invention, during the experiments and observations of the generation and shrinkage of bubbles, the above-mentioned phenomenon (point of inconvenience) causes the generation of bubbles,
In order to find that it depends heavily on the shrinkage behavior, and to find favorable bubble generation and shrinkage behavior conditions, we studied from various angles and actually designed and manufactured a wide variety of recording heads, and from various angles The following conditions were repeated and the following conditions were found. That is, In such a relationship, the generation and shrinkage speed of the bubbles are specified, but more preferably, And optimally, It is said. The generation and contraction speeds of bubbles are as follows: applied signal voltage, pulse width, pulse waveform, pulse current, ink physical properties, ink temperature, liquid chamber dimension, heat generating part configuration, heat generating part material,
It can be changed according to the heating part dimensions and the like. FIG. 3 shows an example of data showing a stable ejection area (good print quality area) by changing each parameter and changing the value of td / ti and examining the relationship between the parameter and the ejection performance. The unusable area and the BE area are the practical print quality area, and the C-
The E area is a good print quality area, the DE area is a best print quality area, and the EF area is an unusable area. In the above formula, td /
Although the upper limit of ti is shown by the numbers 3, 5, and 10, this is an average value, and actually has a variation range of 3 ± 0.3, 5 ± 0.3, 10 ± 0.3. It is considered that the reason for this is that the factors that determine the speed of generation and contraction of the bubbles have variations in actual experiments. Effects As is apparent from the above description, according to the present invention, by setting the conditions of the generation and contraction speed of the bubbles within the range of the above-mentioned formula (1), Discharge of ink droplets with good sharpness, b. Discharge without satellite drops, c. Discharge of uniform droplets that do not form mist, d. E. No discharge of unnecessary air from the orifice, e. Discharge without dripping at the orifice surface, f. It is possible to perform ejection with a high response frequency.

【図面の簡単な説明】 第1図は、本発明の一実施例を説明するための要部拡大
断面図、第2図は、気泡体積の時間変化を示す図、第3
図は、安定吐出領域の一例を示す図、第4図は、本発明
が適用される液体噴射記録ヘッドの一例を示す斜視図、
第5図は、該記録ヘッドを構成する蓋基板(第5図
(a))と基板(第5図(b))の分解斜視図、第6図
は、蓋基板を裏側から見た斜視図、第7図は、バブルジ
ェット記録におけるインク滴の生成過程を説明するため
の図である。 1……蓋基板(流路板)、2……基板、3……液体流入
口、4……液体吐出口、5……溝、6……インク液室、
7……個別(独立)電極、8……共通電極、9……発熱
体、10……インク、20……気泡、30……インク滴、
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an enlarged sectional view of an essential part for explaining an embodiment of the present invention, FIG. 2 is a diagram showing a time change of a bubble volume, FIG.
FIG. 4 is a diagram showing an example of a stable ejection area. FIG. 4 is a perspective view showing an example of a liquid jet recording head to which the present invention is applied.
FIG. 5 is an exploded perspective view of a lid substrate (FIG. 5 (a)) and a substrate (FIG. 5 (b)) constituting the recording head, and FIG. 6 is a perspective view of the lid substrate as viewed from the back side. FIG. 7 is a diagram for explaining a process of generating ink droplets in bubble jet recording. DESCRIPTION OF SYMBOLS 1 ... Lid board (flow path plate), 2 ... Substrate, 3 ... Liquid inflow port, 4 ... Liquid discharge port, 5 ... Groove, 6 ... Ink liquid chamber,
7 individual (independent) electrodes, 8 common electrodes, 9 heating elements, 10 inks, 20 air bubbles, 30 ink drops,

Claims (1)

(57)【特許請求の範囲】 1.液滴を吐出するために設けられたオリフィスと、該
オリフィスに連通し、液滴を吐出するための熱エネルギ
ーが液体に作用する部分である熱作用部とを有する液吐
出部と、熱エネルギーを発生する手段としての電気熱変
換体とを具備する記録ヘッドを使用する液体噴射記録方
法であって、熱伝導性の高い基板の上に、熱伝導性の低
い薄層である蓄熱層と、電気熱変換体としての電気抵抗
体層を形成し、該電気抵抗体層に通電することによっ
て、数μsecの高熱流束をインクに与え、気泡を発生さ
せ、該気泡の体積増加にともなう作用力で、前記電気抵
抗体層が形成された平面とほぼ平行に、前記オリフィス
より液滴を吐出、飛翔させ、被記録面に付着させて記録
を行なう液体噴射記録方法において、前記気泡が発生し
てから最大体積になるまでの時間をti、最大体積にな
ってから消滅するまでの時間をtdとする時、気泡の発
生〜成長、収縮〜消滅にともなうインクの移動が追従す
る範囲内で、 なる関係式を満足して記録することを特徴とする液体噴
射記録方法。
(57) [Claims] A liquid discharge unit having an orifice provided for discharging liquid droplets, and a heat acting unit which is in communication with the orifice and which is a part where heat energy for discharging liquid droplets acts on the liquid; and What is claimed is: 1. A liquid jet recording method using a recording head comprising an electrothermal transducer as a means for generating, comprising: a heat storage layer which is a thin layer having low heat conductivity on a substrate having high heat conductivity; By forming an electric resistor layer as a heat converter and applying a current to the electric resistor layer, a high heat flux of several μsec is applied to the ink to generate bubbles, and the action force accompanying the volume increase of the bubbles is generated. In a liquid jet recording method in which droplets are ejected from the orifice, fly, and are attached to a recording surface to perform recording substantially in parallel with the plane on which the electric resistor layer is formed, the method includes the steps of: Until it reaches the maximum volume Time ti, when the td time to disappear after becoming maximum volume, to the extent that occurs - growth of the bubble, the movement of the ink due to shrinkage-annihilation follows, A liquid jet recording method characterized by performing recording by satisfying the following relational expression.
JP62308866A 1987-10-12 1987-12-07 Liquid jet recording method Expired - Lifetime JP2907338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62308866A JP2907338B2 (en) 1987-10-12 1987-12-07 Liquid jet recording method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP25698787 1987-10-12
JP62-256987 1987-10-12
JP62308866A JP2907338B2 (en) 1987-10-12 1987-12-07 Liquid jet recording method

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP21959197A Division JP3109729B2 (en) 1997-08-14 1997-08-14 Liquid jet recording head
JP8534999A Division JP3277203B2 (en) 1999-03-29 1999-03-29 Liquid jet recording apparatus and recording head

Publications (2)

Publication Number Publication Date
JPH02511A JPH02511A (en) 1990-01-05
JP2907338B2 true JP2907338B2 (en) 1999-06-21

Family

ID=26542999

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62308866A Expired - Lifetime JP2907338B2 (en) 1987-10-12 1987-12-07 Liquid jet recording method

Country Status (1)

Country Link
JP (1) JP2907338B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100762962B1 (en) * 2006-05-04 2007-10-04 한국과학기술원 Method for preparing culture media using genome information and in silico analysis
KR100741610B1 (en) * 2006-06-21 2007-07-23 성아영 Silicon-urethane contact lens containing butyl methacrylate and acrylic acid
KR100815486B1 (en) * 2006-08-18 2008-03-20 광주과학기술원 A method and apparatus for encoding multiview video and a storage medium using the same
KR100818307B1 (en) * 2006-12-04 2008-04-01 한국전자통신연구원 Apparatus and method for detecting attacking packets in ipv6
KR100897525B1 (en) * 2007-01-19 2009-05-15 한국전자통신연구원 Time-stamping apparatus and method for RTP Packetization of SVC coded video, RTP packetization system using that
KR100890951B1 (en) * 2007-04-16 2009-04-03 한국철도기술연구원 Restoration-electric power storage system of electric railway using electric double layer capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55161663A (en) * 1979-06-01 1980-12-16 Canon Inc Liquid injection recording method

Also Published As

Publication number Publication date
JPH02511A (en) 1990-01-05

Similar Documents

Publication Publication Date Title
JPH0684071B2 (en) Printer head for ink jet printer
JPH0246389B2 (en)
EP0396315B1 (en) Thermal ink jet printhead with bubble generating heating elements
JPH0117862B2 (en)
JPH0671888A (en) Recording device
JP2907338B2 (en) Liquid jet recording method
JP2693455B2 (en) Liquid jet recording head
JP3277203B2 (en) Liquid jet recording apparatus and recording head
JP3109729B2 (en) Liquid jet recording head
JP2758638B2 (en) Liquid jet recording head
JP3264694B2 (en) Ink jet recording head and ink jet recording method
JPS6342868A (en) Liquid jet recording head
JPS6317623B2 (en)
JPH0199854A (en) Liquid injection recording head
JP2790844B2 (en) Liquid jet recording head
JPH0237301B2 (en) EKITAIFUNSHAKIROKUHO
JP2790829B2 (en) Liquid jet recording device
JPH02510A (en) Liquid injection recording head
JPH0691873A (en) Ink-jet head
JPS647871B2 (en)
JPH0373351A (en) Base body for liquid-jet recording head, liquid-jet recording head by using the same base body and liquid-jet recording device with same liquid-jet recording head
JPH0760963A (en) Ink jet head
JPH02188251A (en) Ink jet recording method and device therefor
JP2002067323A (en) Driving method for ink-jet recording head and ink-jet recording head
JPH09323417A (en) Ink jet head

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080402

Year of fee payment: 9