JPS647703B2 - - Google Patents

Info

Publication number
JPS647703B2
JPS647703B2 JP55185694A JP18569480A JPS647703B2 JP S647703 B2 JPS647703 B2 JP S647703B2 JP 55185694 A JP55185694 A JP 55185694A JP 18569480 A JP18569480 A JP 18569480A JP S647703 B2 JPS647703 B2 JP S647703B2
Authority
JP
Japan
Prior art keywords
signal
training
output
training signal
segment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55185694A
Other languages
Japanese (ja)
Other versions
JPS57112142A (en
Inventor
Takashi Kako
Shigeyuki Umigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP55185694A priority Critical patent/JPS57112142A/en
Publication of JPS57112142A publication Critical patent/JPS57112142A/en
Publication of JPS647703B2 publication Critical patent/JPS647703B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers

Description

【発明の詳細な説明】 本発明は位相変調データに先行するトレーニン
グ信号により受信信号の引込みを行なう自動等化
システムの瞬断時次にくる信号を識別するための
トレーニング信号識別方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a training signal identification method for identifying the next signal when an automatic equalization system pulls in a received signal using a training signal preceding phase modulation data. .

従来、位相変調データに先行するトレーニング
信号を等化器により等化し、その等化出力信号を
参照信号と比較し、誤差位相成分を補正して受信
信号の引込みを行なう方式が用いられている。第
1図はその構成の1例を示すものである。すなわ
ち、入力信号を等化器EQL1に入力して位相、
振幅の等化を行ない、該等化出力信号がキヤリア
自動位相調整回路CAPC5の積分ループの帰還点
の乗算部2を介し、判定回路3に入れ参照信号に
対する誤差を判定し、誤差信号を減算部4より出
力し、図示していない第1および第2積分回路よ
り成るCAPC5の第1積分回路に入れ、定常的位
相回転による周波数オフセツトの積分を行ない、
次に第2積分回路に入れてジツタおよび位相変動
を除去するための積分を行なう。これらの両積分
回路の加算出力を乗算部2を介して判定回路3に
加わる位相差を零とするように帰還させるととも
に、該出力を分岐して乗算部6に入れ、減算部4
からの誤差信号と乗算して等化器EQL1に帰還
させ、受信キヤリア信号の位相を自動的に参照信
号にセツトアツプしようとするものである。
Conventionally, a method has been used in which a training signal preceding phase modulation data is equalized by an equalizer, the equalized output signal is compared with a reference signal, and an error phase component is corrected to pull in a received signal. FIG. 1 shows an example of the configuration. That is, input the input signal to the equalizer EQL1 and calculate the phase,
The amplitude is equalized, and the equalized output signal is passed through the multiplication section 2 at the feedback point of the integral loop of the carrier automatic phase adjustment circuit CAPC5, and then inputted into the judgment circuit 3, where the error with respect to the reference signal is judged, and the error signal is sent to the subtraction section. 4, and input it into the first integrating circuit of CAPC 5 consisting of first and second integrating circuits (not shown), and integrate the frequency offset due to steady phase rotation.
Next, the signal is put into a second integration circuit and integrated to remove jitter and phase fluctuation. The addition outputs of these two integrating circuits are fed back to the determination circuit 3 via the multiplication section 2 so as to make the phase difference applied to the determination circuit 3 zero, and the outputs are branched and input to the multiplication section 6, and the outputs are branched to the multiplication section 6, and the outputs are fed back to the judgment circuit 3 through the multiplication section 2.
This is intended to automatically set up the phase of the received carrier signal to the reference signal by multiplying it by the error signal from the signal and feeding it back to the equalizer EQL1.

このような自動等化システムへ入力される入力
信号はデータ伝送装置たとえばモデムから供給さ
れるが、その回線に瞬断が発生する場合がある。
このような瞬断があつた場合次に来るべき信号が
トレーニング信号かデータ信号かを識別する必要
がある。そして、トレーニング信号の場合は受信
側の引込みシーケンスを実行し、トレーニング信
号でない場合(データ信号の場合)には瞬断時間
の経過により等化器の誤差が無限大に発散しない
ように所定のタイミング位相、タツプ係数等を与
える瞬断シーケンスを実行する。これにより自動
等化システムの瞬断耐力を増大することができ
る。
The input signal input to such an automatic equalization system is supplied from a data transmission device such as a modem, but momentary interruptions may occur in the line.
When such a momentary interruption occurs, it is necessary to identify whether the next signal to come is a training signal or a data signal. Then, in the case of a training signal, a pull-in sequence on the receiving side is executed, and in the case of a non-training signal (in the case of a data signal), a predetermined timing is executed to prevent the equalizer error from diverging to infinity due to the elapse of the instantaneous interruption time. Executes an instantaneous interruption sequence that provides phase, tap coefficients, etc. This makes it possible to increase the instantaneous interruption resistance of the automatic equalization system.

本発明の目的は自動等化システムの瞬断耐力を
増大するため瞬断時の次にくる信号を識別するた
めのトレーニング信号識別方式を提供することで
ある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a training signal identification method for identifying the next signal during an interruption in order to increase the interruption tolerance of an automatic equalization system.

前記目的を達成するため、本発明のトレーニン
グ信号の識別方式は位相平面内の相異なる相の2
値が交互に変化するセグメントを有するトレーニ
ング信号、および位相平面内の任意の複数相の値
を有するデータ信号とを含む信号を受信し、該ト
レーニング信号によつて受信信号の劣化成分を等
化する信号を作成し、前記データ信号を等化する
自動等化システムのトレーニング信号の識別方式
において、 前記セグメントに対応する周波数成分を抽出す
る抽出部と、該抽出された信号成分レベルを検出
する検出部とを具え、 該検出部で検出された信号成分レベルが時間的
に一定である場合、該検出された信号を前記トレ
ーニング信号であると判定することにより、前記
データ信号との識別を行なうことを特徴とするも
のである。
In order to achieve the above object, the training signal identification method of the present invention uses two different phases in the phase plane.
Receive a signal including a training signal having segments whose values change alternately and a data signal having values of arbitrary multiple phases in a phase plane, and equalize degraded components of the received signal by the training signal. A training signal identification method for an automatic equalization system that creates a signal and equalizes the data signal, comprising: an extraction unit that extracts a frequency component corresponding to the segment; and a detection unit that detects the level of the extracted signal component. and when the signal component level detected by the detection unit is constant over time, the detected signal is determined to be the training signal, thereby identifying it from the data signal. This is a characteristic feature.

以下本発明を実施例につき詳述する。 The present invention will be described in detail below with reference to examples.

上記目的に適合したトレーニング信号として
CCITTの歓告による第2図aの形式が用いられ
る。すなわち、無信号の第1セグメントに同図b
の位相平面上の位置A,Bの信号を交互に送る第
2セグメントと同じくC,Dの信号をランダムに
送る第3セグメントが続く。第2セグメントはト
レーニング信号の検出に用いられこれが本発明の
要部となるものである。第3セグメントは自動等
化器のタツプ補正に用いられる。第4セグメント
は複数相に亘りランダムに発生しデスクランプラ
を引込ませる。
As a training signal suitable for the above purpose
The format of Figure 2a as recommended by CCITT will be used. In other words, in the first segment with no signal,
The second segment alternately sends signals at positions A and B on the phase plane, followed by a third segment that sends signals at positions C and D randomly. The second segment is used to detect the training signal and is the main part of the invention. The third segment is used for tap correction of the automatic equalizer. The fourth segment occurs randomly over multiple phases and causes the descrambler to retract.

第2セグメントのABパターンのスペクトラム
は同図cに示すとおり、1.7KHzのキヤリア信号
とその両側信号0.5KHzと2.9KHzより成る周波数
パターンである。これに対し、データ信号の場合
はこれら3周波をカバーする山形の周波数パター
ンを有する。
The spectrum of the AB pattern of the second segment is a frequency pattern consisting of a 1.7 KHz carrier signal and signals on both sides of the carrier signal, 0.5 KHz and 2.9 KHz, as shown in FIG. On the other hand, a data signal has a chevron-shaped frequency pattern covering these three frequencies.

これを検出するため、まず1.7KHzキヤリアを
帯域通過フイルタにより抽出し、次に0.5KHz,
2.9KHz成分を1.7KHzキヤリアおよびこれと90゜位
相の異なるキヤリアで復調後1.2KHzの帯域通過
フイルタを経由させこれを自乗して2.4KHzの帯
域通過フイルタで抽出する。その出力波形の時間
変化をプロツトすると、トレーニング信号の場合
は第3図aに示すように1.7KHzまたは2.4KHzの
何れも一定レベルとなるのに対し、データ信号の
場合は各周波数とも同図bに示すように大きなレ
ベル変動がある。
To detect this, first extract the 1.7KHz carrier using a bandpass filter, then 0.5KHz,
The 2.9KHz component is demodulated with a 1.7KHz carrier and a carrier with a phase difference of 90 degrees from this, and then passed through a 1.2KHz bandpass filter, squared, and extracted with a 2.4KHz bandpass filter. When the time change of the output waveform is plotted, in the case of the training signal, both 1.7KHz and 2.4KHz are at a constant level as shown in Figure 3a, while in the case of the data signal, both frequencies are at a constant level (Figure 3B). As shown in the figure, there are large level fluctuations.

この特性を利用して両者の識別を行なうことが
できる。
This characteristic can be used to distinguish between the two.

第4図は上述の原理に従う本発明の実施例の構
成説明図である。
FIG. 4 is an explanatory diagram of the configuration of an embodiment of the present invention according to the above-described principle.

同図において、等化器に入力する前の第2図a
に示した入力信号をA/D変換器8に入れ、デジ
タル信号に変換する。
In the same figure, Fig. 2a before inputting to the equalizer
The input signal shown in is input to the A/D converter 8 and converted into a digital signal.

そして、瞬断後の入力信号がトレーニング信号
の場合には、前述のABパターンに対応する周波
数スペクトラムが乗算部91,92に入力され、そ
れぞれ90゜の位相差を有する1.7KHzキヤリアの乗
算により両側周波数が復調され1.2KHzが出力さ
れる。この出力が1.2KHzの帯域通過フイルタ1
1,102を通し絶対値2乗回路111,112
よつて2乗後加算部12で加算し、2.4KHzの帯
域フイルタ13を経由し乗算部17に入力され
る。
If the input signal after the instantaneous interruption is a training signal, the frequency spectrum corresponding to the AB pattern described above is input to the multipliers 9 1 and 9 2 , and is multiplied by a 1.7KHz carrier having a phase difference of 90°. The frequencies on both sides are demodulated and 1.2KHz is output. Bandpass filter 1 whose output is 1.2KHz
0 1 and 10 2 are squared by absolute value squaring circuits 11 1 and 11 2 and then added in an adder 12, and then input to a multiplier 17 via a 2.4 KHz band filter 13.

一方、A/D変換器8の出力を分岐して乗算部
15と自動利得調整AGC16より成るループの
制御出力を乗算部17に入れて帯域通過フイルタ
13の出力と乗算することにより逆数演算の効果
が得られ、入力信号レベルの増減にかかわらず一
定出力を実効値検出回路19に送り、直流出力を
得る。該直流出力を遅延回路T21を通して一定
時間遅れた出力と加算部22で比較して差をと
り、この差出力を絶対値2乗回路25により正値
出力を加算部27に送る。
On the other hand, the output of the A/D converter 8 is branched, and the control output of the loop consisting of the multiplier 15 and the automatic gain adjustment AGC 16 is input to the multiplier 17 and multiplied by the output of the bandpass filter 13, resulting in the effect of reciprocal calculation. is obtained, and a constant output is sent to the effective value detection circuit 19 regardless of the increase or decrease in the input signal level to obtain a DC output. The DC output is compared with the output delayed for a certain period of time through the delay circuit T21 in the adder 22, a difference is taken, and the difference output is sent to the adder 27 as a positive value output by the absolute value squaring circuit 25.

また、A/D変換器8の出力から1.7KHzのキ
ヤリアは1.7KHz帯域通過フイルタ14により直
接抽出され上記と同様の手順をとる。まず、乗算
部18で逆数演算されて一定出力を実効値演算回
路20に送り、その直流出力を遅延回路23と加
算部24とにより一定時間遅れた出力差を検出
し、絶対値2乗回路26に入れて正値出力として
加算器27に入れ、前述の2.4KHz出力と加算す
る。これら2.4KHz出力と1.7KHz出力との加算結
果を時定数回路28を通して帰還させて積分を行
ない、その積分出力を加算部31に送る。他方両
実効値検出回路19,20の出力を分岐して加算
部29で加算し、平均値検出回路30で平均値を
求めて加算部31に送り、この平均値を前記積分
出力から減算する。トレーニング信号の場合には
第3図aで示したように2.4KHz,1.7KHzとも時
間的の変化は殆ど0であり、従つて加算部31で
加えられる積分出力は殆ど0であるから、加算部
31の出力利得Gは第5図aに示すように平均値
の0dBに対し負の一定利得Aが出力される。
Further, the 1.7KHz carrier is directly extracted from the output of the A/D converter 8 by the 1.7KHz bandpass filter 14, and the same procedure as above is followed. First, the multiplier 18 performs a reciprocal calculation and sends a constant output to the effective value calculation circuit 20, and the DC output is detected by a delay circuit 23 and an adder 24 as an output difference delayed by a certain period of time. It is input to the adder 27 as a positive value output, and added to the aforementioned 2.4KHz output. The result of addition of these 2.4 KHz output and 1.7 KHz output is fed back through the time constant circuit 28 to perform integration, and the integrated output is sent to the adder 31. On the other hand, the outputs of both effective value detection circuits 19 and 20 are branched and added in an adder 29, an average value is determined in an average value detector 30 and sent to an adder 31, and this average value is subtracted from the integrated output. In the case of the training signal, as shown in Fig. 3a, the temporal change at both 2.4KHz and 1.7KHz is almost 0, and therefore the integral output added by the adder 31 is almost 0, so the adder As shown in FIG. 5a, the output gain G of 31 is a constant negative gain A relative to the average value of 0 dB.

以上はトレーニング信号の場合であるが、デー
タ信号の場合には第2図cのスペクトラムをカバ
ーする特性を有するから、2.4KHz出力と1.7KHz
出力はトレーニング信号の場合とほぼ同様にそれ
ぞれの実効値検出回路19,20から出力され
る。トレーニング信号の場合と異なる点は、次の
一定時間遅れの出力差をそれぞれ遅延回路21,
23でとり絶対値2乗回路25,26で正側出力
として加算する場合に0とはならず、第3図bで
前述したように各周波数とも大きなレベル変動が
あるから、サンプリングの都度前後の出力差が検
出され正値として加算されることである。従つて
第5図bに示すように、平均値の0dBに対し最初
負の利得Gであつたものがサンプリングに従い
徐々に正値が加算され、ある時点で利得Gが正に
転換する。このように利得Gが時間により負から
正に転換するか否かにより、瞬断後の入力信号が
トレーニング信号かデータ信号かを明確に識別す
ることができる。
The above is the case of a training signal, but in the case of a data signal, it has characteristics that cover the spectrum shown in Figure 2 c, so it has a 2.4KHz output and a 1.7KHz output.
The outputs are output from the respective effective value detection circuits 19 and 20 in substantially the same manner as in the case of the training signal. The difference from the training signal is that the output difference after a certain time delay is output to the delay circuits 21 and 21, respectively.
23 and added as positive side outputs in the absolute value squaring circuits 25 and 26, it does not become 0, and as mentioned above in Fig. 3b, there is a large level fluctuation at each frequency, so the values before and after each sampling are The output difference is detected and added as a positive value. Therefore, as shown in FIG. 5b, what was initially a negative gain G with respect to the average value of 0 dB is gradually added with a positive value as the sampling progresses, and at a certain point the gain G changes to positive. In this way, it is possible to clearly identify whether the input signal after a momentary interruption is a training signal or a data signal, depending on whether the gain G changes from negative to positive over time.

以上説明したように、本発明によれば、位相変
調データに先行するトレーニング信号により受信
信号の引込みを行なう自動等化システムの瞬断
時、次にくる信号のトレーニング信号の等化前に
その1部に含まれる2値信号の周波数成分を抽出
し、抽出された信号成分レベルを検出し、該信号
成分レベルが一定となることを検出してトレーニ
ング信号であることを識別するものである。これ
により瞬断時トレーニング信号の場合には受信側
の引込みシーケンスを実行し、トレーニング信号
でない場合、たとえばデータ信号等の場合には前
述のような等化器が瞬断時間の経過により発散す
るのを防止する瞬断シーケンスを実行することが
でき、システムの瞬断耐力の向上に資するところ
が大きいものである。
As explained above, according to the present invention, when there is a momentary interruption in an automatic equalization system that pulls in a received signal using a training signal that precedes phase modulation data, the training signal that precedes the phase modulation data is The frequency component of the binary signal included in the signal is extracted, the level of the extracted signal component is detected, and the level of the signal component is determined to be constant to identify it as a training signal. As a result, in the case of a training signal during a momentary interruption, the reception side pull-in sequence is executed, and in the case of a non-training signal, such as a data signal, the equalizer as described above diverges as the momentary interruption time passes. This feature greatly contributes to improving the system's ability to withstand instantaneous interruptions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の自動等化システムの説明図、第
2図a〜cは本発明に用いるトレーニング信号の
説明図、第3図a,bは本発明の原理説明図、第
4図は本発明の実施例の構成を示す説明図、第5
図a,bは本発明の効果を示す説明図であり、図
中、8はA/D変換器、91,92,15,17,
18は乗算部、101,102は1.2KHz帯域通過フ
イルタ、13は2.4KHz帯域通過フイルタ、14
は1.7KHz帯域通過フイルタ、19,20は実効
値検出回路、21,23は遅延回路、12,2
2,24,27,29,31は加算部、111
112,25,26は絶対値2乗回路、28は時
定数回路、30は平均値検出回路を示す。
Fig. 1 is an explanatory diagram of a conventional automatic equalization system, Figs. 2 a to c are explanatory diagrams of training signals used in the present invention, Fig. 3 a and b are explanatory diagrams of the principle of the present invention, and Fig. 4 is an explanatory diagram of the present invention. Explanatory diagram showing the configuration of the embodiment of the invention, No. 5
Figures a and b are explanatory diagrams showing the effects of the present invention, in which 8 is an A/D converter, 9 1 , 9 2 , 15, 17,
18 is a multiplier, 10 1 and 10 2 are 1.2KHz bandpass filters, 13 is a 2.4KHz bandpass filter, 14
is a 1.7KHz bandpass filter, 19 and 20 are effective value detection circuits, 21 and 23 are delay circuits, and 12 and 2 are
2, 24, 27, 29, 31 are adders, 11 1 ,
11 2 , 25, and 26 are absolute value square circuits, 28 is a time constant circuit, and 30 is an average value detection circuit.

Claims (1)

【特許請求の範囲】 1 位相平面内の相異なる相の2値が交互に変化
するセグメントを有するトレーニング信号、およ
び位相平面内の任意の複数相の値を有するデータ
信号とを含む信号を受信し、該トレーニング信号
によつて受信信号の劣化成分を等化する信号を作
成し、前記データ信号を等化する自動等化システ
ムのトレーニング信号の識別方式において、 前記セグメントに対応する周波数成分を抽出す
る抽出部と、 該抽出された信号成分レベルを検出する検出部
とを具え、 該検出部で検出された信号成分レベルが時間的
に一定である場合、該検出された信号を前記トレ
ーニング信号であると判定することにより、前記
データ信号との識別を行なうことを特徴とするト
レーニング信号の識別方式。
[Claims] 1. Receive a signal including a training signal having a segment in which binary values of different phases in the phase plane alternately change, and a data signal having values of arbitrary plural phases in the phase plane. , a training signal identification method for an automatic equalization system that equalizes the data signal by creating a signal that equalizes a degraded component of a received signal using the training signal, and extracting a frequency component corresponding to the segment. an extraction unit; and a detection unit that detects the extracted signal component level, and when the signal component level detected by the detection unit is constant over time, the detected signal is the training signal. A training signal identification method characterized in that the training signal is distinguished from the data signal by determining that the training signal is different from the data signal.
JP55185694A 1980-12-29 1980-12-29 System for discrimination of training signal Granted JPS57112142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55185694A JPS57112142A (en) 1980-12-29 1980-12-29 System for discrimination of training signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55185694A JPS57112142A (en) 1980-12-29 1980-12-29 System for discrimination of training signal

Publications (2)

Publication Number Publication Date
JPS57112142A JPS57112142A (en) 1982-07-13
JPS647703B2 true JPS647703B2 (en) 1989-02-09

Family

ID=16175222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55185694A Granted JPS57112142A (en) 1980-12-29 1980-12-29 System for discrimination of training signal

Country Status (1)

Country Link
JP (1) JPS57112142A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5897928A (en) * 1981-12-08 1983-06-10 Fujitsu Ltd Training detection system
JPH0683104B2 (en) * 1983-05-13 1994-10-19 株式会社リコー Data transmission synchronization detection method

Also Published As

Publication number Publication date
JPS57112142A (en) 1982-07-13

Similar Documents

Publication Publication Date Title
US5546132A (en) NTSC interference detector
US4320517A (en) Method and device for effecting the initial adjustment of the clock in a synchronous data receiver
US4606045A (en) Method and apparatus for detecting an equalizer training period in a receiving-end modem
US6198780B1 (en) Method and apparatus for symbol timing recovery of a vestigial sideband television signal
JPS6156552A (en) Resetting method of receiving equipment
US4253186A (en) Method and device for detecting a pseudo-random sequence of two symbols in a data receiver employing double sideband-quadrature carrier modulation
JP3351642B2 (en) Phase jitter extraction circuit and phase jitter cancellation circuit
CA1125404A (en) Method for generating a pseudo-signal in an error rate supervisory unit and circuit for carrying out the same
KR100323788B1 (en) Loop Filters and Phase Synchronous Loops
JPS647703B2 (en)
US4747114A (en) Modem clock with automatic gain control
CA1188370A (en) Am stereophonic demodulating circuit
EP0238100A2 (en) Improved modem signal acquisition technique
EP0856212B1 (en) Digital phase reversal detector
EP0134860A1 (en) Improved modem signal acquisition technique
JPH03263907A (en) Agc circuit and fsk demodulator
JPS6240829A (en) Modem training signal detector
JP3225257B2 (en) FM receiver
KR100937404B1 (en) Timing recovery Apparatus
JPH0462618B2 (en)
JP2545882B2 (en) Data playback device
JPH0370421B2 (en)
JP2634684B2 (en) Synchronization establishment judgment circuit
JPH0783291B2 (en) Correlator
JPH0332936B2 (en)