JPS647001B2 - - Google Patents

Info

Publication number
JPS647001B2
JPS647001B2 JP55027956A JP2795680A JPS647001B2 JP S647001 B2 JPS647001 B2 JP S647001B2 JP 55027956 A JP55027956 A JP 55027956A JP 2795680 A JP2795680 A JP 2795680A JP S647001 B2 JPS647001 B2 JP S647001B2
Authority
JP
Japan
Prior art keywords
oxygen
flow rate
pressure
adsorption
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55027956A
Other languages
Japanese (ja)
Other versions
JPS56125206A (en
Inventor
Masaomi Tomomura
Hiroshi Yokoyama
Toshio Yahagi
Shunsuke Nokita
Yoji Otahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2795680A priority Critical patent/JPS56125206A/en
Publication of JPS56125206A publication Critical patent/JPS56125206A/en
Publication of JPS647001B2 publication Critical patent/JPS647001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/36Means for collection or storage of gas; Gas holders
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/26Conditioning fluids entering or exiting the reaction vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/34Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of gas

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To supply a proper amount of O2 at all time to a utilizing apparatus of oxygen, by detecting the oxygen flow rate supplied to the utilizing apparatus of oxygen and the oxygen concentration expelled from the apparatus, and adjusting the supplying pressure of the mixed gas of N2 and O2 based on the detected values. CONSTITUTION:A mixed gas consisting of N2 and O2 essentially is supplied from a supply pressure pump 4, a water drop separator 5 to an adsorbing column 1 or 2 containing an absorbent for N2, and the resultant gas containing concentrated O2 is stored in an oxygen tank 12. The concentrated oxygen in the tank 12 is supplied from an electromagnetic flowmeter 14 for the oxygen flow rate supplied and a supply port 15 to a utilizing apparatus 16, e.g. a cultivating tank, and expelled from a vent hole 17. The oxygen flow rate detected by the flowmeter 14 and the oxygen concentration detected by a sensor 19 provided at the vent hole 17 are sent to a controller 24, and control signals of the supply pressure of the mixed gas corresponding to the supply oxygen flow rate under the given necessary oxygen concentration based on the detected values are output to the pump 4 to control the supply pressure of the mixed gas.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、酸素濃縮装置を備えた酸素の利用装
置における酸素流量の制御方法ならびに制御装置
に関する。 濃縮ないしは精製された酸素は酢酸、エチレン
オキサイドおよび無水フタル酸の製造等のような
化学工業、各種の炉への吹き込み、醗酵工業、廃
水処理、空調、医療分野等の用途において広く用
いられており、かかる用途における酸素純度はい
ずれも95%以下で充分である。 このような用途の酸素利用装置に対して濃縮酸
素を供給するために、原料しての空気中に含まれ
るチツ素を選択的に吸着および脱着する差圧吸着
法が一般的に用いられている。従来、この操作は
固定された一定の圧力下で行なわれているため
に、利用装置の酸素消費量の如何に拘わらず常に
同一流量の酸素が供給されることになり、酸素負
荷低下の場合には加圧空気が無駄に使用されて著
しい損失を生じていた。 かかる利用装置の酸素負荷変動に対応する手段
として、たとえば吸着系の除湿装置の切替時間を
負荷の低い夜間のみ長くして加圧空気の損失を減
少させる方法が知られている(特開昭50−161466
号)。しかし、この方法でも切替は2段階にしか
設定されないので急激な負荷変動には充分に対応
できない欠点があつた。 本発明の目的は、このような従来技術の欠点を
解消し、酸素を利用する装置の負荷の変動に対応
して常に酸素を適正な流量で供給することのでき
る酸素の利用装置における供給酸素流量の制御方
法ならびに制御装置を提供することにある。 本発明は、酸素の利用装置における酸素負荷の
変動に対して原料ガスの送入圧力を調整すること
により、消費量に適合した流量の酸素を一定の酸
素濃度下で供給することが可能であるという本発
明者等の研究および実験によつて得られた知見に
基づいてなされたものである。 すなわち本発明の特色は、チツ素および酸素を
主要な成分として含む混合ガスを少なくともその
中の一つの成分に対して選択的な吸着性を有する
吸着物質を含む吸着塔内に加圧送入し、差圧吸着
法により分離して濃縮された酸素を含むガスを生
成し、これを酸素の利用装置に一定の所要酸素濃
度下で供給する方法において、前記利用装置に供
給される酸素流量および前記利用装置から放出さ
れる酸素濃度を夫々検出し、前記酸素濃度の検出
値および前記酸素流量の検出値に基づいて利用装
置における酸素消費量を算出し、該酸素消費量に
基づいて所要酸素濃度下で前記利用装置へ供給し
なければならない供給酸素流量を算出し、該供給
酸素流量と前記所要酸素濃度とに基づいて前記吸
着塔へ送入する混合ガスの送入圧力を求め、求め
られた該送入圧力に基づいて吸着塔へ送入する前
記混合ガスの送入圧力を調整し、それによつて前
記供給酸素流量を制御することにある。 さらに本発明の別の特色は、チツ素および酸素
を主要な成分として含む混合ガスを加圧送入する
圧送ポンプ、前記混合ガス中の少なくとも一つの
成分に対して選択的な吸着性を有する吸着物質で
充填された吸着塔、および前記吸着塔中で吸着工
程および脱着工程を反復させて差圧吸着法により
濃縮された酸素を含むガスを生成して供給するた
めの切換制御系からなる酸素濃縮装置を備えた酸
素の利用装置において、前記酸素濃縮装置から前
記利用装置に供給される酸素流量を検出する流量
計と、前記利用装置から放出される酸素濃度を検
出する濃度検知器と、前記流量計で検出された酸
素流量および前記濃度検知器で検出された酸素濃
度から算出される酸素消費量の夫々の値を演算処
理し、この演算結果に基づいて酸素消費量に対応
する酸素流量が供給されるように前記圧送ポンプ
の加圧動作を調整する制御装置を設けたことにあ
る。 以下本発明の一実施例を図面に基づいて詳細に
説明する。 第1図は、酸素濃縮装置を備えた培養槽に本発
明を適用した実施例の系統図を示す。図中、酸素
濃縮装置の主体をなすチツ素吸着塔1,2の入口
側には送入管3から送られた空気を加圧して供給
する送圧ポンプ4が水滴分離器5および弁6,8
を介して結合されている。また前記チツ素吸着塔
1,2の出口側は夫々弁10,11を介して酸素
タンク12に結合されており、ここから取出し管
13を経て酸素の利用装置としての培養槽16に
導かれている。その他図中、7,9は各吸着塔
1,2の排気弁を示す。 培養槽16には前記吸着塔1,2から供給され
る濃縮酸素が導入される供給口15および槽から
の排気を放出する排気口17が設けられており、
供給される酸素は培養液18の液中の下方に設置
されたスパージヤ20から散気され、インペラ2
1で撹拌されながら液中を上昇して排気される。
図中、22はバツフル板、23はインペラの回転
駆動機構である。 ここで本実施例においては、前記チツ素吸着塔
1,2からの取出し管13と培養槽16の供給口
15との間に供給される酸素流量を検知する電磁
流量計14が設けられており、また培養槽16の
排気口17中には放出される排気中の酸素濃度を
検出するセンサ19が設置されている。これら電
磁流量計14および酸素濃度のセンサ19からの
検知電気信号は制御装置24に対して夫々電気的
に結合されている。制御装置24はセンサ19か
らの酸素濃度の検知信号に基づいて培養槽16中
での消費酸素量を算出し、算出された消費酸素
量、すなわち培養槽16中の所要酸素量について
のデータと前記流量計14で検知された各時点で
の実際の供給酸素量のデータとに基づく制御信号
を発生する回路を備えている。前記制御信号は送
圧ポンプ4の回転数可変制御部に電気的に接続さ
れている。 以下、このような本発明の実施例装置の動作に
ついて説明する。 まず吸着塔1が加圧吸着工程にまた吸着塔2が
減圧工程になされる。このため弁6,9,10が
開放され、また弁7,8,11が閉じられる。こ
れらの弁の切換操作で送入管3からの空気が送圧
ポンプ4で加圧され水滴分離器5で除湿された
後、弁6を介して吸着塔1に送られる。吸着塔1
では加圧空気中のチツ素が選択的に吸着され、酸
素は弁10を通つて酸素タンク12に送られる。
一方、この間に減圧工程にある吸着塔2は弁9に
よつて大気側に開放され、前段のサイクルでこの
吸着塔2中に吸着されていたチツ素が系外に排気
される(操作サイクルNo.1)。 次いで吸着塔1が減圧排気工程に、吸着塔2が
均圧化工程に夫々切換えられる。この場合には弁
7,11が開放され弁6,8,9,10が閉じら
れる。これらの弁切換え操作で吸着塔1は弁7に
よつて大気側に開放され、この吸着塔中に吸着さ
れたチツ素が系外に排気される。一方、酸素タン
ク12に貯蔵されている酸素の一部が弁11を通
つて吸着塔2に返送される(操作サイクルNo.2)。 以下同様にして各工程が吸着塔1,2について
操作サイクルNo.3、No.4として反復される。この
状態を下表に示す。
The present invention relates to a method and a control device for controlling an oxygen flow rate in an oxygen utilization device including an oxygen concentrator. Concentrated or purified oxygen is widely used in the chemical industry, such as in the production of acetic acid, ethylene oxide, and phthalic anhydride, as well as in the blowing into various furnaces, the fermentation industry, wastewater treatment, air conditioning, and the medical field. In all such applications, oxygen purity of 95% or less is sufficient. In order to supply concentrated oxygen to oxygen utilization equipment for such applications, a differential pressure adsorption method that selectively adsorbs and desorbs nitrogen contained in the air as a raw material is generally used. . Conventionally, this operation is carried out under a fixed, constant pressure, which means that the same flow rate of oxygen is always supplied regardless of the oxygen consumption of the equipment used, and in the event of a decrease in oxygen load. Pressurized air was wasted, resulting in significant losses. As a means of dealing with oxygen load fluctuations in such utilization equipment, a method is known in which, for example, the switching time of an adsorption-type dehumidifier is lengthened only at night when the load is low to reduce the loss of pressurized air (Japanese Patent Application Laid-Open No. 1983-1993). −161466
issue). However, even with this method, the switching is only set in two stages, so there is a drawback that it cannot adequately cope with rapid load fluctuations. An object of the present invention is to solve the drawbacks of the prior art and to improve the flow rate of oxygen in an oxygen utilization device, which can always supply oxygen at an appropriate flow rate in response to changes in the load of the oxygen utilization device. An object of the present invention is to provide a control method and a control device. The present invention makes it possible to supply oxygen at a flow rate that matches the consumption amount under a constant oxygen concentration by adjusting the feeding pressure of the raw material gas in response to changes in the oxygen load in the oxygen utilization device. This was made based on the findings obtained through research and experiments by the present inventors. That is, the feature of the present invention is that a mixed gas containing nitrogen and oxygen as main components is fed under pressure into an adsorption tower containing an adsorption material that has selective adsorption properties for at least one of the components, A method in which a gas containing concentrated oxygen is separated and concentrated by a differential pressure adsorption method and is supplied to an oxygen utilization device at a constant required oxygen concentration, the oxygen flow rate supplied to the utilization device and the utilization Detecting the oxygen concentration released from each device, calculating the oxygen consumption amount in the utilization device based on the detected oxygen concentration value and the detected oxygen flow rate value, and calculating the oxygen consumption amount under the required oxygen concentration based on the oxygen consumption amount. Calculate the supply oxygen flow rate that must be supplied to the utilization equipment, determine the supply pressure of the mixed gas to be supplied to the adsorption tower based on the supply oxygen flow rate and the required oxygen concentration, and The purpose of the present invention is to adjust the feeding pressure of the mixed gas fed to the adsorption tower based on the input pressure, and thereby control the supplied oxygen flow rate. Furthermore, another feature of the present invention is a pressure pump that feeds a mixed gas containing nitrogen and oxygen as main components under pressure; An oxygen concentrator consisting of an adsorption tower filled with gas, and a switching control system for repeating the adsorption step and desorption step in the adsorption tower to generate and supply a gas containing concentrated oxygen by differential pressure adsorption method. An oxygen utilization device comprising: a flowmeter that detects the flow rate of oxygen supplied from the oxygen concentrator to the utilization device; a concentration detector that detects the concentration of oxygen released from the utilization device; and the flowmeter. The respective values of the oxygen consumption amount calculated from the oxygen flow rate detected by the oxygen concentration detector and the oxygen concentration detected by the concentration detector are processed, and the oxygen flow rate corresponding to the oxygen consumption amount is supplied based on the calculation result. A control device is provided for adjusting the pressurizing operation of the pressure pump so that the pressure is increased. An embodiment of the present invention will be described in detail below based on the drawings. FIG. 1 shows a system diagram of an embodiment in which the present invention is applied to a culture tank equipped with an oxygen concentrator. In the figure, on the inlet side of the nitrogen adsorption towers 1 and 2, which form the main body of the oxygen concentrator, there is a pressure pump 4 that pressurizes and supplies air sent from an inlet pipe 3 to a water droplet separator 5 and a valve 6. 8
are connected via. Further, the outlet sides of the nitrogen adsorption towers 1 and 2 are connected to an oxygen tank 12 via valves 10 and 11, respectively, and are led from there through an extraction pipe 13 to a culture tank 16 as an oxygen utilization device. There is. Others In the figure, 7 and 9 indicate exhaust valves of each adsorption tower 1 and 2. The culture tank 16 is provided with a supply port 15 through which concentrated oxygen supplied from the adsorption towers 1 and 2 is introduced, and an exhaust port 17 through which exhaust gas from the tank is discharged.
The supplied oxygen is diffused from a spargeer 20 installed below the culture solution 18, and then passed through an impeller 2.
1, it rises in the liquid while being stirred and is exhausted.
In the figure, 22 is a baffle plate, and 23 is an impeller rotation drive mechanism. In this embodiment, an electromagnetic flow meter 14 is provided to detect the flow rate of oxygen supplied between the take-out pipe 13 from the nitrogen adsorption towers 1 and 2 and the supply port 15 of the culture tank 16. Furthermore, a sensor 19 is installed in the exhaust port 17 of the culture tank 16 to detect the oxygen concentration in the exhausted exhaust gas. Detected electrical signals from the electromagnetic flowmeter 14 and oxygen concentration sensor 19 are electrically coupled to a control device 24, respectively. The control device 24 calculates the amount of oxygen consumed in the culture tank 16 based on the oxygen concentration detection signal from the sensor 19, and combines the calculated amount of oxygen consumed, that is, the data about the required amount of oxygen in the culture tank 16 with the above-mentioned data. It is equipped with a circuit that generates a control signal based on the data of the actual amount of oxygen supplied at each point in time detected by the flow meter 14. The control signal is electrically connected to the rotation speed variable control section of the pressure pump 4. The operation of the apparatus according to the embodiment of the present invention will be described below. First, the adsorption tower 1 is subjected to a pressure adsorption process, and the adsorption tower 2 is subjected to a depressurization process. For this purpose, valves 6, 9, 10 are opened and valves 7, 8, 11 are closed. By switching these valves, air from the feed pipe 3 is pressurized by the pressure pump 4, dehumidified by the water droplet separator 5, and then sent to the adsorption tower 1 via the valve 6. Adsorption tower 1
In this case, nitrogen in the pressurized air is selectively adsorbed, and oxygen is sent to an oxygen tank 12 through a valve 10.
Meanwhile, during this time, the adsorption tower 2 in the depressurization process is opened to the atmosphere by the valve 9, and the nitrogen adsorbed in the adsorption tower 2 in the previous cycle is exhausted to the outside of the system (operation cycle No. .1). Next, the adsorption tower 1 is switched to the depressurization exhaust process, and the adsorption tower 2 is switched to the pressure equalization process. In this case, valves 7 and 11 are opened and valves 6, 8, 9 and 10 are closed. By these valve switching operations, the adsorption tower 1 is opened to the atmosphere through the valve 7, and the nitrogen adsorbed in this adsorption tower is exhausted to the outside of the system. On the other hand, a part of the oxygen stored in the oxygen tank 12 is returned to the adsorption tower 2 through the valve 11 (operation cycle No. 2). Thereafter, each step is similarly repeated for adsorption towers 1 and 2 as operation cycles No. 3 and No. 4. This state is shown in the table below.

【表】 酸素タンク12中の濃縮酸素は送入管13を通
つて供給口15から培養槽16中に導入され、ス
パージヤ20、インペラ21、バツフル板22で
微細な気泡に分散されて培養液18中に散気さ
れ、ここで微生物の培養のためにその一部を消費
された後に排気口17から排出される。 ここで本実施例中においては、供給口15にお
ける供給酸素流量が電磁流量計14で検知され各
時点での流量値の検知信号が制御装置24に送ら
れる。一方、排気口17からの排気中における酸
素濃度がセンサ19によつて検出されこの検知信
号が制御装置24に送られる。そして供給口15
における供給酸素流量の検出値と排気中における
酸素濃度の検出値に基づいて培養槽内での消費酸
素量が算出される。制御装置24は、消費酸素量
の算出値に基づいて、一定の所要酸素濃度下で利
用装置へ供給しなければならない供給酸素流量を
算出する。そしてこの算出された供給酸素流量と
所要酸素濃度とに基づいて、吸着塔へ送入する原
料空気の送入圧力を求める。この後、原料空気の
送入圧力についての制御信号を出力してこれを送
圧ポンプ4の回転制御部に送り、原料空気の送入
圧力を調整して利用装置への供給酸素流量を制御
する。すなわち、排気中の酸素濃度の検出値と供
給口15における供給酸素流量の検出値によつて
培養槽16中での消費酸素量が算出され、したが
つてそれに対応して必要となる供給酸素流量が算
出され、これに基づいて一定の所要酸素濃度下で
この供給酸素流量を与える空気の送入圧力が演算
され、この演算出力が制御信号として送圧ポンプ
4に送られる。送圧ポンプ4の回転数はこの制御
信号によつて変化され、これによつて吸着塔へ送
入される空気の送入圧力が調整され、各制御時点
での実際の酸素供給流量が所要の酸素負荷に対応
するように制御される。 ここで酸素供給流量が一定の酸素濃度下で空気
の送入圧力によつて制御される根拠は、差圧吸着
法の実施に際してこれらの間に一定の相関々係が
存在するという本発明者等の研究、実験の結果に
基づくものである。すなわち第2図に示すように
酸素濃縮装置に供給される空気の送入圧力Pをパ
ラメータにとると、酸素濃度C(グラフ縦軸)と
供給酸素流量F(グラフ横軸)との間には明らか
に一定の関連性が認められた。たとえば、図中、
圧力がP1,P2,…Pnの順に減少するにつれて酸
素濃度も減少し、またパラメータとしての圧力P
を一定にすると酸素流量Fの増加にともなつて酸
素濃度Cが減少する。 したがつて、酸素濃度Cを一定に保持しながら
酸素流量Fを変化させるためには圧力Pを制御す
れば良いことになる。たとえば、図中、圧力P1
一定の所要酸素濃度C1および酸素流量F1の条件
で運転していた装置の酸素流量F1を、酸素負荷
の低下にともなつてF2に減少させるためにはP1
→Pnに調整すれば良い。 ここでまた第3図に示すように、送入圧力(横
軸上P)と加圧空気量(縦軸上W)との間には一
定の相関が認められるので、圧力P1をPnまで低
下させることにより加圧空気量はW1―W2だけ減
少され、かかる圧力調整を行なわない場合よりも
△Wだけ損失が低下し、またポンプ回転数の対応
する低下で電力コストとも節減される。 前記第1図の装置において、吸着塔1,2とし
てゼオライト5A型吸着剤を夫々1Kg、2Kg充填
した内径64mm、層高630mmの塔を用い、送入圧力
1.5〜3Kg/cm2・G、酸素濃度80%で運転したと
ころ、運転中の平均送入圧力は2Kg/cm2・Gであ
つた。送入圧力3.0Kg/cm2・Gおよび2.0Kg/cm2
Gに対して加圧空気量は夫々160/minおよび
120/minであるところから、本実施例では常
時最大圧力3.0Kg/cm2・Gで運転する場合に比較
して25%の空気量の節減が得られた。 このように本実施例においては、吸着塔1,2
から供給される酸素量を電磁流量弁14によつて
検出すると共に、培養槽16からの排気中の酸素
濃度をセンサ19で検出して、これらの検出値に
基づいて消費酸素量を算出し、該消費酸素量に基
づいて所要酸素濃度下で酸素利用装置へ供給しな
ければならない供給酸素流量を算出し、算出した
供給酸素流量と所要酸素濃度とに基づいて吸着塔
へ送入する空気の送入圧力を求め、この送入圧力
に対応する制御装置24からの制御信号で送圧ポ
ンプ4の回転数を調整して空気の送入圧力を制御
するようになされているので、培養槽16の酸素
消費負荷に応じて加圧空気量を調整しその節減を
計ることができる。したがつて本実施例によれ
ば、酸素負荷の変動によらず常に一定の空気送入
圧力で一定量の酸素を供給する場合に比較して加
圧空気量の損失を著しく低減し、また送圧ポンプ
の消費電力コストを低下させることができる。 尚本発明は前記実施例における培養槽の他、酸
素を利用する一般の装置に広く適用することがで
きる。 叙上のように本発明によれば酸素利用装置の酸
素負荷変動に対応して原料ガスの送入圧力を制御
することにより酸素供給量を制御し、それによつ
て原料としての加圧気体の無益な消費による損失
を著しく低下させることができる。
[Table] Concentrated oxygen in the oxygen tank 12 is introduced into the culture tank 16 from the supply port 15 through the inlet pipe 13, and is dispersed into fine bubbles by the spargeer 20, impeller 21, and bubble plate 22, and becomes the culture solution 18. Aeration is diffused into the air, where a portion of the air is consumed for culturing microorganisms, and then exhausted from the exhaust port 17. In this embodiment, the flow rate of oxygen supplied at the supply port 15 is detected by the electromagnetic flowmeter 14, and a detection signal of the flow rate value at each point in time is sent to the control device 24. On the other hand, the oxygen concentration in the exhaust from the exhaust port 17 is detected by the sensor 19, and this detection signal is sent to the control device 24. and supply port 15
The amount of oxygen consumed in the culture tank is calculated based on the detected value of the supplied oxygen flow rate and the detected value of the oxygen concentration in the exhaust gas. The control device 24 calculates the flow rate of oxygen that must be supplied to the utilization device under a certain required oxygen concentration based on the calculated value of the consumed oxygen amount. Then, based on the calculated supply oxygen flow rate and required oxygen concentration, the feeding pressure of the raw material air to be fed into the adsorption tower is determined. After that, a control signal regarding the feeding pressure of raw material air is output and sent to the rotation control section of the pressure sending pump 4, and the feeding pressure of raw material air is adjusted to control the flow rate of oxygen supplied to the utilization equipment. . That is, the amount of oxygen consumed in the culture tank 16 is calculated based on the detected value of the oxygen concentration in the exhaust gas and the detected value of the supplied oxygen flow rate at the supply port 15, and the required supplied oxygen flow rate is calculated accordingly. is calculated, and based on this, the air supply pressure that provides this supplied oxygen flow rate under a constant required oxygen concentration is calculated, and the output of this calculation is sent to the pressure pump 4 as a control signal. The rotational speed of the pressure pump 4 is changed by this control signal, thereby adjusting the feeding pressure of air fed into the adsorption tower, and adjusting the actual oxygen supply flow rate at each control point to the required amount. Controlled to correspond to oxygen load. Here, the reason why the oxygen supply flow rate is controlled by the air supply pressure under a constant oxygen concentration is that the present inventors believe that there is a certain correlation between these when implementing the differential pressure adsorption method. It is based on the results of research and experiments. In other words, as shown in Fig. 2, if we take the inlet pressure P of air supplied to the oxygen concentrator as a parameter, there is a relationship between the oxygen concentration C (vertical axis of the graph) and the supplied oxygen flow rate F (horizontal axis of the graph). A certain degree of association was clearly observed. For example, in the figure,
As the pressure decreases in the order of P 1 , P 2 ,...Pn, the oxygen concentration also decreases, and the pressure P as a parameter
When constant, the oxygen concentration C decreases as the oxygen flow rate F increases. Therefore, in order to change the oxygen flow rate F while keeping the oxygen concentration C constant, it is sufficient to control the pressure P. For example, in the figure, pressure P 1 ,
In order to reduce the oxygen flow rate F 1 of a device operating under the conditions of constant required oxygen concentration C 1 and oxygen flow rate F 1 to F 2 as the oxygen load decreases, P 1 is required.
→ Just adjust it to Pn. Again, as shown in Fig. 3, there is a certain correlation between the inlet pressure (P on the horizontal axis) and the pressurized air amount (W on the vertical axis), so the pressure P 1 is reduced to Pn. By lowering the pressure, the pressurized air volume is reduced by W 1 - W 2 , resulting in lower losses by △W than without such pressure adjustment, and the corresponding reduction in pump speed also saves on electricity costs. . In the apparatus shown in Fig. 1, adsorption towers 1 and 2 are towers with an inner diameter of 64 mm and a bed height of 630 mm filled with 1 kg and 2 kg of zeolite 5A type adsorbent, respectively, and the feeding pressure is
When operating at 1.5 to 3 kg/cm 2 ·G and an oxygen concentration of 80%, the average feed pressure during operation was 2 kg/cm 2 ·G. Feed pressure 3.0Kg/cm 2・G and 2.0Kg/cm 2
The pressurized air amount for G is 160/min and
120/min, in this example, a 25% reduction in air volume was obtained compared to when operating at a maximum pressure of 3.0 Kg/cm 2 ·G. In this way, in this embodiment, the adsorption towers 1 and 2
The amount of oxygen supplied from the culture tank 16 is detected by the electromagnetic flow valve 14, the oxygen concentration in the exhaust gas from the culture tank 16 is detected by the sensor 19, and the amount of oxygen consumed is calculated based on these detected values, The flow rate of supplied oxygen that must be supplied to the oxygen utilization device at the required oxygen concentration is calculated based on the amount of oxygen consumed, and the flow of air to the adsorption tower is calculated based on the calculated supplied oxygen flow rate and the required oxygen concentration. The air supply pressure is controlled by determining the input pressure and adjusting the rotation speed of the pressure pump 4 using a control signal from the control device 24 corresponding to this supply pressure. It is possible to adjust the amount of pressurized air according to the oxygen consumption load and measure savings. Therefore, according to this embodiment, the loss in the amount of pressurized air is significantly reduced compared to the case where a constant amount of oxygen is always supplied at a constant air supply pressure regardless of changes in the oxygen load, and the The power consumption cost of the pressure pump can be reduced. It should be noted that the present invention can be widely applied to general devices that utilize oxygen, in addition to the culture tank in the above-mentioned embodiments. As described above, according to the present invention, the amount of oxygen supplied is controlled by controlling the feeding pressure of the raw material gas in response to changes in the oxygen load of the oxygen utilization device, thereby reducing the uselessness of pressurized gas as a raw material. losses due to heavy consumption can be significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の概要を示す系統
図、第2図は酸素流量と酸素濃度との関係を示す
特性図、第3図は空気送入圧力と加圧空気量との
関係を示す特性図である。 1,2…吸着塔、4…送圧ポンプ、14…電磁
流量計、16…培養槽、19…酸素濃度センサ、
24…制御装置。
Fig. 1 is a system diagram showing an overview of an embodiment of the present invention, Fig. 2 is a characteristic diagram showing the relationship between oxygen flow rate and oxygen concentration, and Fig. 3 is a relationship between air supply pressure and pressurized air amount. FIG. 1, 2... Adsorption tower, 4... Pressure pump, 14... Electromagnetic flow meter, 16... Culture tank, 19... Oxygen concentration sensor,
24...Control device.

Claims (1)

【特許請求の範囲】 1 チツ素および酸素を主要な成分として含む混
合ガスを少なくともその中の一つの成分に対して
選択的な吸着性を有する吸着物質を含む吸着塔内
に加圧送入し、差圧吸着法により分離して濃縮さ
れた酸素を含むガスを生成し、これを酸素の利用
装置に一定の所要酸素濃度下で供給する方法にお
いて、 前記利用装置に供給される酸素流量および前記
利用装置から放出される酸素濃度を夫々検出し、
前記酸素濃度の検出値と前記酸素流量の検出値に
基づいて利用装置における酸素消費量を算出する
こと、 該酸素消費量に基づいて所要酸素濃度下で前記
利用装置に供給しなければならない供給酸素流量
を算出すること、 算出された該供給酸素流量と前記所要酸素濃度
とに基づいて前記吸着塔へ送入する混合ガスの送
入圧力を求めること、 求められた該送入圧力に基づいて前記吸着塔へ
送入する混合ガスの送入圧力を制御すること、 を特徴とする酸素の利用装置における酸素流量制
御方法。 2 チツ素および酸素を主要な成分として含む混
合ガスを加圧送入する圧送ポンプ、前記混合ガス
中の少なくとも一つの成分に対して選択的な吸着
性を有する吸着物質で充填された吸着塔、および
前記吸着塔中で吸着工程および脱着工程を反復さ
せ差圧吸着法により濃縮された酸素を含むガスを
生成して供給するための切換制御系からなる酸素
濃縮装置を備えた酸素の利用装置において、前記
酸素濃縮装置から前記利用装置に供給される酸素
流量を検出する流量計と、前記利用装置から放出
される酸素濃度を検出する濃度検知器と、前記流
量計で検出された酸素流量および前記濃度検知器
で検出された酸素濃度から算出される酸素消費量
の夫々の値を演算処理し、この演算結果に基づい
て酸素消費量に対応する酸素流量が供給されるよ
うに前記圧送ポンプの加圧動作を調整する制御装
置とを備えたことを特徴とする酸素の利用装置に
おける酸素流量制御装置。
[Scope of Claims] 1. A mixed gas containing nitrogen and oxygen as main components is fed under pressure into an adsorption tower containing an adsorption material that has selective adsorption properties for at least one of the components, A method of generating a gas containing concentrated oxygen by separating it by a differential pressure adsorption method and supplying it to an oxygen utilization device under a constant required oxygen concentration, the method comprising: Detect the oxygen concentration released from the device,
calculating an amount of oxygen consumed in the utilization device based on the detected value of the oxygen concentration and the detected value of the oxygen flow rate; calculating the flow rate; determining the feeding pressure of the mixed gas to be fed to the adsorption tower based on the calculated supply oxygen flow rate and the required oxygen concentration; 1. A method for controlling an oxygen flow rate in an oxygen utilization device, comprising: controlling the pressure at which a mixed gas is fed into an adsorption tower. 2. A pressure pump that feeds a mixed gas containing nitrogen and oxygen as main components under pressure, an adsorption tower filled with an adsorbent that has selective adsorption properties for at least one component in the mixed gas, and An oxygen utilization device comprising an oxygen concentrator comprising a switching control system for repeating the adsorption step and the desorption step in the adsorption tower to generate and supply a gas containing concentrated oxygen by a differential pressure adsorption method, a flow meter that detects the oxygen flow rate supplied from the oxygen concentrator to the utilization device; a concentration detector that detects the oxygen concentration released from the utilization device; and the oxygen flow rate and the concentration detected by the flow meter. Each value of the oxygen consumption amount calculated from the oxygen concentration detected by the detector is processed, and based on the calculation result, the pressure pump is pressurized so that the oxygen flow rate corresponding to the oxygen consumption amount is supplied. 1. An oxygen flow rate control device in an oxygen utilization device, comprising: a control device for adjusting operation.
JP2795680A 1980-03-07 1980-03-07 Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus Granted JPS56125206A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2795680A JPS56125206A (en) 1980-03-07 1980-03-07 Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2795680A JPS56125206A (en) 1980-03-07 1980-03-07 Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus

Publications (2)

Publication Number Publication Date
JPS56125206A JPS56125206A (en) 1981-10-01
JPS647001B2 true JPS647001B2 (en) 1989-02-07

Family

ID=12235334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2795680A Granted JPS56125206A (en) 1980-03-07 1980-03-07 Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus

Country Status (1)

Country Link
JP (1) JPS56125206A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455680B1 (en) * 2001-11-30 2004-11-06 (주)바이오텔 Apparatus for supplying oxygen
JP2013117346A (en) * 2011-12-02 2013-06-13 Osaka Gas Co Ltd Industrial furnace apparatus

Also Published As

Publication number Publication date
JPS56125206A (en) 1981-10-01

Similar Documents

Publication Publication Date Title
KR940011505B1 (en) Oxygen enriched air system
KR101458395B1 (en) Oxygen concentrator
JPH04227813A (en) Improved control for pressure variable adsorption operation
JPH07194919A (en) Method of adjusting vacuum pressure swing type adsorber
US3983031A (en) Methods and apparatus for controlling the supply of a feed gas to dissolution devices
JPS6463019A (en) Method and apparatus for controlling pressure swing adsorption
JP2017510408A (en) Control of oxygen concentrator timing cycle based on flow rate of oxygen output
KR101528328B1 (en) Nitrogen Producer Apparatus For Possible Oxygen Content Control
JPH11335102A (en) Method and apparatus for continuously generating highly concentrated ozone
JP6384960B2 (en) Helium gas purification method and purification system
JPS647001B2 (en)
US8404022B2 (en) Method of concentrating ozone gas and apparatus therefor
CN211274123U (en) Oxygen-enriched tail gas recovery device of pressure swing adsorption nitrogen making machine
JP5116195B2 (en) Gas separation and purification method
JPS63123421A (en) Dehumidified air feeder
JP2007089684A (en) Oxygen concentrator
JP3769741B2 (en) Ozone concentration storage device and control method thereof
JPS63123422A (en) Dehumidified air feeder
JP6258577B2 (en) Method and apparatus for purifying mixed gas
JP2003071233A (en) Concentrated oxygen supply apparatus
JPH09142808A (en) Control of ozonizer
JP2003286009A (en) Oxygen concentrator
JP4358724B2 (en) Oxygen concentrator
CN212450816U (en) Aeration system applied to CWSBR (continuous wave sequencing batch reactor) process
JPS6247802B2 (en)