JP2013117346A - Industrial furnace apparatus - Google Patents

Industrial furnace apparatus Download PDF

Info

Publication number
JP2013117346A
JP2013117346A JP2011264929A JP2011264929A JP2013117346A JP 2013117346 A JP2013117346 A JP 2013117346A JP 2011264929 A JP2011264929 A JP 2011264929A JP 2011264929 A JP2011264929 A JP 2011264929A JP 2013117346 A JP2013117346 A JP 2013117346A
Authority
JP
Japan
Prior art keywords
oxygen
adsorption
industrial furnace
compressor
adsorption tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011264929A
Other languages
Japanese (ja)
Inventor
Yukio Shimizu
行男 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2011264929A priority Critical patent/JP2013117346A/en
Publication of JP2013117346A publication Critical patent/JP2013117346A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an industrial furnace apparatus that can save energy by suppressing an electric power consumption rate of oxygen-enriched air generated at a pressure fluctuation adsorption type oxygen enricher.SOLUTION: An industrial furnace apparatus includes: a pressure fluctuation adsorption type oxygen enricher 1 whose body is composed of, in sequence from an upstream side of an airflow channel AR: a compressor C for supplying compressed air; a plurality of adsorption towers AT for adsorbing nitride gases in the compressed air; and a buffer tank BT for storing oxygen-enriched air generated at the adsorption tower AT; and an industrial furnace 2 in which the discharge pressure P1 of the compressor C is controlled so that the oxygen density of gas generated at the oxygen enricher 1 falls into a range of 28 to 60%.

Description

本発明は、圧力変動吸着式の酸素濃縮装置を備えた工業炉装置に関するものである。   The present invention relates to an industrial furnace apparatus equipped with a pressure fluctuation adsorption type oxygen concentrator.

従来より、金属溶解炉等の工業炉における省エネ性・生産性向上を図るため、酸素富化燃焼が行われており、酸素富化空気を得るために圧力変動吸着式の酸素濃縮装置が利用されている。   Conventionally, oxygen-enriched combustion has been performed to improve energy saving and productivity in industrial furnaces such as metal melting furnaces, and pressure fluctuation adsorption type oxygen concentrators have been used to obtain oxygen-enriched air. ing.

圧力変動吸着式の酸素濃縮装置は、2つの吸着塔を備え、一方の吸着塔で吸着を行うと共に他方の吸着塔で再生を行い、吸着と再生を交互に切り替えて酸素富化空気を効率よく生成するものである。   The pressure fluctuation adsorption type oxygen concentrator has two adsorption towers, performs adsorption in one adsorption tower and regenerates in the other adsorption tower, and switches the adsorption and regeneration alternately to efficiently generate oxygen-enriched air. Is to be generated.

特開2009−119069号公報JP 2009-1119069 A

従来、工業炉に圧力変動吸着式の酸素濃縮装置からの酸素富化空気を供給する場合、その酸素濃度が90%以上の高酸素富化空気を供給しており、酸素富化空気の電力原単位が高いものであった。   Conventionally, when supplying oxygen-enriched air from a pressure fluctuation adsorption type oxygen concentrator to an industrial furnace, high-oxygen-enriched air having an oxygen concentration of 90% or more is supplied, and the power source of oxygen-enriched air is supplied. The unit was high.

本発明は上記問題点に鑑みて発明したものであって、圧力変動吸着式の酸素濃縮装置で生成する酸素富化空気の電力原単位を低く抑えて、省エネ化を図ることができる工業炉装置を提供することを課題とするものである。   The present invention was invented in view of the above problems, and an industrial furnace apparatus capable of saving energy by suppressing the power unit of oxygen-enriched air generated by a pressure fluctuation adsorption type oxygen concentrator. It is a problem to provide.

上記課題を解決するために本発明の工業炉装置は、
空気流路ARの上流側から順に設けられる、圧縮空気を供給するコンプレッサーCと、圧縮空気中の窒素ガスを吸着させる複数の吸着塔ATと、前記吸着塔ATで生成された酸素富化空気を貯蔵するバッファタンクBTと、で主体が構成される圧力変動吸着式の酸素濃縮装置1と、工業炉2と、を備え、前記酸素濃縮装置1にて生成される気体の酸素濃度が28〜60%となるように前記コンプレッサーCの吐出圧力P1を制御することを特徴とする。
In order to solve the above problems, the industrial furnace apparatus of the present invention is
A compressor C for supplying compressed air, which is provided in order from the upstream side of the air flow path AR, a plurality of adsorption towers AT for adsorbing nitrogen gas in the compressed air, and oxygen-enriched air generated in the adsorption tower AT A pressure fluctuation adsorption type oxygen concentrator 1 composed mainly of a buffer tank BT for storage, and an industrial furnace 2, wherein the oxygen concentration of the gas generated in the oxygen concentrator 1 is 28-60. The discharge pressure P1 of the compressor C is controlled to be%.

このように、酸素濃度が28〜60%の中酸素富化空気を酸素濃縮装置1にて生成するようにコンプレッサーCの吐出圧力P1を制御するため、酸素濃度が90%以上の高酸素富化空気を生成する場合と比較して、電力原単位を低く抑えることができる。   Thus, since the discharge pressure P1 of the compressor C is controlled so that the oxygen concentration device 1 generates medium oxygen enriched air with an oxygen concentration of 28 to 60%, the oxygen concentration is 90% or higher. Compared with the case where air is generated, the power consumption rate can be kept low.

また請求項2は、請求項1において、前記酸素濃縮装置1は、前記吸着塔ATを4つ備えることを特徴とする。   A second aspect of the present invention is characterized in that, in the first aspect, the oxygen concentrating device 1 includes four adsorption towers AT.

これにより、各吸着塔ATにおいて吸着の3倍の時間をかけて再生することができて、充分な再生を行うことが可能となる。   As a result, regeneration can be performed in each adsorption tower AT over 3 times the adsorption time, and sufficient regeneration can be performed.

また請求項3は、請求項1または2において、前記コンプレッサーCの出力を調節可能にすることを特徴とする。   A third aspect is characterized in that, in the first or second aspect, the output of the compressor C is adjustable.

これにより、一定の出力で酸素濃縮装置1を運転することによる無駄をなくし、より一層省エネ化を図ることができる。   Thereby, the waste by operating the oxygen concentrator 1 with a constant output can be eliminated, and further energy saving can be achieved.

また請求項4は、請求項3において、前記工業炉2の温度に応じて前記コンプレッサーCの出力を調節することを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, the output of the compressor C is adjusted according to the temperature of the industrial furnace 2.

これにより、細やかな制御を行うことで更なる省エネ化を図ることができる。   Thereby, further energy saving can be achieved by performing fine control.

本発明にあっては、酸素濃縮装置で生成する酸素富化空気の電力原単位を低く抑えて、工業炉装置の省エネ化を図ることができる。   In the present invention, it is possible to save energy in the industrial furnace apparatus by keeping the power unit of oxygen-enriched air generated by the oxygen concentrator low.

本発明の工業炉装置の一実施形態の概略構成図である。It is a schematic block diagram of one Embodiment of the industrial furnace apparatus of this invention.

本発明の工業炉装置の一実施形態について、図1に基づいて説明する。工業炉装置は、圧力変動吸着式の酸素濃縮装置1と、工業炉2と、制御部3とを備えたもので、まず圧力変動吸着式の酸素濃縮装置1について説明する。   One embodiment of the industrial furnace apparatus of the present invention will be described with reference to FIG. The industrial furnace apparatus includes a pressure fluctuation adsorption type oxygen concentrator 1, an industrial furnace 2, and a control unit 3. First, the pressure fluctuation adsorption type oxygen concentrator 1 will be described.

圧力変動吸着式の酸素濃縮装置1は、いわゆるPSA(Pressure Swing Adsorption)装置で、空気流路ARと、空気流路ARの上流側から順に設けられる、空気を圧縮して送るコンプレッサーCと、窒素ガスを吸着させて除去(低減)する吸着塔ATと、吸着塔で生成された酸素富化空気を貯蔵するバッファタンクBTと、で主体が構成される。   The pressure fluctuation adsorption type oxygen concentrator 1 is a so-called PSA (Pressure Swing Adsorption) device, which is provided with an air flow path AR, a compressor C that is provided in order from the upstream side of the air flow path AR, and that compresses and sends air, and nitrogen. The main body is composed of an adsorption tower AT that adsorbs and removes (reduces) gas, and a buffer tank BT that stores oxygen-enriched air generated in the adsorption tower.

コンプレッサーCは、圧縮方式等は特に限定されないもので、圧縮後の吐出圧力P1を0.2MPa以上とすることができる。   The compressor C is not particularly limited in its compression method, and the compressed discharge pressure P1 can be 0.2 MPa or more.

吸着塔ATは、内部に、空気中の窒素ガスを選択的に吸着させる吸着剤が装填されるもので、本実施形態では4つの吸着塔AT1〜AT4が並列に接続されている。吸着剤は、例えばゼオライトが好適に用いられるもので、高圧条件下で空気中の窒素ガスを吸着し、低圧条件下で吸着されている窒素ガスを離脱させる。空気流路ARの吸着塔AT1の前後にはバルブV11、V12が設けられ、空気流路ARの吸着塔AT2の前後にはバルブV21、V22が設けられ、空気流路ARの吸着塔AT3の前後にはバルブV31、V32が設けられ、空気流路ARの吸着塔AT4の前後にはバルブV41、V42が設けられている。   The adsorption tower AT is loaded with an adsorbent that selectively adsorbs nitrogen gas in the air. In the present embodiment, four adsorption towers AT1 to AT4 are connected in parallel. As the adsorbent, for example, zeolite is preferably used, which adsorbs nitrogen gas in the air under high pressure conditions and releases the nitrogen gas adsorbed under low pressure conditions. Valves V11 and V12 are provided before and after the adsorption tower AT1 of the air flow path AR, valves V21 and V22 are provided before and after the adsorption tower AT2 of the air flow path AR, and before and after the adsorption tower AT3 of the air flow path AR. Are provided with valves V31 and V32, and valves V41 and V42 are provided before and after the adsorption tower AT4 of the air flow path AR.

バッファタンクBTは、吸着塔ATで生成された酸素富化空気を貯蔵するもので、その下流側の空気流路ARにバルブV5が設けられる。   The buffer tank BT stores the oxygen-enriched air generated in the adsorption tower AT, and a valve V5 is provided in the air flow path AR on the downstream side thereof.

本実施形態では更に、吸着塔ATにパージ流路PRの下流端が接続されると共に、パージ流路PRの上流端にパージタンクPTが接続され、吸着塔ATに排気流路HRの上流端が接続され、排気流路HRの下流端は大気に開放されている。また、吸着塔AT1に接続されるパージ流路PRにはバルブV13が設けられると共に、吸着塔AT1に接続される排気流路HRにはバルブV14が設けられる。また、吸着塔AT2に接続されるパージ流路PRにはバルブV23が設けられると共に、吸着塔AT2に接続される排気流路HRにはバルブV24が設けられる。また、吸着塔AT3に接続されるパージ流路PRにはバルブV33が設けられると共に、吸着塔AT3に接続される排気流路HRにはバルブV34が設けられる。また、吸着塔AT4に接続されるパージ流路PRにはバルブV43が設けられると共に、吸着塔AT4に接続される排気流路HRにはバルブV44が設けられる。   In the present embodiment, the downstream end of the purge flow path PR is further connected to the adsorption tower AT, the purge tank PT is connected to the upstream end of the purge flow path PR, and the upstream end of the exhaust flow path HR is connected to the adsorption tower AT. Connected, the downstream end of the exhaust passage HR is open to the atmosphere. Further, a valve V13 is provided in the purge flow path PR connected to the adsorption tower AT1, and a valve V14 is provided in the exhaust flow path HR connected to the adsorption tower AT1. A valve V23 is provided in the purge flow path PR connected to the adsorption tower AT2, and a valve V24 is provided in the exhaust flow path HR connected to the adsorption tower AT2. Further, a valve V33 is provided in the purge flow path PR connected to the adsorption tower AT3, and a valve V34 is provided in the exhaust flow path HR connected to the adsorption tower AT3. Further, a valve V43 is provided in the purge flow path PR connected to the adsorption tower AT4, and a valve V44 is provided in the exhaust flow path HR connected to the adsorption tower AT4.

運転方法について説明する。吸着塔AT1で吸着を行う工程では、吸着塔AT1を通して空気流路ARを連通させるべくバルブV11、V12を開とし、他の吸着塔AT2〜AT4は閉塞するべくバルブV21、V22、V31、V32、V41、V42を閉とする。また、パージ流路PRおよび排気流路HRについては、吸着塔AT1のパージ流路PRを閉塞するべくバルブV13、V14を閉として、他の吸着塔AT2〜AT4を通して大気に連通させるべく、バルブV23、V24、V33、V34、V43、V44を開とする。   A driving method will be described. In the step of performing adsorption in the adsorption tower AT1, the valves V11 and V12 are opened to connect the air flow path AR through the adsorption tower AT1, and the valves V21, V22, V31, V32, and the other adsorption towers AT2 to AT4 are closed. V41 and V42 are closed. Further, regarding the purge flow path PR and the exhaust flow path HR, the valves V13 and V14 are closed to close the purge flow path PR of the adsorption tower AT1, and the valve V23 is connected to the atmosphere through the other adsorption towers AT2 to AT4. , V24, V33, V34, V43, and V44 are opened.

そして、コンプレッサーCで圧縮空気を吸着塔AT1に供給する。吸着塔AT1では、内部に装填された吸着剤の隙間を流れる圧縮空気の窒素ガスが吸着剤に吸着され、酸素富化空気が生成される。ここで、コンプレッサーCの吐出圧力P1を高くする程、吸着剤に吸着される空気中の窒素ガスの量が増加して残りの空気中の酸素濃度が増加するもので、従来の圧力変動吸着式の酸素濃縮装置1では、酸素濃度が90%以上の高濃度となるようにしているが、本実施形態では、吸着塔AT1で生成される酸素富化空気の酸素濃度が28〜60%となるように、コンプレッサーCの吐出圧力P1を制御するものである。吐出圧力P1と酸素濃度の関係は、吸着剤の種類と量、吸着塔ATへの装填方法、吸着塔AT内の形状等、吸着塔ATの各種条件により異なるため、所定の酸素濃度とするための吐出圧力P1も各吸着塔AT毎に異なる。   Then, compressed air is supplied to the adsorption tower AT1 by the compressor C. In the adsorption tower AT1, the nitrogen gas of the compressed air flowing through the gap between the adsorbents loaded therein is adsorbed by the adsorbent, and oxygen-enriched air is generated. Here, as the discharge pressure P1 of the compressor C is increased, the amount of nitrogen gas in the air adsorbed by the adsorbent is increased and the oxygen concentration in the remaining air is increased. In the present oxygen concentrator 1, the oxygen concentration is set to a high concentration of 90% or more, but in this embodiment, the oxygen concentration of the oxygen-enriched air produced in the adsorption tower AT1 is 28 to 60%. Thus, the discharge pressure P1 of the compressor C is controlled. The relationship between the discharge pressure P1 and the oxygen concentration varies depending on the various conditions of the adsorption tower AT, such as the type and amount of the adsorbent, the loading method to the adsorption tower AT, the shape in the adsorption tower AT, etc. The discharge pressure P1 is also different for each adsorption tower AT.

吸着塔AT1での吸着工程は、吸着塔AT1に装填されている吸着剤の吸着能力に対し、実用上充分に吸着されるように行われ、生成した酸素富化空気は下流側のバッファタンクBTへと貯留される。この間、他の吸着塔AT2〜AT4においては、パージタンクPTから低圧の空気が供給され、吸着剤に吸着されている窒素ガスが離脱され、吸着剤が再生される。   The adsorption step in the adsorption tower AT1 is performed so that the adsorption capacity of the adsorbent loaded in the adsorption tower AT1 is sufficiently adsorbed practically, and the generated oxygen-enriched air is stored in the downstream buffer tank BT. Is stored. During this time, in the other adsorption towers AT2 to AT4, low-pressure air is supplied from the purge tank PT, the nitrogen gas adsorbed by the adsorbent is released, and the adsorbent is regenerated.

吸着塔AT1に実用上充分に吸着されると、次の吸着塔AT2での吸着工程に移行する。この工程では、吸着塔AT2を通して空気流路ARを連通させるべくバルブV21、V22を開とし、他の吸着塔AT3、AT4、AT1は閉塞するべくバルブV31、V32、V41、V42、V11、V12を閉とする。また、パージ流路PRおよび排気流路HRについては、吸着塔AT2のパージ流路PRを閉塞するべくバルブV23、V24を閉として、他の吸着塔AT3、AT4、AT1を通して大気に連通させるべく、バルブV33、V34、V43、V44、V13、V14を開とする。   When practically sufficiently adsorbed to the adsorption tower AT1, the process proceeds to the adsorption process in the next adsorption tower AT2. In this step, the valves V21, V22 are opened to communicate the air flow path AR through the adsorption tower AT2, and the valves V31, V32, V41, V42, V11, V12 are closed to close the other adsorption towers AT3, AT4, AT1. Closed. Further, with respect to the purge flow path PR and the exhaust flow path HR, the valves V23 and V24 are closed to close the purge flow path PR of the adsorption tower AT2 and communicate with the atmosphere through the other adsorption towers AT3, AT4, and AT1. The valves V33, V34, V43, V44, V13, V14 are opened.

そして、コンプレッサーCで圧縮空気を吸着塔AT2に供給し、酸素富化空気が生成され、酸素富化空気は下流側のバッファタンクBTへと貯留される。この間、他の吸着塔AT3、AT4、AT1においては、パージタンクPTから低圧の空気が供給され、吸着剤に吸着されている窒素ガスが離脱され、吸着剤が再生される。   Then, compressed air is supplied to the adsorption tower AT2 by the compressor C, oxygen-enriched air is generated, and the oxygen-enriched air is stored in the downstream buffer tank BT. During this time, in the other adsorption towers AT3, AT4, AT1, low-pressure air is supplied from the purge tank PT, the nitrogen gas adsorbed by the adsorbent is released, and the adsorbent is regenerated.

その後、吸着塔AT3での吸着工程(他の吸着塔AT4、AT1、AT2では再生)、吸着塔AT4での吸着工程(他の吸着塔AT1〜3では再生)を同様に行い、以降は吸着塔AT1での吸着工程、吸着塔AT2での吸着工程、・・・と繰り返すものである。このように、4つの吸着塔ATのうち一つを吸着に用いると共にこの間に他を再生することで、各吸着塔ATにおいて吸着の3倍の時間をかけて再生することができて、充分な再生を行うことが可能となる。   Thereafter, the adsorption process in the adsorption tower AT3 (regeneration in the other adsorption towers AT4, AT1, and AT2) and the adsorption process in the adsorption tower AT4 (regeneration in the other adsorption towers AT1 to AT3) are performed in the same manner. The adsorption process at AT1, the adsorption process at adsorption tower AT2, and so on are repeated. In this way, by using one of the four adsorption towers AT for adsorption and regenerating the other during this period, each adsorption tower AT can be regenerated by taking three times as long as adsorption. Playback can be performed.

工業炉2は、本実施形態では金属溶解炉で、バーナ21を備えており、バーナ21には、燃料ガスの供給管22と空気供給管23が接続される。空気供給管23は、酸素濃縮装置1の空気流路ARと、この空気流路ARとは別の空気流路24とが合流してなるもので、空気流路24にはブロア25が接続されている。バーナ21には、空気供給管23を介して酸素濃度が28〜30%の酸素富化空気が供給され、酸素富化燃焼を行うものである。なお、工業炉2は本実施形態では金属溶解炉であるが、鍛造炉等の酸素富化空気を要するあらゆる炉が適用可能である。   The industrial furnace 2 is a metal melting furnace in the present embodiment, and includes a burner 21, and a fuel gas supply pipe 22 and an air supply pipe 23 are connected to the burner 21. The air supply pipe 23 is formed by joining an air flow path AR of the oxygen concentrator 1 and an air flow path 24 different from the air flow path AR, and a blower 25 is connected to the air flow path 24. ing. The burner 21 is supplied with oxygen-enriched air having an oxygen concentration of 28 to 30% through an air supply pipe 23 to perform oxygen-enriched combustion. The industrial furnace 2 is a metal melting furnace in this embodiment, but any furnace that requires oxygen-enriched air, such as a forging furnace, is applicable.

制御部3は、マイクロコンピュータからなるもので、コンプレッサーCの駆動制御、バルブV11〜V14、バルブV21〜V24、バルブV31〜V34、バルブV41〜V44、バルブV5の開閉制御、工業炉2の炉内温度の検知、ブロア25の制御等を行う。   The control unit 3 is composed of a microcomputer, and controls the drive of the compressor C, the valves V11 to V14, the valves V21 to V24, the valves V31 to V34, the valves V41 to V44, the valve V5, and the inside of the industrial furnace 2 Temperature detection, blower 25 control, and the like are performed.

上記の工業炉装置の運転例について説明する。酸素濃縮装置1については上述したように運転し、酸素濃度45%の酸素富化空気を生成するように制御するもので、表1にコンプレッサーCの電力量W、吐出圧力P1、圧縮した空気の流量V1、電力原単位Kを示し、表2に、バッファタンクBTでの圧力P2、吸着塔ATにて生成した酸素の濃度、バッファタンクBTからの吐出流量V2、換算酸素量V3、酸素得率、吐出圧力P3を示す。   An operation example of the industrial furnace apparatus will be described. The oxygen concentrator 1 is operated as described above and is controlled so as to generate oxygen-enriched air having an oxygen concentration of 45%. Table 1 shows the amount of power W of the compressor C, the discharge pressure P1, and the amount of compressed air. The flow rate V1 and the power consumption unit K are shown. Table 2 shows the pressure P2 in the buffer tank BT, the concentration of oxygen generated in the adsorption tower AT, the discharge flow rate V2 from the buffer tank BT, the converted oxygen amount V3, and the oxygen yield. The discharge pressure P3 is shown.

Figure 2013117346
Figure 2013117346

Figure 2013117346
Figure 2013117346

そして、バーナ21に供給する酸素濃度が30%となるように、ブロア25で送る空気の流量を制御し、酸素濃度45%の酸素富化空気に酸素濃度21%の空気を混合させる。   And the flow rate of the air sent with the blower 25 is controlled so that the oxygen concentration supplied to the burner 21 is 30%, and the air with an oxygen concentration of 21% is mixed with the oxygen-enriched air with an oxygen concentration of 45%.

この運転例での電力原単位は0.78[kwh/Nm・O]である。 The power consumption in this operation example is 0.78 [kwh / Nm 3 · O 2 ].

また、比較例についても同様に表1、表2に示す。この比較例では、従来と同様に、酸素濃縮装置1で生成する酸素濃度が95%という高酸素富化空気であり、この時の電力原単位は1.84[kwh/Nm・O]である。 The comparative examples are similarly shown in Tables 1 and 2. In this comparative example, as in the conventional case, the oxygen concentration generated in the oxygen concentrator 1 is highly oxygen-enriched air having a concentration of 95%, and the power unit at this time is 1.84 [kwh / Nm 3 · O 2 ]. It is.

本発明においては、酸素濃度が28〜60%の中酸素富化空気を酸素濃縮装置1にて生成するようにコンプレッサーCの吐出圧力P1を制御しているため、酸素濃度が90%以上の高酸素富化空気を生成する場合と比較して、電力原単位を低く抑えることができ、省エネ化を図ることができる。   In the present invention, since the discharge pressure P1 of the compressor C is controlled so that medium oxygen-enriched air having an oxygen concentration of 28 to 60% is generated by the oxygen concentrator 1, the oxygen concentration is 90% or higher. Compared with the case where oxygen-enriched air is generated, the power consumption rate can be kept low, and energy saving can be achieved.

また、バーナ21で要する酸素富化空気の流量に応じて、コンプレッサーCの出力を調節することで、より一層省エネ化を図ることができる。すなわち、従来の酸素濃縮装置1では一定の出力で運転を行っていて、工業炉で要する以上の酸素富化空気が生成されてしまい無駄が生じていたところ、本実施形態においてはそのような無駄を抑え省エネ化を図るものである。そして、バーナ21で要する酸素富化空気の流量を、工業炉2の炉内温度に応じてコンプレッサーCの出力を調節することで、細やかな制御を行い、更なる省エネ化を図ることができる。   Further, energy saving can be further achieved by adjusting the output of the compressor C according to the flow rate of the oxygen-enriched air required by the burner 21. That is, the conventional oxygen concentrator 1 is operated at a constant output, and oxygen-enriched air more than necessary in an industrial furnace has been generated and wasted. In the present embodiment, such wasted To save energy. And the flow rate of the oxygen-enriched air required by the burner 21 is controlled finely by adjusting the output of the compressor C according to the furnace temperature of the industrial furnace 2, and further energy saving can be achieved.

なお、酸素濃縮装置1は、本実施形態ではいわゆるPSA装置として説明したが、いわゆるPVSA装置(圧力真空スイング吸着法による装置)や、VSA装置(真空スイング吸着法による装置)であってもよい。   Although the oxygen concentrator 1 has been described as a so-called PSA apparatus in the present embodiment, it may be a so-called PVSA apparatus (an apparatus using a pressure vacuum swing adsorption method) or a VSA apparatus (an apparatus using a vacuum swing adsorption method).

1 酸素濃縮装置
2 工業炉
21 バーナ
22 燃料ガスの供給管
23 空気供給管
24 空気流路
25 ブロア
3 制御部
C コンプレッサー
AT 吸着塔
BT バッファタンク
AR 空気流路
PR パージ流路
HR 排気流路
V バルブ
DESCRIPTION OF SYMBOLS 1 Oxygen concentrator 2 Industrial furnace 21 Burner 22 Fuel gas supply pipe 23 Air supply pipe 24 Air flow path 25 Blower 3 Control part C Compressor AT Adsorption tower BT Buffer tank AR Air flow path PR Purge flow path HR Exhaust flow path V Valve

Claims (4)

空気流路の上流側から順に設けられる、圧縮空気を供給するコンプレッサーと、圧縮空気中の窒素ガスを吸着させる複数の吸着塔と、前記吸着塔で生成された酸素富化空気を貯蔵するバッファタンクと、で主体が構成される圧力変動吸着式の酸素濃縮装置と、
工業炉と、を備え、
前記酸素濃縮装置にて生成される気体の酸素濃度が28〜60%となるように前記コンプレッサーの吐出圧力を制御することを特徴とする工業炉装置。
A compressor for supplying compressed air, a plurality of adsorption towers for adsorbing nitrogen gas in the compressed air, and a buffer tank for storing oxygen-enriched air generated in the adsorption tower, provided in order from the upstream side of the air flow path And a pressure fluctuation adsorption type oxygen concentrator composed mainly of
An industrial furnace,
An industrial furnace apparatus, wherein the discharge pressure of the compressor is controlled so that an oxygen concentration of a gas generated by the oxygen concentrator is 28 to 60%.
前記酸素濃縮装置は、前記吸着塔を4つ備えることを特徴とする請求項1記載の工業炉装置。   The industrial furnace apparatus according to claim 1, wherein the oxygen concentrator includes four adsorption towers. 前記コンプレッサーの出力を調節可能にすることを特徴とする請求項1または2記載の工業炉装置。   The industrial furnace apparatus according to claim 1 or 2, wherein the output of the compressor is adjustable. 前記工業炉の温度に応じて前記コンプレッサーの出力を調節することを特徴とする請求項3記載の工業炉装置。 4. The industrial furnace apparatus according to claim 3, wherein the output of the compressor is adjusted according to the temperature of the industrial furnace.
JP2011264929A 2011-12-02 2011-12-02 Industrial furnace apparatus Pending JP2013117346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011264929A JP2013117346A (en) 2011-12-02 2011-12-02 Industrial furnace apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011264929A JP2013117346A (en) 2011-12-02 2011-12-02 Industrial furnace apparatus

Publications (1)

Publication Number Publication Date
JP2013117346A true JP2013117346A (en) 2013-06-13

Family

ID=48712027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011264929A Pending JP2013117346A (en) 2011-12-02 2011-12-02 Industrial furnace apparatus

Country Status (1)

Country Link
JP (1) JP2013117346A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099868A (en) * 2018-12-21 2020-07-02 株式会社クラレ Control method of nitrogen gas separation device and nitrogen gas separation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125206A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus
JPS5815852U (en) * 1981-07-21 1983-01-31 大阪瓦斯株式会社 Oxygen-enriched combustion control device
JPS63315504A (en) * 1987-06-16 1988-12-23 Hitachi Ltd Actuation of oxygen-enriching apparatus
JP2001330227A (en) * 2000-05-23 2001-11-30 Mitsubishi Heavy Ind Ltd Refuse crushing and incinerating system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56125206A (en) * 1980-03-07 1981-10-01 Hitachi Ltd Controlling method of oxygen flow rate in utilizing apparatus of oxygen and controlling apparatus
JPS5815852U (en) * 1981-07-21 1983-01-31 大阪瓦斯株式会社 Oxygen-enriched combustion control device
JPS63315504A (en) * 1987-06-16 1988-12-23 Hitachi Ltd Actuation of oxygen-enriching apparatus
JP2001330227A (en) * 2000-05-23 2001-11-30 Mitsubishi Heavy Ind Ltd Refuse crushing and incinerating system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020099868A (en) * 2018-12-21 2020-07-02 株式会社クラレ Control method of nitrogen gas separation device and nitrogen gas separation device

Similar Documents

Publication Publication Date Title
JP4365403B2 (en) Pressure swing adsorption gas generator
TWI401113B (en) Pressure swing adsorption gas generating device
JP2013056810A (en) Method and apparatus for concentrating ozone gas
JP5427412B2 (en) Ozone gas concentration method and apparatus
CN103058144B (en) Vacuum pressure swing adsorption oxygen generation system and control method thereof
JP4799454B2 (en) Pressure swing adsorption oxygen concentrator
US20170144101A1 (en) Gas Concentration Method
JP5559755B2 (en) Method for separating mixed gas and separation apparatus therefor
KR101525505B1 (en) Method of concentrating ozone gas and apparatus therefor
JP2009269805A (en) Method and apparatus for recovering carbon dioxide
JP2013117346A (en) Industrial furnace apparatus
JP6028081B1 (en) Oxygen adsorbent, oxygen production apparatus using oxygen adsorbent, and oxygen production method
CN204656291U (en) A kind of novel energy-conserving VPSA oxygen generating plant
JP2004262743A (en) Method and apparatus for concentrating oxygen
RU2550899C2 (en) Combustible gas enrichment method
JP6791085B2 (en) Steelworks by-product gas separation equipment and separation method
JP4673440B1 (en) Target gas separation and recovery method
US8932387B2 (en) Enrichment system for combustible gas
JP5939917B2 (en) Gas separation device
CN211283733U (en) Low-consumption high-purity variable-pressure nitrogen making device
JP3764370B2 (en) Gas concentrator
CN217725075U (en) Magnetic suspension equipment protection system applied to VPSA oxygen production
JP6027769B2 (en) Gas separation apparatus and method
JP3895037B2 (en) Low pressure oxygen enrichment method
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150818

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151215