JP2001330227A - Refuse crushing and incinerating system - Google Patents

Refuse crushing and incinerating system

Info

Publication number
JP2001330227A
JP2001330227A JP2000151995A JP2000151995A JP2001330227A JP 2001330227 A JP2001330227 A JP 2001330227A JP 2000151995 A JP2000151995 A JP 2000151995A JP 2000151995 A JP2000151995 A JP 2000151995A JP 2001330227 A JP2001330227 A JP 2001330227A
Authority
JP
Japan
Prior art keywords
oxygen
refuse
nitrogen generator
nitrogen
incinerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2000151995A
Other languages
Japanese (ja)
Inventor
Toru Harada
亨 原田
Katsuhiko Kobayashi
勝彦 小林
Taketoshi Shiraishi
武利 白石
Shinya Tsuneizumi
慎也 常泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2000151995A priority Critical patent/JP2001330227A/en
Publication of JP2001330227A publication Critical patent/JP2001330227A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/82Recycling of waste of electrical or electronic equipment [WEEE]

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Disintegrating Or Milling (AREA)
  • Furnace Details (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a refuse crushing and incinerating system which enables explosion protection in a refuse crusher and oxygen enriched incineration in an incinerator by using a nitrogen generator in which nitrogen is generated utilizing an absorbent and pressure fluctuation. SOLUTION: The refuse crushing and incinerating system wherein a nitrogen generator is employed to the crusher, is constructed such that nitrogen which is generated by the nitrogen generator is introduced to the refuse crusher for explosion protection, and that oxygen-enriched incineration air emitted from the nitrogen generator is introduced to the incinerator for refuse incineration. Prior to introducing the oxygen-enriched air emitted from the nitrogen generator to the incinerator, the air is stored in a tank where the atmospheric air can be appropriately mixed, and with the mixture of the atmospheric air, oxygen concentration is controlled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はごみ破砕機に防爆手
段として設置された窒素発生器から排出される酸素富化
空気を焼却炉に投入して、該焼却炉で酸素富化焼却を行
うことが可能なごみ破砕焼却システムにかかり、更に詳
しく説明すれば、本発明で用いる窒素発生器は、吸着剤
と圧力変動を利用して原料ガスから窒素を分離して窒素
を発生させるPSA法を用いた窒素発生器が生じる欠点
を互いに補いながらごみ破砕と焼却の両者を有効に達成
しうるシステムに関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for injecting oxygen-enriched air discharged from a nitrogen generator installed as an explosion-proof means in a refuse crusher into an incinerator and performing oxygen-enriched incineration in the incinerator. More specifically, the nitrogen generator used in the present invention employs a PSA method of generating nitrogen by separating nitrogen from a raw material gas using an adsorbent and pressure fluctuation. The present invention relates to a system capable of effectively achieving both waste crushing and incineration while mutually compensating for the disadvantages of a nitrogen generator.

【0002】[0002]

【従来の技術】産業廃棄物等を含む粗大ごみの排出量は
近年増加の一途をたどっている。粗大ごみの処理方法と
して、種類に応じて埋め立て処理や焼却処理が行なわれ
ているが、埋め立てや再資源化及び焼却処理を効率よく
行なうために前処理として破砕機によって粗大ごみを小
さくすることが好まれている。ところが、粗大ごみには
冷蔵庫、テレビの等の電化製品や、ガスボンベや使い捨
てカセットボンベ等の引火性ガスを保持したごみが紛れ
ていることが少なくなく、これらのごみを破砕する際に
爆発や発火事故が発生し問題となっていた。
2. Description of the Related Art In recent years, the amount of oversized waste including industrial waste has been increasing steadily. Landfilling and incineration are performed depending on the type of bulky waste.However, in order to efficiently perform landfilling, recycling, and incineration, it is necessary to reduce bulky waste with a crusher as a pretreatment. Preferred. However, oversized garbage often contains electrical appliances such as refrigerators and televisions, and garbage holding flammable gas such as gas cylinders and disposable cassette cylinders.When crushing these garbage, they explode or ignite. An accident occurred and became a problem.

【0003】このような爆発や発火に伴う危険を回避す
るため、粗大ごみ破砕機内に水蒸気や不活性ガス等を防
爆ガスとして投入し充満させて又はパージして破砕機内
の酸素濃度を爆発限界濃度(約11%)以下に維持する
方法がとられている。
[0003] In order to avoid such a danger caused by explosion or ignition, steam or inert gas is charged as an explosion-proof gas into a bulky crusher and filled or purged to reduce the oxygen concentration in the crusher to the explosive limit concentration. (About 11%).

【0004】前記防爆ガスはその目的のために別途購入
して供給されるか、又は不活性ガス発生装置、例えば窒
素発生装置を前記粗大ごみ破砕機に付設したり、又はボ
イラ等の水蒸気発生装置を用いることで、破砕機内に防
爆ガスを供給している。
The explosion-proof gas is separately purchased and supplied for the purpose, or an inert gas generator, for example, a nitrogen generator is attached to the bulky crusher, or a steam generator such as a boiler is used. The explosion-proof gas is supplied into the crusher by using.

【0005】例えば図3では、隣接する焼却炉に設置さ
れた廃熱ボイラで発生した水蒸気を、防爆ガスとして破
砕機内に導入するよう構成された従来技術を示してい
る。
[0005] For example, FIG. 3 shows a conventional technique in which steam generated by a waste heat boiler installed in an adjacent incinerator is introduced into a crusher as an explosion-proof gas.

【0006】一方、一般ごみの処理方法として焼却炉で
の焼却が行なわれるが、焼却ガスに酸素を富化し、酸素
富化空気として焼却炉に供給することで焼却処理の性能
を向上させ、有害物質の発生と排出を抑制し、近年問題
となっている環境問題に対応している。そのために焼却
炉に酸素発生装置を設置して酸素富化焼却を行なってい
る。
[0006] On the other hand, incineration in an incinerator is carried out as a method of treating general waste, but oxygen is enriched in the incineration gas, and is supplied to the incinerator as oxygen-enriched air, thereby improving the performance of the incineration treatment and reducing harmfulness. It suppresses the generation and emission of substances and responds to environmental issues that have become a problem in recent years. For this purpose, an oxygen generator is installed in the incinerator to perform oxygen-enriched incineration.

【0007】そこで、ごみ破砕施設が焼却炉に隣接して
いる場合、前記ごみ破砕機で用いる防爆ガス及びごみ焼
却炉で用いる酸素富化空気を、夫々の装置を設置して供
給するのではなく、一台の装置とその排ガスを利用して
前記防爆ガス及び前記酸素富化ガスを供給することを目
的とした技術は公知である。
[0007] Therefore, when the refuse crushing facility is adjacent to the incinerator, the explosion-proof gas used in the refuse crusher and the oxygen-enriched air used in the refuse incinerator are not supplied by installing the respective devices. A technique for supplying the explosion-proof gas and the oxygen-enriched gas by using one apparatus and its exhaust gas is known.

【0008】例えば、特開平11−19532号で開示
される従来技術は、焼却炉にPSA法を用いた酸素発生
器を付設し、該酸素発生器によって発生した酸素を焼却
炉に投入して酸素富化燃焼を行なうと同時に、前記酸素
発生器から排出される酸素濃度の低い排ガスを隣接する
ごみ破砕機に導入することで、該ごみ破砕機内の酸素濃
度を低くし、前記ごみ破砕機内においての爆発、発火事
故を防ぐことを可能としている。
For example, in the prior art disclosed in Japanese Patent Application Laid-Open No. H11-19532, an oxygen generator using a PSA method is attached to an incinerator, and oxygen generated by the oxygen generator is supplied to the incinerator to supply oxygen. At the same time as performing the enrichment combustion, by introducing exhaust gas having a low oxygen concentration discharged from the oxygen generator to an adjacent refuse crusher, the oxygen concentration in the refuse crusher is reduced, and the Explosion and fire accidents can be prevented.

【0009】さらに、前記従来技術において、粗大ごみ
破砕機に投入される前記排ガスは、前記隣接するごみ焼
却炉からの排ガス及び前記ごみ焼却炉に付属する廃熱ボ
イラからの水蒸気を含む排ガスでもよいとしている。
Further, in the above prior art, the exhaust gas fed to the oversized refuse crusher may be an exhaust gas from the adjacent refuse incinerator or an exhaust gas containing water vapor from a waste heat boiler attached to the refuse incinerator. And

【0010】[0010]

【発明が解決しようとする課題】一般的に窒素発生器は
大型になると非常に高額となるので、焼却炉とごみ破砕
機とが併設されている場合には、図3に示すように前記
焼却炉に付属する廃熱ボイラで発生した水蒸気を含む排
ガスをごみ破砕機に導入していた。しかしながらこの場
合、冬季には水蒸気が凝縮して前記ごみ破砕機内部が錆
びる原因となっていた。
In general, the size of a nitrogen generator becomes very expensive when it becomes large. Therefore, when an incinerator and a refuse crusher are provided together, as shown in FIG. Exhaust gas containing water vapor generated by a waste heat boiler attached to the furnace was introduced into a refuse crusher. However, in this case, in the winter, water vapor condenses and causes the inside of the refuse crusher to rust.

【0011】また、従来の技術として記述した特願平1
1−19532号において、隣接した焼却炉からの排ガ
スを防爆ガスとしてごみ破砕機に導入しているが、焼却
炉からの排出される排ガスは、その流量および排ガス中
の成分が焼却される物質や焼却状況によって一定でない
ために、防爆ガスとして用いるには事実上問題があっ
た。
Japanese Patent Application No. Hei.
In 1-19532, the exhaust gas from the adjacent incinerator is introduced into the refuse crusher as explosion-proof gas, but the exhaust gas discharged from the incinerator has a flow rate and a substance whose components in the exhaust gas are incinerated. There was a practical problem in using it as an explosion-proof gas because it was not constant depending on the incineration situation.

【0012】ところで、PSA(Pressure S
wing Adsorption)法とは、さまざまな
成分が混じり合った原料ガスから、目的とする製品ガス
を吸着剤と圧力変動を利用して分離する技術で、他のガ
ス分離法と比べてコンパクトで自動化が容易なために一
般に多く用いられている技術である。PSA法を利用し
た窒素発生器を図2を用いて説明する。吸着塔31a、
31bには窒素を吸着させる吸着剤が充填されおり、吸
着塔31aは吸着工程、吸着塔31bは脱着工程にあ
る。吸着工程において、吸着促進のためにガス圧力を高
い状態で大気を吸着塔31aに導入する。吸着塔31a
では窒素のみが吸着され、残りのガス成分は排ガスとし
て吸着塔31aから排出される。その後、脱着工程にお
いて、吸着塔31bを減圧あるいは減圧・加温すること
で、吸着した窒素が脱着分離されて窒素が発生し、窒素
の脱着により吸着塔31bの吸着剤が再生される。以上
の工程を交互に繰返すことにより、窒素発生器は大気か
ら窒素を分離して発生させる。なお吸着塔は、分離ガス
の所望純度又は必要量に応じて、複数設けることが望ま
しい。また、このPSA法は、吸着剤を変えることによ
り、酸素、一酸化炭素をはじめ、さまざまのガスの分離
に利用されている。
By the way, PSA (Pressure S)
The wing Adsorption method is a technology that separates the target product gas from the raw material gas in which various components are mixed by using the adsorbent and the pressure fluctuation, and is more compact and automated than other gas separation methods. This technique is commonly used because it is easy. A nitrogen generator using the PSA method will be described with reference to FIG. Adsorption tower 31a,
31b is filled with an adsorbent for adsorbing nitrogen, the adsorption tower 31a is in an adsorption step, and the adsorption tower 31b is in a desorption step. In the adsorption step, the air is introduced into the adsorption tower 31a at a high gas pressure in order to promote the adsorption. Adsorption tower 31a
Then, only nitrogen is adsorbed, and the remaining gas components are discharged from the adsorption tower 31a as exhaust gas. Thereafter, in the desorption step, the adsorbed nitrogen is desorbed and separated by depressurizing or depressurizing / heating the adsorption tower 31b to generate nitrogen, and the adsorbent of the adsorption tower 31b is regenerated by desorption of nitrogen. By repeating the above steps alternately, the nitrogen generator separates and generates nitrogen from the atmosphere. It is desirable to provide a plurality of adsorption towers according to the desired purity or required amount of the separation gas. The PSA method is used for separating various gases including oxygen and carbon monoxide by changing the adsorbent.

【0013】前記した特開平11−19532号におい
ては、PSA法を用いた酸素発生器から排出される排ガ
スをごみ破砕機に直接導入して防爆を行うように構成さ
れた発明が開示されている。しかしながら前記したよう
なPSA法のよる酸素発生装置では、吸着塔での酸素の
吸着脱着工程の繰返しのために、排出される排ガスの流
量が2分間毎に脈動し、さらに排ガス中の含有ガス濃度
の変動が激しいために、前記排ガスを用いて前記破砕機
内の防爆をするには効果が不安定であり、よって防爆の
確実性に問題があった。
The above-mentioned Japanese Patent Application Laid-Open No. H11-19532 discloses an invention in which an exhaust gas discharged from an oxygen generator using the PSA method is directly introduced into a crusher to perform explosion protection. . However, in the oxygen generator based on the PSA method as described above, the flow rate of the discharged exhaust gas pulsates every two minutes due to the repetition of the adsorption / desorption process of oxygen in the adsorption tower, and further, the concentration of the gas contained in the exhaust gas. The effect of the explosion protection in the crusher using the exhaust gas is unstable because of the large fluctuations in the explosion, and thus there is a problem in the reliability of the explosion protection.

【0014】そこで本発明では、前記したごみ破砕機に
窒素発生器を設置することで前記ごみ破砕機に窒素を安
定供給して防爆を確実にすると同時に、前記窒素発生器
からの排出された排ガスを酸素富化空気として一定した
流量と所定の酸素濃度で酸素富化焼却炉に供給可能とす
るごみ破砕焼却システムを提供することを目的としてい
る。
Therefore, in the present invention, by installing a nitrogen generator in the above-mentioned refuse crusher, it is possible to stably supply nitrogen to the above-mentioned refuse crusher to ensure explosion-proof, and at the same time, to simultaneously use the exhaust gas discharged from the aforementioned nitrogen generator. It is an object of the present invention to provide a refuse incineration system capable of supplying oxygen as oxygen-enriched air to an oxygen-enriched incinerator at a constant flow rate and a predetermined oxygen concentration.

【0015】[0015]

【課題を解決するための手段】本発明は窒素発生器でご
み破砕機防爆用の窒素を発生させ、それと同時に前記窒
素発生器からの排ガスを酸素富化空気として、一定の流
量と所定の酸素濃度で焼却炉に安定供給するよう構成さ
れたごみ破砕焼却システムであり、前述した従来技術の
問題点を解決するために以下のように構成されている。
SUMMARY OF THE INVENTION According to the present invention, a nitrogen generator generates nitrogen for explosion-proofing of a dust crusher, and at the same time, the exhaust gas from the nitrogen generator is converted into oxygen-enriched air at a constant flow rate and a predetermined oxygen level. This is a refuse incineration system configured to stably supply a concentration to an incinerator, and is configured as follows in order to solve the above-described problem of the related art.

【0016】即ち、本発明のごみ破砕焼却システムは、
ごみ破砕機に窒素発生装置を用いて、該窒素発生器より
発生した窒素を前記ごみ破砕機内に導入して防爆を行な
うとともに、前記窒素発生装置から排出された酸素富化
焼却空気を焼却炉に導入してごみ焼却を行なうごみ破砕
焼却システムにおいて、前記窒素発生器より排出された
酸素富化空気を前記焼却炉に導入する前に、大気が適宜
混合可能な貯留槽内に貯留して、該貯留槽内での大気混
合により酸素濃度が調整させることを特徴とする。
That is, the waste crushing and incineration system of the present invention comprises:
Using a nitrogen generator for the refuse crusher, nitrogen generated from the nitrogen generator is introduced into the refuse crusher to perform explosion protection, and the oxygen-enriched incinerated air discharged from the nitrogen generator is supplied to an incinerator. In the refuse incineration system for introducing and incinerating refuse, the oxygen-enriched air discharged from the nitrogen generator is stored in a storage tank in which air can be appropriately mixed before being introduced into the incinerator, The oxygen concentration is adjusted by mixing the atmosphere in the storage tank.

【0017】好ましくは、本発明において、前記貯留槽
を直列に複数個配設し、後段側の貯留槽で計測した酸素
濃度に基づいて、前段側の貯留槽に導入する大気流量の
調整を行いながら前記窒素発生器より排出された酸素富
化空気と大気との混合を行なうことを特徴とする。つま
り、酸素濃度の変動が激しい前段側の貯留槽で酸素濃度
を測定するのではなく、後段側の貯留槽で酸素濃度を計
測することで、設置された酸素濃度計への負荷が低減す
る。
Preferably, in the present invention, a plurality of the storage tanks are arranged in series, and the flow rate of the air introduced into the preceding storage tank is adjusted based on the oxygen concentration measured in the latter storage tank. While mixing the oxygen-enriched air discharged from the nitrogen generator and the atmosphere. That is, the load on the installed oxygen concentration meter is reduced by measuring the oxygen concentration in the storage tank on the rear stage, instead of measuring the oxygen concentration in the storage tank on the front stage where the oxygen concentration fluctuates greatly.

【0018】更に、本発明のごみ破砕焼却システムにお
いて、前段側の貯留槽と後段側の貯留槽をブロア−で接
続し、該ブロワにより前記前段側の貯留槽に酸素富化空
気が逆流することなく送給可能に構成するのが好まし
い。
Further, in the refuse incineration system of the present invention, the storage tank on the front side and the storage tank on the rear side are connected by a blower, and the oxygen-enriched air flows back into the storage tank on the front side by the blower. It is preferable to make it possible to feed the paper.

【0019】[0019]

【発明の実施の形態】以下、本発明を図に示した実施例
を用いて詳細に説明する。但し、この実施例に記載され
る構成部品の寸法、材質、形状、その相対配置などは特
に特定的な記載が無い限り、この発明の範囲をそれのみ
に限定する趣旨ではなく単なる説明例に過ぎない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to an embodiment shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not merely intended to limit the scope of the present invention, but are merely illustrative examples unless otherwise specified. Absent.

【0020】本発明の実施形態に係る窒素発生器をごみ
破砕焼却システムを図1に基づいて説明する。
A nitrogen generator according to an embodiment of the present invention and a refuse incineration system will be described with reference to FIG.

【0021】図1は本発明の窒素発生器を用いたごみ破
砕焼却システムの概略構成を示し、ごみ破砕機1と、該
ごみ破砕機1を防爆する窒素を発生する窒素発生器7
と、該窒素発生器7から排出される排ガス(以下酸素富
化ガス)を用いて酸素富化焼却を行なう焼却炉2等から
構成され、更に前記窒素発生器7と前記焼却炉2を接続
する配管には、前段側に貯留槽10と、後段側に貯留槽
12と、前記貯留槽10と貯留槽12の間にブロア9が
設置されている。なお、前記窒素発生装置7はPSA法
を用いた一般的な窒素発生装置であり、またごみ破砕機
1も一般的に周知のものであるので、ここには詳しく説
明しない。
FIG. 1 shows a schematic configuration of a refuse incineration system using a nitrogen generator according to the present invention. The refuse crusher 1 and a nitrogen generator 7 for generating nitrogen for explosion-proofing the refuse crusher 1 are shown.
And an incinerator 2 for performing oxygen-enriched incineration using exhaust gas (hereinafter referred to as oxygen-enriched gas) discharged from the nitrogen generator 7, and further connects the nitrogen generator 7 and the incinerator 2. In the piping, a storage tank 10 is provided on a front stage side, a storage tank 12 is provided on a rear stage side, and a blower 9 is provided between the storage tank 10 and the storage tank 12. The nitrogen generator 7 is a general nitrogen generator using the PSA method, and the refuse crusher 1 is also generally known, and therefore will not be described in detail here.

【0022】さらに本実施の形態では、前記焼却炉2は
一般で使用されているストーカ式焼却炉であり、酸素富
化空気をストーカ51、52、53下方より吹込むこと
でごみの攪拌と燃焼酸素の供給を図り、可燃ごみ6の酸
素富化焼却を行なっているが、酸素富化空気を用いて焼
却を行なう焼却炉であれば、ストーカ式に限られるもの
ではない。
Further, in the present embodiment, the incinerator 2 is a stoker type incinerator that is generally used, and oxygen-enriched air is blown from below the stokers 51, 52, 53 to agitate and burn refuse. Although the oxygen-enriched incineration of the combustible waste 6 is performed by supplying oxygen, the incinerator is not limited to the stoker type as long as it is incinerated using oxygen-enriched air.

【0023】前記窒素発生器7で生成される窒素は窒素
濃度約99%であり、ごみ破砕機1内の防爆に必要な窒
素濃度(95%以上)である。前記窒素発生器7により
生成された前記窒素41を、配管22を介して前記ごみ
破砕機1内に導入することで、粗大ごみの破砕工程での
爆発や発火に伴う事故が発生するのを確実に防止するこ
とが可能となる。
The nitrogen generated by the nitrogen generator 7 has a nitrogen concentration of about 99%, which is a nitrogen concentration (95% or more) required for explosion protection in the refuse crusher 1. By introducing the nitrogen 41 generated by the nitrogen generator 7 into the refuse crusher 1 via a pipe 22, it is ensured that an accident accompanying an explosion or ignition in the crushing process of the bulky refuse occurs. Can be prevented.

【0024】前記窒素発生器7から排出される酸素富化
空気の流量は前述した通り2分間毎に脈動する。この問
題点を解決するために本発明の実施の形態では、前記窒
素発生器7から排出された前記酸素富化空気は配管23
を介して貯留槽10へ導入され、配管24に設置された
ブロア9によって、前記貯留槽10から前記酸素富化空
気が一定流量でもって取り出され貯留槽12へ導入され
るよう構成されている。
The flow rate of the oxygen-enriched air discharged from the nitrogen generator 7 pulsates every two minutes as described above. In order to solve this problem, in the embodiment of the present invention, the oxygen-enriched air discharged from the nitrogen
The oxygen-enriched air is introduced at a constant flow rate from the storage tank 10 by the blower 9 installed in the pipe 24 via the blower 9, and is introduced into the storage tank 12.

【0025】なお、前記窒素発生器7から排出される酸
素富化空気の酸素濃度は、前記窒素発生器7の可動状況
や吸気した大気の含有成分によって変動するが、通常は
平均して40%前後である。よって前記酸素富化空気
は、酸素富化焼却に必要である酸素濃度(27%)以上
であるので、酸素富化焼却炉で用いるのに十分な酸素濃
度を有しているが、必要酸素濃度(27%)に希釈して
から焼却炉に導入するのが好ましい。
Incidentally, the oxygen concentration of the oxygen-enriched air discharged from the nitrogen generator 7 varies depending on the operating conditions of the nitrogen generator 7 and the components contained in the intake air, but is usually 40% on average. Before and after. Therefore, the oxygen-enriched air has an oxygen concentration (27%) or more necessary for oxygen-enriched incineration, and therefore has a sufficient oxygen concentration to be used in an oxygen-enriched incinerator. (27%) and then introduced into the incinerator.

【0026】希釈工程として、前記貯留槽12に設置さ
れた酸素濃度計13により前記貯留槽12内に導入され
た酸素富化空気の酸素濃度を検出する。検出された酸素
濃度は、入力信号により前記貯留槽10に設けられた吸
気弁14の開閉制御手段(不図示)に入力される。そし
て前記貯留槽12内に導入される酸素富化空気の酸素濃
度が27%になるように、前記開閉制御手段(不図示)
によって前記吸気弁14の開度制御が行なわれ、吸気弁
14を開いて大気を前記貯留槽10に導入し、前記窒素
発生装置7から排出される酸素富化空気とともに配管2
4、ブロア9を介して前記貯留槽12に導入される。
In the dilution step, the oxygen concentration of the oxygen-enriched air introduced into the storage tank 12 is detected by an oxygen concentration meter 13 installed in the storage tank 12. The detected oxygen concentration is input to an opening / closing control means (not shown) of the intake valve 14 provided in the storage tank 10 by an input signal. The opening / closing control means (not shown) such that the oxygen concentration of the oxygen-enriched air introduced into the storage tank 12 becomes 27%.
Thus, the opening degree of the intake valve 14 is controlled, the intake valve 14 is opened, the atmosphere is introduced into the storage tank 10, and the pipe 2 together with the oxygen-enriched air exhausted from the nitrogen generator 7.
4. It is introduced into the storage tank 12 through the blower 9.

【0027】前記ノ工程において必要酸素濃度に希釈さ
れた酸素富化空気は、前記貯留槽12から配管25を介
し、ストーカ51、52、53下方から焼却炉2へ一定
流量で導入され、酸素富化燃焼が行なわれる。
The oxygen-enriched air diluted to the required oxygen concentration in the above-mentioned step is introduced into the incinerator 2 from below the stokers 51, 52 and 53 at a constant flow rate via the pipe 25 from the storage tank 12, and Combustion combustion takes place.

【0028】なお、前記酸素富化空気の酸素濃度は必要
酸素濃度である27%であることが望ましいが、前記焼
却炉2内での焼却状況に応じて最適な酸素濃度になるよ
う調整する手段を設けてもよい。
The oxygen concentration of the oxygen-enriched air is desirably 27%, which is the required oxygen concentration, but means for adjusting the oxygen concentration to an optimum oxygen concentration according to the incineration situation in the incinerator 2. May be provided.

【0029】また、前記酸素富化空気の流量において
も、前記焼却炉2内での焼却状況に応じて調整されるこ
とが好ましい。
It is preferable that the flow rate of the oxygen-enriched air is also adjusted according to the incineration situation in the incinerator 2.

【0030】さらに、図1に示す本発明の実施形態は、
図3で示されるように、ごみ破砕機1で破砕された破砕
ごみ5を分別手段27によって夫々に分別し、可燃ごみ
として分別された可燃ごみは焼却炉2に投入してもよ
い。
Further, the embodiment of the present invention shown in FIG.
As shown in FIG. 3, the crushed refuse 5 crushed by the refuse crusher 1 may be separately separated by a separation means 27, and the combustible waste separated as combustible waste may be put into the incinerator 2.

【0031】[0031]

【発明の効果】以上説明したように、本発明によれば、
窒素発生器で生成された窒素を導入してごみ破砕機内の
爆発や発火事故を確実に予防することが可能となり、更
に前記窒素発生器から排出された排ガスは貯留槽を介す
ることにより、一定した流量と所定の酸素濃度でもって
焼却炉に酸素富化空気として供給され、焼却炉に酸素発
生器等の酸素供給手段を設置することなく、安定した酸
素富化焼却を行なうことが可能となった。
As described above, according to the present invention,
It is possible to reliably prevent an explosion or a fire accident in the refuse crusher by introducing nitrogen generated by the nitrogen generator, and furthermore, the exhaust gas discharged from the nitrogen generator is kept constant by passing through the storage tank. It is supplied as oxygen-enriched air to the incinerator at a flow rate and a predetermined oxygen concentration, and it has become possible to perform stable oxygen-enriched incineration without installing an oxygen supply means such as an oxygen generator in the incinerator. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る吸着剤と圧力変動を
利用した窒素発生器を用いたごみ破砕焼却システムの概
略構成を示す。
FIG. 1 shows a schematic configuration of a refuse incineration system using a nitrogen generator utilizing an adsorbent and pressure fluctuation according to an embodiment of the present invention.

【図2】PSA法を用いた窒素発生器の概略構成を示
す。
FIG. 2 shows a schematic configuration of a nitrogen generator using a PSA method.

【図3】焼却炉に設置された廃熱ボイラで発生した水蒸
気を含む排ガスを、ごみ破砕機内へ防爆ガスとして導入
するよう構成された従来技術の概略構成図を示す。
FIG. 3 is a schematic configuration diagram of a conventional technique configured to introduce exhaust gas containing steam generated in a waste heat boiler installed in an incinerator as an explosion-proof gas into a refuse crusher.

【符号の説明】[Explanation of symbols]

1 ごみ破砕機 2 焼却炉 3 廃熱ボイラ 4 粗大ごみ 5 破砕ごみ 6 可燃ごみ 7 窒素発生器 9 ブロア 10、12 貯留槽 13 酸素濃度計 14 吸気弁 22〜25 配管 26 ブロア 27 ごみ分別手段 31a、31b 吸着塔 51〜53 ストーカ Reference Signs List 1 refuse crusher 2 incinerator 3 waste heat boiler 4 oversized refuse 5 crushed refuse 6 combustible refuse 7 nitrogen generator 9 blower 10, 12 storage tank 13 oxygen concentration meter 14 intake valve 22-25 pipe 26 blower 27 refuse separation means 31a, 31b Adsorption tower 51-53 Stoker

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F23L 7/00 F27D 7/02 A F27D 7/02 7/06 C B09B 3/00 ZABZ 7/06 303J (72)発明者 白石 武利 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 (72)発明者 常泉 慎也 神奈川県横浜市中区錦町12番地 三菱重工 業株式会社横浜製作所内 Fターム(参考) 3K065 AA01 AB01 AC20 BA01 CA02 4D004 AA46 CA04 CA28 CA47 CA50 CB13 CC11 DA01 DA10 4D067 EE39 EE47 GA18 GB05 4K063 AA13 BA13 CA06 DA05 DA06 DA13 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) F23L 7/00 F27D 7/02 A F27D 7/02 7/06 C B09B 3/00 ZABZ 7/06 303J ( 72) Inventor Taketoshi Shiraishi 12 Nishiki-cho, Naka-ku, Yokohama-shi, Kanagawa Prefecture Inside Mitsubishi Heavy Industries, Ltd. Reference) 3K065 AA01 AB01 AC20 BA01 CA02 4D004 AA46 CA04 CA28 CA47 CA50 CB13 CC11 DA01 DA10 4D067 EE39 EE47 GA18 GB05 4K063 AA13 BA13 CA06 DA05 DA06 DA13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ごみ破砕機に窒素発生装置を用いて、該
窒素発生器より発生した窒素を前記ごみ破砕機内に導入
して防爆を行なうとともに、前記窒素発生装置から排出
された酸素富化焼却空気を焼却炉に導入してごみ焼却を
行なうごみ破砕焼却システムにおいて、 前記窒素発生器より排出された酸素富化空気を前記焼却
炉に導入する前に、大気が適宜混合可能な貯留槽内に貯
留して、該貯留槽内での大気混合により酸素濃度が調整
させることを特徴とするごみ破砕焼却システム。
An explosion-proof method using nitrogen generated by said nitrogen generator in said refuse crusher using a nitrogen generator for said refuse crusher, and oxygen-enriched incineration discharged from said nitrogen generator. In a refuse incineration system that introduces air into an incinerator and incinerates the waste, before introducing the oxygen-enriched air discharged from the nitrogen generator to the incinerator, the atmosphere is appropriately mixed in a storage tank. A waste crushing and incineration system, wherein the waste is stored and the oxygen concentration is adjusted by mixing with the atmosphere in the storage tank.
【請求項2】 前記貯留槽を直列に複数個配設し、後段
側の貯留槽で計測した酸素濃度に基づいて、前段側の貯
留槽に導入する大気流量の調整を行いながら前記窒素発
生器より排出された酸素富化空気と大気との混合を行な
うことを特徴とする請求項1記載のごみ破砕焼却システ
ム。
2. The nitrogen generator, wherein a plurality of the storage tanks are arranged in series, and the nitrogen generator is adjusted while adjusting the flow rate of the atmospheric air introduced into the front storage tank based on the oxygen concentration measured in the latter storage tank. 2. The refuse incineration system according to claim 1, wherein the exhausted oxygen-enriched air and the atmosphere are mixed.
【請求項3】 前段側の貯留槽と後段側の貯留槽をブロ
アで接続し、該ブロアにより前記前段側の貯留槽に酸素
富化空気が逆流することなく送給可能に構成したことを
特徴とする請求項1記載のごみ破砕焼却システム。
3. The storage tank on the upstream side and the storage tank on the downstream side are connected by a blower, and oxygen-enriched air can be supplied to the storage tank on the upstream side without backflow by the blower. The refuse incineration system according to claim 1, wherein
JP2000151995A 2000-05-23 2000-05-23 Refuse crushing and incinerating system Withdrawn JP2001330227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151995A JP2001330227A (en) 2000-05-23 2000-05-23 Refuse crushing and incinerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151995A JP2001330227A (en) 2000-05-23 2000-05-23 Refuse crushing and incinerating system

Publications (1)

Publication Number Publication Date
JP2001330227A true JP2001330227A (en) 2001-11-30

Family

ID=18657474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151995A Withdrawn JP2001330227A (en) 2000-05-23 2000-05-23 Refuse crushing and incinerating system

Country Status (1)

Country Link
JP (1) JP2001330227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071506A (en) * 2005-09-09 2007-03-22 Dan Kikaku:Kk Combustion apparatus
JP2013117346A (en) * 2011-12-02 2013-06-13 Osaka Gas Co Ltd Industrial furnace apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007071506A (en) * 2005-09-09 2007-03-22 Dan Kikaku:Kk Combustion apparatus
JP2013117346A (en) * 2011-12-02 2013-06-13 Osaka Gas Co Ltd Industrial furnace apparatus

Similar Documents

Publication Publication Date Title
US9383102B2 (en) Methods for treating waste gas streams from incineration processes
US6952997B2 (en) Incineration process using high oxygen concentrations
KR100913888B1 (en) Carbon dioxide purification method and equipment for waste gas of process using pure oxygen combustion
CN106765210A (en) A kind of incineration treatment method and device of refinery's organic exhaust gas
JP2001330227A (en) Refuse crushing and incinerating system
JP5798728B2 (en) Dry distillation gasification incineration processing equipment
CN106369615B (en) The incineration treatment method and device of a kind of organic exhaust gas
JP5350977B2 (en) Multi-component volatile organic solvent combustion detoxification method and apparatus
WO2015172043A1 (en) Treatment of incinerator off gas
JPH0952023A (en) Waste drying apparatus
JP2012170907A (en) Treatment method and treatment equipment for incineration ash
KR101175768B1 (en) A pulverized coal pure oxygen burning system
KR100785042B1 (en) Combustion apparatus using compressed air
JP5602401B2 (en) Operation control method and operation control device for melt decomposition apparatus of PCB contaminant
US6004128A (en) Combustion system
JP2004224926A (en) Method for utilizing by-product gas of iron mill
WO2024166700A1 (en) Waste incineration facility
JP7082942B2 (en) Hydrogen production equipment
CN1159541C (en) Method of treating uns-dimethylhydrazine waste gas in combustion of fuel oil and its equipment
HK1036648A1 (en) Method and apparatus for the prevention of global warming, through elemination of hazardous exhaust gases of waste and/or fuel burners
TWI780418B (en) Method for detecting bridge at feed hopper of incinerated system
EP3049175A2 (en) Methods for treating waste gas streams from incineration processes by addition of ozone
JPH1119532A (en) Crushing method for bulky refuse
MX2008002067A (en) Methods and systems for removing mercury from combustion flue gas.
JPH11183046A (en) Method of treating exhaust gas in electric furnace

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070807