JPS646576B2 - - Google Patents

Info

Publication number
JPS646576B2
JPS646576B2 JP55071471A JP7147180A JPS646576B2 JP S646576 B2 JPS646576 B2 JP S646576B2 JP 55071471 A JP55071471 A JP 55071471A JP 7147180 A JP7147180 A JP 7147180A JP S646576 B2 JPS646576 B2 JP S646576B2
Authority
JP
Japan
Prior art keywords
equalization
signal
circuit
low
amplifier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55071471A
Other languages
Japanese (ja)
Other versions
JPS56168439A (en
Inventor
Hideo Wataya
Kohei Ootake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP7147180A priority Critical patent/JPS56168439A/en
Publication of JPS56168439A publication Critical patent/JPS56168439A/en
Publication of JPS646576B2 publication Critical patent/JPS646576B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)
  • Filters And Equalizers (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)

Description

【発明の詳細な説明】 本発明はPCM伝送の中継器において、高精度
に自動等化を行う方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for performing automatic equalization with high accuracy in a PCM transmission repeater.

従来のPCM伝送における中継器の例について
第1図を用いて説明する。伝送路1を通過後の符
号化パルスは伝送路の損失―周波数特性により波
形ひずみ及び減衰を受ける。そのため等化増幅器
2では、伝送路1により生じた波形ひずみ及び減
衰を補償する。等化増幅後のパルスは識別再生器
3により、パルスの有無を判定し所定のパルス波
形を送出する。このときタイミング部4はクロツ
クを発生し、パルス識別点、送出パルス間隔を制
御する情報を与える。等化増幅器2は、伝送路の
損失―周波数特性が一般に√(は周波数)特
性に近い特性をもち、また伝送路長により損失も
異なることから、所要等化特性を得るよう√傾
斜利得AGC(自動利得制御)を行つている。この
等化増幅が理想的に行われる場合には、最適な識
別波形となり、符号間干渉も無くなる。
An example of a repeater in conventional PCM transmission will be explained using FIG. The encoded pulse after passing through the transmission line 1 is subjected to waveform distortion and attenuation due to the loss-frequency characteristics of the transmission line. Therefore, the equalizing amplifier 2 compensates for waveform distortion and attenuation caused by the transmission line 1. The pulse after equalization and amplification is determined by the identification regenerator 3 as to whether or not it is a pulse, and a predetermined pulse waveform is sent out. At this time, the timing section 4 generates a clock and provides information for controlling the pulse discrimination point and the sending pulse interval. The equalizing amplifier 2 uses a slope gain AGC ( automatic gain control). If this equalization amplification is ideally performed, an optimal identification waveform will be obtained and intersymbol interference will also disappear.

上記の等化増幅器2の構成の一例を第2図に示
す。本部分は識別再生のために、傾斜利得を得る
ための傾斜利得増幅器5と等化波形ピーク値を一
定にするためのピーク値検出回路6、整流回路7
及び直流増幅器回路8を用いて等化増幅を行い、
伝送距離変化による伝送損失のみの補償を行つて
いる。
An example of the configuration of the equalizing amplifier 2 described above is shown in FIG. This section consists of a slope gain amplifier 5 for obtaining a slope gain, a peak value detection circuit 6 for making the equalized waveform peak value constant, and a rectifier circuit 7 for identification and reproduction.
and perform equalization amplification using the DC amplifier circuit 8,
Compensation is made only for transmission loss due to changes in transmission distance.

ところで、使用ケーブル種別、ケーブル温度変
動、先行中継器から送出されるパルス振幅変動等
により先行中継器の出力端子から伝送路を経て等
化増幅部までの部分の伝達関数の差異または変化
による伝送系の損失特性の変化は、上記の距離変
化による伝送損失特性の変化と異なる。このため
伝送帯域全体にわたつて伝送系の損失を識別再生
しやすい形に高精度に等化増幅することが困難と
なる。特に、高能率符号伝送では伝送系の低周波
領域の損失特性の差異(ばらつき)、変動が大き
な符号間干渉の劣化を与える。
By the way, the transmission system may be affected by differences or changes in the transfer function from the output terminal of the preceding repeater to the equalization amplifier section via the transmission line due to the type of cable used, cable temperature fluctuations, pulse amplitude fluctuations sent from the preceding repeater, etc. The change in loss characteristics differs from the change in transmission loss characteristics due to the distance change described above. For this reason, it becomes difficult to perform equalization amplification with high accuracy in a form that makes it easy to identify and reproduce losses in the transmission system over the entire transmission band. In particular, in high-efficiency code transmission, differences (dispersions) and fluctuations in loss characteristics in the low frequency region of the transmission system cause large intersymbol interference degradation.

具体的には、高能率符号のブロツク符号形式
(ある単位のバイナリ符号をそれより短い単位の
符号に変換する符号形式)、例えば4B3T符号で
は、4ビツトのバイナリ符号を3ビツトのターナ
リ信号に変換するため、送るべきビツトの繰返し
周期は3/4になる(これにより従来伝送帯域が狭
くて使用できなかつた伝送媒体を使用し得る様に
なる。)この符号では、従来の平均的な等化での
等化残のうち低周波領域の等化残が以下の理由で
大きく符号間干渉に影響する。4B3T符号は電力
スペクトラムが0/2近傍(0はパルスの繰返し
周期に相当する周波数)において平坦であり、
AMI符号(Alternate Mark Inversion)等に比
べて0/2近傍の周波数成分が多くなつている。
Specifically, in the block code format of a high-efficiency code (a code format that converts a binary code of a certain unit to a code of a shorter unit), for example, a 4B3T code, a 4-bit binary code is converted to a 3-bit ternary signal. Therefore, the repetition period of the bits to be sent becomes 3/4 (this makes it possible to use a transmission medium that could not be used due to the narrow transmission band). Among the equalization residuals in , the equalization residuals in the low frequency region greatly affect intersymbol interference for the following reasons. The 4B3T code has a flat power spectrum near 0/2 ( 0 is the frequency corresponding to the pulse repetition period),
Compared to AMI code (Alternate Mark Inversion), etc., there are more frequency components around 0/2 .

通常、等化増幅器では符号間干渉を小さくする
ため、ロールオフ(roll off)を施している。す
なわち、0/2より高い周波数帯域は高域しや断
特性を持つ。これにより、0/2より低い周波数
帯のみに注意を払う必要があり、等化の良否が符
号間干渉に大きく影響を与える。
Normally, equalizing amplifiers are subjected to roll off in order to reduce intersymbol interference. That is, a frequency band higher than 0/2 has high-frequency cut-off characteristics. As a result, it is necessary to pay attention only to frequency bands lower than 0/2 , and the quality of equalization greatly affects intersymbol interference.

このため、(ア)従来の平均的な等化による低周波
領域の等化残、あるいは(イ)伝送媒体の低周波領域
の損失特性の差異、変動が4B3T高能率符号では
符号間干渉の劣化の主原因となる。
For this reason, (a) residual equalization in the low frequency region due to conventional average equalization, or (b) differences and fluctuations in the loss characteristics of the transmission medium in the low frequency region, resulting in deterioration of intersymbol interference in the 4B3T high-efficiency code. It is the main cause of

以上は4B3T符号の場合について説明したが、
品質劣化(符号間干渉の劣化)の主原因となる帯
域は、等化の形式、伝送符号形式あるいは伝送媒
体の損失特性の差異(ばらつき)、変動により異
なる。
The above explained the case of 4B3T code, but
The band that is the main cause of quality deterioration (deterioration of intersymbol interference) differs depending on the equalization format, the transmission code format, or the difference (dispersion) or variation in the loss characteristics of the transmission medium.

本発明は、これらの欠点を解決するために、局
部的な等化偏差補償機能を付加して高精度等化を
可能とするもので、以下に、低周波領域の自動等
化方式について説明する。
In order to solve these drawbacks, the present invention adds a local equalization deviation compensation function to enable high-precision equalization.The automatic equalization method in the low frequency region will be explained below. .

本発明の実施例を第3図に示す。 An embodiment of the invention is shown in FIG.

第3図において、2は等化増幅器、3は識別再
生器、10は低周波成分検出回路、7は整流回
路、11は比較・増幅回路、12は狭帯域の等化
を行う可変等化回路網である。
In FIG. 3, 2 is an equalization amplifier, 3 is an identification regenerator, 10 is a low frequency component detection circuit, 7 is a rectifier circuit, 11 is a comparison/amplification circuit, and 12 is a variable equalization circuit that performs narrowband equalization. It is a net.

伝送路の損失―周波数特性の影響を受けた符号
化パルスは、等化増幅器2で増幅され、識別再生
器3で符号の有無を識別し矩形波の送出パルスを
発生する。
The encoded pulse affected by the loss-frequency characteristics of the transmission path is amplified by the equalizing amplifier 2, and the identification/regenerator 3 identifies the presence or absence of a code and generates a rectangular wave sending pulse.

等化増幅器2はケーブルの損失特性を補償する
ものであるが、完全な等化はできず、一般には、
劣化残が残る。
The equalizing amplifier 2 compensates for the loss characteristics of the cable, but it cannot achieve complete equalization, and generally,
Deterioration remains.

この等化増幅器の等化残をさらに補償するため
に、識別再生器3の矩形出力を可変等化回路網1
2に入力し、比較・増幅器回路11からの制御信
号により補正信号を作成し、入力端子103から
の入力信号と加え合わせた後、等化増幅器2に入
力する。
In order to further compensate for the equalization residual of this equalization amplifier, the rectangular output of the discrimination regenerator 3 is transferred to the variable equalization circuit network 1.
2, a correction signal is created using the control signal from the comparator/amplifier circuit 11, and after being added to the input signal from the input terminal 103, it is input to the equalizing amplifier 2.

可変等化回路網12の制御信号は等化増幅器2
の出力端子104から信号を分岐し、低周波成分
検出回路10で低周波信号を検出した後、整流回
路7で低周波信号の平均値を得、その平均値信号
を比較・増幅回路11に入力して制御信号を作成
する。
The control signal of the variable equalization network 12 is transmitted to the equalization amplifier 2.
After branching the signal from the output terminal 104 and detecting the low frequency signal by the low frequency component detection circuit 10, the rectifier circuit 7 obtains the average value of the low frequency signal, and the average value signal is input to the comparison/amplification circuit 11. to create control signals.

制御信号は端子104に存在する等化残が大き
いときは可変等化回路網12は大きな補正信号を
出力し、その等化残が小さいときは小さな補正信
号を出力するように動作する。
The control signal operates such that when the equalization residual present at the terminal 104 is large, the variable equalization circuitry 12 outputs a large correction signal, and when the equalization residue is small, it outputs a small correction signal.

次に等化残を効率よく消去するためには等化残
信号の周波数成分を抽出する必要がある。等化残
は通常周波数領域の表現であり、これをG()
時間軸の波形をg(t)とすると G()=∫ -∞g(t)e-j2tdt と表わせる。
Next, in order to efficiently eliminate the equalization residual, it is necessary to extract the frequency components of the equalization residual signal. The equalization residual is usually expressed in the frequency domain, and is expressed as G()
If the waveform on the time axis is g(t), it can be expressed as G()=∫ -∞ g(t)e -j2t dt.

すなわち、等化残G()は時間軸波形の瞬時
値の積分値で表わされるので、等化残を正確に検
出するためには信号の積分値を検出する必要があ
る。
That is, since the equalization residual G( ) is expressed by the integral value of the instantaneous value of the time axis waveform, it is necessary to detect the integral value of the signal in order to accurately detect the equalization residual.

整流回路7は低周波成分検出回路10で選択さ
れた低周波成分の信号を整流し平滑することによ
り積分値を得ることができる。従つて、正確な等
化残信号を得ることができる。
The rectifier circuit 7 can obtain an integral value by rectifying and smoothing the low frequency component signal selected by the low frequency component detection circuit 10. Therefore, an accurate equalized residual signal can be obtained.

以上述べた構成により従来十分補償出来なかつ
た伝送路ケーブル種別、ケーブルの温度変動等に
よる損失―周波数特性の差異までも十分に補償で
きる自動等化が可能となる。
With the configuration described above, it becomes possible to perform automatic equalization that can sufficiently compensate for differences in loss-frequency characteristics due to transmission line cable types, cable temperature fluctuations, etc., which could not be adequately compensated for in the past.

即ち、この第3図においては特にPCM伝送の
中継器が少くとも2R(波形等化 Reshaping、識
別再生 Regenerating)機能をもつているとき、
制御情報をその中継器の出力段である識別再生器
3から抽出することにより、前位中継器出力〜伝
送媒体〜対象中継器出力までを一定の特性に制御
できることになる。これは等化増幅器2のみで高
精度化系を作る場合と異なり、等化増幅器2に加
え識別再生器3を含めた高精度等化系を構成する
ことになる。そのように前位中継器出力から対象
中継器出力までを一定の特性に制御できる理由は
識別再生器のパルス出力振幅値がどの中継器でも
波形等化(Reshaping)に無関係に同一なことに
よる。
That is, in this Figure 3, especially when the PCM transmission repeater has at least a 2R (waveform equalization reshaping, identification reproduction regenerating) function,
By extracting control information from the identification regenerator 3, which is the output stage of the repeater, it is possible to control the output of the preceding repeater, the transmission medium, and the output of the target repeater to have constant characteristics. This differs from the case where a high-precision system is constructed using only the equalization amplifier 2, and a high-precision equalization system including the discrimination regenerator 3 in addition to the equalization amplifier 2 is constructed. The reason why the output from the preceding repeater to the output of the target repeater can be controlled to a constant characteristic is that the pulse output amplitude value of the identification regenerator is the same in all repeaters, regardless of waveform equalization (Reshaping).

以上説明した様に、本発明の実施により、伝送
路媒体に用いるケーブル種別、ケーブルの温度変
動、先行中継器の送出パルス振幅の変動等による
被等化増幅器の利得の差異を十分補償し得る高精
度自動等化系を実現できる。
As explained above, by carrying out the present invention, it is possible to obtain a high A precision automatic equalization system can be realized.

本発明については、低周波領域の局部等化増幅
機能を付加した自動等化方式について述べたが、
同様に低域以外の周波数領域の局部等化増幅機能
を含めた高精度自動等化系の実現も可能である。
また等化増幅機能を含む他分野の機器についても
本発明により高精度等化動作が可能となる。
Regarding the present invention, we have described an automatic equalization method with an added local equalization amplification function in the low frequency region.
Similarly, it is also possible to realize a high-precision automatic equalization system that includes a local equalization amplification function in frequency regions other than low frequencies.
The present invention also enables high-precision equalization operations for equipment in other fields that include an equalization amplification function.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は一般のPCM伝送方式における中継器
のブロツク図、第2図はその中の等化増幅器の回
路構成の一例、第3図は本発明の実施例の回路構
成である。 1…伝送路、2…等化増幅器、3…識別再生
器、4…タイミング部、5…傾斜利得増幅器、6
…ピーク値検出回路、7…整流回路、8…直流増
幅回路、9…可変回路、10…低周波成分検出回
路、11…比較・増幅回路、12…可変等化回路
網。
FIG. 1 is a block diagram of a repeater in a general PCM transmission system, FIG. 2 is an example of the circuit configuration of an equalizing amplifier therein, and FIG. 3 is a circuit configuration of an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1...Transmission line, 2...Equalizing amplifier, 3...Discrimination regenerator, 4...Timing section, 5...Slope gain amplifier, 6
...Peak value detection circuit, 7.. Rectification circuit, 8.. DC amplifier circuit, 9.. Variable circuit, 10.. Low frequency component detection circuit, 11.. Comparison/amplification circuit, 12.. Variable equalization circuit network.

Claims (1)

【特許請求の範囲】[Claims] 1 低周波部にエネルギーが集中している入力信
号を等化する√特性を有する等化増幅器と、前
記等化増幅器の出力からパルス信号を再生する識
別再生器と、前記識別再生器の出力信号を入力
し、前記等化増幅器の入力信号に加算する等化信
号を出力し上記入力信号の低周波部の等化を行う
狭帯域可変等化回路と、前記等化増幅器の出力信
号から低周波成分を検出する低周波成分検出回路
と、前記低周波成分検出回路で検出された低周波
信号を整流する整流回路と、前記整流回路で整流
された信号を基準レベルと比較・増幅し、その出
力信号で前記可変等化回路を制御する比較・増幅
回路を備えたことを特徴とする自動等化方式。
1. An equalization amplifier having a √ characteristic that equalizes an input signal in which energy is concentrated in the low frequency part, an identification regenerator that regenerates a pulse signal from the output of the equalization amplifier, and an output signal of the identification regenerator. a narrowband variable equalizer circuit that inputs a signal and outputs an equalization signal to be added to the input signal of the equalization amplifier and equalizes the low frequency part of the input signal; a low-frequency component detection circuit that detects the low-frequency component; a rectifier circuit that rectifies the low-frequency signal detected by the low-frequency component detection circuit; and a rectifier that compares and amplifies the signal rectified by the rectification circuit with a reference level and outputs the result. An automatic equalization method characterized by comprising a comparison/amplification circuit that controls the variable equalization circuit with a signal.
JP7147180A 1980-05-30 1980-05-30 Automatic equalizing system Granted JPS56168439A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7147180A JPS56168439A (en) 1980-05-30 1980-05-30 Automatic equalizing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7147180A JPS56168439A (en) 1980-05-30 1980-05-30 Automatic equalizing system

Publications (2)

Publication Number Publication Date
JPS56168439A JPS56168439A (en) 1981-12-24
JPS646576B2 true JPS646576B2 (en) 1989-02-03

Family

ID=13461550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7147180A Granted JPS56168439A (en) 1980-05-30 1980-05-30 Automatic equalizing system

Country Status (1)

Country Link
JP (1) JPS56168439A (en)

Also Published As

Publication number Publication date
JPS56168439A (en) 1981-12-24

Similar Documents

Publication Publication Date Title
JPH0342925A (en) Receiver for mobile telephone
GB2363042A (en) Physical layer transceiver architecture for a home network station connected to a telephone medium
JP3283788B2 (en) Optical receiver
JPH0748675B2 (en) Digital transmission system
US20100150561A1 (en) Optical receiver, optical line terminal and method of recovering received signals
US5602484A (en) Delay-spread sensor and detection switching circuit using the same
JPS646576B2 (en)
JPH11505974A (en) Method for reducing the effects of modulator transients in signal tracking loops
JP2674554B2 (en) Optical transmission method and optical transmission device
US4495531A (en) Equalizer circuit for signal waveform reproduced by apparatus for magnetic digital data recording and playback
JPS61239755A (en) Transmission system for digital signal
JPH07336274A (en) Automatic equalizer
JPS6221419B2 (en)
JPS6022683Y2 (en) automatic equalization circuit
JP2536178B2 (en) Optical transceiver
JP2837209B2 (en) Optical receiver and optical communication system including the optical receiver
JPS593898B2 (en) Communication method
JP3324520B2 (en) Gain control circuit
JP2626286B2 (en) Optical repeater monitoring control signal transmission method
JPS593046B2 (en) Data transmission automatic equalization method
JPH084245B2 (en) Multi-valued identification method
JPS6352502B2 (en)
JPS604415B2 (en) optical receiver circuit
JPS5954338A (en) Optical pcm receiving circuit
JPS62220019A (en) Digital optical communication receiver