JPS593898B2 - Communication method - Google Patents

Communication method

Info

Publication number
JPS593898B2
JPS593898B2 JP53022530A JP2253078A JPS593898B2 JP S593898 B2 JPS593898 B2 JP S593898B2 JP 53022530 A JP53022530 A JP 53022530A JP 2253078 A JP2253078 A JP 2253078A JP S593898 B2 JPS593898 B2 JP S593898B2
Authority
JP
Japan
Prior art keywords
variable
station
master station
slave
slave station
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53022530A
Other languages
Japanese (ja)
Other versions
JPS54115010A (en
Inventor
治美 坂田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP53022530A priority Critical patent/JPS593898B2/en
Publication of JPS54115010A publication Critical patent/JPS54115010A/en
Publication of JPS593898B2 publication Critical patent/JPS593898B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は通信方式に係り、特に、親局と1つ以上の子局
間で情報伝送を行なうシステムにおいて伝送路の損失を
補償し一定レベルで信号を受信できるようにした通信方
式に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a communication system, and particularly to a system for transmitting information between a master station and one or more slave stations, which compensates for loss in the transmission path and receives signals at a constant level. This is related to the communication method used.

伝送路にパルスを送出すると伝送損失(歪)により波形
歪が生じる。
When pulses are sent to a transmission line, waveform distortion occurs due to transmission loss (distortion).

この伝送損失は周波数の平方根Vヨ゛に比例する。一般
的にこの伝送損失の対処として受信側に伝送損失と逆の
特性の回路網を設け、これを補償している。しかし、こ
の損失は距離が変わると損失も変わるため受信の回路網
の特性を変えなければならない。
This transmission loss is proportional to the square root of the frequency. Generally, in order to deal with this transmission loss, a circuit network with characteristics opposite to that of the transmission loss is provided on the receiving side to compensate for this. However, this loss changes as the distance changes, so the characteristics of the receiving circuit must be changed.

そこで、従来、いわゆる自動等化回路、自動利得制御回
路などがもちいられている。さて、この自動等化回路、
自動利得回路 (AGC)は1対1の通信においては有効に利用できる
が、1対nのマルチド頭ノブ式の通信においては有効に
利用できない。
Therefore, conventionally, so-called automatic equalization circuits, automatic gain control circuits, etc. have been used. Now, this automatic equalization circuit,
An automatic gain circuit (AGC) can be effectively used in one-to-one communication, but cannot be used effectively in one-to-n multi-head knob type communication.

以下、その理由を第1図に従つて説明する。第1図のマ
ルチドロップ式データハイウェイシステムにおいて、1
1はコンピュータを含んでなるマスタ装置(親局)、1
2−1、12−2、・・・はそれぞれ各種端末を含んで
なるスレーブ装置(子局)であり、各子局は伝送路13
にマルチド頭ノブ式に接続されている。
The reason for this will be explained below with reference to FIG. In the multi-drop data highway system shown in Figure 1, 1
1 is a master device (master station) including a computer, 1
2-1, 12-2, . . . are slave devices (slave stations) each including various terminals, and each slave station is connected to the transmission line 13.
It is connected to the multi-head knob type.

親局11からの情報は下り伝送路13−1を介して各子
局(12−1、12−2、・・・・)に伝送され、一方
、各子局からの情報は上り伝送路13−2を介して親局
に伝送される。かかるマルチドロップ式の通信において
、親局、子局のそれぞれに自動等化器、AGC等を設け
てレベル補償するためには、これら回路を安定に動作さ
せる必要から、常時、信号を送信し、受信側でこれを受
信し受信量に基づいて受信信号レベルの補償を行なわな
ければならない。すなわ)−ち、親局及び子局より相互
に常時、信号を送出しなければならない。
Information from the master station 11 is transmitted to each slave station (12-1, 12-2, . . .) via the downlink transmission path 13-1, while information from each slave station is transmitted through the uplink transmission path 13-1. -2 to the master station. In such multi-drop type communication, in order to compensate for the levels by providing automatic equalizers, AGC, etc. in each of the master station and slave stations, it is necessary for these circuits to operate stably, so signals are constantly transmitted. The receiving side must receive this and compensate the received signal level based on the received amount. In other words, the master station and slave stations must constantly send signals to each other.

しかし、マルチドロツプ式の通信においては親局から子
局側に対して常時信号を送出することはできるが、各子
局から親局に対しては同時に常時、信号を送出し、これ
により親局側で受信信号レベルを補償することはできな
い。というのは、すべての子局からただ1つの親局へ、
同時に信号を送出しても親局ではどの子局から送られて
きた信号であるかを識別できないからである。以上から
、1対nのマルチドロツプ式の通信において単に自動等
化器、AGC等を適用してもレベル補償ができないので
ある。
However, in multi-drop type communication, although it is possible to constantly send signals from the master station to the slave station side, each slave station always sends signals to the master station at the same time, and this causes the master station to cannot compensate for the received signal level. That is, from all slave stations to only one master station,
This is because even if the signals are sent out at the same time, the master station cannot identify from which slave station the signals are being sent. From the above, level compensation cannot be achieved by simply applying an automatic equalizer, AGC, etc. in 1:n multi-drop type communication.

しかるに、本発明は1対nの通信において、1→n(親
局→子局)及びn→1(子局→親局)の方向においてそ
れぞれ自動的にレベル補償のできる新規な通信方式を提
供することを目的とするもので、この目的は、要約すれ
ば、子局側受信部に設ける損失補償特性と同一の損失補
償特性を子局側送信部にもたせ、これにより親局から子
局までの伝達特性と子局から親局までの伝達特性をほぼ
一致せしめる通信方式により達成される。
However, the present invention provides a new communication method that can automatically compensate levels in the directions of 1→n (master station→slave station) and n→1 (slave station→master station) in one-to-n communication. To summarize, the purpose is to provide the slave transmitter with the same loss compensation characteristics as the receiver on the slave station, thereby ensuring that the transmission from the master station to the slave station is This is achieved by a communication method that makes the transmission characteristics of the mobile station and the transmission characteristics from the slave station to the master station almost the same.

以下、図面に従つて本発明を詳細に説明する。伝送損失
は前述の如く周波数の平方根に比例するが、この伝送路
の周波数特性は第2図に示すように、与えられたケーブ
ル長に対し、損失一定な部分と減衰を決定する単一の極
と6dB/0ctで減衰する部分の組合せによつて近似
できる。すなわち、低周波数に対してはある距離内にお
いて線路が集中定数と考えられ、単に線路の直流抵抗の
減衰を考慮すればよく平担な周波数特性となる。
Hereinafter, the present invention will be explained in detail with reference to the drawings. As mentioned above, transmission loss is proportional to the square root of frequency, but as shown in Figure 2, the frequency characteristics of this transmission line are divided into a constant loss portion and a single pole that determines attenuation for a given cable length. It can be approximated by a combination of and a part that attenuates at 6 dB/0 ct. That is, for low frequencies, the line is considered to be a lumped constant within a certain distance, and simply considering the attenuation of the direct current resistance of the line will result in a flat frequency characteristic.

又高周波領域では損失はV了に比例するから6dB/0
ctの減衰特性を示す。さて、1対nの通信において、
親局→子局の方向に対しては、親局の送信部で第3図に
示す如く、平担な特性で信号を送出し、一方、伝送損失
を補償するために子局の受信部で前記伝送路の近似に対
し逆の近似特性、すなわち第4図に示す如き利得一定な
部分と単一の零点を設ければよい。
Also, in the high frequency range, the loss is proportional to V, so it is 6 dB/0.
It shows the attenuation characteristics of ct. Now, in 1-to-n communication,
In the direction from the master station to the slave station, the transmitter of the master station transmits a signal with flat characteristics as shown in Figure 3, while the receiver of the slave station transmits a signal with flat characteristics to compensate for transmission loss. It is sufficient to provide an approximation characteristic opposite to the approximation of the transmission line, that is, a constant gain portion and a single zero point as shown in FIG.

尚、第4図中、6dB/0ctのカーブは伝送損失を補
償する部分、12dB/0ctで減衰する部分は波形等
化を行わせる部分である。又、第3図の親局側送信部の
伝達特性を高域で減衰するようにしたのは上り線、すな
わち子局側から親局側への伝送路中の信号による漏話の
影響を小さくするためである。上記子局側受信部の周波
数特性は第5図に示す回路により実現できる。
In FIG. 4, the 6 dB/0 ct curve is a portion for compensating transmission loss, and the 12 dB/0 ct curve is a portion for waveform equalization. In addition, the transfer characteristics of the transmitter on the master station side shown in Figure 3 are attenuated in high frequencies to reduce the influence of crosstalk caused by signals on the uplink, that is, the transmission path from the slave station to the master station. It's for a reason. The frequency characteristics of the slave station receiving section described above can be realized by the circuit shown in FIG.

すなわち、第5図は子局側受信部の回路プロツク図であ
り、1は振幅制御回路であり、内蔵する図示しないダイ
オードによる可変インピーダンスを後述のAGC電圧に
より変え、振幅を制御するもの:2はイコライザで、伝
送路の高周波損失を6dB/0ctで近似しこれを補償
する如く増幅し、又可変零点を得るためにAGC電圧に
より制御される図示しない可変容量ダイオードを内蔵す
るもの:3は入力信号の波形等化及び増幅を行う増幅器
:4はピーク検出器で入力信号のピーク値を検出するも
の:5は差動増幅器でピーク値と基準電圧Eとを比較し
その差を直流増幅してAGC電圧を発生し、このAGC
電圧により前記可変インピーダンス及び可変容量ダイオ
ードのインピーダンス値、容量値をそれぞれコントロー
ルするものである。
That is, FIG. 5 is a circuit block diagram of the receiving section on the slave station side. 1 is an amplitude control circuit, which controls the amplitude by changing the variable impedance of a built-in diode (not shown) using the AGC voltage described below. An equalizer that approximates the high frequency loss of the transmission line to 6 dB/0 ct, amplifies it to compensate for it, and has a built-in variable capacitance diode (not shown) that is controlled by the AGC voltage in order to obtain a variable zero point: 3 is an input signal An amplifier that performs waveform equalization and amplification: 4 is a peak detector that detects the peak value of the input signal; 5 is a differential amplifier that compares the peak value with the reference voltage E, and amplifies the difference with direct current and performs AGC Generates voltage and this AGC
The impedance value and capacitance value of the variable impedance and variable capacitance diode are respectively controlled by voltage.

尚、1,2により可変回路が形成されている。Note that 1 and 2 form a variable circuit.

この回路によれば、受信信号レベルに応じてそのゲイン
及び零点が変わり、入力信号を一定レベルの信号に変換
して後方の識別回路に入力できる。この可変回路におけ
る振幅制御回路1及びイコライザ2の利得制御のための
具体的技術は、例えば特公昭46−39770号公報あ
るいは「高速PCM」(電子工学進歩シリーズ7;コロ
ナ社発行)に開示される等化器あるいは増幅器の利得制
御技術を用いることによつて達成される。また本発明に
おいては、これら可変回路の利得制御の技術に特徴を有
するものではなく、これ以上の詳細は省略する。第6図
は下り通信における親局送信部、下り伝送路、及び子局
受信部それぞれの周波数特性をそれぞれ図示するもので
、101は子局受信部の周波数特性、102は伝送路の
周波数特性103は親局送信部の周波数特性、104は
総合特性である。
According to this circuit, its gain and zero point change depending on the level of the received signal, and the input signal can be converted into a signal at a constant level and input to the rear identification circuit. Specific techniques for gain control of the amplitude control circuit 1 and equalizer 2 in this variable circuit are disclosed, for example, in Japanese Patent Publication No. 46-39770 or "High Speed PCM" (Electronic Engineering Progress Series 7; published by Corona Publishing Co., Ltd.) This is achieved by using equalizer or amplifier gain control techniques. Furthermore, the present invention is not characterized by the technique of gain control of these variable circuits, and further details will be omitted. FIG. 6 illustrates the frequency characteristics of the master station transmitter, the downlink transmission path, and the slave station receiver in downlink communication, where 101 is the frequency characteristic of the slave station receiver, and 102 is the frequency characteristic 103 of the transmission path. 104 is the frequency characteristic of the master station transmitter, and 104 is the overall characteristic.

尚、図中11,12,13は伝送距離で、1,く12く
13の関係がある。以上のごとくして親局から子局への
信号は総合特性104によりレベル補償される。
In the figure, 11, 12, and 13 are transmission distances, and there is a relationship of 1, 12, 13. As described above, the level of the signal from the master station to the slave station is compensated by the overall characteristic 104.

一方、子局側から親局への通信においては漏話の小さい
、又、S/Nが受端において悪くならないような方式が
要求さ法これは、本発明において、子局の送信側で自動
的に送信信号のレベルを補償することにより達成してい
る。
On the other hand, in communication from the slave station side to the master station, a method is required that has low crosstalk and does not deteriorate the S/N at the receiving end. This is achieved by compensating the level of the transmitted signal.

すなわち、親局の受信部特性に第7図に示す如く利得一
定な部分aと最大伝送損失を補償するための固定零点c
を設け、子局の送信部特性には第8図に示す如く利得一
定で可変可能な部分aと、親局側受信部の固定零点と同
一周波数で互いに相殺しあう固定極bと、1つ以上の可
変零点C1〜C2を有する部分を設ける。
That is, as shown in FIG. 7, the characteristics of the receiving section of the master station include a constant gain part a and a fixed zero point c to compensate for the maximum transmission loss.
As shown in Fig. 8, the transmitter characteristics of the slave station include a variable portion a with constant gain, and a fixed pole b that cancels each other out at the same frequency as the fixed zero point of the receiver on the master station side. A portion having the above variable zero points C1 to C2 is provided.

上記親局側受信部の周波数特性は、第4図の子局側受信
部における周波数特性と相似形を有し、子局側受信部が
最大伝送損失を補償する際における該子局受信部の周波
数特性と一致している。
The frequency characteristics of the above-mentioned master station receiving section are similar to those of the slave station receiving section shown in Fig. 4, and the frequency characteristics of the slave station receiving section when the slave station receiving section compensates for maximum transmission loss Matches the frequency characteristics.

すなわち、親局側受信部は伝送路で最大の損失が生じた
とき、これを単独で補償できるような周波数特性に設定
されている。さて 子局送信部は第9図に示す如く、ユ
ニポーラ・バイポーラ変換器51,6dB/0ctで入
力信号を減衰させる6dB/0ct減衰器52、振幅制
御回路53、イコライザ54、増幅器55より構成され
ている。
In other words, the frequency characteristics of the receiving section on the master station side are set such that when the maximum loss occurs in the transmission path, it can compensate for it alone. Now, as shown in FIG. 9, the slave station transmitting section is composed of a unipolar/bipolar converter 51, a 6 dB/0 ct attenuator 52 that attenuates the input signal at 6 dB/0 ct, an amplitude control circuit 53, an equalizer 54, and an amplifier 55. There is.

振幅制御回路53、イコライザ54は可変回路を構成し
、それぞれ前述の子局受信部の振幅制御回路1及びイコ
ライザ2と全く同一の構成となつており、子局受信部に
おけるAGC電圧によりインピーダンス及び容量を変え
る。従つて、子局受信部、送信部の可変回路の周波数特
性は伝送距離すなわち伝送損失に応じて全く同様に変化
し子局から親局への伝送損失が十分補償される。
The amplitude control circuit 53 and the equalizer 54 constitute a variable circuit, and have exactly the same configuration as the amplitude control circuit 1 and equalizer 2 of the slave station receiving section described above, and the impedance and capacitance are adjusted by the AGC voltage in the slave station receiving section. change. Therefore, the frequency characteristics of the variable circuits of the slave station receiving section and the transmitting section change in exactly the same manner depending on the transmission distance, that is, the transmission loss, and the transmission loss from the slave station to the master station is sufficiently compensated.

第10図は上り通信における子局送信音阪上り伝送路及
び親局受信部それぞれの周波数特性を図示するもので2
01は子局送信部の周波数特性、202は上り伝送路の
周波数特性、203は親局受信部の周波数特性、204
は総合特性である。
Figure 10 illustrates the frequency characteristics of the upstream transmission line and the receiving section of the master station, respectively.
01 is the frequency characteristic of the slave station transmitter, 202 is the frequency characteristic of the uplink transmission path, 203 is the frequency characteristic of the master station receiver, 204
is a comprehensive property.

図中、11〜13は親局・子局間の距離であり11〈1
2く23の関係がある。尚、特性20111は線路に損
失がない場合における子局送信部の周波数特性である。
以上から上り通信において・は、親局受信部の周波数特
性を最大線路損失が補償できるような特性に固定し、伝
送距離即ち伝送線路特性に応じて子局送信部の周波数特
性をかえ、これによりレベル補償を行うものである。そ
して、子局送信部の特性変化を子局側受信部の特性変化
と全く同様に行なえば上り線路の損失を補償できるよう
になつている。以上、子局→親局への信号、親局→子局
への信号は十分に補償され、親局、子局とも正しくデイ
ジタル信号を識別できる。
In the figure, 11 to 13 are the distances between the master station and slave stations, and 11<1
There are 23 relationships. Note that the characteristic 20111 is the frequency characteristic of the slave station transmitter when there is no loss in the line.
From the above, in uplink communication, the frequency characteristics of the master station receiving section are fixed to those that can compensate for the maximum line loss, and the frequency characteristics of the slave station transmitting section are changed according to the transmission distance, that is, the transmission line characteristics. This is to perform level compensation. If the characteristics of the slave station transmitting section are changed in exactly the same way as the characteristics of the slave station receiving section, it is possible to compensate for the loss in the uplink line. As described above, the signal from the slave station to the master station and the signal from the master station to the slave station are sufficiently compensated, and digital signals can be correctly identified in both the master station and the slave station.

又、本発明によれば (1) 自動化のため現調、保守が容易である。Moreover, according to the present invention (1) Due to automation, on-site inspection and maintenance are easy.

(2) AGC電圧が安定のため上り/下り通信におい
て安定した通信が可能。(3)伝送路の変化(温度)に
対しAGCで上り/下り共に吸収が可能である。
(2) Since the AGC voltage is stable, stable uplink/downlink communication is possible. (3) Changes (temperature) in the transmission path can be absorbed by AGC on both the upstream and downstream sides.

等の効果を発揮できるものであり、その効果は著しい。The effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はマルチドロツプ式通信システムの概略図、第2
図は伝送線路の周波数特性、第3図は親局送信部の周波
数特性、第4図は子局受信部の周波数特性、第5図は子
局受信部の回路プロツク図、第6図は下り通信における
各部周波数特性及び総合特性を示すもの、第7図は親局
受信部の周波数特性、第8図は子局送信部の周波数特性
、第9図は子局送信部の回路プロツク図、第10図は上
り通信における各部周波数特性及び総合特性である。 1,53・・・・・・振幅制御回路:2,54・・・・
・・イコライザ、3・・・・・・増幅器:4・・・・・
・ピーク検出器:5・・・・・・差動増幅器。
Figure 1 is a schematic diagram of the multi-drop communication system, Figure 2
The figure shows the frequency characteristics of the transmission line, Figure 3 shows the frequency characteristics of the master station transmitter, Figure 4 shows the frequency characteristics of the slave station receiver, Figure 5 shows the circuit block diagram of the slave station receiver, and Figure 6 shows the downlink. Figure 7 shows the frequency characteristics of each part and overall characteristics in communication. Figure 8 shows the frequency characteristics of the slave station transmitter. Figure 9 shows the circuit block diagram of the slave station transmitter. Figure 10 shows the frequency characteristics of each part and overall characteristics in uplink communication. 1, 53... Amplitude control circuit: 2, 54...
・・Equalizer, 3・・・Amplifier: 4・・・・
・Peak detector: 5...Differential amplifier.

Claims (1)

【特許請求の範囲】[Claims] 1 親局と一つ又は複数の子局が伝送路を介して情報伝
送を行うシステムにおいて、親局の送信部は平担な周波
数特性で信号を送出するごとくなし、一方、子局の受信
部は低域レベルにおいて平担な可変伝達特性を有すると
共に少くとも一個の可変零点を有する可変等化回路と、
該可変等化回路出力の波形等化及び増幅を行う等化増幅
器と、該等化増幅器の出力ピーク値を検出するピーク検
出器とを具備し、前記ピーク値に基いて前記可変等化回
路の伝達特性及び可変零点を変化せしめるごとくなし、
伝送路を介して送られてくる親局からの信号レベルを補
償して受信し、更に、親局の受信部には伝送路での最大
伝送損失を補償するごとく低域レベルで利得一定な伝送
特性及び固定零点をもたせ、子局の送信部は前記親局の
受信部の固定零点の周波数と一致する固定極と少くとも
一個の可変零点を有すると共に低域レベルにおいて平担
な可変伝達特性を有する可変等化回路を設け、前記子局
受信部のピーク検出器のピーク値に基いて子局送信部の
伝達特性及び可変零点の周波数を変えるごとくなし、子
局から送出される信号レベルを子局の送信部で補償して
親局へ送出するようにしたことを特徴とする通信方式。
1 In a system in which a master station and one or more slave stations transmit information via a transmission path, the transmitter of the master station transmits signals with flat frequency characteristics, while the receiver of the slave stations a variable equalization circuit having a variable transfer characteristic that is flat at a low frequency level and having at least one variable zero point;
an equalizing amplifier that equalizes and amplifies the waveform of the output of the variable equalizing circuit; and a peak detector that detects the output peak value of the equalizing amplifier; without changing the transfer characteristics and variable zero point,
The signal level from the master station sent through the transmission path is compensated for and received, and the receiving section of the master station receives transmission with constant gain at a low frequency level to compensate for the maximum transmission loss on the transmission path. The transmitting section of the slave station has a fixed pole that matches the frequency of the fixed zero of the receiving section of the master station, and at least one variable zero point, and has a variable transfer characteristic that is flat at the low frequency level. A variable equalization circuit is provided, which changes the transfer characteristics of the slave station transmitter and the frequency of the variable zero point based on the peak value of the peak detector of the slave station receiver, and adjusts the level of the signal sent from the slave station to the slave station. A communication system characterized in that the transmitting section of the station compensates and transmits the data to the master station.
JP53022530A 1978-02-28 1978-02-28 Communication method Expired JPS593898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53022530A JPS593898B2 (en) 1978-02-28 1978-02-28 Communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53022530A JPS593898B2 (en) 1978-02-28 1978-02-28 Communication method

Publications (2)

Publication Number Publication Date
JPS54115010A JPS54115010A (en) 1979-09-07
JPS593898B2 true JPS593898B2 (en) 1984-01-26

Family

ID=12085342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53022530A Expired JPS593898B2 (en) 1978-02-28 1978-02-28 Communication method

Country Status (1)

Country Link
JP (1) JPS593898B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604489U (en) * 1983-06-22 1985-01-12 株式会社 ニシヤマ Closed ventilator for containers

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59186445A (en) * 1983-04-07 1984-10-23 Yokogawa Hokushin Electric Corp Bus receiver with equalizing function
JPS59188259A (en) * 1983-04-11 1984-10-25 Yokogawa Hokushin Electric Corp Amplifier for bus receiver
US7697600B2 (en) * 2005-07-14 2010-04-13 Altera Corporation Programmable receiver equalization circuitry and methods

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886425A (en) * 1972-02-17 1973-11-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4886425A (en) * 1972-02-17 1973-11-15

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS604489U (en) * 1983-06-22 1985-01-12 株式会社 ニシヤマ Closed ventilator for containers

Also Published As

Publication number Publication date
JPS54115010A (en) 1979-09-07

Similar Documents

Publication Publication Date Title
EP1742388B1 (en) Multimode optical fibre communication system
US5253249A (en) Bidirectional transceiver for high speed data system
US4507793A (en) Digital signal transmission system
US4745622A (en) Equalizer for digital transmission systems
GB2363042A (en) Physical layer transceiver architecture for a home network station connected to a telephone medium
US4887278A (en) Equalizer for digital transmission systems
US5724344A (en) Amplifier using a single forward pilot signal to control forward and return automatic slope circuits therein
US7352815B2 (en) Data transceiver and method for equalizing the data eye of a differential input data signal
US6580542B1 (en) Automatic dispersion equalization apparatus in high-speed optical transmission system
US3983486A (en) Modular CATV system
JPS593898B2 (en) Communication method
US4352190A (en) Device for automatic equalization of electrical data transmission channels
EP0322803B1 (en) Automatic gain control amplifier for compensating cable loss
US4484336A (en) Digital transmission systems
US2231527A (en) Transmission regulation
US2213564A (en) Mitigation of intercircuit interference
JPS6352502B2 (en)
US1721574A (en) Transmission level regulation
EP1249086B1 (en) Pre-distorter with non-magnetic components for a non-linear device
JP2944383B2 (en) CATV transmission equipment
JPH03254236A (en) Microwave multiplex radio transmitter
JPH06205381A (en) Temperature compensation method
JPS6221419B2 (en)
JPH04119724A (en) Signal transmission system
JPH02137550A (en) Reception system optimizing system