JPS646529B2 - - Google Patents

Info

Publication number
JPS646529B2
JPS646529B2 JP8617780A JP8617780A JPS646529B2 JP S646529 B2 JPS646529 B2 JP S646529B2 JP 8617780 A JP8617780 A JP 8617780A JP 8617780 A JP8617780 A JP 8617780A JP S646529 B2 JPS646529 B2 JP S646529B2
Authority
JP
Japan
Prior art keywords
thin film
substrate
fecl
heated
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8617780A
Other languages
Japanese (ja)
Other versions
JPS5711833A (en
Inventor
Masuzo Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8617780A priority Critical patent/JPS5711833A/en
Publication of JPS5711833A publication Critical patent/JPS5711833A/en
Publication of JPS646529B2 publication Critical patent/JPS646529B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Chemical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明は磁気記録媒体、特に電算機などに使用
するデイスク状の磁気記録媒体の表面に形成する
酸化物磁性薄膜の製造法に関するものである。こ
の種の磁性薄膜を形成する方法には、γ―Fe2O3
を主成分とする磁性体粉末にバインダーを加えて
デイスクの表面に塗布する方法と、Ni―Co―P
系の強磁性薄膜をメツキによつて形成する方法と
があり、後者は磁気特性のすぐれている点で注目
されているがメツキ作業の条件を確定することが
困難なことおよび形成した薄膜の機械的強度が十
分でないなどの理由で、実用化がおくれており、
現在行なわれている方法は、殆んど前者の方法で
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing an oxide magnetic thin film formed on the surface of a magnetic recording medium, particularly a disk-shaped magnetic recording medium used in computers and the like. The method for forming this type of magnetic thin film includes γ-Fe 2 O 3
A method of adding a binder to magnetic powder mainly composed of Ni-Co-P and applying it to the surface of the disk.
There is a method of forming a ferromagnetic thin film using plating.The latter method is attracting attention for its excellent magnetic properties, but it is difficult to determine the conditions for the plating process, and the machine used to form the thin film. Practical implementation has been delayed due to reasons such as insufficient strength of
Most of the methods currently in use are the former method.

ところで、最近は電算機が大型となり、かつ、
高密度の記録が行なわれるようになつたが、γ―
Fe2O3粉末にバインターを加えた磁性薄膜は磁気
記録に関与するγ―Fe2O3が20%程度で、残余は
磁気記録に関与しないバインダーで占めている。
したがつて高密度の記録を行なうために、γ―
Fe2O3粒子の微粒子化と高密度の配間比、機械的
研磨による塗布膜の薄膜化が行なわれるが、その
記録密度は20000BPTが限度とされている。この
ようにγ―Fe2O3粉末のバインダーによる塗布膜
には記録密度に限界があるので、さらに高密度の
記録の要請に答える手段として、Feを真空中で
蒸着する方法、酸化性ふん囲気中でFe2O3を蒸着
する方法、Feターゲツトを用い、Fe、α―
Fe2O3、Fe3O4などの薄膜をスパツタリングによ
つて形成する方法、α―Fe2O3をターゲツトに用
い還元性ふん囲気中でFe3O4の薄膜をスパツタリ
ングによつて形成する方法、あるいは鉄の塩化物
を含む溶液をノズルから加熱された記録媒体に噴
霧状に吹付けて薄膜を形成する方法が考えられて
いる。
By the way, computers have become larger recently, and
Although high-density recording has become possible, γ-
A magnetic thin film made by adding binder to Fe 2 O 3 powder contains about 20% γ-Fe 2 O 3 , which is involved in magnetic recording, and the remainder is made up of binder, which is not involved in magnetic recording.
Therefore, in order to perform high-density recording, γ-
The recording density is limited to 20,000 BPT, although the Fe 2 O 3 particles are made finer, the spacing ratio is increased to a higher density, and the coating film is made thinner by mechanical polishing. As described above, coating films using γ-Fe 2 O 3 powder as a binder have a limited recording density, so as a means to meet the demand for even higher density recording, we have developed a method of depositing Fe in a vacuum, and using an oxidizing atmosphere. A method of evaporating Fe 2 O 3 in
A method for forming thin films of Fe 2 O 3 , Fe 3 O 4 , etc. by sputtering, and forming a thin film of Fe 3 O 4 by sputtering in a reducing atmosphere using α-Fe 2 O 3 as a target. Another method has been considered in which a solution containing iron chloride is sprayed onto a heated recording medium from a nozzle to form a thin film.

本発明は高密度の記録を行なうための磁性薄膜
の製造法として、上記従来の蒸着法、スパツタリ
ング法あるいは吹付法とは全く異なる新たな方法
を提供するものである。本発明の方法は無水塩化
鉄をその沸点前後の温度で加熱蒸発してえた蒸発
煙を、還元性ガスをキヤリアガスとして加熱され
た基板上に導き、これと接触させてその表面に金
属鉄の薄膜を形成し、該薄膜を酸化してα―
Fe2O3となし、次にこれを還元してFe2O3とした
後、再び酸化してγ―Fe2O3とする方法であつ
て、基板上に最初に金属鉄の薄膜を蒸着し、最終
的にはこれをγ―Fe2O3の強磁性薄膜とする点に
特徴を有する。
The present invention provides a new method for producing a magnetic thin film for high-density recording, which is completely different from the conventional vapor deposition method, sputtering method, or spraying method. The method of the present invention involves heating and evaporating anhydrous iron chloride at a temperature around its boiling point, guiding the evaporated smoke onto a heated substrate using a reducing gas as a carrier gas, and bringing it into contact with the heated substrate to form a thin layer of metallic iron on the surface. is formed, and the thin film is oxidized to form α-
This is a method in which a thin film of metallic iron is first deposited on a substrate. However, the final feature is that this is made into a ferromagnetic thin film of γ-Fe 2 O 3 .

以下本発明の方法を実施例と共に説明する。本
発明において使用される鉄の塩化物はFeCl3であ
る。FeCl2も使用可能ではあるが、これは沸点
(1023℃)が高いので使用が困難である。これに
対しFeCl3は沸点(317℃)が低いので使用に適
している。FeCl3を還元性ガス気中で250゜〜350℃
に直接、加熱するか、あるいは250゜〜350℃に加
熱された熱容量の大きいホツトプレートに液状に
して滴下し、又は霧状に吹けるとFeCl3の蒸発煙
がえられる。この蒸発煙は水素又はアルゴン若し
くはこれらの混合ガスをキヤリアガスとしてパイ
プによつて蒸着槽に導かれる。蒸着槽の内部には
400゜〜700℃に加熱された基板が還元性ふん囲気
の下におかれてあり、パイプによつてこの蒸着槽
に導入されたFeCl3の蒸発煙はスリツトあるるい
はノズルを備えた吹付器によつて基板の表面に吹
付けられる。基板の温度が400℃以下のときは膜
の形成が殆んどなく、またあつても僅かで析出速
度が遅く、かつ、膜の基板に対する付着力が乏し
い。基板の温度が700℃以上になると膜の粒子が
粗大となつて表面の平滑を欠き緻密な良質の薄膜
がえられない。したがつて基板の最適の加熱温度
は550゜〜650℃の範囲内にある。かくして基板の
表面に形成された金属鉄の薄膜は400℃の酸化性
ふん囲気(空気)のなかで1時間、加熱されてα
―Fe2O3の薄膜となり、次に350℃の還元性ふん
囲気(水素)の下で1時間、還元されてFe3O4
薄膜となり、最後に350℃の酸化性ふん囲気の下
で1時間、再び酸化されてγ―Fe2O3の薄膜とな
る。
The method of the present invention will be explained below along with examples. The iron chloride used in the present invention is FeCl3 . FeCl 2 can also be used, but its high boiling point (1023°C) makes it difficult to use. On the other hand, FeCl 3 has a low boiling point (317°C), making it suitable for use. FeCl 3 in a reducing gas atmosphere at 250° to 350°C
Evaporated smoke of FeCl 3 can be obtained by heating it directly to 250°C to 350°C, dropping it into a liquid onto a hot plate with a large heat capacity heated to 250°C to 350°C, or blowing it into a mist. This evaporative smoke is led to the vapor deposition tank through a pipe using hydrogen, argon, or a mixture thereof as a carrier gas. Inside the deposition tank
A substrate heated to 400° to 700°C is placed under a reducing atmosphere, and the evaporated smoke of FeCl 3 introduced into this deposition tank through a pipe is ejected through a spray gun equipped with a slit or nozzle. is sprayed onto the surface of the substrate by When the temperature of the substrate is 400° C. or less, there is almost no film formation, and even if there is, it is only a small amount, the deposition rate is slow, and the adhesion of the film to the substrate is poor. When the temperature of the substrate exceeds 700°C, the particles of the film become coarse and the surface lacks smoothness, making it impossible to obtain a dense, high-quality thin film. Therefore, the optimum heating temperature for the substrate is within the range of 550° to 650°C. The thin film of metallic iron thus formed on the surface of the substrate is heated for 1 hour in an oxidizing atmosphere (air) at 400°C.
- a thin film of Fe 2 O 3 , then reduced under a reducing atmosphere (hydrogen) at 350°C for 1 hour to become a thin film of Fe 3 O 4 , and finally under an oxidizing atmosphere at 350°C. It is oxidized again for 1 hour to become a thin film of γ-Fe 2 O 3 .

〔実施例 1〕 FeCl3を300℃で加熱し、蒸発煙を水素をキヤ
リアガスとして600℃に加熱した基板(パイレツ
クスガラス)にノズルで吹き付けた、吹付時間は
15秒である。基板上に形成された金属鉄薄膜の厚
さは1500Åであり、この金属鉄薄膜を前述のよう
に酸化、還元、再酸化して最終的にえたγ―
Fe2O3の薄膜の保磁力Heは350O¨e、残留磁化Br
は2800ガウスであつた。なお、これらの薄膜はX
線、電子線解析の結果、いづれも金属鉄ないしは
γ―Fe2O3であることが確認された。
[Example 1] FeCl 3 was heated at 300°C, and the evaporated smoke was sprayed with a nozzle onto a substrate (Pyrex glass) heated to 600°C using hydrogen as a carrier gas.The spraying time was
It is 15 seconds. The thickness of the metallic iron thin film formed on the substrate is 1500 Å, and the γ-
The coercive force He of a thin film of Fe 2 O 3 is 350 O¨e, and the residual magnetization Br
was 2800 Gauss. Note that these thin films are
As a result of ray and electron beam analysis, it was confirmed that both were metallic iron or γ-Fe 2 O 3 .

〔実施例 2〕 FeCl3の加熱温度を350℃とし、500℃に加熱さ
れたパイレツクスガラス基板にFeCl3の蒸発煙を
実施例1と同様の方法によつて吹付けて金属鉄薄
膜を形成し、これを酸化、還元、再酸化してγ―
Fe2O3の薄膜とした。金属鉄薄膜の厚さは1200
Å、γ―Fe2O3の磁気特性は、He=320O¨e、Br
=2400ガウスであつた。
[Example 2] FeCl 3 was heated to 350°C, and evaporated smoke of FeCl 3 was sprayed onto a Pyrex glass substrate heated to 500°C in the same manner as in Example 1 to form a metallic iron thin film. Then, this is oxidized, reduced, and reoxidized to give γ-
A thin film of Fe 2 O 3 was used. Thickness of metal iron thin film is 1200
The magnetic properties of Å, γ-Fe 2 O 3 are He=320O¨e, Br
= 2400 gauss.

〔実施例 3〕 FeCl3の加熱温度を350℃とし、表面を鏡面研
磨した後、1450℃で熱処理したアルミナ基板を
650℃に加熱し、水素ガス中においてFeCl3の蒸
発煙をノズルによりアルミナ基板の表面に15秒間
吹付けた、アルミナ基板の表面に形成された金属
鉄薄膜の厚さは3500Åであり、これを酸化、還
元、再酸化してえたγ―Fe2O3の磁気特性は、
He=380O¨e、Br=2700ガウスであつた。
[Example 3] The heating temperature of FeCl 3 was set to 350°C, the surface was polished to a mirror finish, and then an alumina substrate was heat-treated at 1450°C.
The thickness of the metallic iron thin film formed on the surface of the alumina substrate was 3500 Å by heating it to 650℃ and spraying the evaporated smoke of FeCl 3 in hydrogen gas for 15 seconds on the surface of the alumina substrate using a nozzle. The magnetic properties of γ-Fe 2 O 3 obtained by oxidation, reduction, and reoxidation are as follows.
He = 380O¨e, Br = 2700 Gauss.

以上述べたように本発明の方法は、還元性気中
において、加熱された基板の表面にFeCl3の蒸発
煙を吹付けることによつて金属鉄の薄膜を形成
し、これを酸化、還元、再酸化して酸化物磁性薄
膜とする方法であつて、基板と強固に結合し、質
が緻密で表面の平滑な、磁気特性のすぐれた酸化
物磁性薄膜をうることのできる特長を有する。
As described above, the method of the present invention forms a thin film of metallic iron by spraying evaporated smoke of FeCl 3 onto the surface of a heated substrate in a reducing atmosphere, and oxidizes, reduces, and This is a method of reoxidizing to form an oxide magnetic thin film, and has the advantage of being able to form an oxide magnetic thin film that is strongly bonded to the substrate, has a dense quality, a smooth surface, and has excellent magnetic properties.

Claims (1)

【特許請求の範囲】 1 無水塩化鉄をその沸点前後の温度で加熱蒸発
してえた蒸発煙を、還元性ガスをキヤリアガスと
して加熱された基板上に導き、これと接触させて
その表面に金属鉄の薄膜を形成し、該薄膜を酸化
してα―Fe2O3となし、次にこれを還元して
Fe3O4とした後、再び酸化してγ―Fe2O3とする
ことを特徴とする酸化物磁性薄膜の製造法。 2 特許請求の範囲1において、前記無水塩化鉄
はFeCl3であつてその加熱蒸発の温度は250℃〜
350℃であり、前記基板の加熱温度は400゜〜700℃
であることを特徴とする酸化物磁性薄膜の製造
法。
[Claims] 1. The evaporated smoke obtained by heating and evaporating anhydrous iron chloride at a temperature around its boiling point is guided onto a heated substrate using a reducing gas as a carrier gas, and brought into contact with the heated substrate to coat the surface with metallic iron. A thin film is formed, the thin film is oxidized to α-Fe 2 O 3 , and then this is reduced.
A method for producing an oxide magnetic thin film, which comprises converting it into Fe 3 O 4 and then oxidizing it again to γ-Fe 2 O 3 . 2. In claim 1, the anhydrous iron chloride is FeCl 3 and the heating evaporation temperature thereof is 250°C to 250°C.
350℃, and the heating temperature of the substrate is 400℃~700℃
A method for producing an oxide magnetic thin film characterized by:
JP8617780A 1980-06-25 1980-06-25 Preparation of thin oxide magnetic film Granted JPS5711833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8617780A JPS5711833A (en) 1980-06-25 1980-06-25 Preparation of thin oxide magnetic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8617780A JPS5711833A (en) 1980-06-25 1980-06-25 Preparation of thin oxide magnetic film

Publications (2)

Publication Number Publication Date
JPS5711833A JPS5711833A (en) 1982-01-21
JPS646529B2 true JPS646529B2 (en) 1989-02-03

Family

ID=13879470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8617780A Granted JPS5711833A (en) 1980-06-25 1980-06-25 Preparation of thin oxide magnetic film

Country Status (1)

Country Link
JP (1) JPS5711833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235660A (en) * 1993-02-10 1994-08-23 Nec Corp Spectral analyzer

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5265898A (en) * 1975-11-26 1977-05-31 Nippon Telegr & Teleph Corp <Ntt> Preparing oxidized magnetic thin film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06235660A (en) * 1993-02-10 1994-08-23 Nec Corp Spectral analyzer

Also Published As

Publication number Publication date
JPS5711833A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
JPS6180527A (en) Generation for wear and corrosion resistant film for magnetic recording medium
JPS646529B2 (en)
JP2761859B2 (en) Magnetic recording media
JPS644336B2 (en)
JPS6346970B2 (en)
JP2605803B2 (en) Magnetic recording media
JPS62102414A (en) Magnetic recording medium
JPH04328324A (en) Manufacture of magnetic recording medium
JPS60167122A (en) Production of thin metallic film type magnetic recording medium
JPH04356728A (en) Production of magnetic recording medium
JPH07254131A (en) Substrate for magnetic recording medium and magnetic recording medium using that
JPS59203223A (en) Thin metallic film type magnetic recording medium
JPH06282841A (en) Magnetic recording medium and manufacture thereof
JPS6326823A (en) Magnetic recording medium and its production
JPH0950618A (en) Magnetic recording medium and its production
JPH07254127A (en) Magnetic recording medium and its production
JPS60121522A (en) Magnetic recording medium and its production
JPH0991663A (en) Magnetic recording medium and its production
JPS58212623A (en) Manufacture of magnetic recording medium
JP2003022528A (en) Manufacturing method for magnetic recoding medium
JPS6057211B2 (en) Manufacturing method of magnetic recording media
JPS6045932A (en) Magnetic recording medium
JPS62298017A (en) Magnetic recording medium and its production
JPS61153821A (en) Magnetic recording medium and its production
JPS592232A (en) Production of magnetic recording medium