JPS646270B2 - - Google Patents

Info

Publication number
JPS646270B2
JPS646270B2 JP12390687A JP12390687A JPS646270B2 JP S646270 B2 JPS646270 B2 JP S646270B2 JP 12390687 A JP12390687 A JP 12390687A JP 12390687 A JP12390687 A JP 12390687A JP S646270 B2 JPS646270 B2 JP S646270B2
Authority
JP
Japan
Prior art keywords
gas
substrate
zno
quartz plate
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12390687A
Other languages
Japanese (ja)
Other versions
JPS62284078A (en
Inventor
Ryozo Furukawa
Akira Ozawa
Takashi Ushikubo
Hiroshi Takano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP12390687A priority Critical patent/JPS62284078A/en
Publication of JPS62284078A publication Critical patent/JPS62284078A/en
Publication of JPS646270B2 publication Critical patent/JPS646270B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、基板上にZnOとSiO2の混成膜を形
成する化学気相成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a chemical vapor deposition method for forming a composite film of ZnO and SiO 2 on a substrate.

(従来の技術) 基板上にZnOとSiO2の混成膜を形成する従来
の化学気相成長方法に用いる装置の一例を第2図
に示す。第2図は該装置を収容する金属製チエン
バを除く主要部の一部切断斜視図である。
(Prior Art) FIG. 2 shows an example of an apparatus used in a conventional chemical vapor deposition method for forming a composite film of ZnO and SiO 2 on a substrate. FIG. 2 is a partially cutaway perspective view of the main parts excluding the metal chamber that houses the device.

第2図において1は基板回転石英板、1―1は
基板回転石英板1の中心に設けた挿通孔、2はガ
ス導入管、2―1はガス導入管2の側面、2―2
は該側面2―1に設けたガス噴出口、3は石英
板、4はヒータ、5は基板回転石英板1の上に載
置された基板、6は基板回転石英板1の回転方向
を示す。
In Fig. 2, 1 is a substrate rotating quartz plate, 1-1 is an insertion hole provided in the center of the substrate rotating quartz plate 1, 2 is a gas introduction tube, 2-1 is a side surface of the gas introduction tube 2, 2-2
3 is a quartz plate, 4 is a heater, 5 is a substrate placed on the substrate rotating quartz plate 1, and 6 is the rotation direction of the substrate rotating quartz plate 1. .

第2図の従来の装置の反応室は、前記石英板3
と、その下方に一定間隔を置いて平行に設けた基
板回転石英板1と、該基板回転石英板1の挿通孔
1―1に遊挿され、前記石英板3の下面中心部に
固着されたガス導入管2と、これらの各部材を収
容する金属製チエンバ(図示せず)によつて形成
される。この装置によつて、基板5の表面に
ZnO、SiO2の混成膜を形成するには、前記基板
回転石英板1の上に基板5を載置し、該基板回転
石英板1を下面からヒータ4によつて加熱しなが
ら、回転手段は図示していないが回転方向6に回
転させることによつて基板5をガス導入管2を中
心にして公転させ、ガス導入管2の側面2―1に
設けた複数のガス噴出口2―2から原料ガスと輸
送ガスとの混合ガスを基板5の表面に噴射する。
原料ガスは、酸素、シラン、ジメチル亜鉛又はジ
エチル亜鉛であり、輸送ガスはアルゴン又は窒素
であつて、これらの混合ガスを、ガス導入手段は
図示してないが、ガス導入管2へ導入し、ガス噴
出口2―2から加熱された基板5の上に噴射し、
原料ガスのシラン、ジメチル亜鉛又はジエチル亜
鉛を熱分解し、酸化させて基板の表面にZnOと
SiO2の混成膜を形成するようにしている。
The reaction chamber of the conventional apparatus shown in FIG.
, a substrate rotating quartz plate 1 provided in parallel at a constant interval below the substrate rotating quartz plate 1, and a substrate rotating quartz plate 1 that is loosely inserted into the insertion hole 1-1 of the substrate rotating quartz plate 1 and fixed to the center of the lower surface of the quartz plate 3. It is formed by a gas introduction pipe 2 and a metal chamber (not shown) that accommodates each of these members. With this device, the surface of the substrate 5 is
To form a composite film of ZnO and SiO 2 , the substrate 5 is placed on the substrate rotated quartz plate 1, and while the substrate rotated quartz plate 1 is heated from below by the heater 4, the rotating means is heated. Although not shown, by rotating in the rotational direction 6, the substrate 5 is made to revolve around the gas introduction pipe 2, and from the plurality of gas jet ports 2-2 provided on the side surface 2-1 of the gas introduction pipe 2. A mixed gas of source gas and transport gas is injected onto the surface of the substrate 5.
The raw material gas is oxygen, silane, dimethylzinc or diethylzinc, and the transport gas is argon or nitrogen, and the mixed gas is introduced into the gas introduction pipe 2, although gas introduction means is not shown, Injected from the gas outlet 2-2 onto the heated substrate 5,
The raw material gas silane, dimethylzinc or diethylzinc is thermally decomposed and oxidized to form ZnO on the surface of the substrate.
A hybrid film of SiO 2 is formed.

(発明が解決しようとする課題) しかしながら、従来の技術においては、基板回
転石英板1を回転方向6の方向に回転させて、ガ
ス導入管2を中心にして基板5を公転させなが
ら、ガス噴出口2―2から原料ガスと輸送ガスと
の混合ガスを、加熱された基板5の表面に噴射し
て熱分解し酸化させて、ZnOとSiO2の混成膜を
形成させるのであるが、原料ガスのうち、ジメチ
ル亜鉛又はジエチル亜鉛は酸素と激しく反応する
ため、ガス導入管2の内部及びその付近におい
て、大部分が反応してしまい、基板回転石英板1
の周辺部には殆んど到達しない。一方シランは酸
素との反応が遅いので、前記周辺部迄到達し酸化
されるので基板上に形成される混成膜中のZnOと
SiO2との割合は第3図のb曲線に示すように回
転半径方向に対して不均一となる。その結果、基
板上に形成された混成膜中のZnOの割合が基板の
場所によつて異なることになるので、半導体集積
回路製造上、デバイス特性のバラツキを生じた
り、基板の一部分が使用できない等のため製品の
歩留りが悪化する等の問題点があり、またZnOと
SiO2の混成割合を選択することが難かしいとい
うような問題点があつた。
(Problem to be Solved by the Invention) However, in the conventional technology, the substrate rotating quartz plate 1 is rotated in the rotation direction 6, and the substrate 5 is revolved around the gas introduction tube 2 while the gas is injected. A mixed gas of raw material gas and transport gas is injected from the outlet 2-2 onto the surface of the heated substrate 5 to thermally decompose and oxidize it to form a hybrid film of ZnO and SiO 2 . Among them, dimethylzinc or diethylzinc reacts violently with oxygen, so most of it reacts inside and around the gas introduction pipe 2, causing the substrate rotation quartz plate 1 to react.
It almost never reaches the periphery of the area. On the other hand, since silane reacts slowly with oxygen, it reaches the periphery and is oxidized.
The ratio with SiO 2 becomes non-uniform in the direction of the rotation radius, as shown by curve b in FIG. As a result, the proportion of ZnO in the composite film formed on the substrate differs depending on the location on the substrate, resulting in variations in device characteristics during semiconductor integrated circuit manufacturing, or the unusability of a portion of the substrate. Therefore, there are problems such as deterioration of product yield, and
There was a problem that it was difficult to select the mixture ratio of SiO 2 .

本発明は前記の問題点を除去し、基板上に形成
される混成膜中のZnOとSiO2との割合が基板全
面にわたつてより均一となり、且つZnO、SiO2
の混成割合を任意に選択しうる化学気相成長方法
を提供することを目的とする。
The present invention eliminates the above-mentioned problems, and makes the ratio of ZnO and SiO 2 in the composite film formed on the substrate more uniform over the entire surface of the substrate.
An object of the present invention is to provide a chemical vapor deposition method in which the mixing ratio of .

(課題を解決するための手段) 本発明は基板表面にZnOとSiO2との混成膜を
化学気相成長させるに際し、前記従来の技術の反
応室内の空間に基板回転石英板の半径方向に水平
に横架される部分を有し、該横架部分の下面に複
数のガス噴出口を設けた逆L形の第2のガス導入
管を設け、該第2ガス導入管のガス噴出口よりジ
メチル亜鉛又はジエチル亜鉛と輸送ガスとの混合
ガスを噴射すると同時に、直立するガス導入管の
ガス噴出口より、酸素およびシランと輸送ガスと
の混合ガスを噴射し、基板表面にZnOとSiO2
混成膜を成長させるようにしたものである。
(Means for Solving the Problems) When the present invention performs chemical vapor phase growth of a composite film of ZnO and SiO 2 on the surface of a substrate, the substrate is placed horizontally in the radial direction of the rotating quartz plate in the space inside the reaction chamber of the conventional technology. An inverted L-shaped second gas introduction pipe is provided, which has a part that is horizontally suspended, and has a plurality of gas outlets on the lower surface of the horizontally supported part, and dimethyl At the same time as a mixed gas of zinc or diethylzinc and a transport gas is injected, a mixed gas of oxygen, silane, and transport gas is injected from the gas outlet of an upright gas introduction pipe, and a mixture of ZnO and SiO 2 is deposited on the substrate surface. It is designed to grow a film.

(作用) 本発明によれば、前記のような装置を用いて、
酸素と激しく反応するジメチル亜鉛又はジエチル
亜鉛と酸素及びシランとを別々のガス導入管によ
り反応室へ導入し、基板表面に同時に噴射しZnO
とSiO2の混成膜を成長形成させるようにしたの
で混成膜中のZnOとSiO2の混成割合を基板全面
にわたつて、より均一にすることができるのであ
る。
(Function) According to the present invention, using the above-mentioned device,
Dimethylzinc or diethylzinc, which reacts violently with oxygen, oxygen and silane are introduced into the reaction chamber through separate gas introduction pipes, and are simultaneously injected onto the substrate surface to form a ZnO
Since a composite film of ZnO and SiO 2 is grown, the ratio of ZnO and SiO 2 in the composite film can be made more uniform over the entire surface of the substrate.

(実施例) 第1図は本発明に用いる装置の一実施例の金属
製チエンバを除く主要部の一部切断斜視図であつ
て、第2図に示す従来の技術の装置と同一部分に
は同一符号を付し、個々の説明は省略する。
(Embodiment) FIG. 1 is a partially cutaway perspective view of the main parts of an embodiment of the device used in the present invention, excluding the metal chamber. The same reference numerals are given, and individual explanations are omitted.

第1図において、15は第2ガス導入管、15
―1は横架部分、15―2はガス噴出口である。
In FIG. 1, 15 is a second gas introduction pipe;
-1 is the horizontal section, and 15-2 is the gas outlet.

第1図に示す装置の反応室は、石英板3と、そ
の中心下方に直立する第1ガス導入管2と、石英
板3の下方に水平に配置された基板回転石英板1
と、さらにその下に配置されたヒータ4と金属製
チエンバ(図示せず)とによつて形成され、該反
応室内に第2ガス導入管15を導入し、横架部分
15―1を基板回転石英板1の半径方向に横架さ
せてある。
The reaction chamber of the apparatus shown in FIG. 1 consists of a quartz plate 3, a first gas introduction pipe 2 standing upright below the center of the quartz plate 3, and a substrate rotating quartz plate 1 horizontally arranged below the quartz plate 3.
A second gas introduction pipe 15 is introduced into the reaction chamber, and the horizontal part 15-1 is used to rotate the substrate. The quartz plate 1 is horizontally suspended in the radial direction.

基板回転石英板1は直径約40cmであり、その中
心の挿通孔1―1に第1のガス導入管2が遊挿さ
れている。第1のガス導入管2は外径約3cmであ
り、側面2―1に直径1〜2mmの噴出口2―2が
複数個設けてある。又、第2ガス導入管15は基
板回転石英板1の上方で半径方向に横架する部分
を有する逆L形をしており横架部分15―1の下
面に直径1〜2mmの噴出口15―2が複数個設け
てある。
The rotating quartz plate 1 has a diameter of about 40 cm, and the first gas introduction pipe 2 is loosely inserted into the insertion hole 1-1 at the center. The first gas introduction pipe 2 has an outer diameter of about 3 cm, and a plurality of jet ports 2-2 each having a diameter of 1 to 2 mm are provided on the side surface 2-1. Further, the second gas introduction pipe 15 has an inverted L shape with a part that extends horizontally in the radial direction above the substrate rotating quartz plate 1, and has an ejection port 15 with a diameter of 1 to 2 mm on the lower surface of the horizontal part 15-1. -2 are provided.

次に本発明によるZnOとSiO2との混成膜の成
長方法について説明する。まず、第1図に示すよ
うに、基板回転石英板1の上に混成膜を成長させ
るための基板5を載置する。回転装置(図示せ
ず)によつて、第1のガス導入管2を中心とし
て、回転方向6の方向に基板回転石英板1を回転
させる。これにより、基板5は第1のガス導入管
2を中心として公転する。この状態において、第
1のガス導入管2に原料ガスとして酸素2/分
およびシラン24c.c./分、輸送ガスとしてアルゴン
または窒素25/分の混合ガスを導入する。ま
た、第2ガス導入管15に原料ガスとしてジメチ
ル亜鉛またはジエチル亜鉛5mg/分と輸送ガスと
してアルゴン又は窒素6/分との混合ガスを導
入し、基板5の表面に直接あたるように噴出口1
5―2から噴射させる。
Next, a method for growing a composite film of ZnO and SiO 2 according to the present invention will be explained. First, as shown in FIG. 1, a substrate 5 for growing a composite film is placed on a rotated quartz plate 1. As shown in FIG. The substrate rotation quartz plate 1 is rotated in a rotation direction 6 about the first gas introduction pipe 2 by a rotation device (not shown). Thereby, the substrate 5 revolves around the first gas introduction pipe 2. In this state, a mixed gas of 2/min of oxygen and 24 c.c./min of silane as raw material gases and 25/min of argon or nitrogen as a transport gas is introduced into the first gas introduction pipe 2. Further, a mixed gas of 5 mg/min of dimethylzinc or diethylzinc as a raw material gas and 6/min of argon or nitrogen as a transport gas is introduced into the second gas introduction pipe 15, and the ejection port 1 is injected directly into the surface of the substrate 5.
Inject from 5-2.

原料ガスのシランとジメチル亜鉛またはジエチ
ル亜鉛が基板回転石英板1の上で混合し、熱分解
し、酸素と結合して基板5の表面にZnOとSiO2
の混成膜が成長形成される。
The raw material gas silane and dimethylzinc or diethylzinc are mixed on the substrate rotating quartz plate 1, thermally decomposed, and combined with oxygen to form ZnO and SiO 2 on the surface of the substrate 5.
A hybrid film of is grown and formed.

以上述べたように、互に激しく反応する酸素と
ジメチル亜鉛またはジエチル亜鉛とを別々のガス
導入管により反応室内に導入するようにしたの
で、導入途中でのジメチル亜鉛またはジエチル亜
鉛と酸素との反応が防止され、ZnOとSiO2の混
成比が基板全面にわたつて均一な混成膜を成長形
成させることができる。
As mentioned above, since oxygen and dimethylzinc or diethylzinc, which react violently with each other, are introduced into the reaction chamber through separate gas introduction pipes, the reaction between dimethylzinc or diethylzinc and oxygen during the introduction is prevented. This makes it possible to grow a composite film with a uniform ratio of ZnO and SiO 2 over the entire surface of the substrate.

第3図は基板5の表面に形成されるZnOと
SiO2の混成膜中のZnOの分布を示すグラフであ
る。横軸は基板回転石英板1の中心からの半径方
向の距離tを示し、縦軸はZnOとSiO2の混成膜
中に占めるZnOの割合Nすなわち{ZnO/(ZnO
+SiO2)}×100を示す。
Figure 3 shows ZnO formed on the surface of the substrate 5 and
3 is a graph showing the distribution of ZnO in a SiO 2 composite film. The horizontal axis indicates the radial distance t from the center of the rotated quartz substrate 1, and the vertical axis indicates the proportion N of ZnO in the composite film of ZnO and SiO2 , that is, {ZnO/(ZnO
+SiO 2 )}×100.

第3図において、実線aは本発明の化学気相成
長方法により得られた混成膜中のZnOの分布を示
し、破線bは従来の化学気相成長方法により得ら
れた混成膜中のZnOの分布を示す。
In FIG. 3, the solid line a shows the distribution of ZnO in the hybrid film obtained by the chemical vapor deposition method of the present invention, and the broken line b shows the distribution of ZnO in the hybrid film obtained by the conventional chemical vapor deposition method. Show the distribution.

第3図の破線bより、従来の化学気相成長方法
により得られた混成膜においては、第1のガス導
入管2に近い領域と離れた領域とではZnOの占め
る割合が極端に異なることがわかる。一方、実線
aは破線bと比べてなめらかな曲線を描いてお
り、このことから本発明の化学気相成長方法によ
り形成された混成膜は、均一性が改善されている
ことがわかる。
From the broken line b in FIG. 3, it can be seen that in the hybrid film obtained by the conventional chemical vapor deposition method, the proportion of ZnO is extremely different between the region close to the first gas introduction pipe 2 and the region far away. Recognize. On the other hand, the solid line a draws a smoother curve than the broken line b, which indicates that the uniformity of the hybrid film formed by the chemical vapor deposition method of the present invention is improved.

(発明の効果) 以上詳細に説明したように、本発明によれば、
酸素との反応が激しいジメチル亜鉛又はジエチル
亜鉛と、酸素及びシランとを別のガス導入管によ
り反応室内に導入し、ジメチル亜鉛又はジエチル
亜鉛を基板面へ直接噴射するようにしたので基板
上に形成されるZnOとSiO2との混成膜内のZnOと
SiO2の混成比を回転半径方向に対してほぼ均一
にすることができるとともに、混成膜中のZnOの
割合を任意に選択することもできる。従つて半導
体集積回路製造上、同一基板内でのデバイス特性
のバラツキを低減し、歩留りを向上することがで
きるとともに混成比の選択性向上によつてデバイ
ス特性の設計自由度が向上する等の効果が期待で
きる。
(Effects of the Invention) As explained in detail above, according to the present invention,
Dimethylzinc or diethylzinc, which reacts violently with oxygen, and oxygen and silane are introduced into the reaction chamber through separate gas introduction pipes, and the dimethylzinc or diethylzinc is directly injected onto the substrate surface, resulting in no formation on the substrate. ZnO in the composite film of ZnO and SiO 2
The mixture ratio of SiO 2 can be made almost uniform in the direction of the radius of rotation, and the proportion of ZnO in the composite film can also be arbitrarily selected. Therefore, in the production of semiconductor integrated circuits, it is possible to reduce variations in device characteristics within the same substrate, improve yield, and improve the degree of freedom in designing device characteristics by improving the selectivity of the mixture ratio. can be expected.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に用いる装置の一実施例の主要
部の一部切断斜視図、第2図は従来の化学気相成
長方法に用いる装置の一例の主要部の一部切断斜
視図、第3図は混成膜中のZnOの分布を示すグラ
フである。 1…基板回転石英板、1―1…挿通孔、2…ガ
ス導入管、2―1…側面、2―2…ガス噴出口、
3…石英板、4…ヒータ、5…基板、6…回転方
向、15…第2ガス導入管、15―1…横架部
分、15―2…ガス噴出口。
FIG. 1 is a partially cutaway perspective view of the main part of an embodiment of the apparatus used in the present invention, FIG. 2 is a partially cutaway perspective view of the main part of an example of the apparatus used in the conventional chemical vapor deposition method, and FIG. Figure 3 is a graph showing the distribution of ZnO in the composite film. 1...Substrate rotating quartz plate, 1-1...Insertion hole, 2...Gas introduction pipe, 2-1...Side surface, 2-2...Gas outlet,
3...Quartz plate, 4...Heater, 5...Substrate, 6...Rotation direction, 15...Second gas introduction pipe, 15-1...Horizontal portion, 15-2...Gas outlet.

Claims (1)

【特許請求の範囲】[Claims] 1 金属製チエンバにより形成される反応室内に
水平に設けた基板回転石英板上に基板を載置、公
転されるとともに加熱し、該チエンバの中央に直
立するガス導入管の側面に設けた複数のガス噴出
口より酸素、シランを混合した原料ガスと窒素又
はアルゴンの輸送ガスとの混合ガスを噴射すると
同時に、前記反応室内に、前記基板回転石英板の
半径方向に水平に横架する部分を有し、該横架部
分の下面に複数のガス噴出口を有する逆L形の第
2ガス導入管を設けて該第2ガス導入管のガス噴
出口より、ジメチル亜鉛又はジエチル亜鉛と前記
輸送ガスとの混合ガスを噴射し、熱分解、酸化さ
せて、前記基板表面にZnOとSiO2との混成膜を
成長させるようにしたことを特徴とする化学気相
成長方法。
1. A substrate is placed on a rotating quartz plate installed horizontally in a reaction chamber formed by a metal chamber, and is heated as it revolves. At the same time, a mixed gas of a raw material gas mixed with oxygen and silane and a transport gas of nitrogen or argon is injected from the gas jet port, and at the same time, a portion horizontally suspended in the radial direction of the substrate rotating quartz plate is provided in the reaction chamber. An inverted L-shaped second gas introduction pipe having a plurality of gas injection ports is provided on the lower surface of the horizontal part, and dimethylzinc or diethylzinc and the transport gas are introduced from the gas injection ports of the second gas introduction pipe. A chemical vapor deposition method characterized in that a mixed gas of ZnO and SiO 2 is injected, thermally decomposed and oxidized to grow a composite film of ZnO and SiO 2 on the surface of the substrate.
JP12390687A 1987-05-22 1987-05-22 Chemical vapor growth method Granted JPS62284078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12390687A JPS62284078A (en) 1987-05-22 1987-05-22 Chemical vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12390687A JPS62284078A (en) 1987-05-22 1987-05-22 Chemical vapor growth method

Publications (2)

Publication Number Publication Date
JPS62284078A JPS62284078A (en) 1987-12-09
JPS646270B2 true JPS646270B2 (en) 1989-02-02

Family

ID=14872268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12390687A Granted JPS62284078A (en) 1987-05-22 1987-05-22 Chemical vapor growth method

Country Status (1)

Country Link
JP (1) JPS62284078A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0745530A (en) * 1993-07-27 1995-02-14 Shin Etsu Handotai Co Ltd Vertical vapor growth equipment
US6812157B1 (en) * 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
JP4699092B2 (en) * 2005-06-01 2011-06-08 日本パイオニクス株式会社 Method for forming zinc oxide film

Also Published As

Publication number Publication date
JPS62284078A (en) 1987-12-09

Similar Documents

Publication Publication Date Title
US8629067B2 (en) Dielectric film growth with radicals produced using flexible nitrogen/hydrogen ratio
CN101660139B (en) Film deposition apparatus and method
US8551890B2 (en) Showerhead for CVD depositions
US8449942B2 (en) Methods of curing non-carbon flowable CVD films
US8647992B2 (en) Flowable dielectric using oxide liner
US20110136347A1 (en) Point-of-use silylamine generation
US20120177846A1 (en) Radical steam cvd
US20120238108A1 (en) Two-stage ozone cure for dielectric films
US20110159213A1 (en) Chemical vapor deposition improvements through radical-component modification
KR20140009170A (en) Amine curing silicon-nitride-hydride films
JP2013501384A (en) Silicon oxide formation using a non-carbon fluid CVD process
JPS646270B2 (en)
JP2882605B2 (en) Continuous growth method of strained layer superlattice structure
JPH0786173A (en) Film deposition
JP3376809B2 (en) Metal organic chemical vapor deposition equipment
JP2783041B2 (en) Vapor phase silicon epitaxial growth equipment
KR101829669B1 (en) Method of depositing thin film and Apparatus for depositing thin film
JPS641956Y2 (en)
JPS61194178A (en) Chemical vapor deposition device
JPH01129973A (en) Reaction treatment equipment
EP0921557A2 (en) Formation of non-homogenous device layer using an inert gas shield
JP3072664B2 (en) Vertical vacuum deposition equipment
CN115023512A (en) Substrate processing apparatus and substrate processing method
JPH03232794A (en) Vapor-phase growth apparatus
JPS6353160B2 (en)