JPS646268B2 - - Google Patents

Info

Publication number
JPS646268B2
JPS646268B2 JP19632481A JP19632481A JPS646268B2 JP S646268 B2 JPS646268 B2 JP S646268B2 JP 19632481 A JP19632481 A JP 19632481A JP 19632481 A JP19632481 A JP 19632481A JP S646268 B2 JPS646268 B2 JP S646268B2
Authority
JP
Japan
Prior art keywords
region
rolling
temperature
titanium alloy
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP19632481A
Other languages
Japanese (ja)
Other versions
JPS58100663A (en
Inventor
Kazuhiko Nishida
Chiaki Hanada
Kenji Kurokawa
Hiroyuki Morimoto
Masamori Yoshitoshi
Tomio Yamakawa
Koji Okuyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP19632481A priority Critical patent/JPS58100663A/en
Publication of JPS58100663A publication Critical patent/JPS58100663A/en
Publication of JPS646268B2 publication Critical patent/JPS646268B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、組織の良好なチタン合金圧延材の製
造方法、特に多段スタンドの連続圧延による組織
の良好なチタン合金圧延材の製造方法に関する。 チタン合金は比強度(重さに対する強さの比)
が大であることから、軽量で高強度を要求される
航空機・宇宙開発機材などの分野をはじめ、高信
頼性が要求される用途に使用されている。しか
し、これらの用途に対しては、単に高強度である
だけでは不充分で、特に線または棒の形態で供給
される場合には、ボルトあるいは構造部品として
の最終製品への製造段階で必ず成形加工工程を経
るので、適度な延性が不可欠である。そして、こ
の延性の改善には、均一且つ微細な組織であるこ
とが必須である。 ところで、チタン合金材は難加工材の1つで、
その製造方法に関する報告はほとんどない。例え
ば、鍛造材については特開昭51―77385号に開示
されているが、圧延材については本発明者らの知
る限り製造条件に関する報告例は見当らない。 ちなみに、上記の鍛造材の製造は、β鍛造後、
連続的にα+β域で10%以上の加工を行ない、次
いでβ域に加熱後、20℃/分以上の冷却速度でα
+β域またはα域まで冷却することにより行なわ
れ、それにより組織の微細化を図つている。 しかしながら、チタン合金の中丸ないし小棒を
鍛造により製造した場合、鍛造長手方向の組織の
バラツキ、断面内での部位による組織のバラツキ
など鍛造方法固有の基本的な問題を伴なう。また
生産効率の点でも、数回の繰返し加熱鍛造を行な
うということから、圧延法とは比較にならぬ程、
効率が劣る。 また、圧延を実施しても、チタン合金は難加工
材のため、表面疵が発生し易く、α+β域内の高
目の温度で加熱しても、粗ないし中間圧延列での
表面疵発生を避けることができない。したがつ
て、後工程で全面ピーリングを行なうことが必要
とされるため、その結果歩留り低下と工数増とな
り、効率の低下は免がれない。 かくして本発明の目的は、組織が良好で表面疵
の少ないチタン合金圧延材を製造する方法を提供
することである。 ところで、組織を良好とするには圧延温度を低
くすることが必要であり、一方表面疵は加工温度
が高いほど発生の頻度は低下する。したがつて、
組織を良好にするという要求と表面疵を少なくす
るという要求とは相互に矛盾するものである。 よつて本発明者らは、チタン合金の連続圧延に
ついて鋭意研究した結果、圧延時の加熱温度のコ
ントロールと圧延中における材料温度の制御によ
り、上述のような相矛盾する要求を同時に満足し
表面疵がなく組織の良好なTi合金圧延材を得る
ことに成功した。特に、本発明は表面疵をなくす
るためのβ域加熱と粗列での充分な加工度と、中
間および仕上列におけるα+β域での充分な加工
度の組合せの臨界性を見い出したことに基づくも
のである。 ここに本発明は、α+β型チタン合金を分塊圧
延後、1150℃以下のβ域に加熱し、連続式圧延機
によりβ域で鍛錬比3以上の加工を加え、更に連
続的にα+β域で鍛錬比10以上の加工を加え、必
要により得られた熱間圧延材に等軸晶形成処理を
行なうことを特徴とする、組織の良好なチタン合
金圧延材の製造方法である。 このように、本発明は、β域加熱圧延を1つの
特徴とするが、加工性の良好なβ域で粗加工する
ことにより、粗加工時の表面疵発生を防止するだ
けでなく、後続のα+β域加工時の表面疵発生を
抑制する効果がある。 β域での加熱温度を1150℃以下としたのは、余
り高温に加熱するとガス吸収層(いわゆるα−
Case)が生成し、加工性が劣化すること及び、
連続式圧延時の温度制御が困難となり特にα+β
域での加工度が充分にとれない恐れが生ずるから
である。 鍛錬比は多いほうがα+β域での表面疵発生防
止に対しては有利であるが、実用上素材寸法に制
約があるため多くとることができない。鍛錬比を
3以上とすることにより実用上充分な表面性状を
得ることが出来る。 さらに、本発明によれば、α+β域での加工度
が規制されるが、前述のように、連続的にα+β
域で鍛錬比10以上の加工を加えることが本発明の
さらに1つの特徴である。つまり、1ヒートにて
前半はβ域鍛錬、後半はα+β域鍛錬とすること
によつて極めて能率よく組織良好なTi合金圧延
材が表面キズもなく製造されるのである。また、
α+β域での鍛錬比は組織改善に非常に重要な役
割りを果たすのであり、組織的にはα+β域の鍛
錬比が大きいほどより微細な等軸晶粒を形成する
が、実用上は素材寸法の制約もあり、実用面から
経験的に設定される組織の許容限度を基準として
みた場合、鍛錬比を10以上とすれば充分である。
α+β域での加工温度を特にここでは制限しない
が、β―トランザヅ直下の温度になると、組織内
に変態β組織が増加し好ましくない。また、加工
温度が約700℃を下廻ると、加工中における結晶
粒界の移動、再結晶等は極端に遅くなるため、後
述する等軸晶形成処理を施こすことで等軸晶化す
ることが好ましい。従つて、α+β域の加工温度
としては、必ずしもそれに限定されないが、好ま
しくは800−900℃である。 ここで、等軸晶形成処理とは、熱間圧延に続い
て直ちに徐冷、好ましくは炉冷により700℃まで
150℃/hr以下の速度で冷却し、その後室温まで
放冷し、あるいは熱間圧延後800〜950℃の温度に
所定時間、一般には30分以上、好ましくは1時間
以上保持し、さらにあるいは熱間圧延後に700℃
以下までまず放冷し、次いで850〜950℃に保持し
た炉内で再加熱して800〜950℃に所定時間、一般
には30分以上、好ましくは1時間以上保持し、そ
の後700℃以下まで放冷する処理のことであり、
かかる処理によつて等軸晶結晶の生成が促進され
る。 熱間圧延材を圧延直後に徐冷するのは、α+β
域の圧延により蓄積された結晶歪を解放し、等軸
晶化するのに有効であるからである。そのために
は、結晶粒界移動の発生し易い700℃以上での保
持時間を充分にとる必要があり、そのために徐冷
を行なうが、前述のように、好ましくは700℃ま
では150℃/hr以下での徐冷が必要である。熱間
圧延後800〜950℃に保持することによつても同様
な効果が得られる。 また、熱間圧延材を放冷し、次いで再加熱する
ことにより結晶粒を微細化するためには、800〜
950℃に加熱することが有効である。950℃を越す
と、β相が増加し、空冷後に針状組織が増加する
ため好ましくない。一方、800℃を下回ると、700
℃付近までは長時間の加熱を行なえば結晶粒の微
細化が可能であるが、長時間を要すということか
ら経済的でない。 かくして得られる等軸晶は結晶粒形態が等方的
である結晶であり、理想的には結晶粒が任意の断
面で特定の方向に伸びていない結晶粒からなる。 本発明を実施するに当つては、一般に多段スタ
ンドの連続圧延が前提であり、β域に加熱後、圧
延を開始することから、圧延途中でα+β域に温
度が低下するように圧延温度をコントロールする
必要がある。また、加工途中での圧延材からの発
熱もあり、連続圧延機列の適当な部分で水冷等に
よる冷却が必要であり、ロール間での水冷、圧延
直後の水冷又は両者の併用が考えられるが、必ず
しもそれらに制限されるものではない。水冷を採
用する場合、流量調節によつて温度調節を行なつ
てもよい。 本発明が適用されるα+β型チタン合金の代表
的なものはTi―6Al―4V、Ti―4Al―4Mnであ
り、その他の例としてはTi―8Mn、Ti―5Al―
2.75Cr―1.25Fe、Ti―4Al―4Mo―4V、Ti―4Al
―3Mo―1V等が挙げられる。ただし、本発明が
それらのみに制限されるものではないことは理解
されよう。 次に実施例に関連させて本発明をさらに説明す
る。 実施例 Ti―6Al―4V合金を真空アーク溶解して1ト
ンの鋳塊を溶製し、分塊圧延したのち、皮むきを
行なつて表面疵を除去し、そののち本発明に従つ
て第1表に示す如く、直径130mmおよび53mm角の
ビレツトを製造し、連続孔型圧延材により同じく
第1表に示す仕上圧延速度で直径9mmの丸棒に圧
延した。圧延が高速度で行なわれたため、圧延に
よる温度上昇がみられたので、本発明に従つてロ
ール間および/または圧延直後に水吹付けによる
冷却を行なつた。得られた各圧延機について、後
述の組織判定および表面疵判定を行なつた。圧延
条件および結果を比較例のそれと共に第1表にま
とめて示す。 なお、組織の判定法については、従来からの経
験と実績に基いて種々のものが各社で考えられて
いる。ここでは添付図面に示すように、α+β等
軸晶組織のものを1級とし、(図a参照)、結晶粒
の等方化が進んでいない、即ち加工組織に近いも
のが残つた状態を4級と評価し(図d参照)、そ
の中間段階として加工組織残留度合の高いものと
(図c参照)、この段階の低いもの、すなわち、等
軸晶化の不充分なもの(図b参照)、の2段階に
分け、合計4階級とした。1〜2級は実用に耐え
る組織であり、3〜4級は改善を要する組織であ
る。 表面疵の判定は、製品表面を目視検査し、表面
疵を検出した時には、その部分をグラインダーで
研削して疵深さを測定する。疵深さに応じて、第
2表に示すように1級ないし、4級に分類する。
The present invention relates to a method for manufacturing a rolled titanium alloy material with a good structure, and particularly to a method for manufacturing a rolled titanium alloy material with a good structure by continuous rolling on a multistage stand. Titanium alloy has specific strength (ratio of strength to weight)
Because of its large strength, it is used in applications that require high reliability, including fields such as aircraft and space development equipment that require light weight and high strength. However, for these applications, mere high strength is not sufficient, especially when supplied in the form of wire or rod, which must be formed during manufacturing into the final product as a bolt or structural part. Appropriate ductility is essential as it undergoes a processing process. In order to improve this ductility, it is essential to have a uniform and fine structure. By the way, titanium alloy material is one of the difficult-to-process materials.
There are few reports regarding its manufacturing method. For example, forged materials are disclosed in JP-A-51-77385, but as far as the present inventors know, there are no reports regarding manufacturing conditions for rolled materials. By the way, in the production of the forged material mentioned above, after β forging,
Continuously perform processing of 10% or more in the α+β region, then heat to the β region, and then process α at a cooling rate of 20℃/min or more.
This is done by cooling to the +β region or α region, thereby making the structure finer. However, when a titanium alloy round or small bar is produced by forging, there are fundamental problems inherent to the forging method, such as variations in the structure in the longitudinal direction of the forge and variations in the structure depending on the location within the cross section. In addition, in terms of production efficiency, it is incomparable to the rolling method because heat forging is repeated several times.
Less efficient. In addition, even if rolling is carried out, titanium alloy is a difficult-to-process material, so surface flaws are likely to occur, and even if heated at a high temperature within the α + β range, surface flaws will not occur in rough or intermediate rolling rows. I can't. Therefore, it is necessary to perform whole-surface peeling in a subsequent process, which results in a decrease in yield and an increase in the number of man-hours, which inevitably leads to a decrease in efficiency. Thus, an object of the present invention is to provide a method for producing a rolled titanium alloy material with a good structure and few surface flaws. By the way, in order to improve the structure, it is necessary to lower the rolling temperature, and on the other hand, the higher the processing temperature, the lower the frequency of surface flaws. Therefore,
The requirement to improve the structure and the requirement to reduce surface defects are mutually contradictory. As a result of intensive research on continuous rolling of titanium alloys, the present inventors have found that by controlling the heating temperature during rolling and controlling the material temperature during rolling, it is possible to simultaneously satisfy the contradictory demands described above and eliminate surface defects. We succeeded in obtaining a Ti alloy rolled material with a good structure and no oxidation. In particular, the present invention is based on the discovery of the criticality of the combination of heating in the β range, sufficient working degree in the rough row, and sufficient working degree in the α+β region in the intermediate and finishing rows to eliminate surface defects. It is something. Here, in the present invention, after blooming an α+β type titanium alloy, it is heated to a β region of 1150°C or less, processed by a continuous rolling mill to a forging ratio of 3 or more in the β region, and then continuously processed in the α+β region. This is a method for producing a rolled titanium alloy material with a good structure, which is characterized by adding processing at a forging ratio of 10 or more and, if necessary, subjecting the obtained hot rolled material to equiaxed crystal formation treatment. As described above, one of the features of the present invention is heat rolling in the β region, and by performing rough processing in the β region, which has good workability, it not only prevents surface flaws during rough processing, but also improves the subsequent rough processing. It has the effect of suppressing the occurrence of surface flaws during processing in the α+β region. The reason why the heating temperature in the β region was set to 1150°C or less is that if heated to too high a temperature, the gas absorption layer (so-called α-
case) is generated and the workability is deteriorated.
Temperature control during continuous rolling becomes difficult, especially for α+β.
This is because there is a risk that the degree of processing in the area may not be sufficient. A larger training ratio is advantageous for preventing surface flaws in the α+β region, but it cannot be increased in practice due to restrictions on material dimensions. By setting the forging ratio to 3 or more, a practically sufficient surface quality can be obtained. Furthermore, according to the present invention, the processing degree in the α+β region is regulated, but as described above,
Another feature of the present invention is that processing is performed with a forging ratio of 10 or more in the area. In other words, by performing β region forging in the first half and α+β region forging in the second half of one heat, a Ti alloy rolled material with a good structure can be produced extremely efficiently and without surface flaws. Also,
The forging ratio in the α+β region plays a very important role in improving the structure, and from a structural standpoint, the larger the forging ratio in the α+β region, the finer the equiaxed grains are formed. There are also constraints, and if we look at the permissible limit of the organization empirically set from a practical standpoint, it is sufficient to set the training ratio to 10 or more.
Although the processing temperature in the α+β range is not particularly limited here, if the temperature is just below the β-transazole, the transformed β structure increases within the structure, which is undesirable. In addition, if the processing temperature is lower than about 700℃, the movement of grain boundaries and recrystallization during processing will be extremely slow, so it is necessary to perform the equiaxed crystal formation process described below to achieve equiaxed crystallization. is preferred. Therefore, the processing temperature in the α+β range is preferably 800-900°C, although it is not necessarily limited thereto. Here, equiaxed crystal formation treatment refers to hot rolling followed immediately by slow cooling, preferably furnace cooling to 700℃.
Cool at a rate of 150°C/hr or less, then leave to cool to room temperature, or maintain at a temperature of 800 to 950°C for a predetermined time, generally 30 minutes or more, preferably 1 hour or more after hot rolling, or 700℃ after rolling
First let it cool down to below 700℃, then reheat it in a furnace maintained at 850 to 950℃ and keep it at 800 to 950℃ for a specified period of time, generally at least 30 minutes, preferably at least 1 hour, then let it cool down to 700℃ or below. It is a cooling process,
Such treatment promotes the formation of equiaxed crystals. Slow cooling of hot rolled material immediately after rolling is due to α+β
This is because it is effective in releasing crystal strain accumulated by rolling in the region and achieving equiaxed crystallization. To achieve this, it is necessary to allow sufficient holding time at temperatures above 700°C, where grain boundary movement is likely to occur, and for this purpose slow cooling is performed, but as mentioned above, preferably 150°C/hr up to 700°C. Requires slow cooling at: A similar effect can be obtained by maintaining the temperature at 800 to 950°C after hot rolling. In addition, in order to refine the crystal grains by cooling the hot rolled material and then reheating it, it is necessary to
Heating to 950°C is effective. If the temperature exceeds 950°C, the β phase increases and the acicular structure increases after air cooling, which is not preferable. On the other hand, below 800℃, 700℃
Although it is possible to refine the crystal grains by heating to around .degree. C. for a long time, it is not economical because it takes a long time. The equiaxed crystal thus obtained is a crystal whose crystal grain morphology is isotropic, and ideally consists of crystal grains that do not extend in any particular direction in an arbitrary cross section. In carrying out the present invention, continuous rolling using a multi-stage stand is generally assumed, and since rolling is started after heating to the β region, the rolling temperature is controlled so that the temperature drops to the α + β region during rolling. There is a need to. In addition, heat is generated from the rolled material during processing, and cooling by water cooling, etc. is required at appropriate parts of the continuous rolling mill row.Water cooling between rolls, water cooling immediately after rolling, or a combination of both may be considered. , but are not necessarily limited to these. When water cooling is employed, the temperature may be adjusted by adjusting the flow rate. Typical α+β type titanium alloys to which the present invention is applied are Ti-6Al-4V and Ti-4Al-4Mn, and other examples include Ti-8Mn and Ti-5Al-
2.75Cr―1.25Fe, Ti―4Al―4Mo―4V, Ti―4Al
-3Mo-1V etc. However, it will be understood that the invention is not limited thereto. The invention will now be further explained in connection with examples. Embodiment A 1 ton ingot was produced by vacuum arc melting of Ti-6Al-4V alloy, and after blooming and rolling, peeling was performed to remove surface defects, and then ingot was prepared according to the present invention. As shown in Table 1, billets with a diameter of 130 mm and a square of 53 mm were produced and rolled into round bars with a diameter of 9 mm using a continuous hole rolling material at the finish rolling speed also shown in Table 1. Since the rolling was carried out at a high speed, a temperature increase was observed due to rolling, so in accordance with the present invention, cooling was carried out between the rolls and/or immediately after rolling by water spraying. For each of the obtained rolling mills, the structure determination and surface flaw determination described below were performed. The rolling conditions and results are summarized in Table 1 together with those of comparative examples. It should be noted that various companies have come up with various methods for determining the organization based on their past experience and achievements. As shown in the attached drawing, the α+β equiaxed crystal structure is classified as Class 1 (see Figure a), and the state in which the isotropy of the crystal grains has not progressed, that is, the state in which something close to the processed grain remains is classified as Class 1. (see Figure d), intermediate stages with a high degree of residual processed structure (see Figure c), and lower stages, i.e., those with insufficient equiaxed crystallization (see Figure b). , for a total of 4 classes. Grades 1 and 2 are structures that can withstand practical use, and grades 3 and 4 are structures that require improvement. Surface flaws are determined by visually inspecting the surface of the product, and when surface flaws are detected, the area is ground with a grinder and the depth of the flaw is measured. Depending on the depth of the flaw, it is classified into 1st to 4th grade as shown in Table 2.

【表】 1〜2級は実用に耐える組織であり、3〜4級
はさらに手入れを要する程度である。
[Table] Grades 1 and 2 are structures that can withstand practical use, and grades 3 and 4 are those that require further care.

【表】 表中、例AないしIは本発明例を示し、例Jな
いしOは比較例を示す。例HおよびIはそれぞれ
例CおよびDで示す例によつて得られた熱間圧延
材(それぞれC材およびD材と表示する)に等軸
晶形成処理を施した例を示すものである。 本発明例では、前述の組織判定および表面疵判
定がいずれも1または2と満足のゆくものであつ
た。 しかしながら例Jが示すように、α+β域の鍛
錬比が10未満のときは組織の微細化が十分でな
く、一方例KおよびLが示すようにα+β域での
圧延のみを行なつた場合には、表面疵の発生は免
がれない。 連続圧延の場合、組織を良好とするためにはα
+β域での加熱圧延が一般的に考えられるが、そ
の場合全体の材料温度が低いこと及び形状の関係
からコーナー部分がより低くなることのため、圧
延中その部分は引張りを受け、もともと2相混合
域で変形態が劣るため表面疵を生ずるものと考え
られる。また、例M、Nが示すようにα+β域で
圧延を開始し、圧延途中で昇温した場合、例Mの
ようにβ域まで昇温すると、表面疵の発生は少な
くなるが、いずれの例にあつても組織の劣化は防
止できない。例Oは加熱温度が本発明の規定する
温度より高い場合を示すものである。 以上のように、本発明にあつては、熱間圧延に
先立つて、β域加熱を行ない材料温度を高め一相
組織とすることにより粗圧延ないし中間圧延での
表面疵発生を防止し、次いで鍛錬比を高めた後、
中間圧延ないし仕上圧延をα+β域で行ない得る
ように制御冷却する。その結果、第1表に示す如
く、β域のかなり高い温度に加熱し圧延しても、
制御冷却と組合せることで、組織および、表面疵
の双方が共に良好なTi合金圧延材を得ることに
成功した。比較例で示されるように、本発明の範
囲を外れる限り、これらの条件を種々変えても、
組織ときずの両者を同時に実用上差支えないレベ
ルで満足することは困難なことである。
[Table] In the table, Examples A to I show examples of the present invention, and Examples J to O show comparative examples. Examples H and I show examples in which the hot-rolled materials obtained in Examples C and D (indicated as Material C and Material D, respectively) were subjected to equiaxed crystal formation treatment. In the example of the present invention, the above-mentioned structure evaluation and surface flaw evaluation were both 1 or 2, which was satisfactory. However, as shown in Example J, when the working ratio in the α+β region is less than 10, the structure is not refined sufficiently; on the other hand, as shown in Examples K and L, when rolling is performed only in the α+β region, , the occurrence of surface flaws is inevitable. In the case of continuous rolling, in order to obtain a good structure, α
Hot rolling in the +β range is generally considered, but in that case, the overall material temperature is low and the corner part is lower due to the shape, so that part is subjected to tension during rolling and is originally two-phase. It is thought that surface flaws occur because the deformation is poor in the mixing zone. In addition, if rolling is started in the α+β region and the temperature is raised during rolling as shown in Examples M and N, if the temperature is raised to the β region as in Example M, the occurrence of surface defects will be reduced, but in both examples Even under these conditions, tissue deterioration cannot be prevented. Example O shows the case where the heating temperature is higher than the temperature specified by the present invention. As described above, in the present invention, prior to hot rolling, surface flaws are prevented from occurring during rough rolling or intermediate rolling by heating the material in the β range to raise the material temperature and form a single-phase structure. After increasing the training ratio,
Controlled cooling is performed so that intermediate rolling to finish rolling can be performed in the α+β region. As a result, as shown in Table 1, even when heated and rolled to a fairly high temperature in the β region,
By combining this with controlled cooling, we succeeded in obtaining rolled Ti alloy material with good structure and surface flaws. As shown in the comparative examples, even if these conditions are variously changed as long as they are outside the scope of the present invention,
It is difficult to simultaneously satisfy both the structure and the flaws at a level that is acceptable for practical use.

【図面の簡単な説明】[Brief explanation of drawings]

添付図面は、等軸晶組織の判定基準を示す結晶
組織の模式図であり、図a,b,cおよびdはそ
れぞれ1級、2級、3級および4級の各等級の組
織に相当する。
The attached drawings are schematic diagrams of crystal structures showing the criteria for determining equiaxed crystal structures, and figures a, b, c, and d correspond to the structures of each grade of 1st, 2nd, 3rd, and 4th grade, respectively. .

Claims (1)

【特許請求の範囲】 1 α+β型チタン合金を分塊圧延後、1150℃以
下のβ域に加熱し、連続式圧延機によりβ域で鍛
錬比3以上の加工を加え、更に連続的にα+β域
で鍛錬比10以上の加工を加えることを特徴とす
る、組織の良好なチタン合金圧延材の製造方法。 2 α+β型チタン合金を分塊圧延後、1150℃以
下のβ域に加熱し、連続式圧延機によりβ域で鍛
錬比3以上の加工を加え、更に連続的にα+β域
で鍛錬比10以上の加工を加え、次いで、得られた
熱間圧延材に等軸晶形成処理を行なうことを特徴
とする、組織の良好なチタン合金圧延材の製造方
法。
[Claims] 1 After blooming an α+β type titanium alloy, it is heated to the β region of 1150°C or less, processed by a continuous rolling mill to a forging ratio of 3 or more in the β region, and then continuously processed to the α+β region. A method for manufacturing a rolled titanium alloy material with a good structure, which is characterized by applying processing at a forging ratio of 10 or more. 2 After blooming α+β type titanium alloy, it is heated to the β region of 1150℃ or less, processed with a continuous rolling mill to a working ratio of 3 or more in the β region, and then continuously processed to a working ratio of 10 or more in the α+β region. 1. A method for producing a rolled titanium alloy material with a good structure, the method comprising processing and then subjecting the obtained hot rolled material to equiaxed crystal formation treatment.
JP19632481A 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture Granted JPS58100663A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19632481A JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19632481A JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Publications (2)

Publication Number Publication Date
JPS58100663A JPS58100663A (en) 1983-06-15
JPS646268B2 true JPS646268B2 (en) 1989-02-02

Family

ID=16355920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19632481A Granted JPS58100663A (en) 1981-12-08 1981-12-08 Production of rolled material of titanium alloy having good texture

Country Status (1)

Country Link
JP (1) JPS58100663A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6086256A (en) * 1983-10-15 1985-05-15 Kobe Steel Ltd Heat treatment of titanium alloy
US5074907A (en) * 1989-08-16 1991-12-24 General Electric Company Method for developing enhanced texture in titanium alloys, and articles made thereby
JPH03193850A (en) * 1989-12-22 1991-08-23 Nippon Steel Corp Production of titanium and titanium alloy having fine acicular structure
CN102230145B (en) * 2011-06-20 2012-07-04 西部钛业有限责任公司 Method for producing TC25 two-phase titanium alloy rod material with large specification

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS531617A (en) * 1976-06-28 1978-01-09 Kobe Steel Ltd Production of forged product of titanium alloy

Also Published As

Publication number Publication date
JPS58100663A (en) 1983-06-15

Similar Documents

Publication Publication Date Title
US7611592B2 (en) Methods of beta processing titanium alloys
US5264055A (en) Method involving modified hot working for the production of a titanium alloy part
JPWO2002070763A1 (en) Titanium alloy bar and method of manufacturing the same
JPS6289855A (en) High strength ti alloy material having superior workability and its manufacture
JPH0572452B2 (en)
JP7448777B2 (en) Production method of α+β type titanium alloy bar and α+β type titanium alloy bar
US5125986A (en) Process for preparing titanium and titanium alloy having fine acicular microstructure
JPS646268B2 (en)
US5092940A (en) Process for production of titanium and titanium alloy material having fine equiaxial microstructure
JP2932918B2 (en) Manufacturing method of α + β type titanium alloy extruded material
US20240150869A1 (en) Material for the manufacture of high-strength fasteners and method for producing same
JPS6366895B2 (en)
JPH0122349B2 (en)
JPH0122348B2 (en)
JP3944579B2 (en) Multipass warm controlled rolling process using square and oval perforated rolls.
JP6623950B2 (en) Titanium plate excellent in balance between proof stress and ductility and method for producing the same
JPS6367550B2 (en)
JPS6224498B2 (en)
JPH0696759B2 (en) Method for producing α + β type titanium alloy rolled rod and wire having good structure
JPH06292906A (en) Manufacture of bar and wire rod of titanium and titanium alloy
JPS627247B2 (en)
JPS6367549B2 (en)
JPS59205447A (en) Ultra-fine grain ferrite steel and preparation thereof
JP2708277B2 (en) Method for producing hot rolled titanium alloy bar with excellent forgeability as rolled
JPS634907B2 (en)