JPS646210B2 - - Google Patents

Info

Publication number
JPS646210B2
JPS646210B2 JP5673980A JP5673980A JPS646210B2 JP S646210 B2 JPS646210 B2 JP S646210B2 JP 5673980 A JP5673980 A JP 5673980A JP 5673980 A JP5673980 A JP 5673980A JP S646210 B2 JPS646210 B2 JP S646210B2
Authority
JP
Japan
Prior art keywords
parts
weight
polymerization
particle size
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5673980A
Other languages
Japanese (ja)
Other versions
JPS56152812A (en
Inventor
Mitsuo Ootani
Koji Arakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyowa Gas Chemical Industry Co Ltd
Original Assignee
Kyowa Gas Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Gas Chemical Industry Co Ltd filed Critical Kyowa Gas Chemical Industry Co Ltd
Priority to JP5673980A priority Critical patent/JPS56152812A/en
Publication of JPS56152812A publication Critical patent/JPS56152812A/en
Publication of JPS646210B2 publication Critical patent/JPS646210B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は重合体微粒子の製造方法に関し、さら
に詳しくは、メタクリル酸メチル重合体またはメ
タクリル酸メチルとアクリル酸アルキル共重合体
の微粒子の製造方法に関する。 メタクリル酸メチルを主成分とするアクリル樹
脂は、塊状重合法あるいは懸濁重合法により製造
され、その優れた耐候性、卓越した透明性の故に
広い用途を有している。 そして近年アクリル樹脂の加工技術の進歩に伴
ない、従来よりの成形品、押出し板、パイプ等の
一般的な用途にとゞまらず、例えば、フイルタ
ー、気泡発生常用多孔体等重合体微粒子が必要と
される用途も散見される。さらに、このような重
合体微粒子には、例えば、メタクリル酸メチル等
の単量体に溶解して鋳型重合用のシラツプの調
製、有機溶剤に溶解しての表面被覆剤の調製、あ
るいは粘度指数向上を目的とした潤滑油添加剤等
の用途が期待される。 これ等の用途においては重合体微粒子の粒径の
分布、混在する不純物等は製品の品質および加工
工程に大きい影響を有しており、フイルターの場
合ビーズ粒径が細いほど、ビーズ間の空隙が小さ
くなり、フイルターとしての効果が増大し、ま
た、鋳込連合、表面コーテイングの際、ビーズの
溶媒への溶解速度がビーズ粒径により大きく影響
され、ビーズ粒径が1/2になると溶解速度が十数
倍に増加して、作業時間が短縮される。 これらのことから微細な重合体微粒子が種々な
用途から要望されるにいたつた。従来より知られ
ている微細な重合体微粒子の製造方法としては、
溶融した重合物を気体中、あるいは液体中に微小
粒子として噴霧し固化する方法があるが、これは
余分な加工工程を必要とし非常なコスト高とな
る。そして、通常の懸濁重合法では平均粒径
100μ以上のものしか得られない、また、乳化重
合法による場合得られる重合体は通常1μ以下の
粒径を有しているが、多くの場合この微粉状の粒
子は凝集していて、単一の粒子として得ることは
困難である。さらに、乳化重合法では後処理工
程、熟成工程等が必要とされる。 本発明者らは微細なアクリル系重合体微粒子を
得ることを目的として、鋭意研究した結果、少量
のポリビニルアルコールと少量のアニオン界面活
性剤および適量の電解質を用いることにより、通
常の乳化重合法における如き後処理工程を必要と
せず、一般の懸濁重合法では得られない平均粒径
の重合体微粒子を高収率で得ることを見出して、
本発明に至つた。さらに本発明の方法によれば、
通常の乳化重合法において必要とされる後処理工
程を必要とせず、得られた重合体微粒子の凝集は
ほとんど認められない。 即ち、本発明はメタクリル酸メチル100〜80重
量%と炭素数1〜8のアルキル基を有するアクリ
ル酸アルキル0〜20重量%よりなる単量体混合物
を水性媒体中で重合するに際し、主として水100
重量部、重合度1000〜3000、ケン化度80%以上の
ポリビニルアルコール0.01〜0.3重量部、アニオ
ン界面活性剤0.001〜0.1重量部および水に可溶な
電解質0.1〜2.0重量部よりなる水性媒体を使用す
ることを特徴とする重合体微粒子の製造方法であ
る。 本発明の方法で使用可能な単量体としては、メ
タクリル酸メチルおよびメタクリル酸メチルとこ
れに共重合可能な炭素数1〜8のアルキル基を有
するアクリル酸アルキルとの単量体混合物があげ
られる。かゝる炭素数1〜8のアルキル基を有す
るアクリル酸アルキルの中で、アクリル酸メチ
ル、アクリル酸エチル、アクリル酸n―ブチルが
とくに好ましく、また、これらを混合して使用す
ることもできる。 単量体組成は目的に応じて広く選ぶことができ
るが、硬質の重合体微粒子を目的とする場合はメ
タクリル酸メチル100〜80重量%、アクリル酸ア
ルキル0〜20重量%が好ましい。 本発明の方法では従来より公知の連鎖移動剤を
使用することも可能であり、かゝる連鎖移動剤と
してはn―ドデシルメルカプタン、n―オクチル
メルカプタン、n―ブチルメルカプタン等のメル
カプタン類がある。 さらに、本発明の方法では架橋性単量体を使用
することも可能であり、かゝる架橋性単量体の種
類としては、ジビニルベンゼン、アクリルアクリ
レート、ポリエチレングリコールジアクリレート
類、ポリエチレングリコールジメタクリレート
類、があげられ、かゝる架橋性単量体は通常3重
量%近の量が好ましく使用できる。 本発明の方法で使用する水性媒体は主としてポ
リビニルアルコール、アニオン界面活性剤と水に
可溶な電解質を含むものである。ポリビニルアル
コールとアニオン界面活性剤のみの使用では、生
成した重合体微粒子中への凝集した粒子の混入が
多くなり、ポリビニルアルコールと電解質のみの
使用で、アニオン界面活性剤を除くと、重合体微
粒子の粒径が大きくなり、目的とする微細な重合
体微粒子が得られない。 本発明で言うポリビニルアルコールとは、重合
度1000〜3000、ケン化度80%以上のものが好まし
い。重合度が3000より高くなると、得られる重合
体微粒子の粒径が大きくなり、目的とする微細な
重合体微粒子が得られない。重合度が1000未満で
は、重合安定性が低下し、生成した重合体微粒子
の粒子形状が不揃いになり、異形の重合体微粒子
が混入する。また、ケン化度が80%未満ではポリ
ビニルアルコールの水への溶解度が低下し、重合
安定剤としての効果が減少するばかりでなく、生
成した重合体微粒子中にポリビニルアルコールが
残留し、着色の原因となる。ポリビニルアルコー
ルの使用量は水100重量部に対して0.01重量部か
ら0.3重量部であり、好ましくは0.05〜0.15重量部
である。 ポリビニルアルコールの添加量が0.3重量部を
越えると生成した重合体微粒子からポリビニルア
ルコールを洗い去ることが困難となり、残留した
ポリビニルアルコールは生成物の品質を低下させ
る。また、0.01重量部以下になると重合安定剤と
しての作用が低下し、生成する重合体微粒子が凝
集してブロツク状物を生じる。 アニオン界面活性剤としては、ドデシルベンゼ
ンスルホン酸のナトリウム塩およびカリウム塩、
2―ブチルオクチルベンゼンスルホン酸のナトリ
ウム塩およびカリウム塩、イソプロピルナフタリ
ンスルホン酸のナトリウム塩およびカリウム塩、
β―ナフタリンスルホン酸のナトリウム塩および
カリウム塩、ジオクチルスルホコハク酸のナトリ
ウム塩およびカリウム塩、ジオクチルスルホサク
シン酸のナトリウム塩およびカリウム塩、ラウリ
ル硫酸のナトリウム塩およびカリウム塩、ステア
リン酸のナトリウム塩およびカリウム塩、オレイ
ン酸のナトリウム塩およびカリウム塩等が含まれ
るが、特にドデシルベンゼンスルホン酸のナトリ
ウム塩およびカリウム塩、β―ナフタリンスルホ
ン酸のナトリウム塩およびカリウム塩、ラウリル
硫酸のナトリウム塩およびカリウム塩が好ましく
使用される。その使用量は水100重量部に対して
0.001〜0.1重量部、好ましくは0.01〜0.05重量部
である。使用量が0.1重量部より多くなると、凝
集した重合物の混入が多くなるとともに、重合体
微粒子の形状が悪くなり、逆に0.001%以下にな
ると、重合体微粒子の粒径が大きく不均一とな
り、目的とする微細な重合体微粒子は得られな
い。水に可溶な電解質としては塩化ナトリウム、
塩化カリウム、塩化カルシウム、塩化リチウム、
硫酸ナトリウム、硫酸カルシウム、硝酸ナトリウ
ム、リン酸二水素ナトリウム、リン酸二水素カリ
ウム、臭化カリウム等が使用できるが、特に塩化
ナトリウム、塩化カリウム、塩化カルシウムが好
ましく適量として、水100重量部に対して0.1〜
2.0重量部、好ましくは0.3〜1.0重量部である。使
用量が2.0重量部より多くなると、ポリビニルア
ルコールの水への溶解度が低下し、生成する重合
物が固化してブロツク状になる場合があり、逆に
0.1重量部未満になると生成する重合体微粒子の
粒径分布が広く、かつ微粉状の粒子の凝集物が混
入する。 本発明の方法では、水の単量体に対する重量比
は1.0〜5.0の範囲で変化できるが、均一性の高い
微細な重合体微粒子を得るには、2.0〜3.0の比が
好ましい。 本発明の方法は公知の懸濁重合と同様に単量体
と水性媒体を70〜120℃の温度で2〜10時間、好
ましくは3〜6時間撹拌重合することにより実施
することができる。重合雰囲気として、大気ある
いは窒素雰囲気どちらでも良いが、窒素雰囲気下
の方が重合率向上の面からより好ましい。また重
合系の圧力は、大気圧でも良く、必要に応じて加
圧してもよい。 重合開始剤として、公知の油溶性の遊離基重合
開始剤、例えばベンゾイルパーオキサイド、ラウ
ロイルパーオキサイド等の有機過酸化物;アゾビ
スイソブチロニトリル等のアゾ系開始剤;もしく
は、ベンゾイルパーオキサイドとジメチルアニリ
ン系等のレドツクス開始剤;を使用することがで
きる。 かくして、本発明の方法によれば、直径10〜
150μを有する粒子の混合物となり、平均粒径40
〜100μの範囲に於て任意の粒径のかつ粒径の均
一性の高い重合体微粒子を製造することができ
る。また、従来の懸濁重合では重合安定性の低下
から、連鎖移動剤なしでの重合、すなわち高重合
度のポリマーを得ること、あるいは架橋剤の添加
による重合、すなわち三次元ポリマーを得ること
は困難であつたが、本発明の方法では連鎖移動剤
がなくても、あるいは少量の架橋剤共存下でも、
重合体微粒子径、重合安定性に何ら変化を及ぼす
ことなく、任意の粒径の重合体微粒子の製造が可
能である。 以下実施例により本発明を具体的に説明する。
なお、実施例中の部数はすべて重量部である。 実施例 1 内容積50のステンレススチール製耐圧反応槽
に純水300部と、それぞれ種々な部数のポリビニ
ルアルコール(分子量2000、ケン化度85%)、ド
デシルベンゼンスルホン酸ナトリウム、塩化ナト
リウムを仕込んで撹拌溶解し、次いでメタクリル
酸メチル100部、ラウロイルパーオキサイド0.5
部、n―ドデシルメルカプタン0.2部の混合液を
添加して、撹拌回転数を100r.p.m.に保持し、反
応槽内の空気を窒素により置換した後、反応槽ジ
ヤケツトを温水で加熱して系の温度を80℃に保つ
て2時間重合した。次いで90℃で1.5時間後重合
を行ない、水洗乾燥して種々な粒径の粒子を得
た。結果を表1に示す。粒径分布、平均粒径は顕
微鏡写真による。
The present invention relates to a method for producing fine polymer particles, and more particularly to a method for producing fine particles of a methyl methacrylate polymer or a methyl methacrylate and alkyl acrylate copolymer. Acrylic resins containing methyl methacrylate as a main component are produced by bulk polymerization or suspension polymerization, and have a wide range of uses due to their excellent weather resistance and outstanding transparency. In recent years, with the advancement of processing technology for acrylic resin, polymer particles have been used not only for general purposes such as conventional molded products, extruded plates, and pipes, but also for filters, bubble-generating porous materials, etc. There are also some applications where it is needed. Furthermore, such polymer particles can be used, for example, to prepare syrup for template polymerization by dissolving them in monomers such as methyl methacrylate, to prepare surface coating agents by dissolving them in organic solvents, or to improve the viscosity index. It is expected to be used as a lubricating oil additive for the purpose of In these applications, the particle size distribution of polymer fine particles and the presence of impurities have a large effect on the quality of the product and the processing process.In the case of filters, the smaller the bead diameter, the smaller the voids between the beads. In addition, during casting and surface coating, the dissolution rate of beads in a solvent is greatly affected by the bead particle size, and when the bead particle size is halved, the dissolution rate decreases. The work time is reduced by ten times more. For these reasons, fine polymer particles have come to be desired for various uses. Conventionally known methods for producing fine polymer particles include:
There is a method in which a molten polymer is sprayed into a gas or liquid as fine particles and then solidified, but this requires an extra processing step and is extremely costly. In the normal suspension polymerization method, the average particle size is
Polymers obtained by emulsion polymerization usually have a particle size of 1μ or less, but in many cases these fine particles are aggregated and are not single particles. It is difficult to obtain them as particles. Furthermore, the emulsion polymerization method requires post-treatment steps, aging steps, etc. The present inventors conducted extensive research with the aim of obtaining fine acrylic polymer particles, and found that by using a small amount of polyvinyl alcohol, a small amount of anionic surfactant, and an appropriate amount of electrolyte, it was possible to obtain It was discovered that fine polymer particles with an average particle size that cannot be obtained by general suspension polymerization methods can be obtained in high yield without the need for such post-treatment steps,
This led to the present invention. Furthermore, according to the method of the present invention,
There is no need for post-treatment steps required in ordinary emulsion polymerization methods, and almost no aggregation of the obtained polymer particles is observed. That is, in the present invention, when a monomer mixture consisting of 100 to 80% by weight of methyl methacrylate and 0 to 20% by weight of alkyl acrylate having an alkyl group having 1 to 8 carbon atoms is polymerized in an aqueous medium, 100% by weight of methyl methacrylate is mainly used.
An aqueous medium consisting of 0.01 to 0.3 parts by weight of polyvinyl alcohol with a degree of polymerization of 1000 to 3000 and a degree of saponification of 80% or more, 0.001 to 0.1 parts by weight of an anionic surfactant, and 0.1 to 2.0 parts by weight of a water-soluble electrolyte. This is a method for producing polymer fine particles characterized by using the present invention. Examples of monomers that can be used in the method of the present invention include methyl methacrylate and a monomer mixture of methyl methacrylate and an alkyl acrylate having an alkyl group having 1 to 8 carbon atoms that can be copolymerized therewith. . Among such alkyl acrylates having an alkyl group having 1 to 8 carbon atoms, methyl acrylate, ethyl acrylate, and n-butyl acrylate are particularly preferred, and a mixture of these may also be used. The monomer composition can be selected widely depending on the purpose, but if hard polymer particles are intended, 100 to 80% by weight of methyl methacrylate and 0 to 20% by weight of alkyl acrylate are preferred. In the method of the present invention, it is also possible to use conventionally known chain transfer agents, and examples of such chain transfer agents include mercaptans such as n-dodecylmercaptan, n-octylmercaptan, and n-butylmercaptan. Furthermore, it is also possible to use crosslinkable monomers in the method of the present invention, and examples of such crosslinkable monomers include divinylbenzene, acrylic acrylate, polyethylene glycol diacrylates, and polyethylene glycol dimethacrylate. Such crosslinking monomers can be used preferably in an amount of about 3% by weight. The aqueous medium used in the method of the invention primarily contains polyvinyl alcohol, an anionic surfactant and a water-soluble electrolyte. If only polyvinyl alcohol and an anionic surfactant are used, there will be a large amount of agglomerated particles mixed into the generated polymer particles.If only polyvinyl alcohol and an electrolyte are used and the anionic surfactant is excluded, the polymer particles will The particle size becomes large, and the desired fine polymer particles cannot be obtained. The polyvinyl alcohol referred to in the present invention preferably has a degree of polymerization of 1000 to 3000 and a degree of saponification of 80% or more. When the degree of polymerization is higher than 3000, the particle size of the resulting fine polymer particles becomes large, making it impossible to obtain the desired fine polymer particles. When the degree of polymerization is less than 1000, polymerization stability decreases, the particle shape of the generated polymer particles becomes irregular, and irregularly shaped polymer particles are mixed. Furthermore, if the degree of saponification is less than 80%, the solubility of polyvinyl alcohol in water decreases, which not only reduces its effectiveness as a polymerization stabilizer, but also causes polyvinyl alcohol to remain in the formed polymer fine particles, causing discoloration. becomes. The amount of polyvinyl alcohol used is 0.01 to 0.3 parts by weight, preferably 0.05 to 0.15 parts by weight, per 100 parts by weight of water. If the amount of polyvinyl alcohol added exceeds 0.3 parts by weight, it becomes difficult to wash away the polyvinyl alcohol from the formed polymer particles, and the remaining polyvinyl alcohol deteriorates the quality of the product. Furthermore, if the amount is less than 0.01 part by weight, the action as a polymerization stabilizer will be reduced, and the resulting polymer fine particles will aggregate to form block-like materials. Anionic surfactants include sodium and potassium salts of dodecylbenzenesulfonic acid;
Sodium and potassium salts of 2-butyloctylbenzenesulfonic acid, sodium and potassium salts of isopropylnaphthalenesulfonic acid,
Sodium and potassium salts of β-naphthalene sulfonic acid, sodium and potassium salts of dioctyl sulfosuccinic acid, sodium and potassium salts of dioctyl sulfosuccinic acid, sodium and potassium salts of lauryl sulfate, sodium and potassium salts of stearic acid , sodium and potassium salts of oleic acid, etc., but particularly preferred are sodium and potassium salts of dodecylbenzenesulfonic acid, sodium and potassium salts of β-naphthalenesulfonic acid, and sodium and potassium salts of lauryl sulfate. be done. The amount used is per 100 parts by weight of water.
The amount is 0.001 to 0.1 part by weight, preferably 0.01 to 0.05 part by weight. If the amount used is more than 0.1 part by weight, the amount of agglomerated polymer particles will increase, and the shape of the polymer particles will deteriorate; if the amount is less than 0.001%, the particle size of the polymer particles will become large and non-uniform. The desired fine polymer particles cannot be obtained. Water-soluble electrolytes include sodium chloride,
Potassium chloride, calcium chloride, lithium chloride,
Sodium sulfate, calcium sulfate, sodium nitrate, sodium dihydrogen phosphate, potassium dihydrogen phosphate, potassium bromide, etc. can be used, but sodium chloride, potassium chloride, and calcium chloride are particularly preferred in appropriate amounts, based on 100 parts by weight of water. te 0.1~
2.0 parts by weight, preferably 0.3 to 1.0 parts by weight. If the amount used is more than 2.0 parts by weight, the solubility of polyvinyl alcohol in water will decrease, and the resulting polymer may solidify into a block shape.
When the amount is less than 0.1 part by weight, the particle size distribution of the polymer fine particles produced is wide, and aggregates of fine powder particles are mixed in. In the method of the present invention, the weight ratio of water to monomer can vary within the range of 1.0 to 5.0, but a ratio of 2.0 to 3.0 is preferred in order to obtain fine polymer particles with high uniformity. The method of the present invention can be carried out by stirring and polymerizing the monomer and the aqueous medium at a temperature of 70 to 120°C for 2 to 10 hours, preferably 3 to 6 hours, in the same manner as known suspension polymerization. The polymerization atmosphere may be either the air or a nitrogen atmosphere, but a nitrogen atmosphere is more preferable from the viewpoint of improving the polymerization rate. Further, the pressure of the polymerization system may be atmospheric pressure, or may be pressurized if necessary. As a polymerization initiator, known oil-soluble free radical polymerization initiators, such as organic peroxides such as benzoyl peroxide and lauroyl peroxide; azo initiators such as azobisisobutyronitrile; or benzoyl peroxide and Redox initiators such as dimethylaniline can be used. Thus, according to the method of the invention, a diameter of 10 to
resulting in a mixture of particles with a mean particle size of 150 μ and an average particle size of 40
It is possible to produce fine polymer particles having any particle size within the range of ~100μ and having high particle size uniformity. In addition, due to the decrease in polymerization stability in conventional suspension polymerization, it is difficult to perform polymerization without a chain transfer agent, that is, to obtain a polymer with a high degree of polymerization, or to polymerize by adding a crosslinking agent, that is, to obtain a three-dimensional polymer. However, in the method of the present invention, even without a chain transfer agent or in the presence of a small amount of a crosslinking agent,
It is possible to produce fine polymer particles of any particle size without any change in the fine polymer particle size or polymerization stability. The present invention will be specifically explained below using Examples.
Note that all parts in the examples are parts by weight. Example 1 300 parts of pure water and various parts of polyvinyl alcohol (molecular weight 2000, degree of saponification 85%), sodium dodecylbenzenesulfonate, and sodium chloride were charged into a stainless steel pressure-resistant reaction tank with an internal volume of 50, and stirred. Dissolve, then 100 parts of methyl methacrylate, 0.5 parts of lauroyl peroxide
After adding a mixture of 0.2 parts and 0.2 parts of n-dodecyl mercaptan, keeping the stirring speed at 100 rpm and replacing the air in the reaction tank with nitrogen, the reaction tank jacket was heated with hot water to cool the system. Polymerization was carried out for 2 hours while maintaining the temperature at 80°C. Subsequently, post-polymerization was carried out at 90°C for 1.5 hours, followed by washing with water and drying to obtain particles of various particle sizes. The results are shown in Table 1. Particle size distribution and average particle size are based on micrographs.

【表】 上記実施例1―1〜1―9の重合体微粒子各5
gをクロロホルム95gに溶解したところ、すべて
完全溶解し、溶液の透明性は良好であつた。 実施例 2 純水350部、ポリビニルアルコール(分子量
3000、ケン化度95%)、0.35部、ドデシルベンゼ
ンスルホン酸ナトリウム0.08部、塩化カルシウム
1.7部を反応槽に仕込んで撹拌溶解し、次いでメ
タクリル酸メチル60部、アクリル酸メチル10部、
ラウロイルパーオキサイド0.35部、n―ドデシル
メルカプタン0.2部の混合液を添加した。以下実
施例1と同様の方法で重合を完結させた。得られ
た微細な粒子は20〜125μの粒径分布を持ち、平
均粒径83μであつた。乳化重合物、異形ポリマー
は含まれていなかつた。 実施例 3 純水250部、ポリビニルアルコール(分子量
1250、ケン化度90%)0.6部、ラウリル硫酸ナト
リウム0.15部、塩化ナトリウム0.7部を反応槽に
仕込んで撹拌溶解し、次いでメタクリル酸メチル
100部、アクリル酸メチル25部、ラウロイルパー
オキサイド0.75部の混合液を添加した。以下実施
例1と同様の方法で重合を完結させた。得られた
粒子は20〜130μの分布で、平均粒径89μであり、
連鎖移動剤無添加でも粒径、重合安定性に何ら影
響はなく、また凝集物、異形重合体は含まれてい
なかつた。 実施例 4 純水250部、ポリビニルアルコール(分子量
2500、ケン化度80%)0.15部、β―ナフタリンス
ルホン酸ナトリウム0.025部、塩化ナトリウム3.0
部を反応槽に仕込んで撹拌溶解し、次いでメタク
リル酸メチル113部、アクリル酸エチル12部、ラ
ウロイルパーオキサイド0.6部、アリルアクリレ
ート1.25部の混合液を添加した。以下実施例1と
同様の方法で重合した。得られた微細な粒子は15
〜105μの分布で、平均粒径65μであつた。架橋剤
の添加にもかかわらずビーズ粒径、重合安定性に
何ら変化を及ぼすことなく、かつまた凝集物、異
形重合体は含まれていなかつた。得られたビーズ
5gをクロロホルム95gに溶解したところ、完全
にゲル化して溶解しなかつた。この架橋重合体微
粒子の特異な用途として通常のアクリルビーズ80
重量%と、得られた架橋ポリマービーズ20重量%
を混合し、押出し板を試作したところ、光が乱反
射し装飾用照明ルーバーとして特徴のあるものが
得られた。 実施例 5 純水300部、ポリビニルアルコール(分子量
2000、ケン化度95%)0.06部、ドデシルベンゼン
スルホン酸ナトリウム0.006部、硫酸ナトリウム
0.5部を反応槽に仕込んで撹拌溶解し、次いでメ
タクリル酸メチル95部、アクリル酸n―ブチル5
部、ベンゾイルパーオキサイド0.7部、n―ドデ
シルメルカプタン0.2部の混合液を添加して、撹
拌回転数を120r.p.m.に保持し、反応槽内の空気
を窒素により置換した後、反応槽ジヤケツトを温
水で加熱して系の温度を75℃に保つて3時間重合
した。次いで95℃で1.5時間後重合した。得られ
た微細な重合体微粒子を水洗乾燥し、顕微鏡写真
により粒径分布を測定したところ15〜95μの分布
を持ち、平均粒径56μであつた。乳化重合物、異
形重合物は含まれていなかつた。 実施例 6 純水240部、ポリビニルアルコール(分子量
2500、ケン化度90%)0.24部、β―ナフタリンス
ルホン酸ナトリウム0.15部、塩化カルシウム0.48
部を反応槽に仕込んで撹拌溶解し、次いでメタク
リル酸メチル144部、アクリル酸メチル8部、ア
クリル酸n―ブチル8部、ラウロイルパーオキサ
イド0.8部、n―ドデシルメルカプタン0.25部の
混合液を添加した。以下実施例5と同様の方法で
重合を完結した。得られたポリマービーズは10〜
140μの分布を持ち、平均粒径93μであつた。乳化
重合物、異形重合物は含まれていなかつた。
[Table] 5 each of polymer fine particles of Examples 1-1 to 1-9 above
When g was dissolved in 95 g of chloroform, everything was completely dissolved and the solution had good transparency. Example 2 350 parts of pure water, polyvinyl alcohol (molecular weight
3000, degree of saponification 95%), 0.35 parts, sodium dodecylbenzenesulfonate 0.08 parts, calcium chloride
Charge 1.7 parts into a reaction tank and dissolve with stirring, then add 60 parts of methyl methacrylate, 10 parts of methyl acrylate,
A mixed solution of 0.35 parts of lauroyl peroxide and 0.2 parts of n-dodecyl mercaptan was added. Thereafter, the polymerization was completed in the same manner as in Example 1. The fine particles obtained had a particle size distribution of 20-125μ, with an average particle size of 83μ. No emulsion polymers or irregularly shaped polymers were contained. Example 3 250 parts of pure water, polyvinyl alcohol (molecular weight
1250, saponification degree 90%), 0.15 parts of sodium lauryl sulfate, and 0.7 parts of sodium chloride were charged into a reaction tank, stirred and dissolved, and then methyl methacrylate
A mixed solution of 100 parts of methyl acrylate, 25 parts of lauroyl peroxide, and 0.75 parts of lauroyl peroxide was added. Thereafter, the polymerization was completed in the same manner as in Example 1. The obtained particles had a distribution of 20-130μ, with an average particle size of 89μ,
Even without the addition of a chain transfer agent, there was no effect on particle size or polymerization stability, and no aggregates or irregularly shaped polymers were contained. Example 4 250 parts of pure water, polyvinyl alcohol (molecular weight
2500, degree of saponification 80%) 0.15 parts, sodium β-naphthalene sulfonate 0.025 parts, sodium chloride 3.0
of the mixture was charged into a reaction tank and dissolved with stirring, and then a mixed solution of 113 parts of methyl methacrylate, 12 parts of ethyl acrylate, 0.6 parts of lauroyl peroxide, and 1.25 parts of allyl acrylate was added. Polymerization was then carried out in the same manner as in Example 1. The fine particles obtained were 15
The average particle size was 65μ with a distribution of ~105μ. Despite the addition of a crosslinking agent, there was no change in bead particle size or polymerization stability, and no aggregates or irregularly shaped polymers were contained. When 5 g of the obtained beads were dissolved in 95 g of chloroform, they completely gelled and did not dissolve. A special use of this cross-linked polymer fine particles is to use ordinary acrylic beads80.
% by weight and 20% by weight of the resulting cross-linked polymer beads
When a prototype extruded board was made by mixing the two, the light was diffusely reflected and a distinctive decorative lighting louver was obtained. Example 5 300 parts of pure water, polyvinyl alcohol (molecular weight
2000, degree of saponification 95%) 0.06 part, sodium dodecylbenzenesulfonate 0.006 part, sodium sulfate
0.5 part was charged into a reaction tank and dissolved with stirring, followed by 95 parts of methyl methacrylate and 5 parts of n-butyl acrylate.
After adding a mixture of 0.7 parts of benzoyl peroxide, and 0.2 parts of n-dodecyl mercaptan, and keeping the stirring speed at 120 rpm and replacing the air in the reaction tank with nitrogen, the reaction tank jacket was flushed with warm water. The system was heated at 75°C and polymerized for 3 hours. This was then post-polymerized at 95°C for 1.5 hours. The obtained fine polymer particles were washed with water and dried, and the particle size distribution was measured using a microscopic photograph, and found to have a distribution of 15 to 95μ, with an average particle size of 56μ. No emulsion polymers or irregular polymers were contained. Example 6 240 parts of pure water, polyvinyl alcohol (molecular weight
2500, degree of saponification 90%) 0.24 part, sodium β-naphthalene sulfonate 0.15 part, calcium chloride 0.48
144 parts of methyl methacrylate, 8 parts of methyl acrylate, 8 parts of n-butyl acrylate, 0.8 parts of lauroyl peroxide, and 0.25 parts of n-dodecyl mercaptan were added. . Thereafter, the polymerization was completed in the same manner as in Example 5. The obtained polymer beads are 10~
It had a distribution of 140μ and an average particle size of 93μ. No emulsion polymers or irregular polymers were contained.

Claims (1)

【特許請求の範囲】[Claims] 1 メタクリル酸メチル100〜80重量%と炭素数
1〜8のアルキル基を有するアクリル酸アルキル
0〜20重量%よりなる単量体混合物を水性媒体中
で重合するに際し、主として水100重量部、重合
度1000〜3000、ケン化度80%以上のポリビニルア
ルコール0.01〜0.3重量部、アニオン界面活性剤
0.001〜0.1重量部および水に可溶な電解質0.1〜
2.0重量部よりなる水性媒体を使用することを特
徴とする重合体微粒子の製造方法。
1 When polymerizing a monomer mixture consisting of 100 to 80% by weight of methyl methacrylate and 0 to 20% by weight of alkyl acrylate having an alkyl group having 1 to 8 carbon atoms in an aqueous medium, mainly 100 parts by weight of water, polymerization Polyvinyl alcohol with a degree of 1000 to 3000, saponification degree of 80% or more, 0.01 to 0.3 parts by weight, anionic surfactant
0.001~0.1 parts by weight and 0.1~ water soluble electrolyte
A method for producing fine polymer particles, characterized by using an aqueous medium consisting of 2.0 parts by weight.
JP5673980A 1980-04-28 1980-04-28 Production of fine polymer particle Granted JPS56152812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5673980A JPS56152812A (en) 1980-04-28 1980-04-28 Production of fine polymer particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5673980A JPS56152812A (en) 1980-04-28 1980-04-28 Production of fine polymer particle

Publications (2)

Publication Number Publication Date
JPS56152812A JPS56152812A (en) 1981-11-26
JPS646210B2 true JPS646210B2 (en) 1989-02-02

Family

ID=13035888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5673980A Granted JPS56152812A (en) 1980-04-28 1980-04-28 Production of fine polymer particle

Country Status (1)

Country Link
JP (1) JPS56152812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118310U (en) * 1991-04-08 1992-10-22 正文 清水 Sediment bagging equipment in sandbags
JPH07149326A (en) * 1993-11-25 1995-06-13 Diatex Co Ltd Opening work method in charging contents in container bag and opening holder

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03257171A (en) * 1990-03-07 1991-11-15 Toyo Ink Mfg Co Ltd Conductive molding and production thereof
KR100659455B1 (en) * 2004-11-09 2006-12-19 주식회사 엘지화학 Additive for vinyl chloride resin and vinyl chloride resin composition having thereof
JP4613808B2 (en) * 2005-12-06 2011-01-19 住友化学株式会社 Method for producing fine methacrylic resin particles
JP5879174B2 (en) * 2012-03-29 2016-03-08 積水化成品工業株式会社 Resin particle, method for producing the same, and method for producing a porous resin molded body using the resin particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04118310U (en) * 1991-04-08 1992-10-22 正文 清水 Sediment bagging equipment in sandbags
JPH07149326A (en) * 1993-11-25 1995-06-13 Diatex Co Ltd Opening work method in charging contents in container bag and opening holder

Also Published As

Publication number Publication date
JPS56152812A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
US3706722A (en) Polymers from essentially water-insoluble unsaturated liquid monomers and process for preparing same
US3573263A (en) Polymerization with a redox and azoisobutyronitrile catalyst
US4876311A (en) Opaque synthetic resins
JPS5811463B2 (en) Molding material for producing light-scattering molded objects
US4388442A (en) Stabilizer or dispersing agent for use in a suspension polymerization of a vinyl compound comprising a modified and partially hydrolyzed anionic polyvinyl alcohol
JPH0543727B2 (en)
JPS646210B2 (en)
KR100201674B1 (en) Method for preparing emulsion polymerized polybutadiene of increased particle size
US3243419A (en) In situ generation of suspending agent in the suspension polymerization of styrene
JPS5858369B2 (en) Method for manufacturing acrylic foam
US2264376A (en) Preparation of methacrylic polymer molding material
US3668194A (en) Suspension polymerization of pvc polymers and copolymers at reduced temperatures
JPS6132346B2 (en)
US3046259A (en) Process for water soluble polymer recovery
JPS6410004B2 (en)
JPH04132705A (en) Production of hydrophilic fine grain
US3707585A (en) Suspension polymerization of vinyl monomers
US5496897A (en) Process for preparing uniformly sized, fine particles of polymer
JPS6028286B2 (en) Suspension polymerization method for vinyl compounds
US3232915A (en) Suspension polymerization using 2-stage buffer salt addition to prevent clustering and to regulate bead size
US2794787A (en) Modified gelatins obtained by polymerizing an alkenyl carbonamide in an aqueous gelatin solution
US2857368A (en) Process for the polymerization of resins for use in paste-like dispersions
US3249571A (en) Process for producing aqueous polymer dispersions with polymeric nu-vinyl acetamide dispersant
JPH0132848B2 (en)
Kang et al. Study on soap‐free P (MMA‐EA‐AA or MAA) latex particles with narrow size distribution