JPS646126B2 - - Google Patents

Info

Publication number
JPS646126B2
JPS646126B2 JP23014182A JP23014182A JPS646126B2 JP S646126 B2 JPS646126 B2 JP S646126B2 JP 23014182 A JP23014182 A JP 23014182A JP 23014182 A JP23014182 A JP 23014182A JP S646126 B2 JPS646126 B2 JP S646126B2
Authority
JP
Japan
Prior art keywords
sulfuric acid
liquid
refrigerant
turbine
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23014182A
Other languages
Japanese (ja)
Other versions
JPS59116106A (en
Inventor
Kazuo Aoki
Kadoaki Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP23014182A priority Critical patent/JPS59116106A/en
Publication of JPS59116106A publication Critical patent/JPS59116106A/en
Publication of JPS646126B2 publication Critical patent/JPS646126B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は硫酸製造設備特に接触式硫酸製造設備
における熱エネルギー回収方法に関する。 従来、接触式硫酸製造設備において、乾燥塔若
しくは吸収塔から得られる高温の濃硫酸液を冷却
するのに間接式冷却方法が採用され、またその冷
却器に使用される伝熱材料には優れた耐食性が必
要とされると共に運転温度が低いことが条件とさ
れていた。従つて、上記硫酸製造工程から回収し
得る熱エネルギーが少なかつた。 そこで、本発明は上記欠点を解消し得る硫酸製
造設備における熱エネルギー回収方法を提供する
ことを目的とする。 即ち、本発明は硫酸製造設備において、この製
造工程途中で得られる硫酸液中に、硫酸に対して
安定な冷媒液を混入させて、硫酸液の持つ熱によ
り上記冷媒液を気化させることにより硫酸液の冷
却を行なうと共に、上記気化した冷媒をタービン
に導いて動力発生装置を駆動させた後、凝縮器に
より冷媒を液化し、再びこの冷媒液を上記硫酸液
中に導くことを特徴とする硫酸製造設備における
熱エネルギー回収方法である。 かかる方法によると、硫酸液を冷媒液に直接に
接触させて冷却するようにしたので、従来の間接
式のものに比べて熱交換の効率がよくなると共に
間接式の伝熱材料による温度制限がなく運転温度
を高くでき、従つて従来の製造設備の場合に比べ
て熱エネルギーの回収効率が非常に向上する。 以下、本発明の一実施例を図面に基づき説明す
る。第1図において、1は接触式硫酸製造設備に
おける吸収塔(二重接触式設備においては第1吸
収塔及び第2吸収塔)(又は乾燥塔)で、下部か
らプロセスガス(又は空気)が導入されて上部か
ら抜かれるようにされている。2はプロセスガス
の導入配管、3は同じく取出配管である。4は上
記吸収塔1で得られた高温の濃硫酸液を冷媒によ
り直接冷却する冷却器で、吸収塔1からはポンプ
5を有する硫酸液供給配管6を介して導かれる。
ここで、上記冷却器4を第2図〜第4図に基づき
説明すると、7は竪型且つ円筒状の容器本体で、
その内部は仕切部材8によつて上部の気液分離室
9と下部の接触室10とに仕切られている。 上記仕切部材8の上部は円錐状の円錐部8aに
されると共にその下部は容器本体7の側壁7aと
所定間隔離れた位置で設けられた、円弧部8bに
されており、この円弧部8bと側壁7aとの間は
液降下空間11にされている。更に円錐部8aの
上端には、気液分離室9と接触室10とを連通す
る第1連通口12が設けられると共に、円弧部8
bには気液分離室9側の液降下空間11と接触室
10とを連通する第2連通口13が上下に亘つて
複数個設けられている。なお、上記液降下空間1
1の底部は開放されて接触室10に連通してい
る。14は容器本体7の側壁7a上部に且つ気液
分離室9に対応する位置で設けられた硫酸液供給
口で、上記硫酸液供給配管6に接続されている。
15は同じく側壁7a下部に且つ接触室10に対
応する位置で設けられた冷媒液供給口、16は容
器本体7の頂部に設けられたデミスター17を有
する冷媒取出口、18は同じく底部に設けられた
硫酸液取出口で、硫酸液戻り配管19を介して上
記吸収塔1に戻される。なお、20は硫酸液戻り
配管19途中から分岐された硫酸液取出配管で、
ここから94〜98%濃度の濃硫酸液が取出される。
21は上記冷却器4で気化された冷媒により回転
駆動されるタービン、22はタービン21によつ
て作動させられる動力発生装置(例えば圧縮式ヒ
ートポンプ、発電機など)、23は冷却器4の冷
媒取出口16とタービン21とを接続する冷媒移
送配管、24はタービン21から出た冷媒を冷却
器4に戻す冷媒戻り配管、25は冷媒戻り配管2
4途中に設けられた冷媒の凝縮器、26は同じく
冷媒戻り配管24途中に設けられた冷媒液の移送
ポンプである。なお、27は凝縮器25における
冷却水配管、28は上記吸収塔1の下部に接続さ
れた濃度調整用硫酸液(又は水)供給配管であ
る。また、上記冷却器4、タービン21、凝縮器
25及び移送ポンプ26によつてランキンサイク
ルが構成されている。 次に、動作について説明する。 まず、吸収塔1で得られた温度の高い濃硫酸液
は冷却器4に送られて、硫酸に対して安定な冷媒
液(例えば飽和炭化水素系冷媒やクロールフルオ
ロエチレン系冷媒)により熱が奪われる。即ち、
硫酸液供給口14より気液分離室9内に供給され
た濃硫酸液は、液降下空間11及び仕切部材8の
第2連通口13を介して接触室10内に到り、こ
こで冷媒液により直接冷却される。そして、冷却
された濃硫酸液は液比重が増加して容器本体7内
底部に移動し、硫酸液取出口18及び硫酸液戻り
配管19を介して吸収塔1に戻されると共にその
一部が硫酸液取出配管20を介して取出される。
一方、冷媒液は濃硫酸液との比重差により、接触
室10内を上昇しながら濃硫酸液から熱を奪つて
気化し、この気化した冷媒は仕切部材8の第1連
通口12より気液分離室9内に到り、ここで液体
を分離した後、冷媒取出口16及び冷媒移送配管
23を介してタービン21に送られて、動力発生
装置22を作動させ、その熱エネルギーが回収さ
れる。そして、タービン21を出た冷媒は凝縮器
25で凝縮されて移送ポンプ26により冷媒戻り
配管24を介して冷却器4に戻される。 上記方法によると、硫酸液を冷媒液に直接に接
触させて冷却するようにしたので、従来の間接式
のものに比べて熱交換の効率がよくなると共に間
接式の伝熱材料による温度制御がなく運転温度を
高くでき、従つて従来の製造設備の場合に比べて
熱エネルギーの回収効率が非常に向上する。 なお、ここで日産1000トンの硫黄燃焼式二重接
触/二重吸収式硫酸製造設備におけるランキンサ
イクルを使用した場合の熱エネルギー回収量を従
来のものと本発明のものとについて比較すると下
記表のようになる。下記表より本発明の方が発電
量が大きいことが判かる。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering thermal energy in a sulfuric acid production facility, particularly a catalytic sulfuric acid production facility. Conventionally, in catalytic sulfuric acid production equipment, an indirect cooling method has been adopted to cool the high-temperature concentrated sulfuric acid liquid obtained from the drying tower or absorption tower, and the heat transfer material used for the cooler has excellent properties. Corrosion resistance was required, as well as low operating temperatures. Therefore, less thermal energy could be recovered from the sulfuric acid production process. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for recovering thermal energy in a sulfuric acid production facility that can eliminate the above-mentioned drawbacks. That is, in the sulfuric acid production equipment of the present invention, a refrigerant liquid that is stable against sulfuric acid is mixed into the sulfuric acid liquid obtained during the manufacturing process, and the refrigerant liquid is vaporized by the heat of the sulfuric acid liquid, thereby producing sulfuric acid. A sulfuric acid solution characterized by cooling the liquid, guiding the vaporized refrigerant to a turbine to drive a power generation device, liquefying the refrigerant in a condenser, and then guiding this refrigerant liquid into the sulfuric acid liquid again. This is a method of recovering thermal energy in manufacturing equipment. According to this method, the sulfuric acid liquid is cooled by bringing it into direct contact with the refrigerant liquid, so the efficiency of heat exchange is better than that of the conventional indirect method, and there is no temperature limit due to the heat transfer material of the indirect method. Operating temperatures can be increased and therefore the efficiency of thermal energy recovery is greatly improved compared to conventional production equipment. Hereinafter, one embodiment of the present invention will be described based on the drawings. In Figure 1, 1 is an absorption tower (first absorption tower and second absorption tower in double contact equipment) (or drying tower) in a catalytic sulfuric acid production facility, into which process gas (or air) is introduced from the bottom. It is made to be pulled out from the top. 2 is a process gas introduction pipe, and 3 is a take-out pipe. Reference numeral 4 denotes a cooler that directly cools the high temperature concentrated sulfuric acid solution obtained in the absorption tower 1 using a refrigerant, and is led from the absorption tower 1 via a sulfuric acid solution supply pipe 6 having a pump 5.
Here, the cooler 4 will be explained based on FIGS. 2 to 4. 7 is a vertical and cylindrical container body;
The interior thereof is partitioned by a partition member 8 into an upper gas-liquid separation chamber 9 and a lower contact chamber 10. The upper part of the partition member 8 is a conical part 8a, and the lower part is an arc part 8b provided at a predetermined distance from the side wall 7a of the container body 7. A liquid falling space 11 is formed between the side wall 7a and the side wall 7a. Further, a first communication port 12 that communicates the gas-liquid separation chamber 9 and the contact chamber 10 is provided at the upper end of the conical portion 8a, and a first communication port 12 is provided at the upper end of the conical portion 8a.
b is provided with a plurality of second communication ports 13 vertically extending between the liquid drop space 11 on the gas-liquid separation chamber 9 side and the contact chamber 10. In addition, the liquid descending space 1
The bottom of 1 is open and communicates with the contact chamber 10. Reference numeral 14 denotes a sulfuric acid solution supply port provided at the upper part of the side wall 7a of the container body 7 at a position corresponding to the gas-liquid separation chamber 9, and is connected to the sulfuric acid solution supply pipe 6.
15 is also a refrigerant liquid supply port provided at the lower part of the side wall 7a and at a position corresponding to the contact chamber 10, 16 is a refrigerant outlet having a demister 17 provided at the top of the container body 7, and 18 is also provided at the bottom. The sulfuric acid solution is returned to the absorption tower 1 via the sulfuric acid solution return pipe 19 at the sulfuric acid solution outlet. In addition, 20 is a sulfuric acid liquid extraction pipe branched from the middle of the sulfuric acid liquid return pipe 19,
A concentrated sulfuric acid solution with a concentration of 94-98% is extracted from here.
21 is a turbine rotationally driven by the refrigerant vaporized by the cooler 4; 22 is a power generation device (for example, a compression heat pump, a generator, etc.) operated by the turbine 21; and 23 is a refrigerant intake of the cooler 4; A refrigerant transfer pipe connects the outlet 16 and the turbine 21, 24 is a refrigerant return pipe that returns the refrigerant from the turbine 21 to the cooler 4, and 25 is a refrigerant return pipe 2.
A refrigerant condenser 26 is provided in the middle of the refrigerant return pipe 24, and a refrigerant liquid transfer pump 26 is also provided in the middle of the refrigerant return pipe 24. Note that 27 is a cooling water pipe in the condenser 25, and 28 is a concentration-adjusting sulfuric acid solution (or water) supply pipe connected to the lower part of the absorption tower 1. Furthermore, the cooler 4, turbine 21, condenser 25, and transfer pump 26 constitute a Rankine cycle. Next, the operation will be explained. First, the high-temperature concentrated sulfuric acid liquid obtained in the absorption tower 1 is sent to the cooler 4, where heat is removed by a refrigerant liquid that is stable against sulfuric acid (for example, a saturated hydrocarbon refrigerant or a chlorofluoroethylene refrigerant). be exposed. That is,
The concentrated sulfuric acid solution supplied into the gas-liquid separation chamber 9 from the sulfuric acid solution supply port 14 reaches the contact chamber 10 via the liquid descent space 11 and the second communication port 13 of the partition member 8, where it is mixed with the refrigerant liquid. directly cooled by The cooled concentrated sulfuric acid liquid increases in liquid specific gravity and moves to the inner bottom of the container body 7, and is returned to the absorption tower 1 via the sulfuric acid liquid outlet 18 and the sulfuric acid liquid return pipe 19, and a part of it is sulfuric acid The liquid is taken out via the liquid take-out pipe 20.
On the other hand, due to the difference in specific gravity between the refrigerant liquid and the concentrated sulfuric acid liquid, the refrigerant liquid rises in the contact chamber 10 and removes heat from the concentrated sulfuric acid liquid and vaporizes. After reaching the separation chamber 9 and separating the liquid there, it is sent to the turbine 21 via the refrigerant outlet 16 and the refrigerant transfer pipe 23 to operate the power generator 22 and recover its thermal energy. . The refrigerant exiting the turbine 21 is condensed in a condenser 25 and returned to the cooler 4 via a refrigerant return pipe 24 by a transfer pump 26. According to the above method, the sulfuric acid liquid is cooled by bringing it into direct contact with the refrigerant liquid, which improves the efficiency of heat exchange compared to the conventional indirect method, and eliminates the need for temperature control using indirect heat transfer materials. The operating temperature can be increased and therefore the efficiency of thermal energy recovery is greatly improved compared to conventional production equipment. In addition, when comparing the amount of thermal energy recovered when using the Rankine cycle in a sulfur combustion type double contact/double absorption type sulfuric acid production facility with a daily production capacity of 1000 tons, the conventional type and the present invention are shown in the table below. It becomes like this. From the table below, it can be seen that the amount of power generated is larger in the present invention. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示すもので、第1図
は概略フローチヤート図、第2図は冷却器の断面
図、第3図は第2図の−矢視断面図、第4図
は第2図の−矢視断面図である。 1……吸収塔、4……冷却器、6……硫酸液供
給配管、7……容器本体、7a……側壁、8……
仕切部材、9……気液分離室、10……接触室、
11……液降下空間、12……第1連通口、13
……第2連通口、19……硫酸液戻り配管、20
……硫酸液取出配管、21……タービン、22…
…動力発生装置、23……冷媒移送配管、24…
…冷媒戻り配管、25……凝縮器、26……移送
ポンプ。
The drawings show one embodiment of the present invention, and FIG. 1 is a schematic flowchart, FIG. 2 is a sectional view of the cooler, FIG. 3 is a sectional view taken along the - arrow in FIG. 2, and FIG. FIG. 2 is a sectional view taken along the - arrow in FIG. 2; DESCRIPTION OF SYMBOLS 1... Absorption tower, 4... Cooler, 6... Sulfuric acid liquid supply piping, 7... Container body, 7a... Side wall, 8...
Partition member, 9... gas-liquid separation chamber, 10... contact chamber,
11...Liquid descent space, 12...First communication port, 13
...Second communication port, 19...Sulfuric acid solution return pipe, 20
...Sulfuric acid liquid extraction piping, 21...Turbine, 22...
...Power generator, 23... Refrigerant transfer piping, 24...
... Refrigerant return pipe, 25 ... Condenser, 26 ... Transfer pump.

Claims (1)

【特許請求の範囲】[Claims] 1 硫酸製造設備において、その製造工程途中で
得られる硫酸液中に、硫酸に対して安定な冷媒液
を混入させて、硫酸液の持つ熱により上記冷媒液
を気化させることにより硫酸液の冷却を行なうと
共に、上記気化した冷媒をタービンに導いて動力
発生装置を駆動させた後、凝縮器により冷媒を液
化し、再びこの冷媒液を上記硫酸液中に導くこと
を特徴とする硫酸製造設備における熱エネルギー
回収方法。
1. In sulfuric acid manufacturing equipment, a refrigerant liquid that is stable against sulfuric acid is mixed into the sulfuric acid liquid obtained during the manufacturing process, and the refrigerant liquid is vaporized by the heat of the sulfuric acid liquid, thereby cooling the sulfuric acid liquid. At the same time, the vaporized refrigerant is guided to a turbine to drive a power generation device, and then the refrigerant is liquefied by a condenser, and the refrigerant liquid is again introduced into the sulfuric acid liquid. Energy recovery methods.
JP23014182A 1982-12-22 1982-12-22 Method for recovering heat energy in equipment for manufacturing sulfuric acid Granted JPS59116106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23014182A JPS59116106A (en) 1982-12-22 1982-12-22 Method for recovering heat energy in equipment for manufacturing sulfuric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23014182A JPS59116106A (en) 1982-12-22 1982-12-22 Method for recovering heat energy in equipment for manufacturing sulfuric acid

Publications (2)

Publication Number Publication Date
JPS59116106A JPS59116106A (en) 1984-07-04
JPS646126B2 true JPS646126B2 (en) 1989-02-02

Family

ID=16903221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23014182A Granted JPS59116106A (en) 1982-12-22 1982-12-22 Method for recovering heat energy in equipment for manufacturing sulfuric acid

Country Status (1)

Country Link
JP (1) JPS59116106A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579361U (en) * 1992-03-24 1993-10-29 日立造船株式会社 Heat recovery equipment in sulfuric acid plant
JP2010203376A (en) * 2009-03-05 2010-09-16 Sumitomo Metal Mining Co Ltd Evaporator in power generation system
JP2016517389A (en) * 2013-03-15 2016-06-16 メックス・インコーポレイテッドMecs, Inc. Recovery of sulfur trioxide absorption heat
CN106609685A (en) * 2015-10-26 2017-05-03 安徽华尔泰化工股份有限公司 Sulfuric acid HRS (Heat Recycling System) type high-temperature acid power generation device

Also Published As

Publication number Publication date
JPS59116106A (en) 1984-07-04

Similar Documents

Publication Publication Date Title
US3659401A (en) Gas purification process
JPH0313505B2 (en)
JPH0117070B2 (en)
JPH0735470A (en) Method and device for manufacturing superhigh purity dinitrogen monoxide
KR970075810A (en) High Purity Nitrogen Generator and High Purity Nitrogen Generation Method
KR860001331A (en) High Purity Nitrogen Gas Production Equipment
JPS646126B2 (en)
EP1769200A2 (en) Reversible absorption refrigeration
CN101257964B (en) Isotopic enrichment process
CN204665806U (en) Condensing acrylonitrile recovery system in acrylonitrile-butadiene rubber building-up process
US5027601A (en) Low boiling point medium recovery apparatus
EP0112041B1 (en) Method and apparatus for the absorption of a gas in a liquid and their use in energy conversion cycles
US4272961A (en) Recovery of energy from geothermal brine and other aqueous sources
KR100275859B1 (en) A manufacturing method for high purity nitrogen gas
US4622820A (en) Absorption power generator
US4519441A (en) Heat conversion system
CN108479312A (en) Energy-saving desulfurization solvent regenerative system and technique
CN208365938U (en) A kind of vacuum drying of flotation metal mining powder and calorific value reuse means
US1922217A (en) Refrigerating means and method
US4534174A (en) Geothermal reboiler apparatus and method
US1589133A (en) Art of recovering sulphur dioxide from gases with which it may be associated and apparatus therefor
JPH02183779A (en) Evaporator
US1751103A (en) Process for recovering gas constituents from gas mixtures
SU1318770A1 (en) Method for preparing natural gas for transportation
US3441380A (en) Acid producing plant