JP2010203376A - Evaporator in power generation system - Google Patents

Evaporator in power generation system Download PDF

Info

Publication number
JP2010203376A
JP2010203376A JP2009051413A JP2009051413A JP2010203376A JP 2010203376 A JP2010203376 A JP 2010203376A JP 2009051413 A JP2009051413 A JP 2009051413A JP 2009051413 A JP2009051413 A JP 2009051413A JP 2010203376 A JP2010203376 A JP 2010203376A
Authority
JP
Japan
Prior art keywords
evaporator
mass
sulfuric acid
turbine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009051413A
Other languages
Japanese (ja)
Inventor
Sadaji Aono
貞二 青野
Ken Takimoto
健 滝本
Takeshi Yano
猛 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Hitachi Zosen Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Hitachi Zosen Corp filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2009051413A priority Critical patent/JP2010203376A/en
Publication of JP2010203376A publication Critical patent/JP2010203376A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an evaporator made of a material having sufficient corrosion resistance against both ammonia and sulfuric acid. <P>SOLUTION: A power generation system includes a power generator 4, a turbine 3, an evaporator 1 generating heating medium vapor which is vapor of ammonia water to be supplied to the turbine as a heating medium, and a condenser 5 which condenses vapor exhausted from the turbine. In the evaporator, at least a heat conducting tube 1b is made of a material including a 51.0 to 62.5 mass% of nickel, a 14.5 to 16.5 mass% of chromium, a 15.0 to 17.0 mass% of molybdenum, a 4.0 to 7.0 mass% of iron, a 3.0 to 4.5 mass% of tungsten, and a 1.5 to 2.5 mass% of cobalt. The use of the material makes it possible to use sulfuric acid obtained in a sulfuric acid manufacturing plant, as a heat source in the evaporator. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、発電システムにおける蒸発器に関するものである。   The present invention relates to an evaporator in a power generation system.

例えば、硫酸製造プラントにおいて、吸収塔を出た90℃程度の硫酸を冷却水により冷却し製品タンクに送っており、低い温度ではあるが、この硫酸の持つ熱を利用することが考えられる。   For example, in a sulfuric acid production plant, sulfuric acid at about 90 ° C. exiting an absorption tower is cooled with cooling water and sent to a product tank, and it is conceivable to use the heat of sulfuric acid at a low temperature.

従来、低温用の発電システムにはアンモニアを熱媒体とするランキンサイクルを用いたものがあり、その熱源として、温水が一般的に用いられており、したがって蒸発器の少なくとも伝熱部分、すなわち伝熱管の材料としては、アンモニアに対する耐食性だけを考慮したもの、例えば炭素鋼が使用されていた。   Conventionally, there is a low temperature power generation system using a Rankine cycle using ammonia as a heat medium, and hot water is generally used as the heat source, and therefore, at least a heat transfer portion of an evaporator, that is, a heat transfer tube. As the material, a material considering only the corrosion resistance against ammonia, for example, carbon steel has been used.

ところで、このような発電システムの熱源に、上述したように、硫酸製造プラントで得られた硫酸の持つ熱を用いる場合には、蒸発器の伝熱管に硫酸が流されることになるため、蒸発器の材料、特に、伝熱管の材料としては、アンモニアと硫酸に対して有効なもの、例えばステンレス鋼などが用いられることになる。   By the way, as described above, when using the heat of sulfuric acid obtained in the sulfuric acid production plant as the heat source of such a power generation system, sulfuric acid is caused to flow through the heat transfer tube of the evaporator. As a material for the heat transfer tube, in particular, a material effective for ammonia and sulfuric acid, such as stainless steel, is used.

しかし、蒸発器における伝熱管の材料として、ステンレス鋼を用いた場合でも、アンモニアと硫酸に対しては、その耐食性が十分ではなかった。
そこで、本発明は、少なくとも、蒸発器の伝熱部材がアンモニアおよび硫酸の両方に対しても十分な耐食性を発揮し得る材料にて構成された発電システムにおける蒸発器を提供することを目的とする。
However, even when stainless steel is used as the material for the heat transfer tube in the evaporator, its corrosion resistance is not sufficient with respect to ammonia and sulfuric acid.
Then, this invention aims at providing the evaporator in the electric power generation system comprised with the material in which the heat-transfer member of an evaporator can exhibit sufficient corrosion resistance also to both ammonia and a sulfuric acid at least. .

上記課題を解決するため、本発明の発電システムにおける蒸発器は、発電機およびこの発電機を回転させるタービンを有するとともに、このタービンに熱媒体として供給するアンモニア水またはアンモニアの蒸気である熱媒蒸気を発生させる蒸発器および上記タービンからの排出蒸気を凝縮させる凝縮器を有する発電システムにおける蒸発器であって、
蒸発器における少なくとも伝熱部材の材料として、ニッケル(Ni)が51.0〜61.5質量%、モリブデン(Mo)が15.0〜17.0質量%、クロム(Cr)が14.5〜16.5質量%、鉄(Fe)が4.0〜7.0質量%、タングステン(W)が3.0〜4.5質量%およびコバルト(Co)が1.5〜2.5質量%の各範囲内で含まれるものを用いることにより、蒸発器における熱源として硫酸製造工程から得られる硫酸を用いるようにしたものである。
In order to solve the above problems, an evaporator in a power generation system according to the present invention includes a generator and a turbine that rotates the generator, and heat medium vapor that is ammonia water or ammonia vapor supplied as a heat medium to the turbine. An evaporator in a power generation system having an evaporator for generating gas and a condenser for condensing exhaust steam from the turbine,
As materials for at least the heat transfer member in the evaporator, nickel (Ni) is 51.0 to 61.5 mass%, molybdenum (Mo) is 15.0 to 17.0 mass%, and chromium (Cr) is 14.5 to 16.5% by mass, iron (Fe) 4.0-7.0% by mass, tungsten (W) 3.0-4.5% by mass and cobalt (Co) 1.5-2.5% by mass By using what is included in each of these ranges, sulfuric acid obtained from the sulfuric acid production process is used as a heat source in the evaporator.

上述した材料を蒸発器の少なくとも伝熱部材に用いるようにしたので、アンモニアおよび硫酸の両方に対しても耐食性が発揮されることとなり、硫酸製造工程で得られた硫酸の有する熱を支障なく回収することができる。   Since the materials mentioned above are used for at least the heat transfer member of the evaporator, corrosion resistance is exhibited against both ammonia and sulfuric acid, and the heat of sulfuric acid obtained in the sulfuric acid production process can be recovered without hindrance. can do.

本発明の実施の形態に係る発電システムの概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a power generation system concerning an embodiment of the invention. 本発明の他の実施の形態に係る発電システムの概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the electric power generation system which concerns on other embodiment of this invention.

以下、本発明の実施の形態に係る発電システムにおける蒸発器を図1に基づき説明する。
まず、発電システムの概略構成について説明する。
Hereinafter, an evaporator in a power generation system according to an embodiment of the present invention will be described with reference to FIG.
First, a schematic configuration of the power generation system will be described.

この発電システムは、硫酸製造工程すなわち硫酸製造プラントで得られた低温の、例えば90℃程度の硫酸の持つ熱を熱源として発電を行い廃熱を回収するものであり、熱媒体(作動流体と呼ぶこともできる)としてアンモニア水(アンモニア水溶液である)を用いるカリーナサイルクルにて作動するものである。   This power generation system recovers waste heat by generating power using the heat of sulfuric acid at a low temperature, for example, about 90 ° C. obtained in a sulfuric acid production process, that is, a sulfuric acid production plant, and is used as a heat medium (called a working fluid). It can be operated with a carina cycle using aqueous ammonia (which is an aqueous ammonia solution).

このカリーナサイクルを用いた発電システムは、図1に示すように、アンモニア水(以下、熱媒液ともいう)を導いて加熱し蒸発させる蒸発器1と、この蒸発器1にて蒸発されたアンモニア蒸気(水蒸気も含み、以下、熱媒蒸気ともいう)を導いて当該熱媒蒸気中に含まれる(同伴された)液分を分離する気液分離器2と、この気液分離器2にて液分が分離された熱媒蒸気を導くとともに当該熱媒蒸気により駆動されるタービン3と、このタービン3により回転される発電機4と、上記タービン3から排出されたタービン排気(以下、排出蒸気という)を導いて当該排出蒸気を冷却し凝縮させる凝縮器5と、途中に液送ポンプ15を有するとともに上記凝縮器5で凝縮された熱媒液を蒸発器1に導くための第1熱媒液移送管11と、上記蒸発器1で得られた熱媒蒸気を気液分離器2を介して蒸気タービン3に導くための第1熱媒蒸気移送管12と、蒸気タービン3から排出された排出蒸気を凝縮器5に移送する排出蒸気移送管13と、上記気液分離器2にて分離された液分すなわち温度の高い熱媒液を凝縮器5に移送するための第2熱媒液移送管14と、上記第1熱媒液移送管11と第2熱媒液移送管14とに設けられて気液分離器2からの温度の高い熱媒液が有する熱を凝縮器5からの温度の低い熱媒液に与えて熱回収するための熱交換器6とから構成されている。   As shown in FIG. 1, the power generation system using this carina cycle includes an evaporator 1 that introduces ammonia water (hereinafter also referred to as a heat transfer medium), heats and evaporates, and ammonia evaporated in the evaporator 1. A gas-liquid separator 2 that guides vapor (including water vapor, hereinafter also referred to as heat medium vapor) and separates (entrained) liquid components contained in the heat medium vapor; The turbine 3 driven by the heat medium steam, the generator 4 rotated by the turbine 3, and the turbine exhaust discharged from the turbine 3 (hereinafter referred to as exhaust steam) The first heat medium for guiding the heat medium liquid condensed in the condenser 5 and having the liquid feed pump 15 in the middle of the condenser 5 that cools and condenses the exhaust steam. Liquid transfer pipe 11 and the above evaporation The first heat medium steam transfer pipe 12 for guiding the heat medium steam obtained in 1 to the steam turbine 3 via the gas-liquid separator 2 and the exhaust steam discharged from the steam turbine 3 are transferred to the condenser 5. The exhaust steam transfer pipe 13, the second heat medium liquid transfer pipe 14 for transferring the liquid component separated by the gas-liquid separator 2, that is, the high-temperature heat medium liquid, to the condenser 5, and the first heat The heat which is provided in the medium liquid transfer pipe 11 and the second heat medium liquid transfer pipe 14 and has the high temperature heat medium liquid from the gas-liquid separator 2 is applied to the low temperature heat medium liquid from the condenser 5. It is comprised from the heat exchanger 6 for heat recovery.

そして、上記蒸発器1は、熱媒液が充填される蒸発器本体1aと、この蒸発器本体1a内に設けられて熱源(加熱流体でもある)としての硫酸が導かれる伝熱管1bとから構成され、また凝縮器5についても、排出蒸気が導かれる蒸発器本体5aと、この蒸発器本体5a内に設けられて冷却流体例えば冷却水が導かれて排出蒸気を冷却する伝熱管5bとから構成されている。   The evaporator 1 is composed of an evaporator main body 1a filled with a heat transfer medium, and a heat transfer tube 1b provided in the evaporator main body 1a and guided with sulfuric acid as a heat source (also a heating fluid). The condenser 5 also includes an evaporator main body 5a through which exhaust steam is guided and a heat transfer pipe 5b that is provided in the evaporator main body 5a and through which a cooling fluid such as cooling water is guided to cool the exhaust steam. Has been.

上記発電システムにおいて、硫酸製造プラントで得られた90℃程度の低温の硫酸が蒸発器1の伝熱管1bに導かれ、蒸発器本体1a内の熱媒液を加熱し蒸発させて熱媒蒸気であるアンモニア水の蒸気が得られる。   In the above power generation system, the low-temperature sulfuric acid of about 90 ° C. obtained in the sulfuric acid production plant is led to the heat transfer tube 1b of the evaporator 1, and the heat medium liquid in the evaporator main body 1a is heated and evaporated to produce heat medium vapor. Some ammonia water vapor is obtained.

この熱媒蒸気は、気液分離器2に導かれ、これに同伴した液分が分離される。液分が分離された熱媒蒸気はタービン3に導かれてタービン3が駆動される。そして、タービン3により発電機4を回転させて発電が行われる。   This heat-medium vapor | steam is guide | induced to the gas-liquid separator 2, and the liquid component accompanying this is isolate | separated. The heat-medium vapor | steam from which the liquid component was isolate | separated is guide | induced to the turbine 3, and the turbine 3 is driven. Then, the turbine 4 rotates the generator 4 to generate power.

上記タービン3を出た排出蒸気は凝縮器5の凝縮器本体5a内に入り、伝熱管5b内を流れる冷却水により冷却・凝縮されて熱媒液となり、この熱媒液は第2熱媒液移送管14を介して蒸発器1に移送されて再び硫酸により加熱・蒸発される。   The exhaust steam exiting the turbine 3 enters the condenser body 5a of the condenser 5 and is cooled and condensed by the cooling water flowing in the heat transfer pipe 5b to become a heat medium liquid, which is the second heat medium liquid. It is transferred to the evaporator 1 through the transfer pipe 14 and again heated and evaporated with sulfuric acid.

ところで、上記蒸発器1の伝熱管1b内には硫酸が導かれるとともに蒸発器本体1a内には熱媒液であるアンモニア水が導かれるため、少なくとも、伝熱管1bの材料としては、以下に示すような、アンモニアと硫酸に対して耐食性を有する材料が用いられる。   By the way, since sulfuric acid is led into the heat transfer tube 1b of the evaporator 1 and ammonia water as a heat transfer liquid is led into the evaporator main body 1a, at least the material of the heat transfer tube 1b is shown below. Such a material having corrosion resistance to ammonia and sulfuric acid is used.

すなわち、ニッケル(Ni)が51.0〜61.5質量%、モリブデン(Mo)が15.0〜17.0質量%、クロム(Cr)が14.5〜16.5質量%、鉄(Fe)が4.0〜7.0質量%、タングステン(W)が3.0〜4.5質量%およびコバルト(Co)が1.5〜2.5質量%の各範囲内で含まれるものが用いられる。より正確に言うと、上述した成分に、マンガン(Mn)およびバナジウム(V)の合計が0.5〜1.3質量%の範囲内で添加されるとともに、炭素(C)、リン(P)、硫黄(S)およびケイ素(Si)の合計が0.2質量%以下となるようにされたものが用いられている。   That is, nickel (Ni) is 51.0 to 61.5 mass%, molybdenum (Mo) is 15.0 to 17.0 mass%, chromium (Cr) is 14.5 to 16.5 mass%, iron (Fe ) Is 4.0 to 7.0% by mass, tungsten (W) is 3.0 to 4.5% by mass, and cobalt (Co) is included in each range of 1.5 to 2.5% by mass. Used. More precisely, to the above-mentioned components, the total of manganese (Mn) and vanadium (V) is added within the range of 0.5 to 1.3% by mass, and carbon (C), phosphorus (P) , Sulfur (S) and silicon (Si) are used in a total amount of 0.2% by mass or less.

このような材料を用いることにより、アンモニアおよび硫酸の両方に対しても耐食性が発揮され、使用に十分耐えることができる。
ところで、上記実施の形態においては、発電システムとしてカリーナサイクルにて動作するものを説明したが、例えばランキンサイクルにて動作する発電システムの蒸発器にも適用することができる。
By using such a material, corrosion resistance is exhibited against both ammonia and sulfuric acid, and it can sufficiently withstand use.
By the way, in the said embodiment, although what operate | moved by a carina cycle was demonstrated as an electric power generation system, For example, it can apply also to the evaporator of the electric power generation system which operate | moves by Rankine cycle.

ここで、ランキンサイクルを、図2に基づき簡単に説明しておく。
この発電システムは、熱媒体として濃度が100%のアンモニア液を使用するもので、アンモニア液すなわち熱媒液を導き加熱し蒸発させる蒸発器21と、この蒸発器21にて蒸発されたアンモニア蒸気すなわち熱媒蒸気を導くとともに当該熱媒蒸気により駆動されるタービン22と、このタービン22により回転される発電機23と、上記タービン22から排出されたタービン排気である排出蒸気を導くとともに冷却水により冷却し凝縮させる凝縮器24とから構成されている。勿論、蒸発器21にて蒸発された熱媒蒸気は熱媒蒸気移送管31によりタービン22に移送され、タービン22から排出された排出蒸気は排出蒸気移送管32により凝縮器24に移送され、またこの凝縮器24にて凝縮された熱媒液は熱媒液移送管33により蒸発器21に移送される。
Here, the Rankine cycle will be briefly described with reference to FIG.
This power generation system uses an ammonia liquid having a concentration of 100% as a heat medium. An evaporator 21 that guides the ammonia liquid, that is, the heat medium liquid, heats and evaporates, and ammonia vapor that is evaporated in the evaporator 21, that is, A turbine 22 driven by the heat medium steam and guided by the heat medium steam, a generator 23 rotated by the turbine 22, and exhaust steam which is turbine exhaust discharged from the turbine 22 is guided and cooled by cooling water. And a condenser 24 for condensation. Of course, the heat medium vapor evaporated in the evaporator 21 is transferred to the turbine 22 through the heat medium steam transfer pipe 31, and the exhaust steam discharged from the turbine 22 is transferred to the condenser 24 through the exhaust steam transfer pipe 32. The heat medium liquid condensed in the condenser 24 is transferred to the evaporator 21 through the heat medium liquid transfer pipe 33.

なお、凝縮器24の冷却系統25についてはその説明を省略する。
そして、蒸発器21の蒸発器本体21a内に設けられた伝熱管21bには、硫酸製造プラントで得られた90℃程度の低温の硫酸が導かれているとともに、当該伝熱管21bの材料についても、上述した実施の形態1と同様のものが用いられている。
The description of the cooling system 25 of the condenser 24 is omitted.
The heat transfer tube 21b provided in the evaporator main body 21a of the evaporator 21 is led to sulfuric acid having a low temperature of about 90 ° C. obtained at the sulfuric acid production plant, and the material of the heat transfer tube 21b is also used. The same thing as Embodiment 1 mentioned above is used.

すなわち、ニッケル(Ni)が51〜62.5質量%、クロム(Cr)が14.5〜16.5質量%、モリブデン(Mo)が15.0〜17.0質量%、鉄(Fe)が4.0〜7.0質量%、タングステン(W)が3.0〜4.5質量%、モリブデン(Mo)が15.0〜17.0質量%、およびコバルト(Co)が1.5〜2.5質量%の各範囲内で含有させたものが用いられる。より正確に言うと、上記の構成に、マンガン(Mn)およびバナジウム(V)の合計が0.5〜1.3質量%の範囲内で添加するとともに、炭素(C)、リン(P)、硫黄(S)およびケイ素(Si)の合計が0.2質量%以下となるようにしたものが用いられている。   That is, nickel (Ni) is 51 to 62.5 mass%, chromium (Cr) is 14.5 to 16.5 mass%, molybdenum (Mo) is 15.0 to 17.0 mass%, and iron (Fe) is 4.0-7.0 mass%, tungsten (W) is 3.0-4.5 mass%, molybdenum (Mo) is 15.0-17.0 mass%, and cobalt (Co) is 1.5- What was contained in each range of 2.5 mass% is used. More precisely, to the above structure, manganese (Mn) and vanadium (V) are added in the range of 0.5 to 1.3% by mass, and carbon (C), phosphorus (P), The total of sulfur (S) and silicon (Si) is 0.2% by mass or less.

したがって、この場合も、アンモニアおよび硫酸の両方に対しても耐食性が発揮され、使用に十分耐えることができる。
ところで、上記各実施の形態においては、蒸発器における硫酸が流れる伝熱管の材料について説明したが、勿論、伝熱管以外の部分で硫酸と接触する箇所がある場合には、その部分も、上述した材料が用いられる。したがって、蒸発器本体についても上記材料を用いてもよい。なお、硫酸と接触しない部分については、少なくとも、アンモニアに対して耐食性を有する材料が用いられる。
Therefore, also in this case, corrosion resistance is exhibited against both ammonia and sulfuric acid, and it can sufficiently withstand use.
By the way, in each said embodiment, although the material of the heat exchanger tube through which the sulfuric acid in an evaporator flows was demonstrated, of course, when there exists a location which contacts sulfuric acid in parts other than a heat exchanger tube, the part is also mentioned above. Material is used. Therefore, you may use the said material also about an evaporator main body. In addition, about the part which does not contact with a sulfuric acid, the material which has corrosion resistance with respect to ammonia is used at least.

1 蒸発器
1a 蒸発器本体
1b 伝熱管
3 タービン
4 発電機
5 凝縮器
11 第1熱媒液移送管
12 熱媒蒸気移送管
13 排出蒸気移送管
14 第2熱媒液移送管
21 蒸発器
21a 蒸発器本体
21b 伝熱管
22 タービン
23 発電機
24 凝縮器
31 熱媒蒸気移送管
32 排出蒸気移送管
33 熱媒液移送管
DESCRIPTION OF SYMBOLS 1 Evaporator 1a Evaporator main body 1b Heat transfer pipe 3 Turbine 4 Generator 5 Condenser 11 1st heat transfer liquid transfer pipe 12 Heat transfer steam transfer pipe 13 Exhaust steam transfer pipe 14 2nd heat transfer liquid transfer pipe 21 Evaporator 21a Evaporation Main body 21b Heat transfer pipe 22 Turbine 23 Generator 24 Condenser 31 Heat transfer steam transfer pipe 32 Exhaust steam transfer pipe 33 Heat transfer liquid transfer pipe

Claims (1)

発電機およびこの発電機を回転させるタービンを有するとともに、このタービンに熱媒体として供給するアンモニア水またはアンモニアの蒸気である熱媒蒸気を発生させる蒸発器および上記タービンからの排出蒸気を凝縮させる凝縮器を有する発電システムにおける蒸発器であって、
蒸発器における少なくとも伝熱部材の材料として、ニッケル(Ni)が51.0〜61.5質量%、モリブデン(Mo)が15.0〜17.0質量%、クロム(Cr)が14.5〜16.5質量%、鉄(Fe)が4.0〜7.0質量%、タングステン(W)が3.0〜4.5質量%およびコバルト(Co)が1.5〜2.5質量%の各範囲内にて含まれるものを用いることにより、蒸発器における熱源として硫酸製造工程から得られる硫酸を用いるようにしたことを特徴とする発電システムにおける蒸発器。
An evaporator that has a generator and a turbine that rotates the generator, and that generates a heat medium vapor that is ammonia water or ammonia vapor supplied as a heat medium to the turbine, and a condenser that condenses the exhaust vapor from the turbine An evaporator in a power generation system comprising:
As materials for at least the heat transfer member in the evaporator, nickel (Ni) is 51.0 to 61.5 mass%, molybdenum (Mo) is 15.0 to 17.0 mass%, and chromium (Cr) is 14.5 to 16.5% by mass, iron (Fe) 4.0-7.0% by mass, tungsten (W) 3.0-4.5% by mass and cobalt (Co) 1.5-2.5% by mass An evaporator in a power generation system characterized in that sulfuric acid obtained from a sulfuric acid production process is used as a heat source in the evaporator by using a component included in each of the ranges.
JP2009051413A 2009-03-05 2009-03-05 Evaporator in power generation system Pending JP2010203376A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009051413A JP2010203376A (en) 2009-03-05 2009-03-05 Evaporator in power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051413A JP2010203376A (en) 2009-03-05 2009-03-05 Evaporator in power generation system

Publications (1)

Publication Number Publication Date
JP2010203376A true JP2010203376A (en) 2010-09-16

Family

ID=42965104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051413A Pending JP2010203376A (en) 2009-03-05 2009-03-05 Evaporator in power generation system

Country Status (1)

Country Link
JP (1) JP2010203376A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013074B1 (en) * 2018-10-19 2019-08-21 한전케이피에스 주식회사 Moisture separator assembly of steam generator for a nuclear power plant and method for replacing moisture separator

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116106A (en) * 1982-12-22 1984-07-04 Hitachi Zosen Corp Method for recovering heat energy in equipment for manufacturing sulfuric acid
JPS60117480U (en) * 1984-01-06 1985-08-08 日立造船株式会社 Sulfuric acid waste heat recovery equipment
JPS63123988A (en) * 1986-11-08 1988-05-27 Kawasaki Heavy Ind Ltd Plant for cooling corrosive high-temperature fluid
JPH093616A (en) * 1995-04-18 1997-01-07 Mitsubishi Materials Corp Powder mixture for thermal spraying
JPH10205308A (en) * 1997-01-21 1998-08-04 Toshiba Corp Mixed medium cycle power generating system
JP2000161018A (en) * 1998-09-21 2000-06-13 Ebara Corp Method and device of exhaust heat recovery power generation by water-ammonia mixed fluid
JP2001107196A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59116106A (en) * 1982-12-22 1984-07-04 Hitachi Zosen Corp Method for recovering heat energy in equipment for manufacturing sulfuric acid
JPS60117480U (en) * 1984-01-06 1985-08-08 日立造船株式会社 Sulfuric acid waste heat recovery equipment
JPS63123988A (en) * 1986-11-08 1988-05-27 Kawasaki Heavy Ind Ltd Plant for cooling corrosive high-temperature fluid
JPH093616A (en) * 1995-04-18 1997-01-07 Mitsubishi Materials Corp Powder mixture for thermal spraying
JPH10205308A (en) * 1997-01-21 1998-08-04 Toshiba Corp Mixed medium cycle power generating system
JP2000161018A (en) * 1998-09-21 2000-06-13 Ebara Corp Method and device of exhaust heat recovery power generation by water-ammonia mixed fluid
JP2001107196A (en) * 1999-10-07 2001-04-17 Sumitomo Metal Ind Ltd Austenitic steel welded joint excellent in weld cracking resistance and sulfuric acid corrosion resistance and the welding material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013074B1 (en) * 2018-10-19 2019-08-21 한전케이피에스 주식회사 Moisture separator assembly of steam generator for a nuclear power plant and method for replacing moisture separator

Similar Documents

Publication Publication Date Title
KR101280519B1 (en) Rankine cycle system for ship
US7849692B2 (en) Segmented heat exchanger
JP5763495B2 (en) Binary power generation system
JP2008101521A (en) Power generation system by exhaust heat
KR101902083B1 (en) Waste heat recovery system using absorption heat pump
KR101221092B1 (en) Flue Gas Heat Source Hot and Cold Water Making System
KR101225843B1 (en) Absorption Type Cooler and Heater
JP2008255822A (en) Combined cycle power generation plant and heat exchanger
JP2006177570A (en) Absorption heat pump
KR101528935B1 (en) The generating system using the waste heat of condenser
JP2010203376A (en) Evaporator in power generation system
KR101917430B1 (en) Power generating apparatus
JP2010106764A (en) Power generation method of electric power using exhaust heat
KR102165443B1 (en) Absoption chiller
JP6207086B2 (en) Absorption heat pump apparatus with heat supply means for regeneration of amine absorption liquid
JP2012132452A (en) System and method for increasing efficiency and water recovery of combined cycle power plant
JP5531250B1 (en) Binary power generation system
JP4155916B2 (en) Waste heat recovery system
JP5799853B2 (en) Binary power generation system
JP2014009623A (en) Boiler exhaust gas cleaning method in thermal power generation system and thermal power generation system
JP2018096673A (en) Absorption type heat exchanging system
KR101045463B1 (en) Absorption type refrigerator having the solution heating condensor
JP2014153026A (en) Absorption type heat pump device
KR101289187B1 (en) Apparatus for converting thermal energy
KR101304727B1 (en) Method and apparatus for converting thermal energy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120116

A621 Written request for application examination

Effective date: 20120201

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121018

A02 Decision of refusal

Effective date: 20130305

Free format text: JAPANESE INTERMEDIATE CODE: A02