JPS646012B2 - - Google Patents

Info

Publication number
JPS646012B2
JPS646012B2 JP13019180A JP13019180A JPS646012B2 JP S646012 B2 JPS646012 B2 JP S646012B2 JP 13019180 A JP13019180 A JP 13019180A JP 13019180 A JP13019180 A JP 13019180A JP S646012 B2 JPS646012 B2 JP S646012B2
Authority
JP
Japan
Prior art keywords
fiber bundle
resin
solvent
fiber
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13019180A
Other languages
Japanese (ja)
Other versions
JPS5756220A (en
Inventor
Yasuaki Abe
Mikio Hayashi
Kosaku Asagi
Akira Morii
Kazutoshi Fujimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP13019180A priority Critical patent/JPS5756220A/en
Priority to GB8127709A priority patent/GB2086444B/en
Priority to DE19813137098 priority patent/DE3137098A1/en
Priority to FR8117562A priority patent/FR2491827A1/en
Publication of JPS5756220A publication Critical patent/JPS5756220A/en
Priority to US06/478,880 priority patent/US4495017A/en
Publication of JPS646012B2 publication Critical patent/JPS646012B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は繊維強化プラスチツクの成形用材料と
して用いられる厚みが均一で、毛羽、毛玉、隙
間、フイツシユ・アイ等の外観上の欠陥が少な
く、特に薄物のプリプレグの作成に適した引揃え
プリプレグ・シートの製造方法に関する。更に樹
脂を繊維束に含浸する際に溶剤を用いていないた
めに得られた成形品の品質上各種の利点を有する
引揃えプリプレグ・シートの製造方法に関する。 従来、プリプレグ・シートはエポキシ樹脂、不
飽和ポリエステル樹脂、フエノール樹脂等の原料
樹脂をアセトン、メチルエチルケトン、メチルセ
ロソルブ、DMF、トルエン、メタノール等の揮
発性溶剤を溶解した溶液に繊維束列、織布、不織
布、マツト、紙等の繊維基材を浸潤又は含浸させ
る。次いで含浸繊維基材から溶剤を加熱乾燥する
ことにより製造されている。 しかしながら、上記のプリプレグ・シートの製
造方法では揮発性の有機溶剤を使用するので乾燥
工程に於いて溶剤除去の為に比較的長時間に亘つ
て加熱される。よつて樹脂が均一なB−ステージ
特性を維持することが困難であり、その為成型工
程に於けるプリプレグ・シート中の樹脂の流動特
性が一定でなく工程の管理が非常に困難となる。
更に重要な問題としては製造工程終了時に於いて
も溶剤が完全に除去されていないで残存すること
である。完全に溶剤を除去する為に長時間加熱す
ることは、樹脂の硬化をもたらし、B−ステージ
状態を得ることが出来ないし、低温長時間乾燥す
ることは生産性を著しく低下させる。 更に樹脂と溶剤との所謂溶媒和現象もあり、プ
リプレグ・シートから完全に溶剤を除くことは出
来ない。結局プリプレグ・シート中の残留溶剤は
溶剤含浸法による本質的な欠点というべきもので
ある。プリプレグ・シート中の残存溶媒は成形工
程に於ける加熱時に気化して発泡現象を生じボイ
ドの原因となり機械的性質、電気的性質、耐薬品
性等の各種物性を低下させるばかりでなく、耐疲
労性を著しく低下させ成形品の信頼性を損なう。
以上の様に従来の溶液含浸法はその残存溶剤のた
め得られた成形品の品質上種々の欠点を有するも
のである。 一方、上記の溶液含浸法に対して溶剤を全く使
用しない乾式法プリプレグ製造法が提案されてい
る。 即ち、樹脂配合物の粉末又はペーストを繊維基
材に一定量散布又は塗布して加熱溶融させて含浸
される方法又は離型紙上に溶融樹脂を一定量塗布
するか又は予め溶融樹脂を一定厚のフイルム状に
作成したものを使用して、加熱しながら繊維基材
に含浸させる等の方法がある。かかる乾式法では
溶剤を全く使用しないため溶液含浸法の様な溶剤
に起因する問題はほとんど払拭される。しかし繊
維基材に含浸される樹脂は溶剤を含まない原料原
体である故に含浸温度では流動性を有するものの
極めて粘稠な液体である故に繊維基材に均一に、
完全に含浸させる為には種々の困難さが併なう。
即ち、多数体互に並行して隣接させた繊維束列の
巾方向に樹脂を均一に供給することが出来ても単
位繊維束当りに均一に樹脂を供給することは容易
ではない。更に供給された樹脂を繊維束に均一に
完全に含浸させることは溶液含浸法の場合に比べ
加熱により低粘度化したとしても圧倒的に樹脂粘
度が高い故に樹脂分布の不均一及び含浸不足を生
ずる。多数本の繊維束列を溶融した樹脂浴を通過
させたり又は一定量保持させたロール等から移し
取ることも考えられるが粘着樹脂を付着し更に含
浸させるためにロール又はガイドを経て通過させ
ることは、ロール又はガイドのまわりに繊維フイ
ラメントが巻き付く傾向があり、毛羽、毛玉等の
外観上の欠陥を生ずるとともに製造作業を中断さ
せられる等の欠点を有する。又程度の差はあるけ
れども、溶液含浸法に於いても此様な欠点は同様
に存在する。 よつて乾式法プリプレグ製造法で樹脂分布を均
一に含浸不足を起させないため、又は毛羽、毛
玉、隙間、フイツシユアイ等の外観上の欠陥を少
なくするためには、含浸前に予め繊維束を充分に
押し拡げておき、その后、所定量の溶融樹脂を供
給し含浸させることが必要となる。 特に薄物のプリプレグ・シートを製作する場合
には予め繊維束を充分に押し拡げることが必須の
要件となる。 しかし、従来の乾式法では溶剤による悪影響を
回避する為空間を平行に配置した複数個のバー或
は回転ローラー等を交互にくぐらせたり、曲面上
に沿わせてローラーで押し付けることにより、或
る程度繊維束を押し拡げた后、溶融樹脂を含浸し
ている。しかし此様な方法では繊維束とバー、ロ
ーラー等との摩擦抵抗が大きく、所望の押し拡げ
巾にするためには、多数本のバー、ローラーをく
ぐらせ更に可なりの張力を必要とし繊維束の損傷
も大きくなり、毛羽、毛玉、フイツシユ・アイ等
の欠陥をプリプレグに生ずることになる。又薄物
プリプレグの製作に必要な押し拡げ巾にすること
が不可能な場合もある。 即ち、従来の各種提案されている乾燥法では樹
脂の供給に力点が置かれ未含浸繊維束の押し拡げ
は不充分のまま溶融樹脂との含浸が行なわれ含浸
工程と同時に又は含浸工程に次いで繊維束が最終
プリプレグ巾になる迄押し拡げられていた。繊維
束に粘稠樹脂を含浸させるためには、樹脂を加熱
してより低粘度化する方が好ましく、高粘度液の
含浸は含浸不足又は不均一含浸を生じ易い。一
方、樹脂を含浸した繊維束を押し拡げるために
は、或る程度増粘した樹脂液でなければ、樹脂の
みがプリプレグ中を移動して浸み出してしまい均
一な樹脂分布のプリプレグが得られない。 更により薄物のプリプレグを作成するために
は、繊維束を原糸束の数倍の巾に迄押し拡げなけ
ればならない。しかし、このことは非常に困難で
あるのみならず、繊維束同士の引揃え状態に乱れ
を生じ、隙間、糸の乱れ等の欠陥を生じる。 以上の様に溶剤による悪影響を無くした乾式法
でか含浸前の溶融樹脂原体が粘稠である故に含浸
工程及びそれに連く押し拡げ工程にて、樹脂の含
浸不足、樹脂分布の不均一を生じ、又生成プリプ
レグの外観上の欠陥(隙間、糸の乱れ他)を生じ
ることになる。 本発明者等は上記点に鑑み、溶剤による悪影響
を除いた乾式法を採ることにより、樹脂の含浸不
足及び樹脂、繊維の分布の不均一を生ぜずに、生
成プリプレグの厚みが一定で、毛羽、毛玉、隙
間、糸の乱れ、フイツシユ・アイ等の外観上の欠
陥を無くしたプリプレグを連続的に製造する方法
を鋭意検討した結果本発明方法を見い出すに到つ
た。 即ち、複数本の互に一方向に並行して並べた繊
維束を溶剤中、又は溶剤で湿潤させた状態で、円
柱又は円筒類の少なくとも一部の曲面を有する基
材の曲面に沿わせて張力をかけながら連続的に引
取ることにより該繊維束を押し拡げる工程と、押
し拡げられた繊維束を乾燥する工程と、乾燥した
繊維束列に一定量の溶融樹脂を含浸させる工程と
を含むことからなる一方向引揃えプリプレグ・シ
ートの連続製造方法である。 従来の乾式で行なう押し拡げ方法に比べ、本発
明方法の如く溶剤中又は溶剤で湿潤させた状態で
張力をかけながら押し拡げを行なうことは、糸張
力で基材の曲面に押し付けられることにより繊維
束は順次押し拡げられると同時に、原料繊維束に
付着している集束剤を溶解して拘束力を解き放す
効果をも生ずる。又溶剤中又は溶剤で湿潤させた
状態の方が繊維束と基材の曲面との摩擦抵抗が極
めて小さくなり僅かの張力で少数及び少量だけ基
材の曲面に沿わせるだけで所望の押し拡げ巾に押
し拡げることが出来るのみならず、繊維束の損傷
も極めて軽微に押えられる。繊維束の押し拡げ巾
は使用繊維束の集束剤含量、円柱又は円筒類の少
なくとも一部の曲面を有する基材の径、個数、組
み合せ形式、空間配置、表面仕上げ、材質、繊維
束との接触状態(基材が固定式又は自由回転式)、
引取り張力、引取り速度等によつて変化し、一義
的には規定しえないが、押し拡げ巾と繊維束の損
傷とのバランスを考慮して選択することが必要で
ある。よつて単位繊維束当りの押し拡げ巾は特に
規定しないが、所望プリプレグの最終巾及び厚み
に相当する繊維分布量に対して50%以上出来れば
100%以上単位繊維束を押し拡げることが好まし
い。即ち、溶融樹脂を含浸后再度、単位繊維束当
り可なりの倍率で押し拡げることは生成プリプレ
グ中に隙間、糸の乱れ等の欠陥を生じ易く樹脂、
繊維分布の不均一を生じ易い故に出来るだけ溶融
樹脂含浸前に繊維束を押し拡げておくことが望ま
しい。 一方、所望プリプレグの最終巾及び厚みに相当
する繊維分布量に対して単位繊維束を100%以上
押し拡げることは押し拡げた単位繊維束の一部を
交互に重ね合わせて最終的には、所望の巾及び厚
みに仕上げることにより、隙間のない繊維束間の
結合力を強めたプリプレグを製作することが出来
る点で更に有効である。即ち、複数個互に一方向
に並行して隣接させた繊維束列を位置決めしてか
ら単位繊維束を一ツ置きに取り分け各々の繊維列
を溶剤中又は溶剤で湿潤させた状態で空間に配置
した円柱又は円筒類の少なくとも一部の曲面を有
する基材の曲面に沿わせて張力をかけながら連続
的に引取ることにより所望のプリプレグの最終巾
及び厚みに相当する繊維分布量に対して100%以
上単位繊維束を押し拡げた后、(しかし、単位繊
維束同士が接触しないため200%未満の巾にする
ことが必要である)各々の繊維束列を互に重ね合
わせることにより隙間のない繊維束シートが作成
できる。又実用的な繊維束の重ね合わせ方法とし
ては、複数本の繊維束を100%未満迄は、同一基
材曲面に沿わせて押し拡げた后、単位繊維束を一
ツ置きに取り分け各々別の基材曲面か又は同一基
材曲面の表裏に沿わせて100%以上押し拡げた后、
各々の繊維束列を互に重ね合わせることも有効で
ある。 又、上記様に溶剤中又は溶剤で湿潤させた状態
で原料繊維束に付着している集束剤を取り去つた
后、押し拡げられた繊維束や押し拡げられた状態
を保持させるために更に集束剤を溶解した溶液中
に浸漬したり、溶液を吹付けた后、充分に加熱乾
燥して溶剤を取除き、押し拡げられた繊維束シー
トを固定することも本発明方法に含まれ極めて有
効な結果をもたらす。更に実用性を加味した有効
な方法としては、本発明方法の押し拡げ工程に用
いる溶剤に集束剤を予め溶解しておいた溶液を使
用することである。集束剤の溶解量は特に規定し
ないが概ね10wt%以下の溶液が好ましい。 猶、本発明方法を実施するにあたり用いられる
繊維束としては、単繊維が多数本集合してなる繊
維の束であつて連続した長繊維の束からなるヤー
ン又はトウ等が好ましい。例示すれば、ポリアミ
ド、ポリエステル、ポリアクリロニトリル、ポリ
ビニルアルコール他の有機繊維、芳香族ポリアミ
ド(例ケプラー(米デユポン社)他)、ポリフル
オロカーボン、フエノール樹脂(例カイノール
(米カーボンランダム社)、ポリアミドイミド、ポ
リイミド他の有機耐熱性繊維、レーヨン他の天然
繊維、ガラス、窒化ホウ素、炭素(炭素質、黒鉛
質、耐炎質を含む)、窒化ケイ素、シリコンカー
バイド、アルミナ、ジルコニア、アスベスト他の
無機繊維、銅、タングステン合金、鉄、アルミニ
ウム、ステンレス他の金属繊維、ホウ素(芯線−
タングステン)炭化ホウ素(芯線−タングステ
ン)、シリコンカーバイド(芯線−タングステン、
ホウ素)他の複合繊維等全ゆる繊維形状を有する
ものが含まれる。又、上記各種繊維のうち2種以
上組み合わせたものから構成される繊維束も使用
できる。 又、本発明方法に用いられる溶剤としてはアセ
トン、メチルエチルケトン他のケトン類、メチル
アルコール、エチルアルコール、イソプロピルア
ルコール他のアルコール類、酢酸エチル、メチル
セルソルブ、他のエステル類、エチルエーテル、
メチルイソプロピルエーテル、テトラヒドロフラ
ン他のエーテル類、メチレンクロリド、クロロホ
ルム他のハロゲン化炭化水素類、トルエン、キシ
レン、ヘキサン、ヘプタン他の炭化水素類、ジメ
チルホルムアミド、ジメチルアセトアミド、ジメ
チルスルホキシド等から選ばれる1種又は2種以
上の混合溶剤が用いられる。 又、集束剤としてはエポキシ樹脂、不飽和ポリ
エステル樹脂、ビニル樹脂、フエノール樹脂、及
び各種変性フエノール樹脂、メラミン樹脂及び各
種変性メラミン樹脂、ポリウレタン樹脂、ポリビ
ニルアルコール及びポリビニルブチラール樹脂、
ポリアミドイミド樹脂、ポリイミド樹脂、シリコ
ーン樹脂(各種シランカツプリング剤等を含む)、
ジアリルフタレート樹脂等の熱硬化性樹脂及び上
記の原料樹脂又は低分子量物が主として用いられ
る。更にポリスチレン、エチレン−酢酸ビニル共
重合体、ポリ(メタ)アクリル酸、ポリ(メタ)
アクリル酸エステル、ポリアミド、ポリカーボネ
ート、ポリエステル、ポリエーテルスルホン、ポ
リフエニレンオキシド、ポリフエニレンスルフイ
ド等の熱可塑性樹脂及びこれらの低重合物を単独
又は前記熱硬化性樹脂と2種以上の混合物として
使用することも出来る。 更に本発明方法に用いられる溶融樹脂として
は、エポキシ樹脂、不飽和ポリエステル樹脂、ビ
ニル樹脂、フエノール樹脂、メラミン樹脂、ポリ
ウレタン樹脂、ポリビニルアルコール及びポリビ
ニルブチラール樹脂、ポリアミドイミド樹脂、ポ
リイミド樹脂、シリコーン樹脂、ジアリルフタレ
ート樹脂等の熱硬化性樹脂又はポリエチレン、ポ
リプロピレン、ポリスチレン、エチレン−酢酸ビ
ニル共重合体、ポリ塩化ビニル、ポリ(メタ)ア
クリル酸、ポリ(メタ)アクリル酸エステル、ポ
リアミド、ポリカーボネート、ポリエステル、ポ
リエーテルスルホン、ポリフエニレンオキシド、
ポリフエニレンスルフイド等の熱可塑性樹脂を単
独又は2種以上の混合物で使用することも出来
る。 猶、複数個互に一方向に並行して並べた繊維束
は最終押し拡げシート巾に相当する隙間に配置す
る為に植立した櫛状物を予め通過させて位置決め
を行なう方が好ましい。更に円柱又は円筒類の少
なくとも一部の曲面を有する基材としては中実及
び中空の円柱及び円筒であり、大径の内柱又は円
筒の曲面の一部を切り取つたものも用いられる。
材質は特に規定しないが繊維束との摩擦で極端に
変形及び摩耗せず、摩擦係数の小さいものを選定
することが好ましい。通常はステンレススチール
が用いられるが、テフロン樹脂他の合成樹脂張り
の金属、鉄、銅、他の金属基材、ガラス、アルミ
ナ、他の無機物基材等が挙げられる。径、個数、
組み合せ形式、空間配置は押し拡げ巾と繊維束の
損傷とのバランスから選定され一義的に決められ
ないが、弾性率の高い繊維束にはより大径の基材
を用い、基材の個数、組み合せ形式、空間配置は
繊維束と曲面との接触距離と引取り張力に依る基
材への押し付け力を考慮して選定することが望ま
しい。又基材が固定式であるか自由回転式である
か又は繊維束の進行方向に固速差を与えて駆動す
る形式、繊維束の進行方向又は進行方向に垂直な
方向に振動する形式であるかは押し拡げ効果(押
し拡げ巾と繊維束の損傷)に多大の影響をもたら
す。即ち、固定式では押し拡げ巾は大きくなるが
損傷も比較的大きくなり、自由回転式では損傷は
軽微になるが、押し拡げ巾が少ない。他の形式は
これに準じた結果となる。よつて本発明方法を実
施するに当つては上記効果を考慮して固定式、自
由回転式、駆動式、振動式を単独で或は2形式以
上を組み合せて用いることが望ましい。更に繊維
束の引取り張力及び引取り速度は繊維束の乱れが
起らない為に各々均一であることは言うまでもな
いが、押し拡げ効果との相関で選定される。 一方、押し拡げられた繊維束を乾燥する工程
は、極めて重要な工程である。即ち本発明方法は
先に述べた溶剤に起因する問題点を払拭した乾式
法プリプレグ製造法に準ずるものである。よつて
押し拡げられた繊維束を充分に乾燥し製作された
プリプレグ・シートに溶剤分が全く残存しないこ
とが必須となる。乾燥方法は特に規定しないが、
押し拡げられた繊維束の乱れ、毛羽の発生を少な
くし、引取り時、溶剤の凝集力により押し拡げ繊
維束が再凝集するのを防ぐ為に送風式よりも加熱
基材に沿わせて乾燥する形式が好ましい。 溶融樹脂の供給及び含浸方法は従来から行なわ
れている方法を応用することによつて容易に達成
出来る。 即ち、一例を挙げるならば、各種コーテイング
装置及びフイルム製造装置に用いられているエア
ードクターコータ、ブレードコータ、ロツドコー
タ、ナイフコータ、スクイズコータ、含浸コータ
等で予め樹脂を供給し含浸前后で一定量に制御す
る方法、或は、押出しコータ、カレンダコータ、
カーテンコータ、スプレイコータ、キヤストコー
タ、キスロールコータ、グラビアコータ、トラン
スフアーロールコータ、リバースロールコータ等
で一定量の樹脂を供給し含浸させる方法がある。
又樹脂の供給は押し拡げられた繊維束シートに直
接供給するか或は間接的に離型紙等に予め供給す
る或は、予めフイルム状に製作したものを加熱溶
融しながら等何れも良好な結果が得られる。 更に含浸方法については特に規定しないが、加
熱したロール及びプレス等を併用することによつ
て容易に達成できる。 本発明方法の一実施態様は第1図の工程説明図
に示される通りである。複数本の繊維束を連続的
に供給する複数個のクリール2から張力を制御し
ながら繊維束1を供給し押し拡げ装置3を経て
后、乾燥装置4で充分に乾燥される。一方張力を
かけながら巻出された離型紙上に樹脂供給装置5
から溶融樹脂を定量供給し加熱ロール7を通して
巻取り装置8で引取る。 第2図は押し拡げ工程の溶剤中又は溶剤で湿潤
させた状態で引取る工程を示した図であり、第2
図の1は溶剤中に浸漬した例を示し、第2図の2
は溶剤滴下装置9により繊維束列を均等に湿潤す
る方法の一例を示したものである。 第3図は空間に配置した円柱又は円筒類の少な
くとも一部の図面を有する基材に繊維束を沿わせ
る方法を例示したものである、無印の円は固定式
バーであり、矢印付の円は自由回転式又は駆動式
のローラを示す。 以上本発明方法を実施するにあたり各工程の主
たる例を挙げて説明したが上記方法の組み合せで
実施されることは言うまでもない。 猶、本発明方法は繊維束をシート状に予め押し
拡げ、充分に乾燥した后、溶融樹脂を含浸させる
方法を示したもので一方向引揃えプリプレグ・シ
ートの連続製作に有用であるばかりでなく、一方
向引揃えプリプレグ・シートを片面に配したシー
ト ヒールデイング・コンパウンド(SMC)用
のシートの製作法及び一方向引揃えプリプレグを
幾重にも積層したものと考えられるプルトルージ
ヨン法による丸棒、角棒、異形棒の連続製作法へ
の応用も充分に可能である。又、一方向引揃えプ
リプレグ・シートの異方性を解消する為に一方向
に引揃えプリプレグ・シートを適当な角度をつけ
て積層した様な積層シート類の製作及び此様な積
層プリプレグ・シートの製作へも容易に応用でき
る。 又、繊維状物の織物からなるプリプレグ・シー
ト類の製に対しても繊維の損傷を軽減する為の集
束剤等の前記悪影響を除き溶融樹脂の含浸を均一
化する為に非常に有効に利用できる。 以下に本発明方法の具体的な実施例を示すが下
記方法のみに限定されないことは言うまでもな
い。 実施例 1 6000フイラメントの炭素繊維(引張束強度20.1
Kg/本、集束剤付着量0.4wt%)のフイラメン
ト・ヤーン12本を櫛を通して引揃える。引揃えた
ヤーンをテトラヒドロフランを満した槽の中に導
き、槽中で繊維方向に直角で各々20mm間隔で平行
に配置された固定バー(12mm直径、ステンレス・
スチール製)を交互にくぐらせて押し拡げる。次
いで押し拡げられたヤーン列をドラム・ドライヤ
ー(300mm直径、140℃加熱)の2/3周沿わせて乾
燥し又は8m/minで連続的に引取る。
The present invention is an aligned prepreg material that is used as a molding material for fiber-reinforced plastics, has a uniform thickness, has few appearance defects such as fuzz, pilling, gaps, and fish eyes, and is particularly suitable for making thin prepregs. The present invention relates to a sheet manufacturing method. Furthermore, the present invention relates to a method for producing an aligned prepreg sheet which has various advantages in terms of the quality of the resulting molded product since no solvent is used when impregnating the fiber bundle with resin. Conventionally, prepreg sheets are produced by combining fiber bundles, woven fabrics, Infiltrate or impregnate fiber base materials such as nonwoven fabric, mat, paper, etc. It is then produced by heating and drying the solvent from the impregnated fiber base material. However, since the prepreg sheet manufacturing method described above uses a volatile organic solvent, it is heated for a relatively long period of time in order to remove the solvent in the drying process. Therefore, it is difficult for the resin to maintain uniform B-stage characteristics, and as a result, the flow characteristics of the resin in the prepreg sheet during the molding process are not constant, making process control extremely difficult.
A further important problem is that the solvent is not completely removed and remains even at the end of the manufacturing process. Heating for a long time to completely remove the solvent causes the resin to harden, making it impossible to obtain a B-stage state, and drying at low temperatures for a long time significantly reduces productivity. Furthermore, there is a so-called solvation phenomenon between the resin and the solvent, and the solvent cannot be completely removed from the prepreg sheet. After all, the residual solvent in the prepreg sheet is an essential drawback of the solvent impregnation method. The residual solvent in the prepreg sheet evaporates during heating during the molding process, causing foaming and voids, which not only deteriorates various physical properties such as mechanical properties, electrical properties, and chemical resistance, but also reduces fatigue resistance. This will significantly reduce the properties of the molded product and impair the reliability of the molded product.
As mentioned above, the conventional solution impregnation method has various drawbacks in terms of the quality of the obtained molded product due to the residual solvent. On the other hand, in contrast to the solution impregnation method described above, a dry prepreg manufacturing method that does not use any solvent has been proposed. That is, a method in which a fixed amount of powder or paste of a resin compound is sprinkled or applied onto a fiber base material and heated and melted to impregnate it, or a method in which a fixed amount of molten resin is applied on a release paper, or a method in which molten resin is applied in advance to a fixed thickness. There is a method of using a film made and impregnating the fiber base material while heating. Since such a dry method does not use any solvent, the problems caused by solvents as in the solution impregnation method are almost completely eliminated. However, since the resin impregnated into the fiber base material is a raw material that does not contain a solvent, it has fluidity at the impregnation temperature, but is an extremely viscous liquid.
There are various difficulties in achieving complete impregnation.
That is, even if it is possible to uniformly supply the resin in the width direction of a plurality of parallel fiber bundle rows adjacent to each other, it is not easy to uniformly supply the resin per unit fiber bundle. Furthermore, in order to uniformly and completely impregnate the fiber bundle with the supplied resin, even if the viscosity is lowered by heating compared to the solution impregnation method, the resin viscosity is overwhelmingly high, resulting in uneven resin distribution and insufficient impregnation. . Although it is possible to pass a large number of fiber bundles through a molten resin bath or to transfer them from a roll that holds a certain amount, it is not possible to pass them through a roll or guide to adhere and further impregnate the adhesive resin. However, there is a tendency for the fiber filament to wrap around the rolls or guides, resulting in visual defects such as fluff and pilling, as well as interruptions in manufacturing operations. Although there are differences in degree, similar drawbacks also exist in the solution impregnation method. Therefore, in order to uniformly distribute the resin in the dry prepreg manufacturing method and avoid insufficient impregnation, or to reduce appearance defects such as fuzz, pilling, gaps, and hard eyes, it is necessary to prepare the fiber bundles sufficiently before impregnation. It is necessary to press and spread the resin, and then supply and impregnate it with a predetermined amount of molten resin. Particularly when manufacturing thin prepreg sheets, it is essential to sufficiently press and spread the fiber bundles in advance. However, in the conventional dry method, in order to avoid the negative effects of solvents, the material is passed alternately through multiple bars or rotating rollers arranged in parallel spaces, or by pressing rollers along a curved surface. After the fiber bundle is expanded, it is impregnated with molten resin. However, in this method, the frictional resistance between the fiber bundle and the bars, rollers, etc. is large, and in order to obtain the desired spread width, the fiber bundle must pass through many bars and rollers and require a considerable amount of tension. Damage to the prepreg is also increased, resulting in defects such as fuzz, pilling, and fish eyes in the prepreg. Furthermore, it may be impossible to press and spread the material to the width necessary for manufacturing thin prepreg. In other words, in the drying methods that have been proposed in the past, emphasis is placed on supplying the resin, and the unimpregnated fiber bundles are impregnated with molten resin without being sufficiently expanded, and the fiber bundles are impregnated with the molten resin at the same time as the impregnation process or after the impregnation process. The bundle was expanded until it reached the final prepreg width. In order to impregnate a fiber bundle with a viscous resin, it is preferable to heat the resin to lower its viscosity, and impregnation with a high viscosity liquid tends to result in insufficient impregnation or uneven impregnation. On the other hand, in order to spread a fiber bundle impregnated with resin, unless the resin liquid has thickened to a certain degree, only the resin will move through the prepreg and seep out, making it impossible to obtain a prepreg with a uniform resin distribution. do not have. Furthermore, in order to create a thinner prepreg, the fiber bundle must be expanded to a width several times that of the raw yarn bundle. However, this is not only very difficult, but also causes disturbances in the alignment of the fiber bundles, resulting in defects such as gaps and disordered yarns. As mentioned above, since the molten resin base material is viscous before impregnation, insufficient resin impregnation and uneven resin distribution can be avoided in the impregnation process and the subsequent pushing and spreading process. This also results in defects in the appearance of the produced prepreg (gaps, disordered threads, etc.). In view of the above points, the present inventors adopted a dry method that eliminates the adverse effects of solvents, thereby preventing insufficient resin impregnation and non-uniform distribution of resin and fibers, allowing the produced prepreg to have a constant thickness and fluff. As a result of intensive research into a method for continuously producing prepregs that are free from external defects such as pilling, gaps, yarn disorder, and fish eyes, the method of the present invention was discovered. That is, a plurality of fiber bundles arranged in parallel in one direction are placed in a solvent or in a state moistened with a solvent, along the curved surface of a base material having at least a partial curved surface of a cylinder or cylinders. It includes the steps of pushing and spreading the fiber bundle by continuously pulling it under tension, drying the spread fiber bundle, and impregnating the dried fiber bundle row with a certain amount of molten resin. This is a continuous manufacturing method for unidirectionally aligned prepreg sheets. Compared to the conventional dry spreading method, the method of the present invention, in which the spreading is carried out while applying tension in a solvent or in a state moistened with a solvent, allows the fibers to be pressed against the curved surface of the base material by the thread tension. At the same time as the bundle is successively expanded, the effect of dissolving the sizing agent adhering to the raw fiber bundle and releasing the binding force is also produced. In addition, the frictional resistance between the fiber bundle and the curved surface of the base material is extremely small when the fiber bundle is in a solvent or wetted with a solvent, so that the desired width can be expanded by simply aligning a small number of fiber bundles along the curved surface of the base material with a slight tension. Not only can the fiber bundle be spread out, but damage to the fiber bundle can be kept to a minimum. The spread width of the fiber bundle depends on the content of the sizing agent in the fiber bundle used, the diameter, number, combination type, spatial arrangement, surface finish, material, and contact with the fiber bundle of the base material having at least a partially curved surface of the cylinder or cylinder. status (base material is fixed or freely rotating),
It varies depending on the pulling tension, pulling speed, etc., and cannot be univocally defined, but it is necessary to select it in consideration of the balance between the pushing width and damage to the fiber bundle. Therefore, the spread width per unit fiber bundle is not particularly specified, but if it can be 50% or more of the fiber distribution amount corresponding to the final width and thickness of the desired prepreg.
It is preferable to expand the unit fiber bundle by 100% or more. That is, after impregnating the molten resin, pressing and spreading it again at a considerable magnification per unit fiber bundle tends to cause defects such as gaps and disordered yarns in the resulting prepreg.
Since non-uniform fiber distribution tends to occur, it is desirable to spread the fiber bundle as much as possible before impregnating it with the molten resin. On the other hand, to expand the unit fiber bundle by 100% or more with respect to the fiber distribution amount corresponding to the final width and thickness of the desired prepreg, parts of the pressed and expanded unit fiber bundles are overlapped alternately, and finally, the desired It is further effective in that it is possible to produce a prepreg with a strengthened bonding force between fiber bundles without gaps by finishing the fibers to a width and thickness of . That is, after positioning a plurality of fiber bundle rows that are adjacent to each other in parallel in one direction, every other unit fiber bundle is taken out and each fiber row is placed in a space in a solvent or in a state moistened with a solvent. 100% for the fiber distribution amount corresponding to the final width and thickness of the desired prepreg by continuously pulling the base material with tension along the curved surface of at least a part of the curved surface of the cylinder or cylinder. After spreading the unit fiber bundles by more than 20%, (however, it is necessary to make the width less than 200% because the unit fiber bundles do not touch each other), overlap each fiber bundle row with each other so that there is no gap. Fiber bundle sheets can be created. In addition, as a practical method for stacking fiber bundles, after spreading multiple fiber bundles along the curved surface of the same base material until less than 100% of the fiber bundles are stacked, separate every other unit fiber bundle and separate them into separate layers. After expanding by more than 100% along the curved surface of the base material or the front and back sides of the same curved surface,
It is also effective to overlap each fiber bundle row with each other. In addition, after removing the sizing agent attached to the raw fiber bundle in a solvent or in a state moistened with a solvent as described above, the fiber bundle is pressed out and further bundled to maintain the expanded state. The method of the present invention also includes immersing the sheet in a solution containing a fiber bundle or spraying the solution, and then sufficiently heating and drying the sheet to remove the solvent and fixing the spread fiber bundle sheet. bring results. An effective method that takes practicality into account is to use a solution in which a sizing agent is dissolved in advance in the solvent used in the spreading step of the method of the present invention. Although the amount of the sizing agent dissolved is not particularly limited, it is preferably approximately 10 wt% or less. The fiber bundle used in carrying out the method of the present invention is preferably a yarn or tow, which is a fiber bundle made up of a large number of single fibers, and is made up of a continuous long fiber bundle. Examples include polyamide, polyester, polyacrylonitrile, polyvinyl alcohol and other organic fibers, aromatic polyamides (e.g. Kepler (DuPont, USA), etc.), polyfluorocarbons, phenolic resins (e.g. Kynol (Carbon Random, USA), polyamideimide, Polyimide and other organic heat-resistant fibers, rayon and other natural fibers, glass, boron nitride, carbon (including carbonaceous, graphite, and flame-resistant materials), silicon nitride, silicon carbide, alumina, zirconia, asbestos and other inorganic fibers, copper , tungsten alloy, iron, aluminum, stainless steel and other metal fibers, boron (core wire)
Tungsten) boron carbide (core wire - tungsten), silicon carbide (core wire - tungsten,
(Boron) and other composite fibers having all types of fiber shapes are included. Furthermore, a fiber bundle composed of a combination of two or more of the above-mentioned various fibers can also be used. Solvents used in the method of the present invention include acetone, methyl ethyl ketone and other ketones, methyl alcohol, ethyl alcohol, isopropyl alcohol and other alcohols, ethyl acetate, methyl cellosolve, other esters, ethyl ether,
One selected from methyl isopropyl ether, tetrahydrofuran and other ethers, methylene chloride, chloroform and other halogenated hydrocarbons, toluene, xylene, hexane, heptane and other hydrocarbons, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, etc. A mixed solvent of two or more types is used. In addition, as sizing agents, epoxy resins, unsaturated polyester resins, vinyl resins, phenolic resins, various modified phenolic resins, melamine resins and various modified melamine resins, polyurethane resins, polyvinyl alcohol and polyvinyl butyral resins,
Polyamide-imide resin, polyimide resin, silicone resin (including various silane coupling agents, etc.),
Thermosetting resins such as diallyl phthalate resins and the above-mentioned raw material resins or low molecular weight materials are mainly used. Furthermore, polystyrene, ethylene-vinyl acetate copolymer, poly(meth)acrylic acid, poly(meth)
Thermoplastic resins such as acrylic esters, polyamides, polycarbonates, polyesters, polyethersulfones, polyphenylene oxides, polyphenylene sulfides, etc., and low polymers thereof, alone or as a mixture of two or more with the above thermosetting resins You can also use Furthermore, the molten resins used in the method of the present invention include epoxy resins, unsaturated polyester resins, vinyl resins, phenolic resins, melamine resins, polyurethane resins, polyvinyl alcohol and polyvinyl butyral resins, polyamideimide resins, polyimide resins, silicone resins, and diallyl resins. Thermosetting resins such as phthalate resins, polyethylene, polypropylene, polystyrene, ethylene-vinyl acetate copolymer, polyvinyl chloride, poly(meth)acrylic acid, poly(meth)acrylic ester, polyamide, polycarbonate, polyester, polyether sulfone, polyphenylene oxide,
Thermoplastic resins such as polyphenylene sulfide can be used alone or in a mixture of two or more. However, in order to arrange a plurality of fiber bundles arranged in parallel in one direction in a gap corresponding to the width of the final spread sheet, it is preferable to position the fiber bundles by passing them through a comb-like object that is planted in advance. Furthermore, the base material having at least a part of the curved surface of a cylinder or cylinders includes solid and hollow cylinders and cylinders, and a material obtained by cutting a part of the curved surface of a large-diameter inner pillar or cylinder is also used.
Although the material is not particularly specified, it is preferable to select a material that does not undergo extreme deformation or wear due to friction with the fiber bundle and has a small coefficient of friction. Stainless steel is usually used, but metals coated with synthetic resins such as Teflon resin, iron, copper, other metal substrates, glass, alumina, and other inorganic substrates may be used. Diameter, number,
The combination type and spatial arrangement are selected based on the balance between the spread width and the damage to the fiber bundle, and cannot be determined unambiguously, but it is important to use a larger diameter base material for fiber bundles with high elastic modulus, and to increase the number of base materials. It is desirable to select the combination format and spatial arrangement in consideration of the contact distance between the fiber bundle and the curved surface and the pressing force against the base material due to the pulling tension. In addition, the base material is fixed or freely rotatable, or is driven by giving a fixed speed difference in the traveling direction of the fiber bundle, or is vibrated in the traveling direction of the fiber bundle or in a direction perpendicular to the traveling direction. This has a great effect on the spreading effect (damage to the spreading width and fiber bundles). That is, in the fixed type, the pushing width is large, but the damage is relatively large, and in the free rotating type, the damage is slight, but the pushing spreading width is small. Other formats will yield similar results. Therefore, when carrying out the method of the present invention, it is desirable to use a fixed type, a free rotation type, a driven type, and a vibration type alone or in combination of two or more types in consideration of the above effects. Furthermore, it goes without saying that the tension and speed at which the fiber bundle is taken up are uniform because no disturbance occurs in the fiber bundle, but they are selected based on the correlation with the spreading effect. On the other hand, the step of drying the expanded fiber bundle is an extremely important step. That is, the method of the present invention is similar to the dry prepreg manufacturing method that eliminates the problems caused by the solvent mentioned above. It is essential that the spread fiber bundle is sufficiently dried so that no solvent remains in the prepared prepreg sheet. The drying method is not particularly specified, but
Drying is performed along the heated substrate rather than the blower method in order to reduce the disturbance of the spread fiber bundles and the occurrence of fluff, and to prevent the spread fiber bundles from re-agglomerating due to the cohesive force of the solvent when taken. The preferred format is The method of supplying and impregnating the molten resin can be easily accomplished by applying conventional methods. That is, to give one example, resin is supplied in advance using an air doctor coater, blade coater, rod coater, knife coater, squeeze coater, impregnation coater, etc. used in various coating devices and film manufacturing devices, and the resin is controlled to a constant amount before and after impregnation. or an extrusion coater, a calendar coater,
There is a method of supplying and impregnating a certain amount of resin using a curtain coater, spray coater, cast coater, kiss roll coater, gravure coater, transfer roll coater, reverse roll coater, etc.
In addition, the resin can be supplied directly to the expanded fiber bundle sheet, indirectly supplied to a release paper, etc., or by heating and melting a film made in advance, all of which give good results. is obtained. Further, the impregnation method is not particularly specified, but it can be easily achieved by using a heated roll, press, etc. in combination. One embodiment of the method of the present invention is shown in the process diagram of FIG. The fiber bundle 1 is supplied from a plurality of creels 2 that continuously supply a plurality of fiber bundles while controlling the tension, passes through a spreading device 3, and is sufficiently dried in a drying device 4. On the other hand, the resin supply device 5
A fixed amount of molten resin is supplied from the heating roll 7 and taken up by a winding device 8. Figure 2 is a diagram showing the process of taking the product in a solvent or moistened with a solvent during the pushing and spreading process.
Figure 1 shows an example of immersion in a solvent, and Figure 2 shows an example of immersion in a solvent.
1 shows an example of a method for uniformly wetting fiber bundle rows using a solvent dripping device 9. Figure 3 shows an example of a method for making a fiber bundle follow a base material that has at least a partial drawing of a cylinder or cylinders arranged in space. The unmarked circles are fixed bars, and the circles with arrows indicates a free-rotating or driven roller. Although the method of the present invention has been described above with reference to main examples of each step, it goes without saying that the method can be carried out in combination with the above methods. However, the method of the present invention shows a method in which fiber bundles are spread in advance into a sheet shape, and after sufficiently drying, impregnated with molten resin, which is not only useful for continuous production of unidirectionally aligned prepreg sheets. , a sheet with a unidirectionally aligned prepreg sheet on one side A method for manufacturing a sheet for heeling compound (SMC) and a round bar made by the pultrusion method, which is thought to be made by laminating multiple layers of unidirectionally aligned prepreg sheets It is also fully possible to apply this method to continuous production of square bars and irregularly shaped bars. In addition, in order to eliminate the anisotropy of prepreg sheets aligned in one direction, we manufacture laminated sheets such as prepreg sheets aligned in one direction and laminated at an appropriate angle, and such laminated prepreg sheets. It can also be easily applied to the production of. In addition, for the manufacture of prepreg sheets made of fibrous fabrics, it is very effectively used to eliminate the above-mentioned negative effects such as a sizing agent to reduce damage to the fibers and to uniformize the impregnation of the molten resin. can. Specific examples of the method of the present invention are shown below, but it goes without saying that the method is not limited to the following method. Example 1 6000 filament carbon fiber (tensile bundle strength 20.1
Twelve filament yarns with a weight of 0.4 wt% (Kg/strand, sizing agent coverage: 0.4 wt%) are pulled together through a comb. The aligned yarns were guided into a tank filled with tetrahydrofuran, and in the tank fixed bars (12 mm diameter, stainless steel
(made of steel) alternately pass through and press to spread. The expanded yarn row is then dried along two-thirds of the circumference of a drum dryer (300 mm diameter, heated at 140° C.) or continuously taken off at 8 m/min.

【表】 比較例 1 実施例1に使用したのと同一の炭素繊維をテト
ラヒドロフランを満した槽を使用せずに大気下に
繊維方向に直角で各々20mm間隔で平行に配置され
た固定バー(12mm直径、ステンレス・スチール
製)を交互にくぐらせて押し拡げながら1又は8
m/minで連続的に引取る。
[Table] Comparative Example 1 The same carbon fibers used in Example 1 were fixed bars (12 mm diameter, made of stainless steel), alternately passing through the tubes and spreading them out.
Continuously withdrawn at m/min.

【表】 実施例 2 実施例1と同様に6000フイラメントの炭素繊維
(引張束強度20.1Kg/本、集束剤付着量0.4wt%)
のフイラメント・ヤーン12本を8.2mmピツチの櫛
を通して引揃える。引揃えたヤーンテトラヒドロ
フランを満した槽の中に導き、槽中で繊維方向に
直角で各々20cm間隔で平行に配置された5本の固
定バー(12mm直径、ステンレス・スチール製)を
交互にくぐらせて押し拡げる。次いで隙間なく押
し拡げられたヤーン列をドラムドライヤー(300
mm直径、140℃加熱)の2/3周沿わせて乾燥し引取
張力差12Kgで巾100mmの一方向引揃えシートを8
m/minの速度で引取つた。次にこの引揃えシー
トにエポキシ樹脂(スミエポキシELA−128 100
部、BF3・MEA3PHR)を80℃に加温しながら
一定量供給し、100℃に加熱したロール間で押え
付け樹脂を含浸させて50ミクロン厚(Vf=60%
硬化時厚み)の一方向引揃えプリプレグ・シート
を連続製作した。 この引揃えプリプレグ・シートを一方向で積層
し120mm×6mm×2mm厚で成形したサンプルの繊
維方向の曲げ強度は172Kg/mm2、曲げ弾性率は
11.5T/mm2であり、層間剪断強度は9.1Kg/mm2であ
つた。この時の繊維体積含有率は60%であつた。
[Table] Example 2 Same as Example 1, 6000 filament carbon fiber (tensile bundle strength 20.1Kg/piece, sizing agent adhesion amount 0.4wt%)
Thread 12 filament yarns through an 8.2 mm pitch comb. The aligned yarns were guided into a tank filled with tetrahydrofuran, and in the tank they were passed alternately through five fixed bars (12 mm diameter, made of stainless steel) placed in parallel at 20 cm intervals, perpendicular to the fiber direction. Press and spread. Next, the row of yarns that were spread out without any gaps were passed through a drum dryer (300
8 mm diameter, heated at 140℃) along the 2/3 circumference, and a unidirectionally aligned sheet with a width of 100 mm was
It was picked up at a speed of m/min. Next, apply epoxy resin (Sumi Epoxy ELA-128 100) to this alignment sheet.
BF3・MEA3PHR) is supplied in a constant amount while heating it to 80℃, and is pressed between rolls heated to 100℃, impregnated with resin and made into a 50 micron thick (V f = 60%).
We continuously produced prepreg sheets aligned in one direction with a thickness (thickness when cured). The bending strength in the fiber direction of a sample made by laminating these aligned prepreg sheets in one direction and molding them to a thickness of 120 mm x 6 mm x 2 mm was 172 Kg/mm 2 , and the bending modulus was
The interlaminar shear strength was 9.1 Kg/mm 2 . The fiber volume content at this time was 60%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の引揃えプリプレグ・シートの
連続製造方法の一実施態様の工程説明図、第2〜
第3図は空間に配置した円柱又は円筒類の少なく
とも一部の曲面を有する押し拡げ工程の為の基材
及び繊維束の配置図を示す。 1……繊維束、2……クリール、3……押し拡
げ装置、4……乾燥装置、5……樹脂供給装置、
6……離型紙巻出し機、7……含浸ローラー、8
……巻取り装置、9……溶剤滴下装置。
FIG. 1 is a process explanatory diagram of an embodiment of the method for continuously manufacturing aligned prepreg sheets of the present invention, and FIG.
FIG. 3 shows a layout diagram of a base material and a fiber bundle for the pressing and spreading process, which has a curved surface of at least a part of a cylinder or cylinders arranged in a space. 1... Fiber bundle, 2... Creel, 3... Push-spreading device, 4... Drying device, 5... Resin supply device,
6...Release paper unwinding machine, 7...Impregnation roller, 8
... Winding device, 9... Solvent dripping device.

Claims (1)

【特許請求の範囲】[Claims] 1 複数本互に一方向に並行して並べた繊維束を
溶剤中又は溶剤で湿潤させた状態で円柱又は円筒
類の少なくとも一部の曲面を有する基材の曲面に
沿わせて張力をかけながら連続的に引取ることに
より該繊維束を押し拡げる工程と、押し拡げられ
た繊維束を乾燥する工程と、乾燥した繊維束列に
一定量の溶融樹脂を含浸させる工程とを含むこと
を特徴とする一方向引揃えプリプレグ・シートの
連続製造方法。
1. A plurality of fiber bundles arranged in parallel in one direction are placed in a solvent or moistened with a solvent while applying tension along the curved surface of a base material having at least a part of the curved surface of a cylinder or cylinders. It is characterized by comprising the steps of pushing and spreading the fiber bundles by continuously taking them, drying the pressed and spreading fiber bundles, and impregnating the dried fiber bundle rows with a certain amount of molten resin. A continuous manufacturing method for unidirectionally aligned prepreg sheets.
JP13019180A 1980-09-18 1980-09-18 Continuous preparation of prepreg sheet containing parallely aranged fibers Granted JPS5756220A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP13019180A JPS5756220A (en) 1980-09-18 1980-09-18 Continuous preparation of prepreg sheet containing parallely aranged fibers
GB8127709A GB2086444B (en) 1980-09-18 1981-09-14 Process for continuous production of prepreg sheets
DE19813137098 DE3137098A1 (en) 1980-09-18 1981-09-17 METHOD FOR THE CONTINUOUS PRODUCTION OF PREPREG LAYERS
FR8117562A FR2491827A1 (en) 1980-09-18 1981-09-17 PROCESS FOR THE CONTINUOUS PRODUCTION OF PRE-IMPREGNATED SHEETS
US06/478,880 US4495017A (en) 1980-09-18 1983-03-25 Process for continuous production of prepreg sheets

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13019180A JPS5756220A (en) 1980-09-18 1980-09-18 Continuous preparation of prepreg sheet containing parallely aranged fibers

Publications (2)

Publication Number Publication Date
JPS5756220A JPS5756220A (en) 1982-04-03
JPS646012B2 true JPS646012B2 (en) 1989-02-01

Family

ID=15028254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13019180A Granted JPS5756220A (en) 1980-09-18 1980-09-18 Continuous preparation of prepreg sheet containing parallely aranged fibers

Country Status (1)

Country Link
JP (1) JPS5756220A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189935A (en) * 2013-03-28 2014-10-06 Takemoto Oil & Fat Co Ltd Processing method for carbon fiber yarn

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183006A (en) * 1984-10-01 1986-04-26 Mitsubishi Rayon Co Ltd Manufacture of prepreg sheet reinforced by fiber sheet-like substance oriented in one direction
JPS63235345A (en) * 1987-03-25 1988-09-30 Shin Kobe Electric Mach Co Ltd Production of laminate
US5201979A (en) * 1987-05-08 1993-04-13 Research Association For New Technology Development Of High Performance Polymer Method of manufacturing a sheet-prepreg reinforced with fibers
US5445701A (en) * 1987-05-08 1995-08-29 Research Association For New Technology Development Of High Performance Polymer Apparatus of manufacturing a sheet-prepreg reinforced with fibers
JPH0825200B2 (en) * 1987-07-11 1996-03-13 株式会社神戸製鋼所 FRTP continuous prepreg manufacturing method and manufacturing apparatus
WO2000005049A1 (en) * 1998-07-22 2000-02-03 Koichi Okano Fiber-reinforced plastic and denture base made therefrom
US8043669B2 (en) 2006-11-09 2011-10-25 Teijin Chemicals Ltd. Composite material and process for the production thereof
US8652570B2 (en) * 2006-11-16 2014-02-18 Honeywell International Inc. Process for forming unidirectionally oriented fiber structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4865269A (en) * 1971-12-10 1973-09-08
JPS4981472A (en) * 1972-12-11 1974-08-06
JPS5915096B2 (en) * 1977-05-07 1984-04-07 旭フアイバ−グラス株式会社 Method for manufacturing a rolled glass fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014189935A (en) * 2013-03-28 2014-10-06 Takemoto Oil & Fat Co Ltd Processing method for carbon fiber yarn

Also Published As

Publication number Publication date
JPS5756220A (en) 1982-04-03

Similar Documents

Publication Publication Date Title
US4495017A (en) Process for continuous production of prepreg sheets
US5171630A (en) Flexible multiply towpreg
US5094883A (en) Flexible multiply towpreg and method of production therefor
EP0814916B1 (en) Flexible low bulk pre-impregnated tow
US5198281A (en) Non-woven flexible multiply towpreg fabric
US7790284B2 (en) Flexible composite prepreg materials
US10626235B2 (en) Flexible composite prepreg materials
US20120251823A1 (en) Tow prepreg and system and method for forming the same
US20020150752A1 (en) Process for manufacturing a composite tape formed from reinforcing fibres and fibres of a thermoplastic organic material
JPH0580330B2 (en)
HUE033121T2 (en) Consolidated fibre bundle
JPS646012B2 (en)
JP3575718B2 (en) Manufacturing method of tow prepreg
JPS61229535A (en) Method and device for manufacturing fiber reinforced resin sheet
KR100944706B1 (en) Manufacturing process and manufacturing apparatus for unidirectional fiber sheet
JPS6036136A (en) Manufacture of long-sized product of thermoplastic resin reinforced with fiber
JP5301132B2 (en) Prepreg manufacturing equipment
JPS643974B2 (en)
JPH09255799A (en) Process and apparatus for preparing yarn prepreg
CZ141299A3 (en) Process for producing thread and article containing such thread
KR890003570B1 (en) Manufacturing process of orientated fiber reinforced prepreg sheet resinforced by woven cloth
JPS5831716A (en) Continuous manufacture of prepreg sheet
JPS61229536A (en) Method and apparatus for producing fiber-reinforced resin sheet
CA2312467C (en) Flexible low bulk pre-impregnated tow
JP2005255927A (en) Thermoplastic resin prepreg and its manufacturing process