WO2000005049A1 - Fiber-reinforced plastic and denture base made therefrom - Google Patents

Fiber-reinforced plastic and denture base made therefrom Download PDF

Info

Publication number
WO2000005049A1
WO2000005049A1 PCT/JP1999/003901 JP9903901W WO0005049A1 WO 2000005049 A1 WO2000005049 A1 WO 2000005049A1 JP 9903901 W JP9903901 W JP 9903901W WO 0005049 A1 WO0005049 A1 WO 0005049A1
Authority
WO
WIPO (PCT)
Prior art keywords
silk
fiber
denier
added
reinforced plastic
Prior art date
Application number
PCT/JP1999/003901
Other languages
French (fr)
Japanese (ja)
Inventor
Koichi Okano
Yoshinori Nakamura
Shigeki Takii
Original Assignee
Koichi Okano
Yoshinori Nakamura
Shigeki Takii
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koichi Okano, Yoshinori Nakamura, Shigeki Takii filed Critical Koichi Okano
Priority to JP2000561026A priority Critical patent/JP4540228B2/en
Publication of WO2000005049A1 publication Critical patent/WO2000005049A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C13/00Dental prostheses; Making same
    • A61C13/01Palates or other bases or supports for the artificial teeth; Making same

Definitions

  • the present invention relates to a fiber-reinforced plastic having high strength and a high adaptability to an ecological environment such as a human body and nature, and a denture base formed of the fiber-reinforced plastic.
  • plastics originally used as plastics were polyethylene (PE) and polypropylene (PP), which had little toxicity, burned relatively cleanly when discarded and burned, and had some utility Was something. Then polyethylene (PE) and polypropylene (PP), which had little toxicity, burned relatively cleanly when discarded and burned, and had some utility Was something. Then polyethylene (PE) and polypropylene (PP), which had little toxicity, burned relatively cleanly when discarded and burned, and had some utility Was something. Then polyethylene
  • plastics made of organochlorine compounds such as polyvinyl chloride (PVC) can produce dioxins due to the high temperature during incineration and chlorine contained in the plastics when they are incinerated after production and consumption.
  • PVC polyvinyl chloride
  • Dioxin has two toxicities, acute toxicity and chronic toxicity, and exhibits chronic toxicity such as carcinogenicity and teratogenicity due to long-term ingestion of low concentrations of dioxin.
  • dioxin is also contained in the defoliants used during the Vietnam War, and many malformed babies were born after the end of the war, and cancer patients occurred.
  • Bisphenol A bis — A
  • PSF polystyrene resin
  • vinyl chloride and plasticizer phthalic acid compounds, such as phthalic acid esters, added as an environmental hormone (endocrine disrupting chemicals) that affect the endocrine function of living organisms such as the human body. It has been recognized that such endocrine disruptors inhibit the normal growth of living cells and have a great adverse effect on the human body and the natural environment.Ecology is caused by dioxin generated during incineration and bisphenol A eluted. There is concern about the impact on the environment.
  • the newly provided plastics include conventional plastics such as polyvinyl chloride (PVC) and polycarbonate (PC). It is highly desired that the material has a high degree of adaptability to the ecological environment while maintaining its strength and other characteristics, and that it can protect the global environment and maintain the health of the human body.
  • PVC polyvinyl chloride
  • PC polycarbonate
  • denture bases are made of plastics used directly on the human body, such as denture bases.
  • conventional denture base materials are made of polycarbonate resin ⁇ sulfone resin, and polyvinyl chloride is used to further strengthen the strength. Was sometimes mixed.
  • Polycarbonate, polychlorinated chloride, and the like are plastics having the above-mentioned risks, and there is a strong concern that leaving the current state of the denture base on the human body would be serious.
  • the present invention has been made in view of the above problems, and has excellent characteristics such as high strength, has high adaptability to an ecological environment, and aims to preserve the global environment and maintain human health.
  • An object of the present invention is to provide a fiber-reinforced plastic capable of performing the above-mentioned steps, and a denture base made of the fiber-reinforced plastic.
  • the fiber-reinforced plastic and the denture base of the present invention have no danger of producing chemical substances harmful to the ecological environment, such as dioxins and environmental hormones (endogenous disrupting chemicals) generated during waste incineration, and have high strength. It exhibits a high function with such characteristics.
  • the fiber-reinforced plastic according to the present invention is characterized in that a predetermined percentage of silk fiber is dispersed and added to a synthetic resin harmless to the ecological environment.
  • the synthetic resin is any one of methyl methacrylate resin, polyethylene, and polypropylene
  • the silk fiber is a powdery fine piece, a raw yarn shape, and a twisted yarn shape. It is preferable to use any one of these or a combination thereof.
  • the denture base according to the present invention is characterized by being formed of a fiber-reinforced plastic in which a predetermined ratio of silk is dispersed and added to a synthetic resin harmless to the ecological environment.
  • the synthetic resin is any one of methyl methacrylate resin, polyethylene, and polypropylene
  • the silk fiber is any one of powdery fine crushed pieces, raw yarn shape, twisted yarn shape, or a combination thereof. It is suitable.
  • the above-mentioned fiber-reinforced plastic and its denture base are made of synthetic resin that is harmless to the ecological environment, and silk fiber, which is a natural material, is added. It has a high degree of adaptability to safety and is safe.
  • the base material is a methyl methacrylate resin, polyethylene, polypropylene, etc.
  • it has the same or higher strength as the organochlorine compound and does not generate dioxin when incinerated and does not leak environmental hormones. Does not adversely affect the human body or natural environment.
  • the fiber-reinforced plastic using a methyl methacrylate resin as a base material has a high strength, and the fiber-reinforced material is inconspicuous and has a high aesthetic property, and is most suitable as a material directly used for a human body such as a denture base.
  • the fiber-reinforced plastic and the denture base of the present invention have the following advantages in detail.
  • Silk fiber as a reinforcing material does not impair the aesthetics of products made of this fiber-reinforced plastic. Superior aesthetics compared to products using glass fiber or carbon fiber, because the mixed reinforcing material has a transparent feeling and does not affect the aesthetics of the product ing.
  • Figure 1 is an explanatory diagram showing the silk fiber structure
  • FIG. 2 is a cross-sectional view showing the structure of sericin
  • FIG. 3 (a) is a partial perspective view showing a cotton-like 1.0 denier raw silk
  • Fig. 3 (b) is a partial perspective view showing a two-ply 27 denier silk
  • Fig. 3 (c). Is a partial perspective view showing silk with 4 strands of 29 denier
  • FIG. 3 (d) is a partial perspective view showing silk with 32 deniers of 6 strands
  • FIG. 4 is a methyl methacrylate resin (or polypropylene).
  • FIG. 5 is an explanatory view showing a test piece of polyethylene
  • Fig. 6 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the bending stress at the maximum load when the base material is methyl methacrylate resin.
  • FIG. 7 is a graph showing the relationship between the mixing weight ratio of the cotton denier 1.0 denier silk and the bending stress at the maximum load when the base material is methyl methacrylate resin,
  • Fig. 8 is a graph showing the relationship between the mixing weight ratio of two-ply 27 denier silk and the bending stress at maximum load when methyl methacrylate is used as the base material.
  • Fig. 9 is a graph showing the relationship between the mixing weight ratio of 4-strand 29 denier silk and the bending stress at the maximum load when methyl methacrylate resin is used as the base material.
  • Fig. 10 is a graph showing the relationship between the mixing weight ratio of 6-ply 32 denier silk and the bending stress at the maximum load when the base material is methyl methacrylate resin,
  • Fig. 11 is a graph showing the relationship between the mixing weight ratio of each added silk and the bending stress at the maximum load when the base material is methyl methacrylate resin
  • Fig. 12 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the tensile stress at maximum load when polyethylene is used as the base material.
  • Fig. 13 is a graph showing the relationship between the mixed weight ratio of cotton denier 1.0 denier silk and the tensile stress at the maximum load when the base material is polyethylene,
  • Fig. 14 is a graph showing the relationship between the mixed weight ratio of two-ply 27 denier silk and the tensile stress at the maximum load when polyethylene is used as the base material.
  • Fig. 15 is a graph showing the relationship between the mixed weight ratio of 4-denier 29-denier silk and the tensile stress at maximum load when polyethylene is used as the base material.
  • Fig. 16 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the tensile stress at maximum load when polyethylene is used as the base material.
  • Fig. 17 is a graph showing the relationship between the mixing weight ratio of each added silk and the tensile stress at maximum load when polyethylene is used as the base material.
  • Fig. 18 is a graph showing the relationship between specimen elongation at maximum load and tensile stress at maximum load when the base material is polyethylene
  • Fig. 19 is a graph showing the relationship between the mixing weight ratio of the finely ground crushed silk and the bending stress at the maximum load when polypropylene is used as the base material.
  • Fig. 20 is a graph showing the relationship between the mixing weight ratio of denier silk and the bending stress at the maximum load when the base material is polypropylene, 1.0.
  • Figure 21 is a graph showing the relationship between the mixed weight ratio of two-ply 27 denier silk and the bending stress at maximum load when polypropylene is used as the base material.
  • Fig. 22 is a graph showing the relationship between the mixed weight ratio of 4-denier 29-denier silk and the bending stress at maximum load when the base material is polypropylene.
  • Figure 23 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the bending stress at maximum load when polypropylene is used as the base material.
  • Fig. 24 is a graph showing the relationship between the mixing weight ratio of each added silk and the bending stress at the maximum load when polypropylene is used as the base material.
  • Figure 25 is a schematic diagram of the anti-fracture test
  • Fig. 26 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is powdery fine crushed pieces.
  • Fig. 27 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is a cotton denier 1.0 denier.
  • Fig. 28 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is 2 burns and 27 denier,
  • Fig. 29 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is four strands and 29 denier.
  • Fig. 30 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is 6 strands and 32 deniers.
  • Fig. 31 is a graph showing the analysis results according to the silk shape when the added amount of silk is 0.1g (mixing weight ratio 0.55%).
  • Fig. 32 is a graph showing the analysis results according to the silk shape when the added amount of silk is 0.4 g (mixing weight ratio 2.2%).
  • FIG. 33 is a graph showing the analysis results according to the silk shape when the added amount of silk was 0.8 g (mixing weight ratio 4.4%).
  • Embodiments of a fiber-reinforced plastic and a denture base thereof according to the present invention will be described based on examples, but the present invention is not limited to the following embodiments and examples.
  • the synthetic resin used for the fiber-reinforced plastic and its denture base is not limited to those shown in the examples, but any synthetic resin that is harmless to the ecological environment is appropriate.
  • the shape, thickness, length, and mixing weight ratio of the silk fibers to be dispersed and added to the fiber-reinforced plastic are not limited to those shown in the examples but may be any values within the scope of the present invention. This also includes the case where a substance containing is added.
  • Silk uses silkworms to release the protein produced by the silkworm itself from the spinneret into yarn.
  • the cross-sectional shape of the silk fiber and the chemical structure of the protein are complex. It is a factor that causes it to occur.
  • FIG. 1 is an explanatory view showing the silk fiber structure
  • FIG. 2 is a cross-sectional view showing the structure of sericin.
  • the silk fiber structure is such that one fiber 3 is formed in a shape in which two fiber-in-fibres 1 are wrapped around a sericin 2 having a quality of nickel.
  • One fiber in-fiber 1 has a thickness of 0.2 to 0.2 consisting of fiber-in molecule 1a.
  • the spiral microfibrils 1b in 4ii are bundled into about 900 to 140,000 microfibrils 1b, which are fibrils 1c, which are the basic structural units constituting fibers. Is composed.
  • the sericin 2 wrapping the fibroin fiber 1 has a layered structure as shown in Fig. 2 when it is enlarged, and the I layer 2a of sericin 2 from the outside, the mixed layer 2b of the I layer 2a and the ⁇ layer 2c, 6It has a six-layer structure of layer 2c, IE layer 2d, IV layer 2e, and V layer 2f.
  • Each layer 2a to 2 2 of sericin 2 has characteristics in each layer and the entire 6 layers, and all of them are important for silk fiber. For example, in order to protect the living body inside the cocoon, it works to protect the inside in response to changes in the outside air and changes in the external environment.
  • Table 1 compares the properties of silk and other natural fibers.
  • d denier
  • the unit of Young's modulus g / d is a unit indicating the thickness of the fiber.
  • One denier is obtained when 450 m of fiber weighs 5 O mg.
  • the erg is the work that is performed when a force of 1 dyn acts on an object and the point of action moves 1 cm in the direction of the force.
  • silk fiber As shown in Table 1, compared to cotton and wool, silk fiber has a higher Young's modulus and It has high impact shear energy, is durable, has a high decomposition temperature due to heat, and has excellent heat resistance.
  • Silk fiber has overall properties compared to other natural fibers. Are better. Synthetic fiber decomposes, melts and burns at around 200 ° C to generate toxic gas, while silk fiber burns at 300 to 400 ° C and does not generate toxic gas. Excellent in strength, safety and cost. Furthermore, even when added to the base material, it has high permeability and does not cause turbidity, etc., and rarely causes a change in the color tone, color, etc. of the base material. High fiber reinforced plastics can be produced.
  • silk fibers not only have properties such as high strength, but also have a positive effect on the ecological environment such as the human body.
  • silk fibers have long been regarded as important because of their beauty, good touch, etc., and their usefulness has been recognized.
  • sericin a silk mantle, is effective for mucous membrane diseases and skin diseases. Its pharmacological effects have been scientifically demonstrated, and it can be said to be the optimal “environmental material” as a material directly applied to the human body.
  • Silk fibroin also has good compatibility with living organisms and is optimal as a biomaterial.
  • the shape and thickness of the silk fibers added to the synthetic resin of the base material in the experimental examples described later are as follows: powdery finely crushed pieces (thickness of lmm or less), cotton-like 1.0 denier yarn (thickness) Approximately 10 //), 2 twists 27 denier twisted yarn (thickness of about 270 / Z), 4 burns 29 denier twisted yarn (thickness of about 290), 6 twisted 3 2 There are five types of denier twisted yarn (thickness of about 320). The length of the silk was 2 strands of 27 denier, 4 strands of 29 denier, and 6 strands of 32 denier. The appropriate length was at least mm.
  • Fig. 3 shows the shape of the silk other than the powdery fine crushed pieces. Fig.
  • FIG. 3 (a) is a partial perspective view showing a silk fiber which is a cotton-like 1.0 denier raw yarn
  • Fig. 3 (b) is a partial perspective view showing a silk fiber which is a two-burn 27 denier twisted yarn
  • (C) is a partial perspective view showing a silk fiber that is a four-ply 29 denier twisted yarn
  • (d) is a partial perspective view that shows a six-burned 32 denier twisted silk fiber.
  • Test pieces of fiber reinforced plastic are made of methyl methacrylate resin (PMMA) as a base material of synthetic resin, powdered fine crushed pieces, cottony 1.0 denier raw yarn, 2 twisted 27 denier twisted yarn, 4 Twenty-nine denier twisted yarn and six-ply 32 denier twisted yarn were manufactured by dispersing and adding each of five types of silk fibers to the above-mentioned methyl methacrylate resin (18.0 g).
  • the test specimens are molded to standard dimensions and shapes according to JIS K7203 (hard plastic bending test). Fig.
  • test piece 4 is an explanatory view showing the manufactured test piece of methyl methacrylate resin.
  • the test piece is finished in a rectangular shape of 110 mm X 10 mm X 4 mm, which is the specified size and shape of the test piece of JIS K7203. ing.
  • the dispersion in the methyl methacrylate resin ⁇ The amount of the silk fiber to be added ⁇
  • the mixing weight ratio is as shown in Table 2.
  • the mixing amount and the mixing weight ratio are set to 1/10 with respect to the mixing amount and the mixing weight ratio of other silks.
  • a prototype of an aluminum plate having a thickness of 4 mm , a length of 110 mm, and a width of 21 mm was produced, and plaster was packed in a mold serving as a mold, and the prototype was buried. You.
  • the mold of the mold can be divided into two parts later.
  • a sodium alginate-based separating material should be applied as a separating material between the test piece material and the gypsum, and dried sufficiently.
  • the methyl methacrylate resin which is the base material of the test specimen, is manufactured from polymer powder and monomer liquid.
  • the composition of the polymer powder is fine powder PMMA (polymethylmethacrylate acrylate polymer) 99.0 to 99.3%, benzoyl peroxide (polymerization initiator) 0.2 to 0.5%, coloring agent 0.5%
  • the composition of the monomer liquid is MMA (monomethyl methacrylate ⁇ monomer) 84-100%, EDMA (ethylene glycol dimethacrylate ⁇ crosslinking agent) 0 ⁇ 16%, and 0.005% of hydroquinone (polymerization inhibitor).
  • Isole Resin H manufactured by Hydental Japan Co., Ltd. was used.
  • a rice cake-like prepolymerization stage starts after about 15 minutes at room temperature 23.
  • Pre-sufficient plasticity The plaster mold divided into upper and lower parts in the polymerization stage is evenly filled up and down.
  • each type of silk aligned in the longitudinal direction is placed in the long axis direction of the test specimen (110 mm direction). In parallel at a predetermined weight ratio.
  • the silk fibers of the crushed pieces are mixed in advance in the polymer powder.
  • the gypsum mold is put together through a polyethylene film and subjected to a test pressure at a pressure of 5 kgf / cm 3 , and after the test pressure, the gypsum mold is divided to remove excess filler. After that, the gypsum molds are joined together without the intermediary of a polyethylene film, bonded under the same pressure as the test pressure, heat-polymerized by dry polymerization, heated at 100 ° C for about 15 minutes, and then gradually cooled to obtain a test piece material. Take out. After completion of the polymerization, the test piece material is cut into a specified size to complete the test piece.
  • test pieces obtained in the above manufacturing process were subjected to an anti-fracture test by JIS K7203 (bending test of hard plastic).
  • the test equipment used was an Instron type universal testing machine ⁇ Shimadzu AG-5000A (owned by Shiga Prefectural Industrial Testing Laboratory). Min, the test indenter was 20.000 KGF, and the distance between fulcrums was 80.000 mm.
  • An anti-fracture test was performed under the above set conditions, and four test pieces were tested for each silk mixing condition to obtain data (one of them could not be tested). For comparison, data was also obtained from test pieces of methyl methacrylate resin and polysulfone resin without silk. Tables 3 to 7 show the maximum load value (bending stress value) by the anti-fracture test for each silk mixing condition. Maximum load value in the table
  • the unit of (bending stress value) is MPa.
  • Methyl methacrylate resin 0.55% 2JZ% 4.4% 15%
  • Example of test piece No.
  • Fig. 6 is a graph showing the relationship between the mixed weight ratio of the powdered finely divided silk and the bending stress at the maximum load.
  • Fig. 7 is the mixed weight ratio of the cotton denier 1.0 denier silk and the bending stress at the maximum load.
  • Fig. 8 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the bending stress at the maximum load.
  • Fig. 9 is a graph showing the relationship between the mixed weight ratio of four strands and 29 denier silk.
  • Fig. 10 is a graph showing the relationship between the bending stress at the maximum load,
  • Fig. 10 is a graph showing the relationship between the mixing weight ratio of 6-denier 32 denier silk and the bending stress at the maximum load, and
  • Fig. 11 is a fine powder fragment. 2 burning
  • FIG 3 is a graph showing the relationship between the mixing weight ratio of each added silk of 27 denier, 4 strands, 29 denier, and 6 strands of 32 denier and the bending stress at the maximum load.
  • the dashed line indicates the bending stress of the methyl methacrylate resin without the addition of silk
  • the dashed line indicates the bending stress of the polysulfone resin.
  • the methyl methacrylate resin to which silk fiber was added has improved bending stress and increased strength compared to the methyl methacrylate resin to which no silk was added. ing.
  • the strength increases reliably and significantly, up to 59.
  • the strength was improved by 3% of bending stress, confirming the effectiveness of the fiber-reinforced plastic to which silk fibers were added.
  • the mixing weight ratio of silk fiber is 2.
  • the content was 2% or more, the improvement in strength was more remarkable in each case.
  • the test piece of fiber reinforced plastic uses polyethylene (PE) as the base material of synthetic resin, powdered fine crushed pieces, cottony 1.0 denier raw yarn, 2 twisted 27 denier twisted yarn, 4 burned 29 denier Twenty-five types of silk fibers, a twisted yarn and six burned 32 denier twisted yarns, were mixed with 4.0 g of the polyethylene described above, respectively, to produce the yarn.
  • PE polyethylene
  • the test pieces are molded to the standard size and shape according to JIS K7113 (Plastic tensile test method) No. 2 test piece. Fig.
  • test piece 5 is an explanatory diagram showing a test piece of polyethylene.
  • the test piece has the specified dimensions and shape specified in JIS K7113, and has a total length of A115mm, both end widths B25 ⁇ 1mm, and a parallel portion length C3. 3 ⁇ 2 mm, width of parallel part D 6 ⁇ 0.4 mm, small radius E 14 ⁇ lmm, large radius F 25 5 mm 2 mm, distance between marking lines G 25 ⁇ 1 mm, distance between grips H 80 ⁇ 5 mm, thickness I 1-3 mm.
  • Table 8 shows the mixing amount and mixing weight ratio of silk fiber mixed with polyethylene as the base material.
  • the fluffy 1.0 denier yarn is bulky, so that the mixing amount and mixing weight ratio are 1/10 with respect to the mixing weight ratio of other silk fibers.
  • a mold that is divided into a concave surface and a smooth surface in advance is manufactured.
  • Novatec LL film grade UF240 manufactured by Nippon Polychem Co., Ltd.
  • the UF 2 4 characteristics 0 MFR (degree of flowability) 2.
  • Some of the pellet of the base metal is placed on the concave surface of the mold.
  • the silk is dispersed and added in the longitudinal direction.
  • the silk should be added so that the silk is distributed evenly over the entire length A: 115 mm of the test piece based on the length of the parallel part C: 33 mm in Fig. 5.
  • After that, after coating the remaining pellets it is melted again in an electric furnace at 140 ° C, and the base material dissolved with the spatula is adapted to the silk fibers.
  • the combined molds are pressed at a pressure of 5 kgf / cm 3 , and then pressed and gradually cooled, and then adjusted to specified dimensions and shapes, such as removal of excess parts, to complete the test specimen.
  • test was performed on the test piece obtained in the above manufacturing process by JIS K7113 (plastic tensile test method).
  • the test equipment used is a universal tensile strength tester (5 t) INSTRON 5569 (owned by the Tohoku Industrial Center in Shiga Prefecture).
  • the test conditions are: test form tension, crosshead speed 20.000 mm / min, full-scale load range
  • the load range was 50 kg (the load range changed because a part of the test piece exceeded the load range: 5000 kg), and the distance between the grips of the test piece was 80 mm.
  • Fig. 12 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the tensile stress at the maximum load
  • Fig. 13 is the mixing weight ratio of the cotton denier 1.0 denier silk and the tensile stress at the maximum load
  • Fig. 14 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the tensile stress at maximum load
  • Fig. 15 is a graph showing the mixed weight of four strands of 29 denier silk.
  • Fig. 16 is a graph showing the relationship between the ratio and the tensile stress at the maximum load.
  • FIG. 16 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the tensile stress at the maximum load.
  • Fig. 17 is a fine powder fragment. , 2 burns, 27 denier, 4 burns, 29 denier, 6 twists, 3 2 denier It is a graph which shows the relationship with tension stress.
  • broken lines, dashed-dotted lines, and two-dot dashed lines indicate the tensile stress at the maximum load of the polyethylene resin without silk. Examining Figs.
  • Figure 18 shows the graph.
  • indicates powdered finely crushed silk
  • indicates cottony 1.0 denier raw silk
  • mouth has two twisted 27 denier twisted silk
  • indicates four twisted 29 denier silk
  • shows the test results for 6-ply 32 denier twisted silk
  • shows the test results for polyethylene without added silk.
  • the elongation (displacement) of the test piece is about 300 mm or more when the tensile stress (MPa) at the maximum load is applied.
  • MPa tensile stress
  • the elongation of the test piece shifts to a range of 10 mm or less when the tensile stress at the maximum load is applied. This tendency is observed from 2.2% or more of the two-ply 27 denier twisted yarn, 2.2% or more of the 4-twisted 29 denier twisted yarn, and 0.5% or more of the 6-twisted 32 denier twisted yarn.
  • the test piece of fiber reinforced plastic is made of polypropylene (PP) as the base material of synthetic resin, powdered fine frame, cotton-like 1.0 denier raw yarn, 2-twisted 27 denier twisted yarn, 4-twisted 29 denier Twisted yarns, 6 strands 3 5 types of silk fibers of 2 denier twisted yarns, Each was mixed with 4.1 g of the polypropylene to produce a mixture.
  • the test specimens were prepared in standard dimensions and shapes according to JIS K7203 (plastic bending test method).
  • FIG. 5 is an explanatory view showing a test piece of polypropylene. The test piece is finished in a rectangular shape of 110 mm X 10 mm X 4 mm with a specified size and shape of JIS K7203.
  • Table 19 shows the mixing amount and mixing weight ratio of silk fiber mixed with the base material polypropylene. Note that the fluffy 1.0 denier yarn is bulky, so the mixing amount is set to 1/10 with respect to the mixing weight ratio of other silk fibers.
  • a mold that is made of a concave surface and that can be divided into two parts is manufactured in advance.
  • Novatec PP injection molding grade MA03 manufactured by Nippon Polychem Co., Ltd.
  • the characteristics of MA03 are: MFR (degree of flowability) 25 gZ10O, density 0.910 to 0.920 g / cm Melting point (end point of melting) 163 ° C It is.
  • test pieces obtained in the above manufacturing process were subjected to an anti-fracture test according to JIS K7203 (hard plastic bending test method).
  • the test equipment used was an Instron type universal testing machine, ORIENTEC RTC-1350A (owned by Shiga Prefectural Industrial Testing Laboratory).
  • Test type SINGLE BEND unidirectional bending test
  • test indenter moving speed 20.000mm / min test indenter 20.000KGF
  • distance between fulcrums 80.000mm distance between fulcrums 80.000mm.
  • An anti-fracture test was performed under the above set conditions, and data was obtained by testing four test pieces for each silk mixing condition. For comparison, data were also obtained from a polypropylene test piece without silk.
  • Tables 20 to 24 show the maximum load value (bending stress value) by the anti-fracture test for each silk mixing condition.
  • the unit of the maximum load value (bending stress value) in the table is MPa.
  • Fig. 19 is a graph showing the relationship between the mixing weight ratio of powdered finely crushed silk and the bending stress at the maximum load
  • Fig. 20 is the mixing weight ratio of the cottony 1.0 denier silk and the bending stress at the maximum load
  • Fig. 21 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the bending stress under the maximum load
  • Fig. 22 is the mixed weight ratio of four strands of 29 denier silk.
  • Fig. 23 shows the relationship between the mixing weight ratio of 6-burner 32 denier silk and the bending stress at the maximum load
  • FIG. 23 shows the relationship between the bending stress at the maximum load.
  • 4 is a graph showing the relationship between the mixing weight ratio of each added silk of crushed pieces, two-ply twisted 27 denier, four-burned 29 denier, and six-burned 32 denier, and the bending stress at the maximum load.
  • the broken, dashed-dotted, dashed-dotted and dashed-dotted lines in Figs. 19 to 24 indicate the bending stress at maximum load of polypropylene without the addition of silk.
  • the fiber-reinforced plastic also improved in strength with respect to bending stress in the present example in which silk fibers were added to polypropylene.
  • the strength was remarkably improved in the case of the 2-burnt 27-denier twisted yarn 4.4% and the 4-strand 29-denier twisted yarn 2.2%.
  • polypropylene is used as the base material, the effectiveness of the silk fiber addition in increasing the strength appears in the form of a gentle quadratic curve. You.
  • a strength test was performed on various test pieces.
  • the base material uses methyl methacrylate resin, a typical plastic that does not adversely affect the human body or the natural environment.
  • Silk fiber is dispersed and added to this material to make fiber-reinforced plastic test specimens.
  • the test piece was prepared by considering the effect of the silk mixing state on the strength of the fiber-reinforced plastic, and experimentally changing the silk thickness, length, shape, etc., while changing the silk mixing amount ( (Or weight ratio).
  • a test piece was manufactured by dispersing and adding five types of silk fibers having dimensions suitable for the test piece to 18.0 g of methyl methacrylate resin as a base material.
  • the shape of the silk fiber to be added is powdery crushed pieces (1 mm or less in raw yarn), cottony 1.0 denier raw yarn, 2 burns, 27 denier twisted yarn, 4 twisted 29 denier twisted yarn, 6 This burned 32 denier twisted yarn was uniformly mixed with the base material and pressed.
  • Table 25 shows the mixing amount (mixing weight ratio) of silk.
  • a comparative test piece of polysulfone resin and methyl methacrylate resin without silk was manufactured, and the same experiment was tried on the comparative test piece.
  • the strength test of the test piece was performed by an anti-fracture test based on JIS K7203 (hard plastic bending test method) industrial standard.
  • the test piece was one in which the silk was uniformly dispersed and mixed in the base material as described above, and the cooling was completed. This was used as the standard size (11 O mm) specified in the bending test method. x 1 O mm X 4 mm), and manufactured according to the mixing weight ratio of each silk.
  • test facility is Shiga Industry
  • TEST MODE SINGLE BEND (unidirectional bending test) and the test indenter was moved using an Instron-type universal testing machine (Shimadzu AG-5000A), which is a test site-provided facility.
  • the speed (TEST SPEED) was 20.000 mm / min, and the test indenter load (F / S LOAD) was 20.000 KGF (196.133N).
  • Figure 25 shows a schematic diagram of the anti-fracture test.
  • MAX Maximum value
  • the following is an example of an experiment in which a test piece was subjected to an anti-fracture test by changing the shape and amount of silk to be mixed and added.
  • the base material of the test piece is a methyl methacrylate resin.
  • Table 26 shows the test results when 0.5 g (0.55%) of finely ground silk was added to 18.0 g of the base material.
  • Table 28 shows the test results when 0.8 g (4.4%) of finely ground silk was added to 18.0 g of the base material.
  • Table 2 9 shows the test results when 0.01 g (0.055%) of 1.0 denier cotton-like silk was added to 18.0 g of base material. Shown in Maximum value (MAX) Break value (BREAK) Maximum limit value / N (LOAD N) 114.120 110.031
  • Table 30 shows the test results when 1.0 g (0.22%) of silk, which is a 1.0 denier flocculent yarn, was added to 18.0 g of the base material. .
  • Table 31 shows the test results when 0.8 g (0.44%) of silk, which is a 1.0 denier flocculent yarn, was added to 18.08 of the base material.
  • Table 32 shows the test results when 0.1 g (0.55%) of 27 denier (double twist) silk was added to 18.0 g of base material. .
  • Table 33 shows the test results when 0.4 g (2.2%) of 27 denier (two burning) silk was added to 18.0 g of base material. .
  • Table 34 shows the test results when 0.8 g (4.4%) of 27 denier (double twist) silk was added to 18.0 g of the base material.
  • Table 35 shows the test results when 0.1 g (0.55%) of 29 denier (4-strand) silk was added to 18.0 g of base material. .
  • Table 36 shows the test results when 0.4 g (2.2%) of 29 denier (four strands) silk was added to 18.0 g of the base material.
  • Table 37 shows the test results when 0.8 g (4.4%) of 29 denier (four strands) silk was added to 18.0 g of base material.
  • Table 38 shows the test results when 0.1 g (0.55%) of 32 denier (6-twisted) silk was added to 18.0 g of base metal. .
  • Table 39 shows the test results when 32 denier (six strands) of 0.4 g (2.2%) was added to 18.0 g of base metal. Show.
  • Table 40 shows the test results when 0 g (4.4%) of 32 denier (six strands) silk was added to 18.0 g of base material.
  • Table 41 shows the test results when 2.7 g (15%) of 32 denier (six strands) silk was added to 18.0 g of base material.
  • Table 4 1 Maximum value (MAX) Break value (BREAK) Maximum limit value / (LOAD N) 107.824 103.097
  • Table 43 shows the test results of a test piece of methyl methacrylate resin having specified dimensions.
  • Table 48 44 to Table 48 and FIGS. 26 to 30.
  • the data of the test results in Tables 44 to 48 and Figures 26 to 30 are the maximum limit value (unit: N), bending value (unit: mm), bending stress (unit: MPa), and elongation.
  • the maximum value (MAX) is used as each value (unit:%) are doing.
  • the test results of the comparative test pieces of polysulfone resin and methyl methacrylate resin (without addition of silk) are also shown in the table and the graph.
  • Table 46, Figure 28 (a) and Figure (b) show the analysis results according to the amount of silk added to the composite plastic when the added silk is two strands and 27 denier.
  • Tables 49 to 51 and FIGS. 31 to 33 show different tables and graphs based on the mixing weight ratio (addition amount) of the dispersed and added silk fibers based on the above experimental results.
  • the data of the test results in Tables 49 to 51 and Figs. 31 to 33 are the maximum limit value (unit: N), bending value (unit: mm), bending stress (unit: MPa), elongation value ( The maximum value (MAX) is adopted as each value of (unit:%).
  • the test results for the polysulfone resin and the methyl methacrylate resin (without addition of silk), which are comparative test pieces, are also shown in the table and the graph.
  • the mixed weight ratio of cotton denier 1.0 denier silk 0.055%, 0.22% and 0.44% is 0.55%, 2.2% and 4.4, respectively.
  • the mixture weight ratio of 6-burned 32 denier silk (15% added (2.7 g added)) was displayed in all tables and graphs.
  • the tip of the bar graph of the silk-added methyl methacrylate resin for all silk fiber shapes is as follows. However, it is always located above the top of the bar graph of methyl methacrylate resin without silk. Therefore, it is clear that the addition of silk clearly contributes to the improvement of the strength of the base material, and that the fiber-reinforced plastic has high strength.
  • methyl methacrylate resin and polysulfone resin without added silk are compared with methyl methacrylate resin added with silk fiber, the maximum limit value N at the maximum load, the bending value Zmm for bending stress ZMPa, Elongation value Z% is low.
  • the bending value / mm and the elongation value /% also increase in proportion to the increase in the maximum limit value ZN at the maximum load and the bending force MPa. From this fact, the addition of silk improves the stress-strain relationship, in other words, the mechanical properties of the base material, and increases the strength and stickiness as compared with the case where no silk is added.
  • Table 52 shows the strength ranking according to the amount of silk added, extracted from Tables 44 to 48, by silk fiber shape.
  • Strength ranking is bending stress Judgment is based on ZM Pa data.
  • the 4.4% silk fiber mixture weight ratio exhibited relatively high strength in each of the 27, 29, and 32 denier twisted silk shapes, but was not the first in the strength ranking.
  • the 15-% silk blended weight ratio of 15% with 32 denier twisted yarn exhibited high strength, but was not the first in the strength ranking.
  • the cottony yarn has a silk mixing weight ratio of 0.22%
  • the 29, 32 denier twisted yarn has a silk mixing weight ratio of 2.2% and has the highest strength ranking.
  • the strength of the fiber reinforced plastic depends on the shape of the silk fiber added to the base material. It is considered that the silk fibers to be mixed and added have an optimum shape from the viewpoint of strength and an optimum mixing weight ratio range according to the shape.
  • the strength simply depends on the mixing weight ratio of the silk fibers. It seems that the strength is improved by the volume ratio of the silk fiber to the base material, the ratio of the silk fiber to the base material particles, and the cross-sectional area ratio of the silk fiber itself at the molecular level.
  • the silk has a high affinity for the polymer plastic material, which is the base material of sericin surrounding the surface of the fiber bundle. It is conceivable that the produced silk exerts a crosslinking effect to improve the strength of the base material, or that the reinforcing effect of the bundle of the silk fiber structure itself increases the strength of the base material.
  • the shape of the polymer such as methyl methacrylate resin, in a chain form and the like is important for the silk fiber to be added, and the cross-linking action and the reinforcing action work synergistically. It is thought that this will result in a fiber-reinforced plastic with dramatically increased strength.
  • the shape and thickness of the added silk fiber are desirably 2 twisted 27 denier twisted yarn, 4 burned 29 denier twisted yarn, 6 twisted 32 denier twisted yarn, and the like.
  • the mixing weight ratio is preferably about 2.2% to 15%. This is because the silk fiber-in fiber itself has a structure that is easily compatible with high molecules and has an appropriate strength, and the fiber bronze fiber bundle has a thin and irregular cross section that is twisted and easily intersects with the base material molecules.
  • the strength of the base material it is also possible to improve the strength of the base material by making it easier to take in the base material molecules into the gap from which sericin has been removed by precision.
  • the strength is improved by using the silk fiber which has been subjected to high fineness, and the pharmacological effect of sericin or the like such as a denture base is improved. If expected, it is possible to exert a pharmacological effect by using relatively low-accuracy silk fibers, and the fiber-reinforced plastic of the present invention has a variety of uses.
  • Table 53 shows the characteristics of methyl methacrylate resin and polysulfone, which are typical materials that can be used for denture bases.
  • Table 5 3 shows the characteristics of methyl methacrylate resin and polysulfone, which are typical materials that can be used for denture bases.
  • Methyl methacrylate resin and polysulfone resin have the above-mentioned advantages and disadvantages, but neither is an ideal denture base material. Therefore, a denture base is manufactured using fiber-reinforced plastics, which is a mixture of non-toxic methyl methacrylate resin and silk fibers.
  • the method of manufacturing the denture base is substantially the same as the method of manufacturing a denture base using a normal denture base material such as methyl methacrylate resin, except that the denture base is manufactured using fiber-reinforced plastic.
  • Denture bases manufactured using this fiber-reinforced plastic as a material are examined as follows: 1) Denture bases made of the fiber-reinforced plastics are higher in strength than denture bases of methyl methacrylate resin. 2) Denture base materials 3 It is safe for the human body because there is no danger of generating environmental hormones and dioxins. 4 Water retention by the added silk fiber ⁇ Active drug such as sericin Sericin is expected to have an effect on the human body, etc. Sericin also has the ability to control cholesterol levels in blood in a benign manner. ⁇ ⁇ ⁇ It has a positive effect on the environment from the production of fiber reinforced plastics. 6Silk fiber reinforced plastics And its denture base are easy to manufacture and low cost, and can easily be tailored to individual needs , There is a characteristic of equal, the favorable impact of the absence of high strength and the human body to normal denture And so on.
  • denture bases When using other fiber reinforced plastics such as glass fiber reinforced plastic or carbon fiber reinforced plastic for products that are used directly on the human body such as denture bases, unlike silk fiber reinforced plastic, there are the following problems. For example, assuming that a denture base made of reinforced plastics mixed with glass fiber is used as a denture base, the denture base is attached to the human body, which is extremely dangerous and harmful to the human body and cannot meet safety standards. That is, when the wear rate of plastic and glass fiber is compared, the wear rate of plastic is larger, so that the exposed fiber may enter the oral cavity. Also, assuming that carbon fiber reinforced plastic is used as the denture base, dentures and denture bases are made to order of individuals, but it is necessary to deal with the order made with carbon fiber reinforced plastic denture bases.
  • the silk fiber reinforced plastic according to the present invention and its denture base have no such disadvantages. For example, even if the silk fiber is exposed from the denture base, the silk fiber is positively applied to the human body. It has a positive effect and has easy operability.
  • the fiber-reinforced plastic and the denture base thereof according to the present invention have the above-mentioned constitution, they exhibit good properties such as high strength, and have high adaptability to ecological environment such as human body and nature, thereby preserving the global environment and protecting human body. This has the effect of maintaining the health of children. That is, the fiber-reinforced plastic and its denture base have no risk of producing chemical substances harmful to the ecological environment, such as dioxins and environmental hormones (endocrine disrupting chemicals) generated during waste incineration, and have properties such as strength. High performance can be achieved with
  • the above fiber-reinforced plastic and its denture base not only have no adverse effects on the ecological environment, but also have the effect of positively affecting the human body. That is, sericin, which forms the silk fiber structure, is a pharmacologically effective drug for mucosal and skin diseases.
  • denture bases used directly on the human body can maintain and improve the health of denture base users, including patients with the above-mentioned diseases, and reduce medical expenses ⁇ Reduction can be realized.
  • the above-mentioned fiber-reinforced plastic can be widely used for industrial products and the like in consideration of ecological environment.
  • an industry that can be said to be an environmental industry can be started. That is, since silk fibers required for the fiber-reinforced plastic are produced, cocoons and sericulture are indispensable, and a wide range of mulberry fields is required. As a result, fallow rice fields are used to promote agriculture and increase employment in rural areas. Further green is increased by planting mulberry, it reduces the C_ ⁇ 2 in the atmosphere, contributing to the improvement of the soil as a deciduous, effect of improved water quality near water can be expected.

Abstract

A fiber-reinforced plastic characterized in that it comprises a synthetic resin being harmless to ecotope and a silk fiber added thereto in a specific ratio and dispersed therein, and a denture base characterized in that it is made from a fiber-reinforced plastic comprising a synthetic resin being harmless to ecotope and a silk fiber added thereto in a specific ratio and dispersed therein. In the aforementioned fiber-reinforced plastic, the synthetic resin is selected from among methyl methacrylate resin, polyethylene and polypropylene. It is suitable that the silk fabric is used in a form selected from among a powdery fine splinter, a raw yarn, a twisting yarn and a combination thereof. These fiber-reinforced plastic and denture base manufactured therefrom exhibit good properties such as high strength and also have highly adaptable capacity to ecotope.

Description

WO 00/05049 - I - PCT/JP99/03901  WO 00/05049-I-PCT / JP99 / 03901
明 発明の名称 繊維強化プラスチック及びその義歯床 Akira Title of the invention Fiber-reinforced plastic and its denture base
技術分野 Technical field
本発明は高い強度を有し、 且つ人体や自然など生態環境への高度な順応性を有 する繊維強化プラスチック及び前記繊維強化プラスチックで形成された義歯床に 関する。  The present invention relates to a fiber-reinforced plastic having high strength and a high adaptability to an ecological environment such as a human body and nature, and a denture base formed of the fiber-reinforced plastic.
背景技術 Background art
現代社会ではその利便性から日常生活の隅々にまでプラスチック製品が行き渡 つて大量に消費され続けており、 プラスチックなしの生活は考え難いほどその恩 恵に浴している。 だが、 近年においてプラスチックの中には、 高度な利便性を有 する反面で、 危険な弊害を有するものがあることが徐々に認識され始めて来てお り、 社会的に問題になっている。  In modern society, plastic products are distributed in every corner of everyday life due to their convenience, and they continue to be consumed in large quantities, and living without plastic is enjoying the benefits of being inconceivable. However, in recent years, while some plastics have high convenience, they have gradually started to be recognized as having dangerous harmful effects, which has become a social problem.
歴史的には当初プラスチックとして使用されていたものは、 ポリエチレン (P E) やポリプロピレン (P P) で、 毒性が殆どなく、 廃棄して燃焼する際にも比 較的きれいに燃え、 一定の有用性を有するものであった。 その後、 ポリエチレン Historically, plastics originally used as plastics were polyethylene (PE) and polypropylene (PP), which had little toxicity, burned relatively cleanly when discarded and burned, and had some utility Was something. Then polyethylene
(P E) やポリプロピレン (P P) は強度等において問題があるとの認識から、 改良が加えられたプラスチック、 例えばエチレンと塩素から製造されたポリ塩化 ビニル (P VC) や、 ポリカーボネート (P C) 、 ポリスルフォン (P S F) な ど、 強度等の特性が飛躍的に向上されたものが生まれ今日に至っている。 Recognizing that (PE) and polypropylene (PP) have problems with strength, etc., improved plastics such as polyvinyl chloride (PVC) made from ethylene and chlorine, polycarbonate (PC), Properties such as sulphone (PSF) with dramatically improved properties such as strength have been born and are up to the present day.
しかし、 ポリ塩化ビニル (P VC) などの有機塩素化合物からなるプラスチッ クは、 生産、 消費を経て廃棄焼却される際に、 焼却時の高温と前記プラスチック に含有される塩素によってダイォキシンを生成する可能性がある。 ダイォキシン は急性毒性と慢性毒性の 2つの毒性を有し、 低濃度のダイォキシンの長期間の摂 取によつて発ガン性や催奇形性等の慢性毒性を示すものである。 例えばベトナム 戦争時に使用された枯れ葉剤の中にもダイォキシンが含まれ、 戦争終結後に多く の奇形児が生まれ、 ガン患者が発生したことは周知である。  However, plastics made of organochlorine compounds such as polyvinyl chloride (PVC) can produce dioxins due to the high temperature during incineration and chlorine contained in the plastics when they are incinerated after production and consumption. There is. Dioxin has two toxicities, acute toxicity and chronic toxicity, and exhibits chronic toxicity such as carcinogenicity and teratogenicity due to long-term ingestion of low concentrations of dioxin. For example, it is well known that dioxin is also contained in the defoliants used during the Vietnam War, and many malformed babies were born after the end of the war, and cancer patients occurred.
さらに、 上記ダイォキシンや、 ポリカーボネート (P C) やポリスルフォン In addition, dioxin, polycarbonate (PC) and polysulfone
(P S F) を構成するビスフエノール A (b i s — A) 、 塩化ビニルに可塑材と して添加されるフタル酸エステルなどのフタル酸化合物等は、 人体など生物の内 分泌機能に影響を及ぼす環境ホルモン (内分泌攪乱化学物質) としての危険性が 指摘されている。 かかる環境ホルモンは生物の細胞の正常な成育を阻害し、 人体 や自然環境に多大な悪影響を及ぼすものであることが認識されつつあり、 焼却時 に発生するダイォキシンや溶出したビスフエノール A等による生態環境への影響 が憂慮されている。 Bisphenol A (bis — A), which constitutes (PSF), and vinyl chloride and plasticizer It has been pointed out that phthalic acid compounds, such as phthalic acid esters, added as an environmental hormone (endocrine disrupting chemicals) that affect the endocrine function of living organisms such as the human body. It has been recognized that such endocrine disruptors inhibit the normal growth of living cells and have a great adverse effect on the human body and the natural environment.Ecology is caused by dioxin generated during incineration and bisphenol A eluted. There is concern about the impact on the environment.
従って、 近年における生態環境への影響に対する認識の高まりに伴い、 新たに 提供されるプラスチックにおいては、 ポリ塩化ビニル (P V C ) 、 ポリ力一ボネ ート (P C ) 等の従来のプラスチックが有していた強度等の特性を維持しつつも、 生態環境への高度な順応性を有し、 地球環境の保全及び人体の健康維持を図れる ものであることが切望されている。  Therefore, with the increasing awareness of the impact on the ecological environment in recent years, the newly provided plastics include conventional plastics such as polyvinyl chloride (PVC) and polycarbonate (PC). It is highly desired that the material has a high degree of adaptability to the ecological environment while maintaining its strength and other characteristics, and that it can protect the global environment and maintain the health of the human body.
特に、 義歯床のような人体に直接使用するプラスチックについて上記要求は格 別強いが、 従来の義歯床の素材としてはポリカーボネート樹脂ゃスルフォン樹脂 等が用いられ、 さらに強度を強化するためにポリ塩化ビニルを混合する場合もあ つた。 ポリカーボネートやポリ塩化ピニル等は上述したような危険性を有するプ ラスチックであり、 かような義歯床の現状を放置することによる人体への悪影響 が強く危惧される。  The above requirements are particularly strong for plastics used directly on the human body, such as denture bases. However, conventional denture base materials are made of polycarbonate resin 素材 sulfone resin, and polyvinyl chloride is used to further strengthen the strength. Was sometimes mixed. Polycarbonate, polychlorinated chloride, and the like are plastics having the above-mentioned risks, and there is a strong concern that leaving the current state of the denture base on the human body would be serious.
発明の開示 Disclosure of the invention
本発明は上記問題点に鑑みなされたものであって、 高い強度など良好な特性を 発揮しつつ、 且つ生態環境への高度な順応性を有し、 地球環境の保全及び人体の 健康維持を図ることが可能な繊維強化プラスチック、 及び前記繊維強化プラスチ ックからなる義歯床を提供することを目的とする。 本発明の繊維強化プラスチッ ク及びその義歯床は、 廃棄焼却時に発生するダイォキシンや環境ホルモン (内分 泌攪乱化学物質) など、 生態環境に対して有害な化学物質を生ずる危険性がなく、 且つ強度等の特性で高機能を発揮するものである。  The present invention has been made in view of the above problems, and has excellent characteristics such as high strength, has high adaptability to an ecological environment, and aims to preserve the global environment and maintain human health. An object of the present invention is to provide a fiber-reinforced plastic capable of performing the above-mentioned steps, and a denture base made of the fiber-reinforced plastic. The fiber-reinforced plastic and the denture base of the present invention have no danger of producing chemical substances harmful to the ecological environment, such as dioxins and environmental hormones (endogenous disrupting chemicals) generated during waste incineration, and have high strength. It exhibits a high function with such characteristics.
本発明による繊維強化プラスチックは、 生態環境に無害な合成樹脂に、 所定割 合のシルク繊維を分散して添加したことを特徴とする。 上記繊維強化プラスチッ クにおいて、 前記合成樹脂をメタクリル酸メチル樹脂、 ポリエチレン、 ポリプロ ピレンの何れかとする、 また前記シルク繊維を粉状微砕片、 原糸形状、 撚糸形状 の何れか、 或いはこれらの組み合わせとすると好適である。 The fiber-reinforced plastic according to the present invention is characterized in that a predetermined percentage of silk fiber is dispersed and added to a synthetic resin harmless to the ecological environment. In the above fiber-reinforced plastic, the synthetic resin is any one of methyl methacrylate resin, polyethylene, and polypropylene, and the silk fiber is a powdery fine piece, a raw yarn shape, and a twisted yarn shape. It is preferable to use any one of these or a combination thereof.
さらに本発明による義歯床は、 生態環境に無害な合成樹脂に所定割合のシルク を分散して添加した繊維強化プラスチックで形成されていることを特徴とする。 この場合においても、 前記合成樹脂をメ夕クリル酸メチル樹脂、 ポリエチレン、 ポリプロピレンの何れかとする、 また前記シルク繊維を粉状微砕片、 原糸形状、 撚糸形状の何れか、 或いはこれらの組み合わせとすると好適である。  Further, the denture base according to the present invention is characterized by being formed of a fiber-reinforced plastic in which a predetermined ratio of silk is dispersed and added to a synthetic resin harmless to the ecological environment. Also in this case, when the synthetic resin is any one of methyl methacrylate resin, polyethylene, and polypropylene, and the silk fiber is any one of powdery fine crushed pieces, raw yarn shape, twisted yarn shape, or a combination thereof. It is suitable.
上記繊維強化プラスチック及びその義歯床には、 生態環境に無害な合成樹脂を 母材として天然素材であるシルク繊維を添加するので、 強度等の特性を向上する できると共に、 人体や自然などの生態環境に対して高度な順応性を有しており安 全である。  The above-mentioned fiber-reinforced plastic and its denture base are made of synthetic resin that is harmless to the ecological environment, and silk fiber, which is a natural material, is added. It has a high degree of adaptability to safety and is safe.
例えば、 メタクリル酸メチル樹脂、 ポリエチレン、 ポリプロピレン等を母材と する場合は、 有機塩素化合物と同等或いはそれ以上の強度を有し、 且つ焼却時に ダイォキシンを発生したり、 環境ホルモンを漏出しないことから、 人体や自然環 境に悪影響を及ぼすことがない。 特にメタクリル酸メチル樹脂を母材とする前記 繊維強化プラスチックは、 高い強度を有すると共に、 繊維強化材が目立たず高い 審美性を有し、 義歯床など人体に直接使用する素材として最適である。 本発明の 繊維強化プラスチック及びその義歯床は詳細には下記のようなメリッ トを有する ものである。  For example, when the base material is a methyl methacrylate resin, polyethylene, polypropylene, etc., it has the same or higher strength as the organochlorine compound and does not generate dioxin when incinerated and does not leak environmental hormones. Does not adversely affect the human body or natural environment. In particular, the fiber-reinforced plastic using a methyl methacrylate resin as a base material has a high strength, and the fiber-reinforced material is inconspicuous and has a high aesthetic property, and is most suitable as a material directly used for a human body such as a denture base. The fiber-reinforced plastic and the denture base of the present invention have the following advantages in detail.
①強度を向上することで新製品の創造や製品価値の向上が可能となる。 通常のメ タクリル酸メチル樹脂 (P M M A ) 、 ポリエチレン (P E ) 、 ポリプロピレン ①Improvement of strength enables creation of new products and improvement of product value. Ordinary methyl methacrylate resin (PMMA), polyethylene (PE), polypropylene
( P P ) 等で実現できなかった強度の製品を製作しうる。 Products with strength that could not be realized by (PP) etc. can be manufactured.
②有害な物質を生成しない母材とシルクからなるため、 無害で有為である。 例え ば塩化ビニル (P V C ) 等は水や湯によって含有している毒性を漏出するが、 上 記繊維強化プラスチックにはかかる毒性がない。 乳幼児の肌に触れたり、 その口 に運んだりする製品に対して多岐に適用でき、 利用者の安全を守ることができる。 製品の例示として、 歯ブラシ、 食器、 玩具、 水で洗う器具等がある。  (2) It is harmless and useful because it is made of silk and a base material that does not generate harmful substances. For example, vinyl chloride (PVC) leaks the toxicity contained in water or hot water, but the above fiber-reinforced plastic does not have such toxicity. It can be applied to a variety of products that touch the baby's skin or carry it into the mouth, protecting the safety of users. Examples of products include toothbrushes, dishes, toys, and water-washing appliances.
③補強材としてのシルク繊維は、 本繊維強化プラスチックからなる製品の審美性 を損なうことがない。 混合した補強材が透明感を有し、 製品の審美性に影響を及 ぼさないために、 グラスファイバ一や炭素繊維を使用した製品より審美性に優れ ている。 (3) Silk fiber as a reinforcing material does not impair the aesthetics of products made of this fiber-reinforced plastic. Superior aesthetics compared to products using glass fiber or carbon fiber, because the mixed reinforcing material has a transparent feeling and does not affect the aesthetics of the product ing.
④特に口内に入れる義歯床など人体に直接使用するものについては、 高い強度を 有し且つ毒性がない素材であることが必須条件であり、 前記条件を充足し、 加え てシルク繊維の粘膜疾患や皮膚疾患に対する薬理作用等によって人体に積極的な 好影響を与える本繊維強化プラスチックは最適である。  ④Especially for materials that are used directly on the human body, such as denture bases placed in the mouth, it is essential that the materials have high strength and are not toxic.These conditions must be satisfied. This fiber-reinforced plastic, which has a positive effect on the human body through its pharmacological action against skin diseases, is optimal.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1はシルクの繊維構造を示す説明図、  Figure 1 is an explanatory diagram showing the silk fiber structure,
図 2はセリシンの構造を示す断面図、  FIG. 2 is a cross-sectional view showing the structure of sericin,
図 3 ( a ) は綿状の 1 . 0デニール原糸であるシルクを示す部分斜視図、 図 3 ( b ) は 2本撚りの 2 7デニールであるシルクを示す部分斜視図、 図 3 ( c ) は 4本撚りの 2 9デニールであるシルクを示す部分斜視図、 図 3 ( d ) は 6本撚りの 3 2デニールであるシルクを示す部分斜視図、 図 4はメタクリル酸メチル樹脂 (或いはポリプロピレン) の試験片を示す説明 図、  Fig. 3 (a) is a partial perspective view showing a cotton-like 1.0 denier raw silk, Fig. 3 (b) is a partial perspective view showing a two-ply 27 denier silk, and Fig. 3 (c). ) Is a partial perspective view showing silk with 4 strands of 29 denier, FIG. 3 (d) is a partial perspective view showing silk with 32 deniers of 6 strands, and FIG. 4 is a methyl methacrylate resin (or polypropylene). FIG.
図 5はポリエチレンの試験片を示す説明図、  FIG. 5 is an explanatory view showing a test piece of polyethylene,
図 6は母材をメタクリル酸メチル樹脂とした場合の粉状微砕片シルクの混合重 量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 6 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the bending stress at the maximum load when the base material is methyl methacrylate resin.
図 7は母材をメタクリル酸メチル樹脂とした場合の綿状原糸 1 . 0デニールシ ルクの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  FIG. 7 is a graph showing the relationship between the mixing weight ratio of the cotton denier 1.0 denier silk and the bending stress at the maximum load when the base material is methyl methacrylate resin,
図 8は母材をメ夕クリル酸メチル樹脂とした場合の 2本撚り 2 7デニ一ルシル クの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 8 is a graph showing the relationship between the mixing weight ratio of two-ply 27 denier silk and the bending stress at maximum load when methyl methacrylate is used as the base material.
図 9は母材をメ夕クリル酸メチル樹脂とした場合の 4本撚り 2 9デニ一ルシル クの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 9 is a graph showing the relationship between the mixing weight ratio of 4-strand 29 denier silk and the bending stress at the maximum load when methyl methacrylate resin is used as the base material.
図 1 0は母材をメ夕クリル酸メチル樹脂とした場合の 6本撚り 3 2デニ一ルシ ルクの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 10 is a graph showing the relationship between the mixing weight ratio of 6-ply 32 denier silk and the bending stress at the maximum load when the base material is methyl methacrylate resin,
図 1 1は母材をメタクリル酸メチル樹脂とした場合の各添加シルクの混合重量 比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 11 is a graph showing the relationship between the mixing weight ratio of each added silk and the bending stress at the maximum load when the base material is methyl methacrylate resin,
図 1 2は母材をポリエチレンとした場合の粉状微砕片シルクの混合重量比率と 最大荷重時引張応力との関係を示すグラフ、 図 1 3は母材をポリエチレンとした場合の綿状原糸 1 . 0デニールシルクの混 合重量比率と最大荷重時引張応力との関係を示すグラフ、 Fig. 12 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the tensile stress at maximum load when polyethylene is used as the base material. Fig. 13 is a graph showing the relationship between the mixed weight ratio of cotton denier 1.0 denier silk and the tensile stress at the maximum load when the base material is polyethylene,
図 1 4は母材をポリエチレンとした場合の 2本撚り 2 7デニールシルクの混合 重量比率と最大荷重時引張応力との関係を示すグラフ、  Fig. 14 is a graph showing the relationship between the mixed weight ratio of two-ply 27 denier silk and the tensile stress at the maximum load when polyethylene is used as the base material.
図 1 5は母材をポリエチレンとした場合の 4本撚り 2 9デニールシルクの混合 重量比率と最大荷重時引張応力との関係を示すグラフ、  Fig. 15 is a graph showing the relationship between the mixed weight ratio of 4-denier 29-denier silk and the tensile stress at maximum load when polyethylene is used as the base material.
図 1 6は母材をポリエチレンとした場合の 6本撚り 3 2デニールシルクの混合 重量比率と最大荷重時引張応力との関係を示すグラフ、  Fig. 16 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the tensile stress at maximum load when polyethylene is used as the base material.
図 1 7は母材をポリエチレンとした場合の各添加シルクの混合重量比率と最大 荷重時引張応力との関係を示すグラフ、  Fig. 17 is a graph showing the relationship between the mixing weight ratio of each added silk and the tensile stress at maximum load when polyethylene is used as the base material.
図 1 8は母材をポリエチレンとした場合の最大荷重時試験片伸びと最大荷重時 引張応力との関係を示すグラフ、  Fig. 18 is a graph showing the relationship between specimen elongation at maximum load and tensile stress at maximum load when the base material is polyethylene,
図 1 9は母材をポリプロピレンとした場合の粉状微碎片シルクの混合重量比率 と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 19 is a graph showing the relationship between the mixing weight ratio of the finely ground crushed silk and the bending stress at the maximum load when polypropylene is used as the base material.
図 2 0は母材をポリプロピレンとした場合の綿状原糸 1 . 0.デニールシルクの 混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 20 is a graph showing the relationship between the mixing weight ratio of denier silk and the bending stress at the maximum load when the base material is polypropylene, 1.0.
図 2 1は母材をポリプロピレンとした場合の 2本撚り 2 7デニールシルクの混 合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Figure 21 is a graph showing the relationship between the mixed weight ratio of two-ply 27 denier silk and the bending stress at maximum load when polypropylene is used as the base material.
図 2 2は母材をボリプロピレンとした場合の 4本撚り 2 9デニールシルクの混 合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Fig. 22 is a graph showing the relationship between the mixed weight ratio of 4-denier 29-denier silk and the bending stress at maximum load when the base material is polypropylene.
図 2 3は母材をポリプロピレンとした場合の 6本撚り 3 2デニールシルクの混 合重量比率と最大荷重時曲げ応力との関係を示すグラフ、  Figure 23 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the bending stress at maximum load when polypropylene is used as the base material.
図 2 4は母材をポリプロピレンとした場合の各添加シルクの混合重量比率と最 大荷重時曲げ応力との関係を示すグラフ、  Fig. 24 is a graph showing the relationship between the mixing weight ratio of each added silk and the bending stress at the maximum load when polypropylene is used as the base material.
図 2 5は抗破折試験の概要図、  Figure 25 is a schematic diagram of the anti-fracture test,
図 2 6は添加シルクが粉状微砕片の場合における複合プラスチックのシルク添 加量に応じた分析結果を示すグラフ、  Fig. 26 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is powdery fine crushed pieces.
図 2 7は添加シルクが綿状原糸 1 . 0デニールの場合における複合プラスチッ クのシルク添加量に応じた分析結果を示すグラフ、 図 2 8は添加シルクが 2本燃り 2 7デニールの場合における複合プラスチック のシルク添加量に応じた分析結果を示すグラフ、 Fig. 27 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is a cotton denier 1.0 denier. Fig. 28 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is 2 burns and 27 denier,
図 2 9は添加シルクが 4本撚り 2 9デニールの場合における複合プラスチック のシルク添加量に応じた分析結果を示すグラフ、  Fig. 29 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is four strands and 29 denier.
図 3 0は添加シルクが 6本撚り 3 2デニールの場合における複合プラスチック のシルク添加量に応じた分析結果を示すグラフ、  Fig. 30 is a graph showing the analysis results according to the amount of silk added to the composite plastic when the added silk is 6 strands and 32 deniers.
図 3 1はシルク添加量が 0 . l g (混合重量比 0 . 5 5 % ) の場合におけるシ ルク形状に応じた分析結果を示すグラフ、  Fig. 31 is a graph showing the analysis results according to the silk shape when the added amount of silk is 0.1g (mixing weight ratio 0.55%).
図 3 2はシルク添加量が 0 . 4 g (混合重量比 2 . 2 % ) の場合におけるシル ク形状に応じた分析結果を示すグラフ、  Fig. 32 is a graph showing the analysis results according to the silk shape when the added amount of silk is 0.4 g (mixing weight ratio 2.2%).
図 3 3はシルク添加量が 0 . 8 g (混合重量比 4 . 4 % ) の場合におけるシル ク形状に応じた分析結果を示すグラフである。  FIG. 33 is a graph showing the analysis results according to the silk shape when the added amount of silk was 0.8 g (mixing weight ratio 4.4%).
発明を実施するための最良の態様 BEST MODE FOR CARRYING OUT THE INVENTION
本発明のよる繊維強化プラスチック及びその義歯床の実施形態を実施例に基づ き説明するが、 本発明は以下の実施形態 ·実施例によって限定されるものではな い。 特に繊維強化プラスチック及びその義歯床に用いる合成樹脂は、 実施例に示 したもの以外でも生態環境に対して無害な合成樹脂であれば適宜である。 又繊維 強化プラスチックに分散 ·添加するシルク繊維の形状 ·太さ · 長さ ·混合重量比 も、 実施例に示したもの以外でも本発明の要旨の範囲内であれば適宜であり、 シ ルク繊維を含有するものを添加する場合も含む。  Embodiments of a fiber-reinforced plastic and a denture base thereof according to the present invention will be described based on examples, but the present invention is not limited to the following embodiments and examples. In particular, the synthetic resin used for the fiber-reinforced plastic and its denture base is not limited to those shown in the examples, but any synthetic resin that is harmless to the ecological environment is appropriate. Also, the shape, thickness, length, and mixing weight ratio of the silk fibers to be dispersed and added to the fiber-reinforced plastic are not limited to those shown in the examples but may be any values within the scope of the present invention. This also includes the case where a substance containing is added.
前提として、 本発明の繊維強化プラスチック及びその義歯床に混合添加するシ ルク繊維の特徴 ·特性について説明する。 シルクは蚕が自ら生成したタンパク質 を吐糸口から外部に放出して糸にしているものであり、 シルク繊維の断面形状や タンパク質の化学構造は複雑であって、 これが後述するシルクの特徴 ,特性を生 じさせる要因となる。  As a premise, the characteristics and characteristics of the fiber reinforced plastic of the present invention and the silk fiber mixed and added to the denture base will be described. Silk uses silkworms to release the protein produced by the silkworm itself from the spinneret into yarn. The cross-sectional shape of the silk fiber and the chemical structure of the protein are complex. It is a factor that causes it to occur.
図 1はシルクの繊維構造を示す説明図、 図 2はセリシンの構造を示す断面図で ある。 シルクの繊維構造は、 図 1に示すように、 2本のフイブ口イン繊維 1の回 りをニカヮ質のセリシン 2が包み込んだ形状で 1本の原糸 3が構成されている。 1本のフイブ口イン繊維 1には、 フイブ口イン分子 1 aからなる太さ 0 . 2〜 0 . 4 iiの螺旋状のミクロフイブリル 1 bが束状になって 9 0 0〜 1 4 0 0本程度あ り、 ミクロフイブリル 1 bは繊維を構成する基礎的な構造単位であるフィブリル 1 cを構成している。 FIG. 1 is an explanatory view showing the silk fiber structure, and FIG. 2 is a cross-sectional view showing the structure of sericin. As shown in FIG. 1, the silk fiber structure is such that one fiber 3 is formed in a shape in which two fiber-in-fibres 1 are wrapped around a sericin 2 having a quality of nickel. One fiber in-fiber 1 has a thickness of 0.2 to 0.2 consisting of fiber-in molecule 1a. The spiral microfibrils 1b in 4ii are bundled into about 900 to 140,000 microfibrils 1b, which are fibrils 1c, which are the basic structural units constituting fibers. Is composed.
フイブロイン繊維 1を包んでいるセリシン 2は、 拡大すると図 2に示すような 層状の構造で、 外側からセリシン 2の I層 2 a、 I層 2 aと Π層 2 c との混合層 2 b、 Π層 2 c、 IE層 2 d、 IV層 2 e、 V層 2 f の 6層構造である。 セリシン 2 の各層 2 a〜 2 ίには、 各層や 6層全体に各々特徴があっていずれもシルク繊維 にとつて重要な存在である。 例えば繭の中の生体を守るために外気の変化や外界 の環境の変化に対応して内部を守る働きをしている。  The sericin 2 wrapping the fibroin fiber 1 has a layered structure as shown in Fig. 2 when it is enlarged, and the I layer 2a of sericin 2 from the outside, the mixed layer 2b of the I layer 2a and the Π layer 2c, 6It has a six-layer structure of layer 2c, IE layer 2d, IV layer 2e, and V layer 2f. Each layer 2a to 2 2 of sericin 2 has characteristics in each layer and the entire 6 layers, and all of them are important for silk fiber. For example, in order to protect the living body inside the cocoon, it works to protect the inside in response to changes in the outside air and changes in the external environment.
ここで、 シルク繊維の他の天然繊維と比較した特性を示す。 表 1はシルクと他 の天然繊維との特性比較表である。 表 1において、 ヤング率の単位 g/ dの d : デニールは繊維の太さを表す単位で、 4 5 0 mの繊維の重さが 5 O mgのものが 1デニールである。 また衝撃切断エネルギーの単位 E r g / c m2で E r g : ェ ルグは 1 d y nの力が物体に作用して、 その作用点が力の方向に 1 c m移動する ときになされる仕事である。 Here, the characteristics of silk fiber compared with other natural fibers are shown. Table 1 compares the properties of silk and other natural fibers. In Table 1, d: denier, the unit of Young's modulus g / d, is a unit indicating the thickness of the fiber. One denier is obtained when 450 m of fiber weighs 5 O mg. In terms of the unit of impact cutting energy E erg / cm 2 , the erg is the work that is performed when a force of 1 dyn acts on an object and the point of action moves 1 cm in the direction of the force.
Figure imgf000009_0001
表 1に示すように木綿や羊毛に比し、 シルク繊維はヤング率が高くて変形しに く く、 衝撃剪断エネルギーが高くて丈夫であり、 熱による分解点の温度も高くて 耐熱性に優れる等の特徴を有し、 シルク繊維は他の天然繊維に比して総合的な物 性に優れている。 また合成繊維は 2 0 0 °C前後で分解 · 溶融 · 燃焼して有毒ガス を発生するが、 シルク繊維は 3 0 0〜 4 0 0 °Cで燃焼して有毒ガスを発生するこ とがなく、 強度、 安全性、 コスト面で優れている。 さらに母材に添加する場合で も透過性が高くて白濁等を起こさずに、 母材の色調や色彩等に変化を起こすごと が少なく、 母材内部に混在しても目立たないので審美性が高い繊維強化プラスチ ックを製造することができる。
Figure imgf000009_0001
As shown in Table 1, compared to cotton and wool, silk fiber has a higher Young's modulus and It has high impact shear energy, is durable, has a high decomposition temperature due to heat, and has excellent heat resistance.Silk fiber has overall properties compared to other natural fibers. Are better. Synthetic fiber decomposes, melts and burns at around 200 ° C to generate toxic gas, while silk fiber burns at 300 to 400 ° C and does not generate toxic gas. Excellent in strength, safety and cost. Furthermore, even when added to the base material, it has high permeability and does not cause turbidity, etc., and rarely causes a change in the color tone, color, etc. of the base material. High fiber reinforced plastics can be produced.
さらにシルク繊維は単に高い強度等の特性を有するだけでなく人体等の生態環 境に積極的なプラス効果を有する。 即ち、 シルク繊維は古来から美しさ、 肌触り の良さ等から重要視され有用性が認められてきたが、 現代ではシルクの外套膜で あるセリシンが、 粘膜疾患及び皮膚疾患に有効であるなど、 その薬理効果が科学 的に実証され、 人体に直接適用する素材としては最適な 「環境素材」 といえる。 シルクのフィブロインも生体への適合性がよく生体材料として最適である。 そして、 後述する実験例で母材の合成樹脂に添加するシルク繊維の形状 · 太さ は、 粉状の微砕片 (原糸 l m m以下のもの) 、 綿状の 1 . 0デニール原糸 (太さ 約 1 0 // ) 、 2本撚り 2 7デニールの撚糸 (太さ約 2 7 0 /Z ) 、 4本燃り 2 9デ ニールの撚糸 (太さ約 2 9 0 ) 、 6本撚り 3 2デニールの撚糸 (太さ約 3 2 0 ) の 5種類である。 前記シルクの長さは、 2本撚り 2 7デニールの撚糸、 4本 撚り 2 9デニールの撚糸、 6本燃り 3 2デニールの撚糸はいずれも試験片の長軸 方向の寸法を基本として 1 0 m m以上の適切な長さとした。 前記シルクのうち粉 状の微砕片以外の形状を図 3に示す。 図 3 ( a ) は綿状 1 . 0デニール原糸であ るシルク繊維を示す部分斜視図、 同図 (b ) は 2本燃り 2 7デニールの撚糸であ るシルク繊維を示す部分斜視図、 同図 (c ) は 4本撚り 2 9デニールの撚糸であ るシルク繊維を示す部分斜視図、 同図 (d ) は 6本燃り 3 2デニールの撚糸であ るシルク繊維を示す部分斜視図である。  Furthermore, silk fibers not only have properties such as high strength, but also have a positive effect on the ecological environment such as the human body. In other words, silk fibers have long been regarded as important because of their beauty, good touch, etc., and their usefulness has been recognized.In modern times, however, sericin, a silk mantle, is effective for mucous membrane diseases and skin diseases. Its pharmacological effects have been scientifically demonstrated, and it can be said to be the optimal “environmental material” as a material directly applied to the human body. Silk fibroin also has good compatibility with living organisms and is optimal as a biomaterial. The shape and thickness of the silk fibers added to the synthetic resin of the base material in the experimental examples described later are as follows: powdery finely crushed pieces (thickness of lmm or less), cotton-like 1.0 denier yarn (thickness) Approximately 10 //), 2 twists 27 denier twisted yarn (thickness of about 270 / Z), 4 burns 29 denier twisted yarn (thickness of about 290), 6 twisted 3 2 There are five types of denier twisted yarn (thickness of about 320). The length of the silk was 2 strands of 27 denier, 4 strands of 29 denier, and 6 strands of 32 denier. The appropriate length was at least mm. Fig. 3 shows the shape of the silk other than the powdery fine crushed pieces. Fig. 3 (a) is a partial perspective view showing a silk fiber which is a cotton-like 1.0 denier raw yarn, and Fig. 3 (b) is a partial perspective view showing a silk fiber which is a two-burn 27 denier twisted yarn. (C) is a partial perspective view showing a silk fiber that is a four-ply 29 denier twisted yarn, and (d) is a partial perspective view that shows a six-burned 32 denier twisted silk fiber. FIG.
以下、 母材となる合成樹脂に上記 5種類のシルク繊維を各々混合添加した繊維 強化プラスチック及びその義歯床について、 その実施例を示す。  Hereinafter, examples of the fiber-reinforced plastic in which the above-described five types of silk fibers are mixed and added to a synthetic resin serving as a base material and a denture base thereof will be described.
[実施例 1 ] 繊維強化プラスチックの試験片は、 合成樹脂の母材としてメタクリル酸メチル 樹脂 (P M M A ) を用い、 粉状微砕片、 綿状 1 . 0デニール原糸、 2本撚り 2 7 デニ一ル撚糸、 4本撚り 2 9デニール撚糸、 6本撚り 3 2デニール撚糸の 5種類 のシルク繊維を、 前記メタクリル酸メチル樹脂 1 8 . 0 gに各々分散して添加す ることで製作した。 試験片は JIS K7203 (硬質プラスチックの曲げ試験) に準じ た標準寸法 · 形状に成形している。 図 4は製作されたメ夕クリル酸メチル樹脂の 試験片を示す説明図であり、 JIS K7203 の試験片の規定寸法 ·形状である 1 1 0 mm X 1 0 mm X 4 mmの矩形に仕上げられている。 [Example 1] Test pieces of fiber reinforced plastic are made of methyl methacrylate resin (PMMA) as a base material of synthetic resin, powdered fine crushed pieces, cottony 1.0 denier raw yarn, 2 twisted 27 denier twisted yarn, 4 Twenty-nine denier twisted yarn and six-ply 32 denier twisted yarn were manufactured by dispersing and adding each of five types of silk fibers to the above-mentioned methyl methacrylate resin (18.0 g). The test specimens are molded to standard dimensions and shapes according to JIS K7203 (hard plastic bending test). Fig. 4 is an explanatory view showing the manufactured test piece of methyl methacrylate resin.The test piece is finished in a rectangular shape of 110 mm X 10 mm X 4 mm, which is the specified size and shape of the test piece of JIS K7203. ing.
メタクリル酸メチル樹脂へ分散 · 添加するシルク繊維の混合量 ·混合重量比率 は表 2に示す通りである。 尚、 綿状 1 . 0デニール原糸は嵩張るため混合量 · 混 合重量比率を他のシルクの混合量 ·混合重量比率に対して 1 / 1 0にしてある。  The dispersion in the methyl methacrylate resin · The amount of the silk fiber to be added · The mixing weight ratio is as shown in Table 2. In addition, since the flocculent 1.0 denier yarn is bulky, the mixing amount and the mixing weight ratio are set to 1/10 with respect to the mixing amount and the mixing weight ratio of other silks.
表 2  Table 2
Figure imgf000011_0001
Figure imgf000011_0001
前記試験片の製作に当たっては、 厚さ 4 mm、 長さ 1 1 0 mm、 幅 2 1 mm の アルミ板の原型を製作し、 型枠となる金型の中に石膏を詰めて前記原型を埋没す る。 前記金型の型枠は後で二分割できるようになつており、 分割線にはアルミ板In producing the test piece, a prototype of an aluminum plate having a thickness of 4 mm , a length of 110 mm, and a width of 21 mm was produced, and plaster was packed in a mold serving as a mold, and the prototype was buried. You. The mold of the mold can be divided into two parts later.
(原型) の厚さの中心を位置させ上下 2回に分け石膏で埋没する。 また埋没する 型枠の石膏には上下の石膏が分離するように予め硬化した下面の石膏には分離材Place the center of the thickness of the (prototype) and immerse it in gypsum in two upper and lower parts. Separating material is applied to the plaster on the lower surface which is pre-cured so that the upper and lower gypsum are separated from the plaster of the mold to be buried.
(合成中性洗剤) を塗布しておく。 石膏が硬化した後、 上下の型枠及び石膏を分 割して原型のアルミ板を取り出す。 上記工程で試験片を製作する際の石膏型が完 成する。 完成した石膏型の内面には、 試験片素材と石膏との分離材としてアルギ ン酸ナトリゥム系分離材を塗布して十分に乾燥させておく。 (Synthetic neutral detergent) is applied. After the gypsum has hardened, the upper and lower molds and gypsum are separated and the original aluminum plate is removed. The gypsum mold for producing test pieces in the above process is completed. On the inner surface of the finished gypsum mold, a sodium alginate-based separating material should be applied as a separating material between the test piece material and the gypsum, and dried sufficiently.
試験片の母材となるメ夕クリル酸メチル樹脂は重合体粉末と単量体液体とから 製作する。 前記重合体粉末の組成は微粉末状 P M M A (ポリメチルメ夕クリ レー ト · 重合体) 9 9 . 0〜 9 9 . 3 %、 過酸化ベンゾィル (重合開始剤) 0 . 2〜 0 . 5 %、 着色剤 0 . 5 %であり、 前記単量体液体の組成は M M A (モノメチル メタクリレート · 単量体) 8 4〜 1 0 0 %、 E D M A (エチレングリコールジメ タクリレート · 架橋剤) 0〜 1 6 %、 ハイ ドロキノン (重合禁止剤) 0 . 0 0 5 %である。 本実施例の試験片製作には、 (株) ハイデンタル · ジャパン社製のィ ソレジン Hを使用した。 The methyl methacrylate resin, which is the base material of the test specimen, is manufactured from polymer powder and monomer liquid. The composition of the polymer powder is fine powder PMMA (polymethylmethacrylate acrylate polymer) 99.0 to 99.3%, benzoyl peroxide (polymerization initiator) 0.2 to 0.5%, coloring agent 0.5%, the composition of the monomer liquid is MMA (monomethyl methacrylate · monomer) 84-100%, EDMA (ethylene glycol dimethacrylate · crosslinking agent) 0 ~ 16%, and 0.005% of hydroquinone (polymerization inhibitor). In producing the test piece of this example, Isole Resin H manufactured by Hydental Japan Co., Ltd. was used.
前記重合体粉末 1 8 0 gに対して前記単量体液体 7 7 . 4 ml を混和すると室 温 2 3でで約 1 5分経過後に餅状の前重合段階に入る。 十分な可塑性を有する前 重合段階で上下に分割された石膏型に上下均等に填入し、 この間に長方向に揃え た各種類のシルクを試験片の長軸方向 ( 1 1 0 m mの方向) に対して平行に所定 重量比で分散して添加する。 なお微砕片のシルク繊維は予め重合体粉末に混入し ておく。 その後、 ポリエチレンフィルムを介して石膏型を合わせて 5 kgf/cm3 の 圧力で試圧し、 試圧後に石膏型を分割して余剰の填入物を除去する。 その後、 ポ リエチレンフィルムを介さずに石膏型を合わせて試圧同様の圧力で結合させ乾式 重合法で加熱重合を行い、 1 0 0 °Cで約 1 5分間加熱後に徐冷して試験片材料を 取り出す。 重合完了後の試験片材料は規定寸法に切断し試験片が完成する。 そして、 上記製作工程で得られた試験片に対し、 JIS K7203 (硬質プラスチック の曲げ試験) による抗破折試験を行った。 試験機器にはインス トロン型万能試験 機 · 島津 AG-5000A (滋賀県工業試験所所有) を使用し、 試験設定条件は、 試験 形態 SINGLE BEND (単方向曲げ試験) 、 試験圧子移動速度 20.000mm/分、 試験圧 子 20.000KGF、 支点間距離 80.000mm とした。 前記設定条件で抗破折試験を実施し て、 各シルク混合条件別に各四片の試験片を試験してデータを取得した (内一本 試験不能) 。 また比較対象として、 シルク無添加のメタクリル酸メチル樹脂とポ リスルフォン樹脂の試験片からもデータを取得した。 抗破折試験による最大荷重 値 (曲げ応力値) を各シルク混合条件別に表 3〜表 7に示す。 表中の最大荷重値When 180 g of the polymer powder is mixed with 77.4 ml of the monomer liquid, a rice cake-like prepolymerization stage starts after about 15 minutes at room temperature 23. Pre-sufficient plasticity The plaster mold divided into upper and lower parts in the polymerization stage is evenly filled up and down. During this time, each type of silk aligned in the longitudinal direction is placed in the long axis direction of the test specimen (110 mm direction). In parallel at a predetermined weight ratio. The silk fibers of the crushed pieces are mixed in advance in the polymer powder. After that, the gypsum mold is put together through a polyethylene film and subjected to a test pressure at a pressure of 5 kgf / cm 3 , and after the test pressure, the gypsum mold is divided to remove excess filler. After that, the gypsum molds are joined together without the intermediary of a polyethylene film, bonded under the same pressure as the test pressure, heat-polymerized by dry polymerization, heated at 100 ° C for about 15 minutes, and then gradually cooled to obtain a test piece material. Take out. After completion of the polymerization, the test piece material is cut into a specified size to complete the test piece. The test pieces obtained in the above manufacturing process were subjected to an anti-fracture test by JIS K7203 (bending test of hard plastic). The test equipment used was an Instron type universal testing machine · Shimadzu AG-5000A (owned by Shiga Prefectural Industrial Testing Laboratory). Min, the test indenter was 20.000 KGF, and the distance between fulcrums was 80.000 mm. An anti-fracture test was performed under the above set conditions, and four test pieces were tested for each silk mixing condition to obtain data (one of them could not be tested). For comparison, data was also obtained from test pieces of methyl methacrylate resin and polysulfone resin without silk. Tables 3 to 7 show the maximum load value (bending stress value) by the anti-fracture test for each silk mixing condition. Maximum load value in the table
(曲げ応力値) の単位は M P aである。 表 3 The unit of (bending stress value) is MPa. Table 3
Figure imgf000013_0001
Figure imgf000013_0001
表 4 綿状 1.0テ'二 原糸を添加し 混合比率 Table 4 Addition of flocculent 1.0 fiber yarn and mixing ratio
たメタクリル酸メチル樹脂 0.055% 0.22% 0.44% 15% 試験片の実験例 (N o . )  Methyl methacrylate resin 0.055% 0.22% 0.44% 15% Test piece (No.)
1 83.602 93.026 86.534  1 83.602 93.026 86.534
2 77.796 90.780 86.180  2 77.796 90.780 86.180
3 63.400 70.245 80.748  3 63.400 70.245 80.748
4 70.127 84.063 87.838  4 70.127 84.063 87.838
比較例 1 (メタクリル酸メ  Comparative Example 1 (methacrylic acid
チル樹脂 ·シルク無添加) 63.751  Chill resin, no silk added) 63.751
比較例 2 (ボリスルフォン  Comparative Example 2 (Borisulfone
樹脂 · シルク無添加) 95.782 95.782 (resin, no silk)
表 5 Table 5
Figure imgf000014_0001
Figure imgf000014_0001
表 6 Table 6
4本撚り 29テ'::-ルを添加し 混合比率 4 strands 29 '::-
たメタクリル酸メチル樹脂 0.55% 2JZ% 4.4% 15% 試験片の実験例 (N o . )  Methyl methacrylate resin 0.55% 2JZ% 4.4% 15% Example of test piece (No.)
1 74.609 81.425  1 74.609 81.425
2 74.727 84.875 82.278  2 74.727 84.875 82.278
3 58.319 82.875 81.346  3 58.319 82.875 81.346
4 65.401 78.630 101·528  4 65.401 78.630 101528
比較例 1 (メタクリル酸メ  Comparative Example 1 (methacrylic acid
チル榭脂 ·シルク無添加) 63.751  Chilled fat and silk-free) 63.751
比較例 2 (ポリスルフォン  Comparative Example 2 (Polysulfone
榭脂 · シルク無添加) 95.782 95.782 (no fat or silk)
表 7 Table 7
Figure imgf000015_0001
上記表 3〜表 7の試験結果をグラフに示す。 図 6は粉状微砕片シルクの混合重 量比率と最大荷重時曲げ応力との関係を示すグラフ、 図 7は綿状原糸 1 . 0デニ —ルシルクの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、 図 8は 2本撚り 2 7デニールシルクの混合重量比率と最大荷重時曲げ応力との関係を示 すグラフ、 図 9は 4本燃り 2 9デニールシルクの混合重量比率と最大荷重時曲げ 応力との関係を示すグラフ、 図 1 0は 6本撚り 3 2デニールシルクの混合重量比 率と最大荷重時曲げ応力との関係を示すグラフ、 図 1 1は粉状微砕片、 2本燃り
Figure imgf000015_0001
The test results in Tables 3 to 7 above are shown in the graphs. Fig. 6 is a graph showing the relationship between the mixed weight ratio of the powdered finely divided silk and the bending stress at the maximum load. Fig. 7 is the mixed weight ratio of the cotton denier 1.0 denier silk and the bending stress at the maximum load. Fig. 8 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the bending stress at the maximum load. Fig. 9 is a graph showing the relationship between the mixed weight ratio of four strands and 29 denier silk. Fig. 10 is a graph showing the relationship between the bending stress at the maximum load, Fig. 10 is a graph showing the relationship between the mixing weight ratio of 6-denier 32 denier silk and the bending stress at the maximum load, and Fig. 11 is a fine powder fragment. 2 burning
2 7デニール、 4本撚り 2 9デニール、 6本撚り 3 2デニールの各添加シルクの 混合重量比率と最大荷重時曲げ応力との関係を示すグラフである。 図 6〜図 1 1 中で、 1点鎖線はシルク無添加のメタクリル酸メチル樹脂の曲げ応力を、 破線は ポリスルフォン樹脂の曲げ応力を示している。 3 is a graph showing the relationship between the mixing weight ratio of each added silk of 27 denier, 4 strands, 29 denier, and 6 strands of 32 denier and the bending stress at the maximum load. In Figs. 6 to 11, the dashed line indicates the bending stress of the methyl methacrylate resin without the addition of silk, and the dashed line indicates the bending stress of the polysulfone resin.
図 6〜図 1 1の試験結果から判断すると、 シルク繊維を添加したメ夕クリル酸 メチル樹脂はシルク無添加のメタクリル酸メチル樹脂に比較して、 いずれも曲げ 応力が向上しており強度が高まっている。 特に綿状原糸 1 . 0デニール、 2本撚 り 2 7デニール撚糸、 4本撚り 2 9デニール撚糸、 6本燃り 3 2デニール撚糸の 4種類を混合した場合は、 図 1 1のシルク無添加メタクリル酸メチル樹脂 ( 1点 鎖線) より上の領域で示されるように確実且つ顕著に強度が増し、 最大で 5 9 . Judging from the test results shown in Figs. 6 to 11, the methyl methacrylate resin to which silk fiber was added has improved bending stress and increased strength compared to the methyl methacrylate resin to which no silk was added. ing. In particular, when four types of cotton denier 1.0 denier, twin twisted 27 denier twisted yarn, four twisted 29 denier twisted yarn, and six-burned 32 denier twisted yarn are mixed, no silk shown in Fig. 11 is used. As shown in the area above the added methyl methacrylate resin (dashed-dotted line), the strength increases reliably and significantly, up to 59.
3 %もの曲げ応力による強度向上がみられ、 シルク繊維を添加した繊維強化ブラ スチックの有効性が確認された。 更にシルク繊維が原糸 · 撚糸で混合重量比率が 2. 2 %以上であるときには、 いずれも強度の向上がより顕著であった。 The strength was improved by 3% of bending stress, confirming the effectiveness of the fiber-reinforced plastic to which silk fibers were added. In addition, the mixing weight ratio of silk fiber is 2. When the content was 2% or more, the improvement in strength was more remarkable in each case.
添加シルク繊維の混合重量比率を 0. 55 %、 2. 2 %、 4. 4%と増加する に従い強度が向上し、 ポリスルフォン樹脂に匹敵する曲げ応力による強度が得ら れるようになるが、 図 1 0に示すように 6本燃り 32デニール撚糸の混合重量比 率を 1 5 %とした場合には 4. 4 %のときより強度が低下している傾向がみられ るので、 メタクリル酸メチル樹脂を母材とした場合には 6本撚り 3 2デニール撚 糸で 4. 4 %と 1 5 %との間にシルクの最適な混合重量比率が存在すると考えら れる。 他の傾向として、 添加シルク繊維の太さが太いほど曲げ応力による強度が 向上し且つその試験データの安定性がみられ、 又綿状原糸 1. 0デニールの場合 には混合量が他の添加シルク繊維に比して 1 1 0であるにも関わらず顕著な曲 げ応力による強度の向上が確認された。  As the mixing weight ratio of the added silk fiber increases to 0.55%, 2.2%, and 4.4%, the strength increases, and strength by bending stress comparable to that of polysulfone resin is obtained. As shown in Fig. 10, when the mixing weight ratio of 6-burn 32 denier twisted yarn is 15%, the strength tends to be lower than at 4.4%. When methyl resin is used as the base material, it is considered that the optimum mixing weight ratio of silk exists between 4.4% and 15% for 6-denier 32 denier twisted yarn. Another tendency is that the larger the thickness of the added silk fiber, the higher the strength due to bending stress and the stability of the test data, and when the cotton yarn is 1.0 denier, the mixing amount is different. Despite being 110 compared to the added silk fiber, remarkable improvement in strength due to bending stress was confirmed.
[実施例 2 ]  [Example 2]
繊維強化プラスチックの試験片は、 合成樹脂の母材にポリエチレン (P E) を 用い、 粉状微砕片、 綿状 1. 0デニール原糸、 2本撚り 2 7デニール撚糸、 4本 燃り 2 9デニール撚糸、 6本燃り 3 2デニール撚糸の 5種類のシルク繊維を、 前 記ポリエチレン 4. 0 gに各々混合して製作した。 試験片は JIS K7113 (プラス チックの引張試験方法) の 2号型試験片に準じた標準寸法 ·形状に成形している。 図 5はポリエチレンの試験片を示す説明図であり、 試験片は JIS K7113の規定寸 法 · 形状で全長 A 1 1 5 mm、 両端の幅 B 2 5 ± 1 mm、 平行部分の長さ C 3 3 ± 2mm、 平行部分の幅 D 6 ± 0. 4mm、 小半径 E 14 ± lmm、 大半径 F 2 5士 2 mm、 標線間距離 G 2 5 ± 1 mm、 つかみ具間距離 H 80 ± 5 mm、 厚さ I 1〜 3 mmに仕上げられている。  The test piece of fiber reinforced plastic uses polyethylene (PE) as the base material of synthetic resin, powdered fine crushed pieces, cottony 1.0 denier raw yarn, 2 twisted 27 denier twisted yarn, 4 burned 29 denier Twenty-five types of silk fibers, a twisted yarn and six burned 32 denier twisted yarns, were mixed with 4.0 g of the polyethylene described above, respectively, to produce the yarn. The test pieces are molded to the standard size and shape according to JIS K7113 (Plastic tensile test method) No. 2 test piece. Fig. 5 is an explanatory diagram showing a test piece of polyethylene.The test piece has the specified dimensions and shape specified in JIS K7113, and has a total length of A115mm, both end widths B25 ± 1mm, and a parallel portion length C3. 3 ± 2 mm, width of parallel part D 6 ± 0.4 mm, small radius E 14 ± lmm, large radius F 25 5 mm 2 mm, distance between marking lines G 25 ± 1 mm, distance between grips H 80 ± 5 mm, thickness I 1-3 mm.
母材のポリエチレンへ混合するシルク繊維の混合量 ·混合重量比率は表 8に示 す通りである。 なお綿状 1. 0デニール原糸は嵩張るために混合量 ·混合重量比 率を他のシルク繊維の混合重量比率に対して 1/1 0にしてある。 表 8 Table 8 shows the mixing amount and mixing weight ratio of silk fiber mixed with polyethylene as the base material. The fluffy 1.0 denier yarn is bulky, so that the mixing amount and mixing weight ratio are 1/10 with respect to the mixing weight ratio of other silk fibers. Table 8
Figure imgf000017_0001
Figure imgf000017_0001
前記試験片の製作に当たっては、 予め凹面と平滑面で 2分割される金型を製作 しておく。 又試験片の母材であるポリエチレンには、 ノバテック L Lフィルムグ レ一ド UF 2 4 0 ( (株) 日本ポリケム製造) を使用する。 前記 UF 2 4 0の特 性は M F R (流れ性の度合) 2. l gZ l O分、 密度 0. 9 2 0 g/ c m3 (L D P E (直鎖状低密度ポリエチレン) ) 、 融点 (融解終了点) 1 2 4°C、 軟化温 度 1 0 0 、 添加助剤は無添加である。 In manufacturing the test piece, a mold that is divided into a concave surface and a smooth surface in advance is manufactured. Novatec LL film grade UF240 (manufactured by Nippon Polychem Co., Ltd.) is used for polyethylene as a base material of the test piece. The UF 2 4 characteristics 0 MFR (degree of flowability) 2. l gZ l O min, density 0. 9 2 0 g / cm 3 (LDPE ( linear low density polyethylene)), mp (melting ends Point) 124 ° C, softening temperature 100, no additive.
母材のペレッ ト 4. O gと、 試験片の長方向の寸法 · 形状に揃えて所定の重量 比率に調整したシルク繊維を用意し、 母材のペレツ トの一部を金型の凹面に溶解 時に均等となるように置いて 1 4 0°Cの電気炉中で溶解し、 スパチュラ (ヘラ) で気泡の無いように圧迫する。 そして、 シルクを長方向に分散して添加する。 シ ルクの添加は、 図 5の平行部分の長さ C : 3 3 mmを基本として全長 A : 1 1 5 mmの試験片全体に均等にシルクが分布するように添加する。 その後、 残りのぺ レツ トを被覆後に 1 4 0 °Cの電気炉で再度融解し、 スパチュラで溶解した母材を シルク繊維に馴染ませる。 その後、 金型を合わせて 5 k g f / c m3の圧力でプ レスして加圧成形後に徐冷し、 余剰部分の削除など規定寸法 · 形状への調整を行 レ 試験片が完成する。 Pellet of base metal 4.Prepare Og and silk fiber adjusted to the specified weight ratio according to the longitudinal dimension and shape of the test piece.Some of the pellet of the base metal is placed on the concave surface of the mold. Dissolve evenly in an electric furnace at 140 ° C, and press with a spatula (spatula) to eliminate bubbles. Then, the silk is dispersed and added in the longitudinal direction. The silk should be added so that the silk is distributed evenly over the entire length A: 115 mm of the test piece based on the length of the parallel part C: 33 mm in Fig. 5. After that, after coating the remaining pellets, it is melted again in an electric furnace at 140 ° C, and the base material dissolved with the spatula is adapted to the silk fibers. After that, the combined molds are pressed at a pressure of 5 kgf / cm 3 , and then pressed and gradually cooled, and then adjusted to specified dimensions and shapes, such as removal of excess parts, to complete the test specimen.
上記製作工程で得られた試験片に対し、 JIS K7113 (プラスチックの引張試験方 法) による引張試験を行った。 試験機器には万能抗張力試験機 ( 5 t ) INSTRON 5569 (滋賀県東北部工業センター所有) を使用し、 試験設定条件は、 試験形態引 つ張り、 クロスヘッ ド速度 20.000mm/分、 フルスケール荷重レンジ 50kg (試験片 の一部が荷重レンジを超えたために変更した荷重レンジ : 5000kg) 、 試験片の掴 み具間距離 80mm とした。 前記設定条件で引張試験を実施して、 各シルク混合条 件別に最大荷重時の引張応力 (MP a) と最大荷重時の試験片の伸び (mm) の データ、 及び比較対象としてシルク無添加のポリエチレン試験片による同様のデ 一夕を取得した。 各シルク混合条件別に引張試験による最大荷重時の引張応力 (MP a) のデータを表 9〜表 1 3に、 これに対応した最大荷重時の試験片の伸 び (mm) のデータを表 1 4〜表 1 8に示す。 A tensile test was performed on the test piece obtained in the above manufacturing process by JIS K7113 (plastic tensile test method). The test equipment used is a universal tensile strength tester (5 t) INSTRON 5569 (owned by the Tohoku Industrial Center in Shiga Prefecture). The test conditions are: test form tension, crosshead speed 20.000 mm / min, full-scale load range The load range was 50 kg (the load range changed because a part of the test piece exceeded the load range: 5000 kg), and the distance between the grips of the test piece was 80 mm. A tensile test was conducted under the above set conditions, and the tensile stress (MPa) at the maximum load and the elongation (mm) of the test piece at the maximum load were determined for each silk mixing condition. Data and similar data were obtained using a polyethylene test piece without silk as a control. Tables 9 to 13 show the tensile stress data (MPa) at the maximum load by the tensile test for each silk mixing condition, and Table 1 shows the corresponding test piece elongation (mm) data at the maximum load. 4 to Table 18 are shown.
表 9  Table 9
粉状微砕片を添加したポリ 混合比率  Mixing ratio of poly with powdered fine crushed pieces
エチレンの実験例 (No.) 0.55% 2.2% 4.4% 15%  Example of ethylene experiment (No.) 0.55% 2.2% 4.4% 15%
1 14.112 8.757 8.895 1 14.112 8.757 8.895
2 6.796 8.904 8.620 2 6.796 8.904 8.620
3 8.630 8.600 8.748  3 8.630 8.600 8.748
4  Four
比較例 1 (ポリエチレン ·  Comparative Example 1 (Polyethylene
シルク無添加) 19.172  Without silk) 19.172
比較例 2 (") 17.868  Comparative Example 2 (") 17.868
比較例 3 (") 17.897 表 1 0  Comparative Example 3 (") 17.897 Table 10
綿状 1.0テ'こ-ル原糸を添加し 混合比率  Add 1.0% cotton fiber and mix ratio
たポリエチレンの実験例(N 0.055% 0.22% 0.44% 15% o.)  Experimental example of polyethylene (N 0.055% 0.22% 0.44% 15% o.)
1 14.131 15.700 15.123  1 14.131 15.700 15.123
2 12.523 12.984 12.327  2 12.523 12.984 12.327
3  Three
4  Four
比較例 1 (ボリエチレン ·  Comparative Example 1 (polyethylene
シルク無添加) 19.172  Without silk) 19.172
比較例 2 ("〉 17.868  Comparative Example 2 ("> 17.868
比較例 3 (") 17.897 2本撚り 27テ'二-ルを添加し 混合比率 Comparative Example 3 (") 17.897 Two strands of 27 tails added and mixing ratio
たポリエチレンの実験例(N 0.55% 2.2% 4.4% 15% 0 . ) Experimental example of polyethylene (N 0.55% 2.2% 4.4% 15% 0.)
1 17.436 12.798 21.290 1 17.436 12.798 21.290
2 14.994 25.703 28.3602 14.994 25.703 28.360
3 32.323 3 32.323
4 18.064  4 18.064
比較例 1 (ポリエチレン ' Comparative Example 1 (Polyethylene ''
シルク無添加) 19.172 Without silk) 19.172
比較例 2 (〃) 17.868 Comparative Example 2 (〃) 17.868
比較例 3 ( " ) 17.897 表 1 2 Comparative Example 3 (") 17.897 Table 1 2
4本撚り 29テ';:-ルを添加し 混合比率  4-strand 29 ';:-
たポリエチレンの実験例(N 0.55% 2.2% 4.4% 15% o . ) Example of polyethylene (N 0.55% 2.2% 4.4% 15% o.)
1 18.054 21.075 34.000 1 18.054 21.075 34.000
2 14.877 16.955 30.7832 14.877 16.955 30.783
3 32.1173 32.117
4 28.165 比較例 1 (ポリエチレン · 4 28.165 Comparative Example 1 (Polyethylene
シルク無添加) 19.172 Without silk) 19.172
比較例 2 (〃) 17.868 Comparative Example 2 (〃) 17.868
比較例 3 ( 17.897 Comparative Example 3 (17.897
表 1 3 Table 13
6本撚り 32テ 'こ-ルを添加し 混合比率  6 strands 32 liters are added and mixing ratio
たポリエチレンの実験例(N 055% 2.2% 4.4% 15% o.) Of polyethylene (N 055% 2.2% 4.4% 15% o.)
1 15.945 35.020 40227 61.928 1 15.945 35.020 40227 61.928
2 14.955 30.028 37.343 29.2432 14.955 30.028 37.343 29.243
3 32.136 64.871 34.5683 32.136 64.871 34.568
4 33.617 38.648 41.5214 33.617 38.648 41.521
5 58.673 比較例 1 (ポリエチレン · 5 58.673 Comparative Example 1 (Polyethylene
シルク無添加) 19.172 Without silk) 19.172
比較例 2 ( 17.868 Comparative Example 2 (17.868
比較例 3 ( 17.897 表 1 4 粉状微碎片を添加したポリ 混合比率 Comparative Example 3 (17.897 Table 14
エチレンの実験例 (No.) 0.55% 2.2% 4.4% 15% Example of ethylene experiment (No.) 0.55% 2.2% 4.4% 15%
1 240.083 22.843 25.658 1 240.083 22.843 25.658
2 4.833 90.414 10.500 2 4.833 90.414 10.500
3 10.196 11.833 20.272 3 10.196 11.833 20.272
4 Four
比較例 1 (ポリエチレン ' Comparative Example 1 (Polyethylene ''
シルク無添加) 330.322 330.322
比較例 2 (/' ) 314.035 Comparative Example 2 (/ ') 314.035
比較例 3 (" ) 298.675 Comparative Example 3 (") 298.675
表 1 5 綿状 1.0テ'二-ル原糸を添加し 混合比率 Table 15 5 Fluffy 1.0 tail yarn added and mixing ratio
ポ M 手レンの: ¾験例 (M 0.055% 0.22% 0.44% 15% υ .  Po M's: Test example (M 0.055% 0.22% 0.44% 15% υ.
1 256.112 266.688 276.758 1 256.112 266.688 276.758
2 235561 232.583 224.2552 235561 232.583 224.255
3 Three
4  Four
比較例 1 (ポリエチレン · Comparative Example 1 (Polyethylene
シルク無添加〉 330.322 No silk added> 330.322
比較例 2 (") 314.035 Comparative Example 2 (") 314.035
比較例 3 (" ) 298.675 表 1 6 Comparative Example 3 (") 298.675 Table 16
2本撚り 27テ'ニ-ルを添加し 混合比率  2 strands 27'-neil added and mixing ratio
たポリエチレンの実験例(Ν 0.55% 2.2% 4.4% 15% ο.) Experimental example of polyethylene (た 0.55% 2.2% 4.4% 15% ο.)
1 313^83 7.167 4.095 1 313 ^ 83 7.167 4.095
2 285.605 5.647 7.6672 285.605 5.647 7.667
3 7.409 3 7.409
4 7.833  4 7.833
比较例 1 (ポリエチレン ' Comparative Example 1 (Polyethylene ''
シルク無添加) 330.322 330.322
比較例 2 (" ) 314.035 Comparative Example 2 (") 314.035
比較例 3 (" ) 298.675 Comparative Example 3 (") 298.675
表 1 7 Table 17
Figure imgf000022_0001
Figure imgf000022_0001
上記表 9〜表 1 3の最大荷重時の引張応力 (M P a ) に関する試験結果をダラ フに示す。 図 1 2は粉状微砕片シルクの混合重量比率と最大荷重時引張応力との 関係を示すグラフ、 図 1 3は綿状原糸 1 . 0デニールシルクの混合重量比率と最 大荷重時引張応力との関係を示すグラフ、 図 1 4は 2本撚り 2 7デニールシルク の混合重量比率と最大荷重時引張応力との関係を示すグラフ、 図 1 5は 4本燃り 2 9デニールシルクの混合重量比率と最大荷重時引張応力との関係を示すグラフ、 図 1 6は 6本撚り 3 2デニールシルクの混合重量比率と最大荷重時引張応力との 関係を示すグラフ、 図 1 7は粉状微砕片、 2本燃り 2 7デニール、 4本燃り 2 9 デニール、 6本撚り 3 2デニールの各添加シルクの混合重量比率と最大荷重時引 張応力との関係を示すグラフである。 図 1 2〜図 1 7中で破線、 一点鎖線、 二点 鎖線はシルク無添加のポリエチレン樹脂の最大荷重時引張応力を示している。 図 1 2〜図 1 7について検討すると、 2本撚り 2 7デニール撚糸、 4本撚り 2 9デニール撚糸、 6本撚り 3 2デニール撚糸の場合、 シルク繊維の添加量を順次 増加するにつれて繊維強化プラスチックの引張応力に関する強度が顕著に増加し、 特に 6本燃り 3 2デニール撚糸の場合については引張応力に関する強度が極めて 増加している。 The test results for the tensile stress (MPa) at the maximum load in Tables 9 to 13 above are shown in the graph. Fig. 12 is a graph showing the relationship between the mixing weight ratio of the finely ground powdered silk and the tensile stress at the maximum load, and Fig. 13 is the mixing weight ratio of the cotton denier 1.0 denier silk and the tensile stress at the maximum load. Fig. 14 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the tensile stress at maximum load, and Fig. 15 is a graph showing the mixed weight of four strands of 29 denier silk. Fig. 16 is a graph showing the relationship between the ratio and the tensile stress at the maximum load. Fig. 16 is a graph showing the relationship between the mixed weight ratio of 6-denier 32 denier silk and the tensile stress at the maximum load. Fig. 17 is a fine powder fragment. , 2 burns, 27 denier, 4 burns, 29 denier, 6 twists, 3 2 denier It is a graph which shows the relationship with tension stress. In FIGS. 12 to 17, broken lines, dashed-dotted lines, and two-dot dashed lines indicate the tensile stress at the maximum load of the polyethylene resin without silk. Examining Figs. 12 to 17, two-ply 27-denier twisted yarn, four-twisted 29-denier twisted yarn, six-ply twisted 32-denier twisted yarn, fiber-reinforced plastics with increasing amount of silk fiber added sequentially The strength with respect to the tensile stress of the yarn increased remarkably, and the strength with respect to the tensile stress particularly increased in the case of the 6-burn 32 denier twisted yarn.
さらに、 上記表 9〜表 1 3に示された最大荷重時の引張応力 (M p a ) と上記 表 1 4〜表 1 8に示された最大荷重時の試験片伸び (m m ) の対応関係のグラフ を図 1 8に示す。 図 1 8において、 〇は粉状微砕片シルク、 ◎は綿状 1 . 0デニ —ル原糸シルク、 口は 2本撚り 2 7デニール撚糸シルク、 △は 4本撚り 2 9デニ —ル撚糸シルク、 讕は 6本撚り 3 2デニ一ル撚糸シルク、 ◊はシルク無添加のポ リエチレンの試験結果をそれぞれ示している。  Furthermore, the correspondence between the tensile stress (Mpa) at the maximum load shown in Tables 9 to 13 above and the specimen elongation (mm) at the maximum load shown in Tables 14 to 18 above was obtained. Figure 18 shows the graph. In Fig. 18, 粉 indicates powdered finely crushed silk, ◎ indicates cottony 1.0 denier raw silk, mouth has two twisted 27 denier twisted silk, △ indicates four twisted 29 denier silk. , 讕 shows the test results for 6-ply 32 denier twisted silk, and ◊ shows the test results for polyethylene without added silk.
図 1 8について検討すると、 シルク無添加ポリエチレンは最大荷重時の引張応 力 (M P a ) が負荷されたときに試験片の伸び (変位) が約 3 0 0 mm以上とな つているが、 シルク添加ポリエチレンの場合には最大荷重時の引張応力が負荷さ れたときに試験片の伸びが 1 0 mm以下の範囲に移行している。 この傾向は 2本 撚り 2 7デニール撚糸の 2 . 2 %以上、 4本撚り 2 9デニール撚糸の 2 . 2 %以 上、 6本撚り 3 2デニール撚糸の 0 . 5 %以上からみられ、 2本撚り 2 7デニー ル撚糸の 4 . 4 %以上、 4本燃り 2 9デニール撚糸の 4 . 4 %以上、 6本撚り 3 2デニール撚糸の 2 . 2 %以上では引張応力に関する強度が飛躍的に向上すると 共に、 最大荷重時の試験片伸びも 1 1 mm以下に抑えられている。 故に、 シルク 繊維の添加が繊維強化プラスチックの強度向上に有効であることが認められると 共に、 特にシルク繊維の太さや量の増加に伴って繊維強化プラスチックの強度が 向上していることがわかる。  Examining Fig. 18, it can be seen that in the case of polyethylene without silk, the elongation (displacement) of the test piece is about 300 mm or more when the tensile stress (MPa) at the maximum load is applied. In the case of added polyethylene, the elongation of the test piece shifts to a range of 10 mm or less when the tensile stress at the maximum load is applied. This tendency is observed from 2.2% or more of the two-ply 27 denier twisted yarn, 2.2% or more of the 4-twisted 29 denier twisted yarn, and 0.5% or more of the 6-twisted 32 denier twisted yarn. Twist 27 4.4% or more of 27-denier twisted yarn, 4 burns 29% or more of 29-denier twisted yarn, 6-twisted 32 2.2% or more of 2-denier twisted yarn, the strength with respect to tensile stress is dramatically increased. At the same time, the elongation of the specimen under the maximum load is suppressed to 11 mm or less. Therefore, it is recognized that the addition of the silk fiber is effective in improving the strength of the fiber reinforced plastic, and that the strength of the fiber reinforced plastic is improved particularly with an increase in the thickness and the amount of the silk fiber.
[実施例 3 ]  [Example 3]
繊維強化プラスチックの試験片は、 合成樹脂の母材にポリプロピレン (P P ) を用い、 粉状微枠片、 綿状 1 . 0デニール原糸、 2本撚り 2 7デニール撚糸、 4 本撚り 2 9デニール撚糸、 6本撚り 3 2デニール撚糸の 5種類のシルク繊維を、 前記ポリプロピレン 4. 1 gに各々混合して製作した。 試験片は JIS K7203 (プ ラスチックの曲げ試験方法) に準じた標準寸法 · 形状に作成した。 図 5はポリプ ロピレンの試験片を示す説明図であり、 試験片は JIS K7203の規定寸法 · 形状で 1 1 0 mm X 1 0 mm X 4 mmの矩形に仕上げられている。 The test piece of fiber reinforced plastic is made of polypropylene (PP) as the base material of synthetic resin, powdered fine frame, cotton-like 1.0 denier raw yarn, 2-twisted 27 denier twisted yarn, 4-twisted 29 denier Twisted yarns, 6 strands 3 5 types of silk fibers of 2 denier twisted yarns, Each was mixed with 4.1 g of the polypropylene to produce a mixture. The test specimens were prepared in standard dimensions and shapes according to JIS K7203 (plastic bending test method). FIG. 5 is an explanatory view showing a test piece of polypropylene. The test piece is finished in a rectangular shape of 110 mm X 10 mm X 4 mm with a specified size and shape of JIS K7203.
母材のポリプロピレンへ混合するシルク繊維の混合量 ·混合重量比率は表 1 9 に示す通りである。 なお綿状 1. 0デニール原糸は嵩張るために混合量 '混合重 量比率を他のシルク繊維の混合重量比率に対して 1 / 1 0にしてある。  Table 19 shows the mixing amount and mixing weight ratio of silk fiber mixed with the base material polypropylene. Note that the fluffy 1.0 denier yarn is bulky, so the mixing amount is set to 1/10 with respect to the mixing weight ratio of other silk fibers.
表 1 9  Table 19
Figure imgf000024_0001
Figure imgf000024_0001
前記試験片の製作に当たっては、 予め凹面より構成される 2分割できる金型を 製作しておく。 試験片の母材であるポリプロピレンには、 ノバテック P P射出成 形グレード MA 0 3 ( (株) 日本ポリケム製造) を使用する。 前記 MA 0 3の特 性は、 MF R (流れ性の度合) 2 5 gZ l O分、 密度 0. 9 1 0〜 0. 9 2 0 g / c m 融点 (融解終了点) 1 6 3°Cである。  In manufacturing the test piece, a mold that is made of a concave surface and that can be divided into two parts is manufactured in advance. Novatec PP injection molding grade MA03 (manufactured by Nippon Polychem Co., Ltd.) is used for polypropylene as the base material of the test piece. The characteristics of MA03 are: MFR (degree of flowability) 25 gZ10O, density 0.910 to 0.920 g / cm Melting point (end point of melting) 163 ° C It is.
母材のペレッ ト 4. l gと、 試験片の長方向の寸法 ·形状に揃えて所定の重量 比率に調整したシルクを用意し、 母材のペレッ トを金型の凹面に溶解時に均等に なるように置いて 1 6 5°Cの電気炉中で溶解し、 スパチュラ (ヘラ) で気泡の無 いように圧迫する。 その後、 シルクを試験片の長軸方向 ( 1 1 0mmの方向) に 対して平行に均等になるように分散して添加し、 余剰のシルクを試験片より切除 し、 スパチュラを用いて溶解した母材をシルク繊維に馴染ませる。 その後、 金型 を合わせて 5 k g f c m3の圧力でプレスして加圧成形後に徐冷し、 取り出し 余剰部分の削除など規定寸法 ·形状への調整を行って試験片が完成する。 Pellet of base metal 4.Prepare silk that has been adjusted to a predetermined weight ratio in accordance with the length and size of the test piece in the longitudinal direction and shape of the test piece, and the base material pellet becomes uniform when melted on the concave surface of the mold. Melt in an electric furnace at 165 ° C and press with a spatula (spatula) so that there are no air bubbles. Then, the silk was dispersed and added in parallel to the longitudinal direction of the test piece (direction of 110 mm) so as to be even, and the excess silk was cut off from the test piece and dissolved using a spatula. Let the wood adapt to the silk fibers. After that, the dies are combined and pressed under a pressure of 5 kgfcm 3 , and then the molded body is pressed and gradually cooled, then removed, and adjusted to the specified size and shape, such as removal of excess parts, to complete the test specimen.
上記製作工程で得られた試験片に対し、 JIS K7203 (硬質プラスチックの曲げ試 験方法) による抗破折試験を行った。 試験機器にはインス トロン型万能試験機 ORIENTEC RTC-1350A (滋賀県工業試験所所有) を使用し、 試験設定条件は、 試 験形態 SINGLE BEND (単方向曲げ試験) 、 試験圧子移動速度 20.000mm/分、 試験 圧子 20.000KGF、 支点間距離 80.000mm とした。 前記設定条件で抗破折試験を実施 して、 各シルク混合条件別に各四片の試験片を試験してデータを取得した。 なお 比較対象として、 シルク無添加のポリプロピレン試験片からもデータを取得した。 抗破折試験による最大荷重値 (曲げ応力値) を各シルク混合条件別に表 2 0〜表 2 4に示す。 表中の最大荷重値 (曲げ応力値) の単位は M P aである。 The test pieces obtained in the above manufacturing process were subjected to an anti-fracture test according to JIS K7203 (hard plastic bending test method). The test equipment used was an Instron type universal testing machine, ORIENTEC RTC-1350A (owned by Shiga Prefectural Industrial Testing Laboratory). Test type SINGLE BEND (unidirectional bending test), test indenter moving speed 20.000mm / min, test indenter 20.000KGF, distance between fulcrums 80.000mm. An anti-fracture test was performed under the above set conditions, and data was obtained by testing four test pieces for each silk mixing condition. For comparison, data were also obtained from a polypropylene test piece without silk. Tables 20 to 24 show the maximum load value (bending stress value) by the anti-fracture test for each silk mixing condition. The unit of the maximum load value (bending stress value) in the table is MPa.
表 2 0  Table 20
粉状微碎片を添加したポリ 混合比率  Mixing ratio of poly with powdered crushed pieces
プロピレンの実験例 (N 0.55% 2.2% 4.4% 15% o . )  Experimental example of propylene (N 0.55% 2.2% 4.4% 15% o.)
1 40.532 37.479 45.496  1 40.532 37.479 45.496
2 36.559 49.455 50.047  2 36.559 49.455 50.047
3 49.859 50.873 32.219  3 49.859 50.873 32.219
4 39.363 49.934 22.653  4 39.363 49.934 22.653
比較例 1 (ポリプロピレン  Comparative Example 1 (Polypropylene
• シルク無添加) 41.279  • No silk added) 41.279
比較例 2 ( " ) 42.185  Comparative Example 2 (") 42.185
比較例 3 ( "〉 44.885  Comparative Example 3 ("> 44.885
比較例 4 〈ガ) 37.507 表 2 1 綿状 1.0テ'二-ル原糸を添加し 混合比率  Comparative Example 4 <G) 37.507 Table 21 1 Fluffy 1.0-tail yarn added and mixing ratio
たポリプロピレンの実験例 0.055% 0.22% 0.44% 15%  0.055% 0.22% 0.44% 15%
( N o . )  (No.)
1 43.744 25.767 36,888  1 43.744 25.767 36,888
2 45.721 39.564 31.055  2 45.721 39.564 31.055
3 38.705 38.536 44.129  3 38.705 38.536 44.129
4 37.972 43.693 30.092  4 37.972 43.693 30.092
比較例 1 (ポリプロピレン  Comparative Example 1 (Polypropylene
• シルク無添加) 41279  • Without silk) 41279
比較例 2 ( 42.185  Comparative Example 2 (42.185
比較例 3 ( » ) 44.885  Comparative Example 3 (») 44.885
比較例 4 ( " ) 37^07 表 2 2 Comparative Example 4 (") 37 ^ 07 Table 2 2
2本撚り 27テ' ルを添加し 混合比率  Add 27 'twin strand and mix ratio
たポリプロピレンの実験例 0.55% 2.2% 4,4% 15% (N o.) 0.55% 2.2% 4,4% 15% (No.)
1 43.406 49.774 43.772 1 43.406 49.774 43.772
2 48.286 40.743 31.9002 48.286 40.743 31.900
3 41.556 43.228 51.5453 41.556 43.228 51.545
4 49.507 38.606 43.347 比較例 1 (ポリプロピレン 4 49.507 38.606 43.347 Comparative Example 1 (Polypropylene
• シルク無添加) 41.279  • No silk added) 41.279
比較例 2 {>') 42.185 Comparative Example 2 (> ') 42.185
比較例 3 {>') 44.885 Comparative Example 3 (> ') 44.885
比較例 4 (〃) 37.507 表 2 3 Comparative Example 4 (〃) 37.507 Table 2 3
4本撚り 29 τ 二-ルを添加し 混合比率 Add 4-twist 29 τ-rule and mix ratio
たポリプロピレンの実験例 0^5% 2.2% 4.4% 15% (No.)  Experimental example of reinforced polypropylene 0 ^ 5% 2.2% 4.4% 15% (No.)
1 36.634 49.093 19.483 1 36.634 49.093 19.483
2 47.252 31.876 24.6582 47.252 31.876 24.658
3 42.589 45.684 29.9283 42.589 45.684 29.928
4 36.296 43.768 41.899 比較例 1 (ポリプロピレン 4 36.296 43.768 41.899 Comparative Example 1 (Polypropylene
• シルク無添加) 41.279  • No silk added) 41.279
比較例 2 (") 42.185  Comparative Example 2 (") 42.185
比較例 3 (") 44.885  Comparative Example 3 (") 44.885
比較例 4 ("〉 37.507 Comparative Example 4 ("> 37.507
表 2 4 Table 2 4
Figure imgf000027_0001
上記表 2 0〜表 2 4の最大荷重時の曲げ応力 (M P a ) に関する試験結果をグ ラフに示す。 図 1 9は粉状微砕片シルクの混合重量比率と最大荷重時曲げ応力と の関係を示すグラフ、 図 2 0は綿状原糸 1 . 0デニールシルクの混合重量比率と 最大荷重時曲げ応力との関係を示すグラフ、 図 2 1は 2本撚り 2 7デニールシル クの混合重量比率と最大荷重時曲げ応力との関係を示すグラフ、 図 2 2は 4本撚 り 2 9デニールシルクの混合重量比率と最大荷重時曲げ応力との関係を示すグラ フ、 図 2 3は 6本燃り 3 2デニールシルクの混合重量比率と最大荷重時曲げ応力 との関係を示すグラフ、 図 2 4は粉状微砕片、 2本撚り 2 7デニール、 4本燃り 2 9デニール、 6本燃り 3 2デニールの各添加シルクの混合重量比率と最大荷重 時曲げ応力との関係を示すグラフである。 図 1 9〜図 2 4中で破線、 一点鎖線、 二点鎖線、 点線はシルク無添加のボリプロピレンの最大荷重時曲げ応力を示して いる。
Figure imgf000027_0001
The test results for the bending stress (MPa) at the maximum load in Tables 20 to 24 are shown in the graph. Fig. 19 is a graph showing the relationship between the mixing weight ratio of powdered finely crushed silk and the bending stress at the maximum load, and Fig. 20 is the mixing weight ratio of the cottony 1.0 denier silk and the bending stress at the maximum load. Fig. 21 is a graph showing the relationship between the mixed weight ratio of two strands of 27 denier silk and the bending stress under the maximum load, and Fig. 22 is the mixed weight ratio of four strands of 29 denier silk. Fig. 23 shows the relationship between the mixing weight ratio of 6-burner 32 denier silk and the bending stress at the maximum load, and Fig. 23 shows the relationship between the bending stress at the maximum load. 4 is a graph showing the relationship between the mixing weight ratio of each added silk of crushed pieces, two-ply twisted 27 denier, four-burned 29 denier, and six-burned 32 denier, and the bending stress at the maximum load. The broken, dashed-dotted, dashed-dotted and dashed-dotted lines in Figs. 19 to 24 indicate the bending stress at maximum load of polypropylene without the addition of silk.
図 2 4について検討すると、 ポリプロピレンにシルク繊維を添加した本実施例 においても繊維強化プラスチックの曲げ応力に関する強度の向上が認められた。 特に 2本燃り 2 7デニール撚糸 4 . 4 %と 4本撚り 2 9デニール撚糸 2 . 2 %で 強度の向上が顕著であった。 ポリプロピレンを母材として使用した場合、 シルク 繊維添加の強度向上に関する有効性は、 緩やかな二次曲線を伴った形で現れてい る。 Examining FIG. 24, it was confirmed that the fiber-reinforced plastic also improved in strength with respect to bending stress in the present example in which silk fibers were added to polypropylene. In particular, the strength was remarkably improved in the case of the 2-burnt 27-denier twisted yarn 4.4% and the 4-strand 29-denier twisted yarn 2.2%. When polypropylene is used as the base material, the effectiveness of the silk fiber addition in increasing the strength appears in the form of a gentle quadratic curve. You.
[実施例 4 ]  [Example 4]
本実施例では繊維強化プラスチックの強度向上を多角的に検証するため、 多角 的な試験片の強度試験を行った。 母材には人体や自然環境に悪影響を与えない代 表的なプラスチックであるメタクリル酸メチル樹脂を使用し、 これにシルク繊維 を分散 ·添加して繊維強化プラスチックの試験片とする。 前記試験片は、 上記実 施例と同様に繊維強化プラスチックの強度に対するシルクの混合状態の影響を考 慮し、 実験的にシルクの太さ、 長さ、 形状等を変えつつシルクの混合量 (或いは 重量比) を変化させて成形した。  In the present example, in order to verify the improvement of the strength of the fiber reinforced plastic from various viewpoints, a strength test was performed on various test pieces. The base material uses methyl methacrylate resin, a typical plastic that does not adversely affect the human body or the natural environment. Silk fiber is dispersed and added to this material to make fiber-reinforced plastic test specimens. As in the above-described embodiment, the test piece was prepared by considering the effect of the silk mixing state on the strength of the fiber-reinforced plastic, and experimentally changing the silk thickness, length, shape, etc., while changing the silk mixing amount ( (Or weight ratio).
具体的には母材であるメタクリル酸メチル樹脂 1 8 . 0 gに、 試験片に適合す る寸法を有する 5種類の形状のシルク繊維を分散 ·添加して試験片を製作した。 添加するシルク繊維の形状は、 粉状微碎片 (原糸で 1 mm以下のもの) 、 綿状 1 · 0デニール原糸、 2本燃り 2 7デニール撚糸、 4本撚り 2 9デニール撚糸、 6本 燃り 3 2デニール撚糸とし、 母材に対して均等に混合して加圧を施した。 シルク 混合量 (混合重量比) は表 2 5に示す通りである。 なお比較対象として、 ポリス ルフォン樹脂とシルク無添加のメ夕クリル酸メチル樹脂との比較試験片を製作し、 前記比較試験片にも同様の実験を試みた。  Specifically, a test piece was manufactured by dispersing and adding five types of silk fibers having dimensions suitable for the test piece to 18.0 g of methyl methacrylate resin as a base material. The shape of the silk fiber to be added is powdery crushed pieces (1 mm or less in raw yarn), cottony 1.0 denier raw yarn, 2 burns, 27 denier twisted yarn, 4 twisted 29 denier twisted yarn, 6 This burned 32 denier twisted yarn was uniformly mixed with the base material and pressed. Table 25 shows the mixing amount (mixing weight ratio) of silk. As a comparative object, a comparative test piece of polysulfone resin and methyl methacrylate resin without silk was manufactured, and the same experiment was tried on the comparative test piece.
表 2 5  Table 25
Figure imgf000028_0001
試験片の強度試験は、 JIS K7203 (硬質プラスチックの曲げ試験方法) の工業規 格に基づく抗破折試験で実施した。 前記曲げ試験を実施するため、 試験片は上記 の如く母材にシルクを均一に分散 ·混合して冷却が完了したもので、 これを前記 曲げ試験方法に規定された標準寸法 ( 1 1 O mm x 1 O mm X 4 mm ) に切削加 ェしたものとし、 各シルクの混合重量比別に製作した。 試験設備は、 滋賀県工業 試験場所有設備であるィンス トロン型万能試験機 (島津製作所製ォートグラフ AG-5000A) を用い、 前記試験機の設定条件は、 試験形態 (TEST MODE)は SINGLE BEND (単方向曲げ試験) 、 試験圧子移動速度 (TEST SPEED)は 20.000mm/分、 試験 圧子荷重 (F/S LOAD)は 20.000KGF(196.133N)とした。 図 2 5に抗破折試験の概要図 を示す。
Figure imgf000028_0001
The strength test of the test piece was performed by an anti-fracture test based on JIS K7203 (hard plastic bending test method) industrial standard. In order to carry out the bending test, the test piece was one in which the silk was uniformly dispersed and mixed in the base material as described above, and the cooling was completed. This was used as the standard size (11 O mm) specified in the bending test method. x 1 O mm X 4 mm), and manufactured according to the mixing weight ratio of each silk. The test facility is Shiga Industry The test condition (TEST MODE) was set to SINGLE BEND (unidirectional bending test) and the test indenter was moved using an Instron-type universal testing machine (Shimadzu AG-5000A), which is a test site-provided facility. The speed (TEST SPEED) was 20.000 mm / min, and the test indenter load (F / S LOAD) was 20.000 KGF (196.133N). Figure 25 shows a schematic diagram of the anti-fracture test.
前記抗破折試験を実施することにより、 以下の強度に関するデータを取得じた。 このデ一夕に基づいた応力一ひずみ関係等から、 繊維強化プラスチックの材料特 性を判断する。  By performing the anti-fracture test, the following data on strength was obtained. From the stress-strain relationship based on this data, the material characteristics of the fiber-reinforced plastic are determined.
①最大値 (MAX) 。 材料である試験片が、 応力が増加しないで伸びが急激に増加 しはじめる降伏点以前における、 最大の荷重が負荷されたときの各値である。 ① Maximum value (MAX). These are the values when the maximum load is applied before the yield point where the elongation of the test piece, which is the material, begins to increase sharply without increasing the stress.
②破析値 (BREAK) 。 試験片の応力が増加しないで伸びが急激に増加しはじめる 降伏点以降における、 荷重が負荷され試験片が折れ曲がったときの各値である。②Breakdown value (BREAK). The elongation starts to increase sharply without increasing the stress of the test piece. Each value after the yield point when the load is applied and the test piece is bent.
③最大限界値 (LOAD KGF) 。 試験片の応力がピークになったときの荷重値である。 ここでは曲げ荷重を加えているので、 試験片の曲げ強さの荷重である。 尚、 単位 は N : ニュートンに換算して示した ( 1 kgf = 9. 80665N) 。 ③ Maximum limit value (LOAD KGF). This is the load value when the stress of the test piece reaches a peak. Here, since the bending load is applied, it is the load of the bending strength of the test piece. The unit was N: Newton (1 kgf = 9.80665N).
④曲げ値 (ELONG MM) 。 圧子が移動した距離で、 単位は m mである。  ④ Bending value (ELONG MM). The distance the indenter has moved, in mm.
⑤曲げ応力 (STRESS KGF/MM2 ) 。 単位は M P aに換算して示した( 1 M P a = 9. 80665N)。 ⑤ Bending stress (STRESS KGF / MM 2 ). The unit was expressed in terms of MPa (1MPa = 9.80665N).
⑥伸び値 (STRA IN S ) 。 試験片に荷重を加わえて応力が生じたときに、 試験片の 材料を構成している分子と分子は移動して試験片は変形する。 伸び値はこの変形 量 (もとの試験片の平面と変形した平面とのなす曲がり) の割合である。  ⑥ Elongation value (STRA IN S). When a stress is generated by applying a load to the test piece, the molecules constituting the material of the test piece move and the test piece is deformed. The elongation value is the ratio of this amount of deformation (bending between the original test specimen plane and the deformed plane).
以下には、 混合添加するシルクの形状と添加量を変化させて試験片の抗破折試 験を行った実験例を示す。 試験片の母材はメタクリル酸メチル樹脂である。  The following is an example of an experiment in which a test piece was subjected to an anti-fracture test by changing the shape and amount of silk to be mixed and added. The base material of the test piece is a methyl methacrylate resin.
(実験 No.l) 母材量 1 8 . 0 gに粉状微砕片のシルク 0 . l g ( 0 . 5 5 % ) を添加した場合の試験結果を表 2 6に示す。 表 2 6 (Experiment No. 1) Table 26 shows the test results when 0.5 g (0.55%) of finely ground silk was added to 18.0 g of the base material. Table 26
Figure imgf000030_0001
Figure imgf000030_0001
(実験 Νο·2) 母材量 1 8. 0 gに粉状微枠片のシルク 0. 4 g ( 2. 2 %) を 添加した場合の試験結果を表 2 7に示す。 (Experiment Νο · 2) Table 27 shows the test results when 0.4 g (2.2%) of fine powdered silk was added to 18.0 g of the base material.
表 2 7  Table 27
Figure imgf000030_0002
Figure imgf000030_0002
(実験 No.3) 母材量 1 8. 0 gに粉状微砕片のシルク 0. 8 g (4. 4 %) を 添加した場合の試験結果を表 2 8に示す。 (Experiment No.3) Table 28 shows the test results when 0.8 g (4.4%) of finely ground silk was added to 18.0 g of the base material.
表 2 8  Table 28
Figure imgf000030_0003
Figure imgf000030_0003
(実験 No.4) 母材量 1 8. 0 gに 1. 0デニール綿状原糸であるシルク 0. 0 1 g ( 0. 0 5 5 %) を添加した場合の試験結果を表 2 9に示す。 最大値(MAX) 破折値(BREAK) 最大限界値/ N (LOAD N) 114.120 110.031 (Experiment No.4) Table 2 9 shows the test results when 0.01 g (0.055%) of 1.0 denier cotton-like silk was added to 18.0 g of base material. Shown in Maximum value (MAX) Break value (BREAK) Maximum limit value / N (LOAD N) 114.120 110.031
曲げ値/冊 (ELONG MM) 17.698 17,715  Bending value / book (ELONG MM) 17.698 17,715
曲げ応力/ MPa (STRESS MPa) 83.602 82.523  Bending stress / MPa (STRESS MPa) 83.602 82.523
伸び値 /% (STRAIN) 6.636 6.642  Elongation /% (STRAIN) 6.636 6.642
(実験 No.5) 母材量 1 8 . 0 gに 1 . 0デニール綿状原糸であるシルク 0 . ί g ( 0 . 2 2 % ) を添加した場合の試験結果を表 3 0に示す。 (Experiment No.5) Table 30 shows the test results when 1.0 g (0.22%) of silk, which is a 1.0 denier flocculent yarn, was added to 18.0 g of the base material. .
表 3 0  Table 30
最大値(MAX) 破折値(BREAK) 最大限界値/ N (LOAD N) 124,035 123.878  Maximum value (MAX) Break value (BREAK) Maximum limit value / N (LOAD N) 124,035 123.878
曲げ値/蘭 (ELONG MM) 12.897 12.913  Bending value / Ran (ELONG MM) 12.897 12.913
曲げ応力/ MPa (STRESS MPa) 93.026 92.909  Bending stress / MPa (STRESS MPa) 93.026 92.909
伸び値 (STRAIN) 4.836 6.642  Elongation value (STRAIN) 4.836 6.642
(実験 No.6) 母材量 1 8 . 0 8に 1 . 0デニール綿状原糸であるシルク 0 8 g ( 0 . 4 4 % ) を添加した場合の試験結果を表 3 1に示す。 (Experiment No. 6) Table 31 shows the test results when 0.8 g (0.44%) of silk, which is a 1.0 denier flocculent yarn, was added to 18.08 of the base material.
表 3 1  Table 3 1
Figure imgf000031_0001
Figure imgf000031_0001
(実験 No.7) 母材量 1 8 . 0 gに、 2 7デニール ( 2本撚り) のシルク 0 . 1 g ( 0 . 5 5 % ) を添加した場合の試験結果を表 3 2に示す。 最大値(MAX) 破折値(BREAK) 最大限界値/ N (LOAD N) 114.748 106.245 (Experiment No.7) Table 32 shows the test results when 0.1 g (0.55%) of 27 denier (double twist) silk was added to 18.0 g of base material. . Maximum value (MAX) Break value (BREAK) Maximum limit value / N (LOAD N) 114.748 106.245
曲げ値/ m (ELONG MM) 19.430 22.993  Bending value / m (ELONG MM) 19.430 22.993
曲げ応力/ MPa (STRESS MPa) 86.063 79.684  Bending stress / MPa (STRESS MPa) 86.063 79.684
伸び値 /% (STRAIN) 7.285 8.621  Elongation /% (STRAIN) 7.285 8.621
(実験 No.8) 母材量 1 8. 0 gに、 2 7デニール ( 2本燃り) のシルク 0. 4 g ( 2. 2 %) を添加した場合の試験結果を表 3 3に示す。 (Experiment No.8) Table 33 shows the test results when 0.4 g (2.2%) of 27 denier (two burning) silk was added to 18.0 g of base material. .
表 3 3  Table 3 3
Figure imgf000032_0001
Figure imgf000032_0001
(実験 No.9) 母材量 1 8. 0 gに、 2 7デニール ( 2本撚り) のシルク 0. 8 g (4. 4 % ) を添加した場合の試験結果を表 3 4に示す。 (Experiment No. 9) Table 34 shows the test results when 0.8 g (4.4%) of 27 denier (double twist) silk was added to 18.0 g of the base material.
表 34  Table 34
Figure imgf000032_0002
Figure imgf000032_0002
(実験 No.10) 母材量 1 8. 0 gに、 2 9デニール (4本撚り) のシルク 0. 1 g (0. 5 5 %) を添加した場合の試験結果を表 3 5に示す。 表 3 5 (Experiment No.10) Table 35 shows the test results when 0.1 g (0.55%) of 29 denier (4-strand) silk was added to 18.0 g of base material. . Table 35
Figure imgf000033_0001
Figure imgf000033_0001
(実験 No.ll) 母材量 1 8. 0 gに、 2 9デニール ( 4本撚り) のシルク 0. 4 g ( 2. 2 %) を添加した場合の試験結果を表 3 6に示す。 (Experiment No. ll) Table 36 shows the test results when 0.4 g (2.2%) of 29 denier (four strands) silk was added to 18.0 g of the base material.
表 3 6  Table 3 6
Figure imgf000033_0002
Figure imgf000033_0002
(実験 No.12) 母材量 1 8. 0 gに、 2 9デニール (4本撚り) のシルク 0. 8 g (4. 4 %) を添加した場合の試験結果を表 3 7に示す。 (Experiment No.12) Table 37 shows the test results when 0.8 g (4.4%) of 29 denier (four strands) silk was added to 18.0 g of base material.
表 3 7  Table 3 7
Figure imgf000033_0003
Figure imgf000033_0003
(実験 No.13) 母材量 1 8. 0 gに、 3 2デニール ( 6本撚り) のシルク 0. 1 g ( 0. 5 5 %) を添加した場合の試験結果を表 3 8に示す。 表 3 8 (Experiment No.13) Table 38 shows the test results when 0.1 g (0.55%) of 32 denier (6-twisted) silk was added to 18.0 g of base metal. . Table 3 8
Figure imgf000034_0001
Figure imgf000034_0001
(実験 No.14) 母材量 1 8. 0 gに、 3 2デニ一ル ( 6本撚り) のシルク 0. 4 g ( 2. 2 % ) を添加した場合の試験結果を表 3 9に示す。 (Experiment No.14) Table 39 shows the test results when 32 denier (six strands) of 0.4 g (2.2%) was added to 18.0 g of base metal. Show.
表 3 9  Table 3 9
Figure imgf000034_0002
Figure imgf000034_0002
(実験 No.15) 母材量 1 8. 0 gに、 3 2デニール ( 6本撚り) のシルク 0 g (4. 4 %) を添加した場合の試験結果を表 4 0に示す。 (Experiment No. 15) Table 40 shows the test results when 0 g (4.4%) of 32 denier (six strands) silk was added to 18.0 g of base material.
表 4 0  Table 40
Figure imgf000034_0003
Figure imgf000034_0003
(実験 No.16) 母材量 1 8. 0 gに、 3 2デニール ( 6本撚り) のシルク 2. 7 g ( 1 5 %) を添加した場合の試験結果を表 4 1に示す。 表 4 1 最大値(MAX) 破折値(BREAK) 最大限界値/ (LOAD N) 107.824 103.097 (Experiment No. 16) Table 41 shows the test results when 2.7 g (15%) of 32 denier (six strands) silk was added to 18.0 g of base material. Table 4 1 Maximum value (MAX) Break value (BREAK) Maximum limit value / (LOAD N) 107.824 103.097
曲げ値/皿 (ELONG MM) 12.631 12.730  Bending value / plate (ELONG MM) 12.631 12.730
曲げ応力/ MPa (STRESS MPa) 80.866 25.774  Bending stress / MPa (STRESS MPa) 80.866 25.774
伸び値 /% (STRAIN) 4.736 4.773 実験 No.17) 比較例として、 規定寸法を有するポリスルフォン樹脂の試験片 つた試験結果を表 4 2に示す。  Elongation value /% (STRAIN) 4.736 4.773 Experiment No.17) As a comparative example, Table 42 shows the test results of test pieces of polysulfone resin having specified dimensions.
表 4 2  Table 4 2
最大値(MAX) 破折値(BREAK) 最大限界値/ N (LOAD N) 127.702 110.756  Maximum value (MAX) Break value (BREAK) Maximum limit value / N (LOAD N) 127.702 110.756
曲げ値/匪 (ELONG MM) 10.800 10.817  Bending value / Marauder (ELONG MM) 10.800 10.817
曲げ応力/ MPa (STRESS MPa) 95.782 83.067  Bending stress / MPa (STRESS MPa) 95.782 83.067
伸び値 (STRAIN) 4.0500 4.0564  Elongation value (STRAIN) 4.0500 4.0564
(実験 No.18) 比較例として、 規定寸法を有するメタクリル酸メチル樹脂の試験 片で行った試験結果を表 4 3に示す。 (Experiment No. 18) As a comparative example, Table 43 shows the test results of a test piece of methyl methacrylate resin having specified dimensions.
表 4 3  Table 4 3
Figure imgf000035_0001
次に、 上記実験結果に基づき、 混合添加したシルク形状別の表及びグラフを表
Figure imgf000035_0001
Next, based on the above experimental results, tables and graphs for each silk shape mixed and added are shown.
4 4〜表 4 8及び図 2 6〜図 3 0に示す。 表 4 4〜表 4 8及び図 2 6〜図 3 0の 試験結果のデータは、 最大限界値 (単位 : N ) 、 曲げ値 (単位 : mm ) 、 曲げ応 力 (単位 : M P a ) 、 伸び値 (単位:%) の各値として最大値 (M A X ) を採用 している。 比較のため、 比較試験片であるポリスルフォン樹脂とメタクリル酸メ チル樹脂 (シルク無添加) の試験結果についても前記表及びグラフに示した。 44 to Table 48 and FIGS. 26 to 30. The data of the test results in Tables 44 to 48 and Figures 26 to 30 are the maximum limit value (unit: N), bending value (unit: mm), bending stress (unit: MPa), and elongation. The maximum value (MAX) is used as each value (unit:%) are doing. For comparison, the test results of the comparative test pieces of polysulfone resin and methyl methacrylate resin (without addition of silk) are also shown in the table and the graph.
( i ) 添加シルクが粉状微砕片の場合における、 複合プラスチックのシルク添加 量に応じた分析結果を表 44及び図 26 (a) 、 同図 (b) に示す。  (i) The analysis results according to the amount of silk added to the composite plastic in the case where the added silk is powdery finely crushed pieces are shown in Table 44 and Figs. 26 (a) and (b).
表 44  Table 44
Figure imgf000036_0001
Figure imgf000036_0001
( ϋ ) 添加シルクが綿状原糸 1. 0デニ一ルの場合における、 複合プラスチック のシルク添加量に応じた分析結果を表 45及び図 2 7 (a) 、 同図 (b) に示す < 表 45  (ϋ) Table 45 and Fig. 27 (a) and Fig. 27 (b) show the analysis results according to the amount of silk added to the composite plastic when the added silk is 1.0 denier. Table 45
Figure imgf000036_0002
Figure imgf000036_0002
(iii) 添加シルクが 2本撚り 27デニールの場合における、 複合プラスチックの シルク添加量に応じた分析結果を表 46及び図 28 (a) 、 同図 (b) に示す。 (iii) Table 46, Figure 28 (a) and Figure (b) show the analysis results according to the amount of silk added to the composite plastic when the added silk is two strands and 27 denier.
表 46  Table 46
Figure imgf000036_0003
Figure imgf000036_0003
(iv) 添加シルクが 4本撚り 29デニールの場合における、 複合プラスチックの シルク添加量に応じた分析結果を表 47及び図 29 (a) 、 同図 (b) に示す。 表 47 (iv) Table 47, Fig. 29 (a) and Fig. 29 (b) show the analysis results according to the amount of silk added to the composite plastic when the added silk is 4-strand and 29 denier. Table 47
Figure imgf000037_0001
Figure imgf000037_0001
(V) 添加シルクが 6本撚り 32デニールの場合における、 複合プラスチックの シルク添加量に応じた分析結果を表 48及び図 30 (a) 、 同図 (b) に示す。 (V) The analysis results according to the amount of silk added to the composite plastic in the case where the added silk is 6 twists and 32 deniers are shown in Table 48 and Figs. 30 (a) and 30 (b).
表 48  Table 48
Figure imgf000037_0002
Figure imgf000037_0002
また、 上記実験結果に基づき、 分散 · 添加したシルク繊維の混合重量比 (添加 量) 別の表及びグラフを表 49〜表 5 1及び図 3 1〜図 33に示す。 表 49〜表 5 1及び図 3 1〜図 3 3の試験結果のデータは、 最大限界値 (単位 : N) 、 曲げ 値 (単位 : mm) 、 曲げ応力 (単位 : MP a) 、 伸び値 (単位 : %) の各値とし て最大値 (MAX) を採用している。 比較のため、 比較試験片であるポリスルフ オン樹脂とメタクリル酸メチル樹脂 (シルク無添加) の試験結果についても前記 表及びグラフに示した。 なお便宜上、 綿状原糸 1. 0デニールシルクの混合重量 比 0. 0 5 5 %、 0. 22 %、 0. 44 %はそれぞれ混合重量比 0. 55 %、 2. 2 %、 4. 4 %の表及びグラフに含めて表示し、 又 6本燃り 32デニールシルク の混合重量比 1 5 % (添加量 2. 7 g) は全ての表及びグラフに表示した。  Tables 49 to 51 and FIGS. 31 to 33 show different tables and graphs based on the mixing weight ratio (addition amount) of the dispersed and added silk fibers based on the above experimental results. The data of the test results in Tables 49 to 51 and Figs. 31 to 33 are the maximum limit value (unit: N), bending value (unit: mm), bending stress (unit: MPa), elongation value ( The maximum value (MAX) is adopted as each value of (unit:%). For comparison, the test results for the polysulfone resin and the methyl methacrylate resin (without addition of silk), which are comparative test pieces, are also shown in the table and the graph. For convenience, the mixed weight ratio of cotton denier 1.0 denier silk 0.055%, 0.22% and 0.44% is 0.55%, 2.2% and 4.4, respectively. % And the mixture weight ratio of 6-burned 32 denier silk (15% added (2.7 g added)) was displayed in all tables and graphs.
( i ) シルク添加量が 0. l g (混合重量比 0. 55 %) の場合におけるシルク 形状に応じた分析結果を表 49及び図 3 1 (a) 、 同図 (b) に示す。 なお 1. (i) Table 49, Fig. 31 (a) and Fig. 31 (b) show the analysis results according to the silk shape when the added amount of silk is 0.1g (mixing weight ratio is 0.55%). Note 1.
0デニール綿状原糸の添加量は 0. O l g (混合重量比 0. 05 5 %) である。 表 49 The amount of 0 denier flocculent yarn added was 0.0 Olg (mixing weight ratio: 0.055%). Table 49
Figure imgf000038_0001
Figure imgf000038_0001
( ϋ ) シルク添加量が 0. 4 g (混合重量比 2. 2 ) の場合におけるシルク形 状に応じた分析結果を表 50及び図 3 2 (a) 、 同図 (b) に示す。 なお 1. 0 デニール綿状原糸の添加量は 0. 04 g (混合重量比 0. 22 %) である。  (ii) The analysis results according to the silk shape when the amount of silk added was 0.4 g (mixing weight ratio 2.2) are shown in Table 50, and Figs. 32 (a) and (b). The amount of 1.0 denier cotton-like yarn added was 0.04 g (0.22% by weight).
表 50  Table 50
Figure imgf000038_0002
Figure imgf000038_0002
(iii) シルク添加量が 0. 8 g (混合重量比 4. 4%) の場合におけるシルク形 状に応じた分析結果を表 5 1及び図 33 (a) 、 同図 (b) に示す。 なお 1. 0 デニール綿状原糸の添加量は 0. 0 8 g (混合重量比 0. 44 %) である。 表 5 (iii) The analysis results according to the silk shape when the added amount of silk was 0.8 g (mixing weight ratio 4.4%) are shown in Table 51, Figure 33 (a) and Figure 33 (b). The amount of 1.0 denier cotton-like yarn was 0.08 g (0.44% by weight). Table 5
Figure imgf000039_0001
以上のシルク繊維の形状別及びシルク繊維の混合重量比 (添加量) 別の分析結 果から、 下記の結論が導かれる。
Figure imgf000039_0001
The following conclusions can be drawn from the above analysis results by silk fiber shape and silk fiber mixture weight ratio (addition amount).
まず、 シルク繊維形状別の表 4 4〜表 4 8及び図 2 6〜図 3 0について検討す ると、 いずれのシルク繊維形状の場合においても、 シルク添加メタクリル酸メチ ル樹脂の棒グラフの先端は、 シルク無添加のメタクリル酸メチル樹脂の棒グラフ の先端より常に上方に位置している。 従って、 シルクの添加が明らかに母材の強 度向上に寄与し、 繊維強化プラスチックが高い強度を有することがわかる。  First, considering Tables 44 to 48 and Figures 26 to 30 by silk fiber shape, the tip of the bar graph of the silk-added methyl methacrylate resin for all silk fiber shapes is as follows. However, it is always located above the top of the bar graph of methyl methacrylate resin without silk. Therefore, it is clear that the addition of silk clearly contributes to the improvement of the strength of the base material, and that the fiber-reinforced plastic has high strength.
又、 シルク無添加のメ夕クリル酸メチル樹脂やポリスルフォン樹脂は、 シルク 繊維を添加したメタクリル酸メチル樹脂と比較して、 最大荷重時の最大限界値 N、 曲げ応力 Z M P aに対する曲げ値 Zmmや伸び値 Z %が低い。 一方、 シルク 繊維を添加した繊維強化プラスチックは、 最大荷重時の最大限界値 Z N、 曲げ応 カ M P aの増加に対して、 曲げ値/ mmや伸び値 / %も比例して増加している。 このことから、 シルク添加により応力—歪み関係、 換言すれば母材の機械的性質 が向上し、 シルク無添加の場合よりも強度が増して粘りを有する。  In addition, methyl methacrylate resin and polysulfone resin without added silk are compared with methyl methacrylate resin added with silk fiber, the maximum limit value N at the maximum load, the bending value Zmm for bending stress ZMPa, Elongation value Z% is low. On the other hand, for fiber-reinforced plastics to which silk fibers have been added, the bending value / mm and the elongation value /% also increase in proportion to the increase in the maximum limit value ZN at the maximum load and the bending force MPa. From this fact, the addition of silk improves the stress-strain relationship, in other words, the mechanical properties of the base material, and increases the strength and stickiness as compared with the case where no silk is added.
また、 上記グラフから、 シルク繊維添加量の増加に対して強度も比例して増加 しているといえない場合がある。 表 4 4〜表 4 8から抜粋したシルク添加量に応 じた強度順位をシルク繊維形状別に表 5 2に示す。 表 5 2の強度順位は曲げ応力 ZM P aのデータで判定している。 Also, from the above graph, it may not be said that the strength increases in proportion to the increase in the amount of silk fiber added. Table 52 shows the strength ranking according to the amount of silk added, extracted from Tables 44 to 48, by silk fiber shape. Table 52: Strength ranking is bending stress Judgment is based on ZM Pa data.
表 5 2  Table 5 2
Figure imgf000040_0001
表 5 2において、 シルク繊維混合重量比 4 . 4 %は 2 7 、 2 9 、 3 2デニール 撚糸の各シルク形状において比較的高い強度を発揮したが、 強度順位 1位ではな かった。 同様に、 3 2デニール撚糸でシルク混合重量比 1 5 %は高い強度を発揮 したものの、 強度順位 1位ではなかった。 又綿状原糸はシルク混合重量比 0 . 2 2 %で、 2 9 、 3 2デニール撚糸はシルク混合重量比 2 . 2 %で強度順位が 1位 になっている。 実施例 1 (母材をメ夕クリル酸メチル樹脂とする場合) 等の結果 を考慮すると、 繊維強化プラスチックの強度は母材に添加するシルク繊維形状に も依存すると判断できることから、 繊維強化プラスチックに混合添加すべきシル ク繊維には、 強度の観点から最適な形状や前記形状に応じた最適な混合重量比の 範囲等があると思料される。
Figure imgf000040_0001
In Table 52, the 4.4% silk fiber mixture weight ratio exhibited relatively high strength in each of the 27, 29, and 32 denier twisted silk shapes, but was not the first in the strength ranking. Similarly, the 15-% silk blended weight ratio of 15% with 32 denier twisted yarn exhibited high strength, but was not the first in the strength ranking. In addition, the cottony yarn has a silk mixing weight ratio of 0.22%, and the 29, 32 denier twisted yarn has a silk mixing weight ratio of 2.2% and has the highest strength ranking. Considering the results of Example 1 (when the base material is methyl methacrylate resin), etc., it can be determined that the strength of the fiber reinforced plastic depends on the shape of the silk fiber added to the base material. It is considered that the silk fibers to be mixed and added have an optimum shape from the viewpoint of strength and an optimum mixing weight ratio range according to the shape.
ここで、 上記実験結果に対し理論的考察を試みる。  Here, theoretical considerations will be made for the above experimental results.
試験結果から判断すると、 母材であるメ夕クリル酸メチル樹脂等へシルク繊維 を添加して母材の強度向上を図る場合、 単純にシルク繊維の混合重量比に依存し て強度が向上するというよりも、 添加するシルク繊維の母材に対する体積比、 シ ルク繊維の母材粒子との比率、 シルク繊維自体の分子レベルでの断面積比などが 影響して強度が向上するように思われる。 そして、 シルクは繊維の束の表面を取 り巻くセリシンが母材である高分子プラスチック材料と親和性があるので、 混合 したシルクが架橋作用を発揮して母材の強度を向上し、 或いはシルクの繊維構造 の束自体による強化作用で母材の強度を向上すると考えられる。 従って、 高分子 の状態であるメ夕クリル酸メチル樹脂等を鎖状にして結合するための形状などが 添加するシルク繊維にとって重要になると思われ、 かかる架橋作用や強化作用が 相乗して働く ことによって、 強度が飛躍的に増加した繊維強化プラスチックにな ると考えられる。 Judging from the test results, when adding silk fibers to the base material such as methyl methacrylate resin to improve the strength of the base material, the strength simply depends on the mixing weight ratio of the silk fibers. It seems that the strength is improved by the volume ratio of the silk fiber to the base material, the ratio of the silk fiber to the base material particles, and the cross-sectional area ratio of the silk fiber itself at the molecular level. The silk has a high affinity for the polymer plastic material, which is the base material of sericin surrounding the surface of the fiber bundle. It is conceivable that the produced silk exerts a crosslinking effect to improve the strength of the base material, or that the reinforcing effect of the bundle of the silk fiber structure itself increases the strength of the base material. Therefore, it is considered that the shape of the polymer, such as methyl methacrylate resin, in a chain form and the like is important for the silk fiber to be added, and the cross-linking action and the reinforcing action work synergistically. It is thought that this will result in a fiber-reinforced plastic with dramatically increased strength.
また、 上述のように強度向上等の観点から、 より望ましい添加シルク繊維の形 状やその混合重量比等が存在すると考えられる。 例えば、 上記実施例 1〜 4で判 断すると、 添加シルク繊維の形状 ·太さは 2本撚り 2 7デニール撚糸、 4本燃り 2 9デニール撚糸、 6本撚り 3 2デニール撚糸等が望ましく、 その混合重量比も 2 . 2 %〜 1 5 %程度が望ましい。 これは、 シルクのフイブ口イン繊維自体が高 分子と馴染みやすい構造で適度な強度を有すること、 フイブロイン繊維束はねじ れ合って細く不規則な断面を有しており、 母材分子と交わり易く母材の強度を向 上することの他、 精鍊でセリシンが除去された隙間には母材分子を取り込みやす くなつて、 より母材の強度を向上すること等の理由による。 なお前記理由から、 シルク繊維の精鍊度を調整することで、 高い強度が要求される場合には高い精鍊 を行ったシルク繊維を使用して強度を向上し、 義歯床などセリシン等による薬理 効果が期待される場合には比較的低い精鍊度のシルク繊維を使用して薬理効果を 発揮させる等が可能であり、 本発明の繊維強化プラスチックには用途の多様性が ある。  Further, from the viewpoint of improving the strength as described above, it is considered that there is a more desirable shape of the added silk fiber and a mixed weight ratio thereof. For example, judging in Examples 1 to 4 above, the shape and thickness of the added silk fiber are desirably 2 twisted 27 denier twisted yarn, 4 burned 29 denier twisted yarn, 6 twisted 32 denier twisted yarn, and the like. The mixing weight ratio is preferably about 2.2% to 15%. This is because the silk fiber-in fiber itself has a structure that is easily compatible with high molecules and has an appropriate strength, and the fiber bronze fiber bundle has a thin and irregular cross section that is twisted and easily intersects with the base material molecules. In addition to improving the strength of the base material, it is also possible to improve the strength of the base material by making it easier to take in the base material molecules into the gap from which sericin has been removed by precision. For the above-mentioned reasons, by adjusting the fineness of the silk fiber, when high strength is required, the strength is improved by using the silk fiber which has been subjected to high fineness, and the pharmacological effect of sericin or the like such as a denture base is improved. If expected, it is possible to exert a pharmacological effect by using relatively low-accuracy silk fibers, and the fiber-reinforced plastic of the present invention has a variety of uses.
次に、 上記繊維強化プラスチックの義歯床としての適格性について説明する。 表 5 3には義歯床に使用可能な代表的素材であるメ夕クリル酸メチル樹脂とポ リスルフォンの特性を示す。 表 5 3 Next, the eligibility of the fiber reinforced plastic as a denture base will be described. Table 53 shows the characteristics of methyl methacrylate resin and polysulfone, which are typical materials that can be used for denture bases. Table 5 3
Figure imgf000042_0001
メタクリル酸メチル樹脂とポリスルフォン樹脂は上記のような長所、 短所を備 えているが、 いずれも理想的な義歯床材料とはいえない。 そこで、 毒性がないメ タクリル酸メチル樹脂にシルク繊維を混合添加した繊維強化プラスチックによつ て義歯床を製作する。 前記義歯床の製造方法は、 繊維強化プラスチックを使用し て製造する以外は、 通常の義歯床材料であるメタクリル酸メチル樹脂等によって 義歯床を製造する技法とほぼ同様である。
Figure imgf000042_0001
Methyl methacrylate resin and polysulfone resin have the above-mentioned advantages and disadvantages, but neither is an ideal denture base material. Therefore, a denture base is manufactured using fiber-reinforced plastics, which is a mixture of non-toxic methyl methacrylate resin and silk fibers. The method of manufacturing the denture base is substantially the same as the method of manufacturing a denture base using a normal denture base material such as methyl methacrylate resin, except that the denture base is manufactured using fiber-reinforced plastic.
上記のように本繊維強化プラスチックを素材として製造した義歯床の特性につ いて検討すると、 ①前記繊維強化プラスチックによる義歯床はメタクリル酸メチ ル樹脂の義歯床よりも強度が高い、 ②義歯床材料に使用する母材プラスチックの 量を削減できる、 ③環境ホルモンやダイォキシンを発生する危険性がないので人 体等に対し安全である、 ④添加シルク繊維による保水作用ゃセリシンによる薬効 作用など積極的な人体等への効果が期待できる、 セリシンには血中のコレステロ —ル値を良性にコントロールする能力もある、 ⑤繊維強化プラスチックの製造に 伴う環境面へのプラス作用がある、 ⑥シルク繊維強化プラスチックやその義歯床 は製造上容易且つ低コストであり、 個々人に対するオーダーメイ ド等にも容易に 対処しうる、 等の特性があり、 通常の義歯床には無い高い強度や人体への好影響 等の有効性を有する。 As described above, the characteristics of denture bases manufactured using this fiber-reinforced plastic as a material are examined as follows: 1) Denture bases made of the fiber-reinforced plastics are higher in strength than denture bases of methyl methacrylate resin. 2) Denture base materials ③ It is safe for the human body because there is no danger of generating environmental hormones and dioxins. ④ Water retention by the added silk fiber ゃ Active drug such as sericin Sericin is expected to have an effect on the human body, etc. Sericin also has the ability to control cholesterol levels in blood in a benign manner. が あ る It has a positive effect on the environment from the production of fiber reinforced plastics. ⑥Silk fiber reinforced plastics And its denture base are easy to manufacture and low cost, and can easily be tailored to individual needs , There is a characteristic of equal, the favorable impact of the absence of high strength and the human body to normal denture And so on.
尚、 ガラス繊維強化プラスチックや炭素繊維強化プラスチックなど他の繊維強 化プラスチックを義歯床等の人体に直接使用する製品に用いる場合には、 シルク 繊維強化プラスチックと異なり、 以下のような問題がある。 例えば、 ガラス繊維 を混合した強化プラスチックを義歯床として使用することを想定した場合、 義歯 床は人体に装着されるものであるから、 人体に対して大変危険且つ有害で安全基 準をクリアできない。 即ち、 プラスチックとガラス繊維の摩耗率を比較するとプ ラスチックの摩耗率の方が大きいため、 露出した繊維が口腔内に迷入する恐れが ある。 また、 炭素繊維強化プラスチックを義歯床として使用することを想定した 場合、 義歯及び義歯床は個々人のオーダ一メイ ドであるが、 炭素繊維強化プラス チックの義歯床で前記オーダーメイ ドに対処するのは操作上困難であり、 又実際 に炭素繊維強化プラスチックで上記のように義歯床を製作すると、 機械設備等に 対する膨大な費用がかかる。 これに対し、 本発明によるシルク繊維強化プラスチ ック及びその義歯床等には上記のようなデメリッ トは全くなく、 例えば義歯床か らシルク繊維が露出してもむしろ人体等に対し積極的な好影響を与え、 又容易な 操作性を有するものである。  When using other fiber reinforced plastics such as glass fiber reinforced plastic or carbon fiber reinforced plastic for products that are used directly on the human body such as denture bases, unlike silk fiber reinforced plastic, there are the following problems. For example, assuming that a denture base made of reinforced plastics mixed with glass fiber is used as a denture base, the denture base is attached to the human body, which is extremely dangerous and harmful to the human body and cannot meet safety standards. That is, when the wear rate of plastic and glass fiber is compared, the wear rate of plastic is larger, so that the exposed fiber may enter the oral cavity. Also, assuming that carbon fiber reinforced plastic is used as the denture base, dentures and denture bases are made to order of individuals, but it is necessary to deal with the order made with carbon fiber reinforced plastic denture bases. Is difficult to operate, and if a denture base is actually made of carbon fiber reinforced plastic as described above, enormous costs for machinery and equipment are required. On the other hand, the silk fiber reinforced plastic according to the present invention and its denture base have no such disadvantages. For example, even if the silk fiber is exposed from the denture base, the silk fiber is positively applied to the human body. It has a positive effect and has easy operability.
本発明による繊維強化プラスチック及びその義歯床は上記構成であるから、 高 い強度など良好な特性を発揮すると共に、 人体や自然など生態環境に対する高度 な順応性を有し、 地球環境の保全及び人体の健康維持を図ることができるという 効果がある。 即ち、 前記繊維強化プラスチック及びその義歯床は、 廃棄焼却時に 発生するダイォキシンや環境ホルモン (内分泌攪乱化学物質) など、 生態環境に 対して有害な化学物質を生ずる危険性がなく、 且つ強度等の特性で高機能を発揮 することができる。  Since the fiber-reinforced plastic and the denture base thereof according to the present invention have the above-mentioned constitution, they exhibit good properties such as high strength, and have high adaptability to ecological environment such as human body and nature, thereby preserving the global environment and protecting human body. This has the effect of maintaining the health of children. That is, the fiber-reinforced plastic and its denture base have no risk of producing chemical substances harmful to the ecological environment, such as dioxins and environmental hormones (endocrine disrupting chemicals) generated during waste incineration, and have properties such as strength. High performance can be achieved with
また、 上記繊維強化プラスチック及びその義歯床は合成樹脂から成形されるも のであるから、 加工が容易で高度な操作性及び利便性を有すると共に、 製造コス 卜が安価で経済性に優れているという効果がある。  In addition, since the above-mentioned fiber-reinforced plastic and its denture base are molded from synthetic resin, it is easy to process, has high operability and convenience, and has a low manufacturing cost and is economical. effective.
さらに上記繊維強化プラスチック及びその義歯床は、 生態環境への悪影響がな いばかりでなく、 人体などへ積極的に好影響を与えるという効果がある。 即ち、 シルクの繊維構造を形成しているセリシンは粘膜疾患や皮膚疾患等に有効な薬理 作用を発揮するものであり、 例えば直接人体などに使用する義歯床等では、 前記 疾患を有する患者をはじめとする義歯床使用者の健康を維持 ·増進することがで き、 且つ医療費の抑制 ·削減を実現することができる。 Furthermore, the above fiber-reinforced plastic and its denture base not only have no adverse effects on the ecological environment, but also have the effect of positively affecting the human body. That is, sericin, which forms the silk fiber structure, is a pharmacologically effective drug for mucosal and skin diseases. For example, denture bases used directly on the human body can maintain and improve the health of denture base users, including patients with the above-mentioned diseases, and reduce medical expenses · Reduction can be realized.
上記繊維強化プラスチックは生態環境に配慮した工業製品等に幅広く利用可能 なものであり、 前記繊維強化プラスチックを生産 ·普及することによって環境産 業といえるような産業を勃興しうる。 即ち、 前記繊維強化プラスチックに必要な シルク繊維が生産されるため、 繭、 養蚕が不可欠となり、 広範囲な桑畑が必要と なる。 そのため、 休耕田が利用されて農業が盛んになり、 農村地域の雇用が拡大 される。 さらに桑を植樹することにより緑が増加し、 大気中の C〇2が削減でき、 落葉樹として土質の改善に寄与し、 周辺水系の水質も改善できるという効果も期 待できる。 The above-mentioned fiber-reinforced plastic can be widely used for industrial products and the like in consideration of ecological environment. By producing and disseminating the fiber-reinforced plastic, an industry that can be said to be an environmental industry can be started. That is, since silk fibers required for the fiber-reinforced plastic are produced, cocoons and sericulture are indispensable, and a wide range of mulberry fields is required. As a result, fallow rice fields are used to promote agriculture and increase employment in rural areas. Further green is increased by planting mulberry, it reduces the C_〇 2 in the atmosphere, contributing to the improvement of the soil as a deciduous, effect of improved water quality near water can be expected.

Claims

請 求 の 範 囲 The scope of the claims
1 . 生態環境に無害な合成樹脂に、 所定割合のシルク繊維を分散して添加したこ とを特徴とする繊維強化プラスチック。 1. A fiber-reinforced plastic characterized by adding a predetermined proportion of silk fibers dispersed in a synthetic resin that is harmless to the ecological environment.
2 . 前記合成樹脂がメタクリル酸メチル樹脂、 ポリエチレン、 ポリプロピレンの 何れかであることを特徴とする請求の範囲第 1項記載の繊維強化プラスチック'。 2. The fiber-reinforced plastic according to claim 1, wherein the synthetic resin is any one of methyl methacrylate resin, polyethylene, and polypropylene.
3 . 前記シルク繊維が粉状微碎片、 原糸形状、 撚糸形状の何れか、 或いはこれら の組み合わせであることを特徴とする請求の範囲第 1又は第 2項記載の繊維強化 プラスチック。 3. The fiber-reinforced plastic according to claim 1 or 2, wherein the silk fiber is any one of a powdery fine piece, a raw yarn shape, and a twisted yarn shape, or a combination thereof.
4 . 生態環境に無害な合成樹脂に所定割合のシルクを分散して添加した繊維強化 プラスチックで形成されていることを特徴とする義歯床。  4. A denture base characterized by being formed of fiber-reinforced plastic in which a predetermined proportion of silk is dispersed and added to a synthetic resin that is harmless to the ecological environment.
PCT/JP1999/003901 1998-07-22 1999-07-21 Fiber-reinforced plastic and denture base made therefrom WO2000005049A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000561026A JP4540228B2 (en) 1998-07-22 1999-07-21 Fiber reinforced plastic and its denture base

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20696998 1998-07-22
JP10/206969 1998-07-22

Publications (1)

Publication Number Publication Date
WO2000005049A1 true WO2000005049A1 (en) 2000-02-03

Family

ID=16532012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003901 WO2000005049A1 (en) 1998-07-22 1999-07-21 Fiber-reinforced plastic and denture base made therefrom

Country Status (2)

Country Link
JP (1) JP4540228B2 (en)
WO (1) WO2000005049A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101268A1 (en) * 2005-03-25 2006-09-28 Seiren Co., Ltd. Use of sericin for improvement in feeling of denture upon use
JP2007254287A (en) * 2005-03-25 2007-10-04 Seiren Co Ltd Composition for stabilizing denture
CN114177093A (en) * 2021-12-14 2022-03-15 新疆医科大学第一附属医院 Denture base material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472332A (en) * 1990-07-12 1992-03-06 Bando Chem Ind Ltd Short fiber-incorporated sheet
JPH04114601A (en) * 1990-09-03 1992-04-15 Yoshio Ono Sole material
JPH08259414A (en) * 1995-03-24 1996-10-08 S F D:Kk Denture base and its production
JPH09500923A (en) * 1993-07-28 1997-01-28 ビオ−テック ビオロギッシェ ナトゥーアフェアパックンゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Biodegradable reinforced polymer
JPH1160425A (en) * 1997-08-18 1999-03-02 Wada Seimitsu Shiken Kk Fiber-reinforced synthetic resin denture base

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5756220A (en) * 1980-09-18 1982-04-03 Sumitomo Chem Co Ltd Continuous preparation of prepreg sheet containing parallely aranged fibers
JPS6331741A (en) * 1986-07-28 1988-02-10 Matsushita Electric Works Ltd Manufacture of drawn form
JPH0285205A (en) * 1988-09-22 1990-03-26 Hiroshi Kimura Production of denture base
JP2888883B2 (en) * 1989-10-11 1999-05-10 兵庫県 Artificial silver surface
DE4012953A1 (en) * 1990-04-24 1991-10-31 Hoechst Ag PLASTIC FILM WITH FIBER REINFORCEMENT AND TUBULAR SLEEVES MADE THEREOF
JPH0418308A (en) * 1990-05-14 1992-01-22 Tonen Corp Fiber cloth resin prepreg
JPH061966A (en) * 1992-06-18 1994-01-11 Aisin Chem Co Ltd Dry friction material for clutch
JP2622918B2 (en) * 1992-07-17 1997-06-25 宇部興産株式会社 Denture base material
JPH0797738A (en) * 1993-09-24 1995-04-11 Nippon Glass Fiber Co Ltd Woven glass roving
JPH08271657A (en) * 1995-03-31 1996-10-18 Seiko Epson Corp Case body for timepiece
JP3616795B2 (en) * 1995-07-20 2005-02-02 帝人テクノプロダクツ株式会社 Aramid fiber cord for hose reinforcement and hose using the same
JP3238618B2 (en) * 1995-10-31 2001-12-17 帝人株式会社 Method of manufacturing polyester cord for reinforcing rubber hose
JPH09175922A (en) * 1995-12-26 1997-07-08 Shiyuukai Material for denture base
JPH09262831A (en) * 1996-03-28 1997-10-07 Japan Vilene Co Ltd Prepreg
JPH09296323A (en) * 1996-04-30 1997-11-18 Unitika Ltd Polyester fiber for reinforcing resin hose

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472332A (en) * 1990-07-12 1992-03-06 Bando Chem Ind Ltd Short fiber-incorporated sheet
JPH04114601A (en) * 1990-09-03 1992-04-15 Yoshio Ono Sole material
JPH09500923A (en) * 1993-07-28 1997-01-28 ビオ−テック ビオロギッシェ ナトゥーアフェアパックンゲン ゲゼルシャフト ミット ベシュレンクテル ハフツング Biodegradable reinforced polymer
JPH08259414A (en) * 1995-03-24 1996-10-08 S F D:Kk Denture base and its production
JPH1160425A (en) * 1997-08-18 1999-03-02 Wada Seimitsu Shiken Kk Fiber-reinforced synthetic resin denture base

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101268A1 (en) * 2005-03-25 2006-09-28 Seiren Co., Ltd. Use of sericin for improvement in feeling of denture upon use
JP2007254287A (en) * 2005-03-25 2007-10-04 Seiren Co Ltd Composition for stabilizing denture
US8097285B2 (en) 2005-03-25 2012-01-17 Seiren Co., Ltd. Use of sericin for improving the feeling in use of denture
CN114177093A (en) * 2021-12-14 2022-03-15 新疆医科大学第一附属医院 Denture base material and preparation method thereof
CN114177093B (en) * 2021-12-14 2023-06-23 新疆医科大学第一附属医院 Denture base material and preparation method thereof

Also Published As

Publication number Publication date
JP4540228B2 (en) 2010-09-08

Similar Documents

Publication Publication Date Title
Alla et al. Influence of fiber reinforcement on the properties of denture base resins
US7673550B2 (en) Fiber-reinforced composites for dental materials
DE69625470T2 (en) POLYMER FIBER PREPREG, METHOD OF ITS MANUFACTURE AND ITS USE
Cao et al. Mechanical properties of biodegradable composites reinforced with bagasse fibre before and after alkali treatments
Gao et al. High-strength hydrogel-based bioinks
KR101831079B1 (en) Microparticles having a multimodal pore distribution
CN104877293B (en) A kind of mosquito repellent type 3D printing material and its application
DE50310953D1 (en) Bone cement mixture and X-ray contrast agent and method for their preparation
JP6895292B2 (en) A method for producing a glass fiber reinforced thermoplastic resin molded product, and a glass fiber reinforced thermoplastic resin molded product obtained thereby.
CN101967282A (en) Sparingly water-soluble transparent silk fibroin film and preparation method thereof
Prasad et al. Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer
WO2000005049A1 (en) Fiber-reinforced plastic and denture base made therefrom
Wang et al. Preparation of high-strength dynamic polysaccharide nanocomposite hydrogels and their application towards dye adsorption
Andreopoulos et al. Surface treated polyethylene fibres as reinforcement for acrylic resins
Ibrahim et al. Effect of electron beam irradiation and poly (vinyl pyrrolidone) addition on mechanical properties of polycaprolactone with empty fruit bunch fibre (OPEFB) composite
Wang et al. Chitosan‐based hydrogels
US20030083422A1 (en) Gelatinous elastomer compositions and articles
Silva et al. Addition of mechanically processed cellulosic fibers to ionomer cement: mechanical properties
Taczała et al. Influence different amount of cellulose on the mechanical strength of dental acrylic resin
Nugroho et al. Effects of filler volume of nanosisal in compressive strength of composite resin
JP4419112B2 (en) Tough denture base and manufacturing method
KR20180114917A (en) Dental material
MXPA02000508A (en) Methods of making polymer/dispersed modifier compositions.
CN1691929A (en) Dental filling material
JP3352730B2 (en) Neutral sugar-containing photoreactive composition and photocured molded product

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase