JPS645415B2 - - Google Patents

Info

Publication number
JPS645415B2
JPS645415B2 JP3512080A JP3512080A JPS645415B2 JP S645415 B2 JPS645415 B2 JP S645415B2 JP 3512080 A JP3512080 A JP 3512080A JP 3512080 A JP3512080 A JP 3512080A JP S645415 B2 JPS645415 B2 JP S645415B2
Authority
JP
Japan
Prior art keywords
silver
time
copper
wire
temperature fusible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3512080A
Other languages
Japanese (ja)
Other versions
JPS56132732A (en
Inventor
Manabu Iwata
Koji Kamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAWASOO TEKUSERU KK
Original Assignee
KAWASOO TEKUSERU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAWASOO TEKUSERU KK filed Critical KAWASOO TEKUSERU KK
Priority to JP3512080A priority Critical patent/JPS56132732A/en
Publication of JPS56132732A publication Critical patent/JPS56132732A/en
Publication of JPS645415B2 publication Critical patent/JPS645415B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fuses (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、配電用引込線に接続して、短絡や過
負荷から引込電線を保護する電線ヒユーズのヒユ
ーズエレメントに関するものである。 従来電線ヒユーズエレメントは、銀などの高温
可溶体と鉛合金などの低温可溶体を直列とし高温
可溶体は短絡電流などの瞬時大電流でしや断し、
低温可溶体は所定値以上の過負荷電流が所定時間
以上継続して流れた場合に溶断するようにしたヒ
ユーズエレメントや、銀線や銅線或いは銅合金線
などの高温可溶体の中間部分に所要の電流容量と
熱容量を有する中間端子を銀線を透通するか或い
は介在せしめて接続し、溶断の遅延効果等を持た
した構造として短絡特性と溶断特性を付与したタ
イプの電線ヒユーズエレメントが使用されている
が、これら高温可溶体として使用されている銀線
は、電気抵抗も少く、かつ、しや断性能が良いと
され使用されているが、貴金属のため高価格で経
済的でない。また、銅や銅合金は、しや断特性面
で充分とはいえない。 特に最近銀が数倍以上に高騰した現状において
は、多数の配電用引込線に使用される低電圧用の
電線ヒユーズに銀を使用することは経済的に困難
となり、かつ、省資源面からも問題となつてき
た。 本発明は、このような経済的な問題を解決し、
しかも、しや断特性は銀と劣らない性能を付与す
べく開発したヒユーズエレメントである。 第1図にしめすように、高温可溶体1と低温可
溶体2を中端子3を介してエレメント端子6に直
列に接続したヒユーズエレメントにおいて、第2
図にしめすように高温可溶体1の銅線12の表面
に、しや断時間中にしめる溶断時間を長く、溶断
に引続いて発生するアーク時間を極力短くなる構
成に銀11をクラツドするもので、銀11の肉厚
は例えば銅線12の線径の1%前後とすればよ
い。 なお、この肉厚は、所定のしや断特性の範囲内
で経済面を考慮して、ある程度薄くすることも可
能である。 図面中、4は耐爆絶縁管、5はリード端子、6
はエレメント端子、7は栓、8はガラス管、9は
キヤツプ、10は端子カバーである。 次に本発明のヒユーズエレメントの特性として
は、過負荷保護を対象とした溶断特性において
は、銀の固有抵抗1.62μΩcm、銅の固有抵抗1.69μ
Ωcm(20℃)で、両者の差は僅少であり、所定電
流に対する溶断時間の差は銀のみの場合と大差な
く、特に調整する必要もなく、所定の溶断特性を
付与することができる。 また、しや断特性においては、従来の銀のみ使
用した場合よりも、しや断時に銅の溶融点が1083
℃で、銀の960.5℃より高いため、第3図にしめ
すように、しや断時間中にしめる溶断時間が長
く、アーク時間が短くなる特徴が、実験結果判明
し、かえつて銀のみ使用した場合よりも、しや断
時の爆発パワーも少く、従つて、ヒユーズケース
に対し爆発パワーの負担も少くなり、しかも、蒸
発ガス量が少く、しや断後の端子間の絶縁抵抗値
も銀のみの場合よりも良好な試験結果が得られ
た。 次に試験結果をしめす。 しや断試験は電圧220V、規約電流3200A、し
や断力率0.14(JISは0.4以下)の試験条件におい
て実施した。試験試料は、本発明の高温可溶体1
に所定構成の銀クラツド銅線を使用したもののほ
か、銀、銅、黄銅を使用したもの4種類につい
て、いずれも2.6φ電線用の電線ヒユーズとし、各
5本について比較試験した。なお、ヒユーズエレ
メントは高温可溶体1のみ4種類のものを使用
し、その他低温可溶体2等は総て同一材料で試作
した。
The present invention relates to a fuse element for a power line fuse that is connected to a power distribution lead-in line and protects the lead-in line from short circuits and overloads. Conventional electric wire fuse elements connect a high temperature fusible material such as silver and a low temperature fusible material such as lead alloy in series, and the high temperature fusible material is blown by an instantaneous large current such as a short circuit current.
Low-temperature fusible materials are required for fuse elements that melt when an overload current exceeding a specified value continues to flow for a specified period of time, and for intermediate parts of high-temperature fusible materials such as silver wire, copper wire, or copper alloy wire. A type of electric wire fuse element is used in which an intermediate terminal having a current capacity and a heat capacity of However, the silver wires used as these high-temperature fusible materials are said to have low electrical resistance and good shearing performance, but are expensive and uneconomical because they are precious metals. Further, copper and copper alloys cannot be said to have sufficient thermal properties. Particularly in the current situation where the price of silver has soared several times over, it has become economically difficult to use silver for the low-voltage wire fuses used in many distribution lines, and it is also problematic from a resource conservation perspective. It's getting better. The present invention solves these economic problems and
What's more, this fuse element has been developed to provide performance comparable to that of silver in terms of shearing properties. As shown in FIG. 1, in a fuse element in which a high-temperature fusible material 1 and a low-temperature fusible material 2 are connected in series to an element terminal 6 via an intermediate terminal 3, a second
As shown in the figure, silver 11 is clad on the surface of the copper wire 12 of the high-temperature fusible body 1 in a structure that lengthens the fusing time during the shearing time and minimizes the arcing time that occurs following the fusing. The thickness of the silver 11 may be approximately 1% of the wire diameter of the copper wire 12, for example. Note that this wall thickness can be made thinner to some extent within the range of predetermined shear characteristics and in consideration of economic aspects. In the drawing, 4 is an explosion-proof insulated tube, 5 is a lead terminal, and 6 is
1 is an element terminal, 7 is a stopper, 8 is a glass tube, 9 is a cap, and 10 is a terminal cover. Next, regarding the characteristics of the fuse element of the present invention, in terms of fusing characteristics for overload protection, the specific resistance of silver is 1.62 μΩcm, and the specific resistance of copper is 1.69 μΩcm.
Ωcm (20°C), the difference between the two is small, and the difference in fusing time for a given current is not much different from that of silver alone, and it is possible to provide the desired fusing characteristics without any particular adjustment. In addition, in terms of curing properties, the melting point of copper is 1083 times higher than when conventional silver is used alone.
℃, which is higher than silver's 960.5℃, as shown in Figure 3, the experimental results revealed that the melting time during the cooling time is longer and the arc time is shorter, and if only silver is used instead. The explosion power at the time of the fuse rupture is also lower than that of the silver, and therefore the burden of the explosion power on the fuse case is also reduced.Furthermore, the amount of evaporated gas is small, and the insulation resistance value between the terminals after the fuse is ruptured is also lower than that of silver. Better test results were obtained than in the case of . Next, I will show you the test results. The shear breakage test was conducted under the test conditions of voltage 220V, standard current 3200A, and shear breakage rate 0.14 (JIS: 0.4 or less). The test sample was high temperature soluble material 1 of the present invention.
In addition to the one using a silver-clad copper wire of a prescribed configuration, four types of wire fuses were used, each using silver, copper, and brass, all of which were wire fuses for 2.6φ wires, and five wire fuses each were tested for comparison. Four types of fuse elements were used for the high-temperature fusible element 1, and the other low-temperature fusible elements 2 were all made of the same material.

【表】 試験結果は、上表ならびに第3図にしめすよう
に、しや断時間は所定構成の銀クラツド銅線が一
番短く9ms(第3図a)でこれに次いで銅、黄
銅10ms(第3図b)で、銀が14ms(第3図c)
と一番長い結果となつた。特にしや断に一番影響
の大きいアーク時間が、銀クラツド銅線の場合一
番短く銀のみの場合に比し5msも短く、従つ
て、しや断時の爆発パワーも少く、ケースに対す
る負担も少ない。 また、しや断後の両端子間のメガー値も、力率
0.14という低力率で試験したにもかかわらず、本
発明の所定構成の銀クラツド銅線を使用しヒユー
ズエレメントは、整数位以上の値をしめした。こ
れに対し、銀、銅、黄銅などを使用したヒユーズ
エレメントの場合はJISの0.2mΩを割る場合もあ
り、本発明のヒユーズエレメントは格段に良い成
積をしめた。 これは、本発明の所定構成の銀クラツド銅線に
よる高温可溶体1の融点が銀のみの場合よりも高
く、しや断時の通過電流が銀の3300Aと銅・黄銅
の3800Aとの中間の3600Aにおいて溶融し、しや
断時間中にしめる溶断時間は、銀、銅、黄銅とあ
まり変らないが、アーク時間が最も短い結果とな
り、しや断に有効に働たものである。銅または黄
銅の場合は、しや断時の通過電流が表にしめすよ
うに3800Aと高い値で溶融し、一挙に蒸発ガス化
するため、爆発パワーも大きく蒸着ガスも多くな
り、しや断後のメガー値を低くしている。 また、銀の場合は融点が低いため、通過電流
3300Aで溶融してイオンガス化するためアーク時
間が永くなり、従つて蒸発ガスも多くその時のパ
ワーも大きくなるとともにケースへの金属ガスの
蒸着も多くメガー値を悪くしている。 なお、所定構成の銀クラツド銅線によるヒユー
ズエレメントが、しや断時にアーク時間が一番短
くなるのは、しや断電流により、表層の銀が溶融
すると、心部の銅の表面を溶融した銀で、ぬれ現
象を生ぜしめ、銅は一挙に溶融して溶断に至り、
アーク時間が短くなるものである。 また、アーク時間が短いため、蒸発ガスも少
く、ケース内への蒸着も少くなる。従つて、しや
断後のメガー値を高い値にしている。なお、所定
構成の銀クラツド銅線のほか、所定構成の銀クラ
ツド銅板としても、銀クラツド銅線に近い効果を
あげることができる。 以上のように本発明は、銅線の外周に、しや断
時間にしめる溶断時間を長く、アーク時間を極力
短くなる構成に銀をクラツドする。即ち銅線の線
径の約1%前後の銀をクラツドすることにより、
銅と銀双方のしや断性能を上廻るしや断性能を付
与するものであり、銀の使用量が大巾に削減でき
るために非常に経済的で、現在同一線径の銀線の
価格に比し1/10以下という、低価格で、しかも上
記したように、銀より優れたしや断性能を有す
る、省資源面からも望ましいヒユーズエレメント
である。
[Table] As shown in the table above and Figure 3, the test results show that the silver-clad copper wire with the specified configuration had the shortest shearing time, 9ms (Figure 3a), followed by copper and brass, which had a shearing time of 10ms (Figure 3a). Figure 3b), silver is 14ms (Figure 3c)
This was the longest result. In particular, the arc time, which has the greatest effect on shearing, is the shortest in the case of silver-clad copper wire, which is 5 ms shorter than in the case of silver only.Therefore, the explosive power at the time of shearing is low, and there is no burden on the case. There are also few. In addition, the megger value between both terminals after the shingle break is also the power factor.
Although tested at a power factor as low as 0.14, the fuse element using the silver-clad copper wire of the predetermined configuration of the present invention exhibited a power factor greater than an integer. On the other hand, in the case of fuse elements made of silver, copper, brass, etc., the resistance may be less than JIS 0.2 mΩ, and the fuse element of the present invention achieved significantly better results. This means that the melting point of the high-temperature fusible material 1 made of the silver-clad copper wire of the predetermined configuration of the present invention is higher than that of silver alone, and that the passing current at the time of shearing is between 3300 A for silver and 3800 A for copper/brass. The melting time at 3600A and curing time is not much different from that of silver, copper, and brass, but the arc time was the shortest, and it worked effectively for curing. In the case of copper or brass, the passing current at the time of shear failure is as high as 3800A, as shown in the table, and it melts and evaporates all at once, resulting in a large explosion power and a large amount of evaporation gas. has a low megger value. In addition, silver has a low melting point, so the passing current
Since it is melted and turned into ion gas at 3300A, the arc time is longer, so there is more evaporated gas, and the power at that time is also higher, and there is also more metal gas deposited on the case, which worsens the megger value. In addition, when a fuse element made of a silver-clad copper wire with a specific configuration is shrunk, the arc time is shortest because when the surface silver melts due to the shear breakage current, the surface of the copper in the core melts. The silver causes a wetting phenomenon, and the copper melts all at once, leading to fusing.
This shortens the arc time. Furthermore, since the arc time is short, there is less evaporation gas and less vapor deposition inside the case. Therefore, the megger value after shearing is set to a high value. In addition to the silver-clad copper wire with a predetermined configuration, a silver-clad copper plate with a predetermined configuration can also be used to achieve effects similar to those of the silver-clad copper wire. As described above, the present invention clads the outer periphery of the copper wire with silver in such a manner that the shearing time is increased and the arcing time is minimized. In other words, by cladding the copper wire with approximately 1% of the wire diameter,
It provides a shearing performance that exceeds that of both copper and silver, and it is extremely economical because the amount of silver used can be greatly reduced, and the price of silver wire of the same wire diameter is currently lower. It is a fuse element that is desirable from a resource-saving perspective because it is low-priced, less than 1/10 of that of silver, and, as mentioned above, has better fringing performance than silver.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の説明用断面図、第2図は本発
明の高温可溶体の説明用断面図、第3図はしや断
特性図。 1は高温可溶体、2は低温可溶体、3は中端
子、4は耐爆絶縁管、5はリード端子、6はエレ
メント端子、7は栓、8はガラス管、9はキヤツ
プ、10は端子カバー、11は銀、12は銅線、
13はセラミツクペーパ。
FIG. 1 is an explanatory sectional view of the present invention, FIG. 2 is an explanatory sectional view of the high-temperature fusible body of the present invention, and FIG. 3 is a cross-section diagram. 1 is a high temperature fusible material, 2 is a low temperature fusible material, 3 is a middle terminal, 4 is an explosion-proof insulated tube, 5 is a lead terminal, 6 is an element terminal, 7 is a stopper, 8 is a glass tube, 9 is a cap, 10 is a terminal Cover, 11 is silver, 12 is copper wire,
13 is ceramic paper.

Claims (1)

【特許請求の範囲】[Claims] 1 高温可溶体と低温可溶体を、直列としたヒユ
ーズエレメントにおいて、高温可溶体の銅線の表
面上に、しや断時間中にしめる溶断時間を長く、
溶断に引続いて発生するアーク時間を極力短くな
るよう、銀をその肉厚が銅線の線径の1%前後と
なるようクラツドして、しや断性能を大きく向上
したことを特徴とするヒユーズエレメント。
1. In a fuse element in which a high-temperature fusible material and a low-temperature fusible material are connected in series, the fusing time is increased during the shearing time on the surface of the copper wire of the high-temperature fusible material.
In order to minimize the arc time that occurs following fusing, silver is clad with a thickness of approximately 1% of the copper wire diameter, greatly improving the shearing performance. fuse element.
JP3512080A 1980-03-19 1980-03-19 Fuse element Granted JPS56132732A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3512080A JPS56132732A (en) 1980-03-19 1980-03-19 Fuse element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3512080A JPS56132732A (en) 1980-03-19 1980-03-19 Fuse element

Publications (2)

Publication Number Publication Date
JPS56132732A JPS56132732A (en) 1981-10-17
JPS645415B2 true JPS645415B2 (en) 1989-01-30

Family

ID=12433062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3512080A Granted JPS56132732A (en) 1980-03-19 1980-03-19 Fuse element

Country Status (1)

Country Link
JP (1) JPS56132732A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547294A (en) * 1990-10-18 1993-02-26 Sumitomo Electric Ind Ltd Conductor for fuse
KR20210063197A (en) 2019-11-22 2021-06-01 가부시키가이샤 다까라토미 Toy top

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547294A (en) * 1990-10-18 1993-02-26 Sumitomo Electric Ind Ltd Conductor for fuse
KR20210063197A (en) 2019-11-22 2021-06-01 가부시키가이샤 다까라토미 Toy top

Also Published As

Publication number Publication date
JPS56132732A (en) 1981-10-17

Similar Documents

Publication Publication Date Title
EP0275980B1 (en) Sub-miniature fuse
US5463366A (en) Current limiting fuse and dropout fuseholder
US4486734A (en) High voltage electric fuse
JPS581942A (en) High temperature fuse adapted to break small current particularly when breaking current of wide range
GB1387288A (en) Current limiting fuse
US4374371A (en) Cadmium electric fuse
US5361058A (en) Time delay fuse
US2688061A (en) Time lag fuse
US4870386A (en) Fuse for use in high-voltage circuit
JPS645415B2 (en)
US4028655A (en) Electrical current limiting fuse with bound sand filler and improved low current fault clearing
US4626817A (en) Current limiting fuse with less inverse time-current characteristic
US2018556A (en) Electric fuse
US3255383A (en) Fuse containing means responsive to large fault currents and means responsive to small continuous overloads
US2270404A (en) Fuse
JPS5842131A (en) Fusible element for fuse and fuse
US11621138B2 (en) High-voltage fusing apparatus
US3735317A (en) Electric multibreak forming cartridge fuse
US3852696A (en) Dropout electrical fuse
US2251409A (en) Electric fuse
SU574175A3 (en) Fuse
US2815414A (en) Electric fuse elements for retarded or rapid response
JP3722896B2 (en) fuse
US1484198A (en) Electrical fuse and method
US2392703A (en) High voltage fuse