JPS645371B2 - - Google Patents

Info

Publication number
JPS645371B2
JPS645371B2 JP9671080A JP9671080A JPS645371B2 JP S645371 B2 JPS645371 B2 JP S645371B2 JP 9671080 A JP9671080 A JP 9671080A JP 9671080 A JP9671080 A JP 9671080A JP S645371 B2 JPS645371 B2 JP S645371B2
Authority
JP
Japan
Prior art keywords
magnetic head
rotor
rotating magnetic
rotating
steel ball
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9671080A
Other languages
Japanese (ja)
Other versions
JPS5720914A (en
Inventor
Kyoshi Nagatani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP9671080A priority Critical patent/JPS5720914A/en
Publication of JPS5720914A publication Critical patent/JPS5720914A/en
Publication of JPS645371B2 publication Critical patent/JPS645371B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/48Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed
    • G11B5/52Disposition or mounting of heads or head supports relative to record carriers ; arrangements of heads, e.g. for scanning the record carrier to increase the relative speed with simultaneous movement of head and record carrier, e.g. rotation of head
    • G11B5/53Disposition or mounting of heads on rotating support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M1/00Testing static or dynamic balance of machines or structures
    • G01M1/30Compensating unbalance
    • G01M1/36Compensating unbalance by adjusting position of masses built-in the body to be tested

Description

【発明の詳細な説明】 本発明は回転磁気ヘツド型記録再生装置の回転
磁気ヘツド機構に使用される回転磁気ヘツド用ロ
ータに関し、さらに詳しくは少なくとも回転磁気
ヘツド用ロータを含む回転磁気ヘツド機構の回転
体の初期的な動的不釣り合いを機械的な質量の付
加あるいは削除によらずなくする構造の回転磁気
ヘツド用ロータに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotor for a rotating magnetic head used in a rotating magnetic head mechanism of a rotating magnetic head type recording/reproducing device, and more particularly to a rotor for a rotating magnetic head mechanism including at least a rotor for a rotating magnetic head. The present invention relates to a rotor for a rotating magnetic head having a structure that eliminates the initial dynamic imbalance of the body without adding or subtracting mechanical mass.

回転磁気ヘツド型記録再生装置の回転磁気ヘツ
ド機構に使用される回転磁気ヘツド用ロータを含
む回転体は定常回転時に質量不釣り合いによる動
的振動を押さえ、回転磁気ヘツド用ロータに担持
された磁気記録変換器と記録媒体の安定な相互位
置関係を保つために、最終の回転体の実装状態で
一定許容値以下の動的不釣り合い量にすることを
要求される。一般に前記回転磁気ヘツド機構の主
要な構成要素は、記録再生用の磁気記録変換器を
含む回転磁気ヘツド用ロータ、回転トランスフオ
ーマ、スピンドルシヤフトさらに駆動モータのロ
ータ等である。
The rotating body, including the rotating magnetic head rotor used in the rotating magnetic head mechanism of the rotating magnetic head type recording/reproducing device, suppresses dynamic vibration due to mass imbalance during steady rotation, and the magnetic recording carried by the rotating magnetic head rotor is suppressed. In order to maintain a stable mutual positional relationship between the transducer and the recording medium, it is required that the final mounted state of the rotating body has a dynamic unbalance amount below a certain tolerance value. In general, the main components of the rotating magnetic head mechanism include a rotor for the rotating magnetic head including a magnetic recording transducer for recording and reproducing, a rotating transformer, a spindle shaft, and a drive motor rotor.

従来、前記回転体の動的釣り合いは最終組立時
の所望の許容不釣り合い量によつて回転磁気ヘツ
ド用ロータ単体、回転磁気ヘツド用ロータと回転
トランスフオーマの組立体、回転磁気ヘツド用ロ
ータと回転トランスフオーマとスピンドルシヤフ
トあるいは回転磁気ヘツド機構の回転体の最終の
組立体といつたレベルで適宜行なわれていた。一
般に前述した回転磁気ヘツド機構の主要な構成要
素のうち、最も大きな動的不釣り合いを起こす構
成要素はロータ支持体に記録再生用の磁気記録変
換器を搭載するという性格から回転磁気ヘツドロ
ータが一番大きい。また前記回転体の動的釣り合
いは回転磁気ヘツド機構の実装上の複雑さから回
転磁気ヘツド機構の回転体の最終組立体で行なう
ということは、動的な不釣り合い量を修正する方
法として前記回転磁気ヘツド用ロータに機械的な
質量の付加あるいは削除をする方法を採用してい
るため非常に困難である。前述した背景から一般
的には回転磁気ヘツド機構の回転体の動的釣り合
いは回転磁気ヘツド用ロータと回転トランスフオ
ーマの組立体あるいはさらにそれらにスピンドル
シヤフトを組み合わせた組立体で通常行なわれて
いる。第1図は当業者においてよく知られている
IBM3850型大容量記憶装置の回転磁気ヘツド機
構に使用される回転磁気ヘツド用ロータと回転ト
ランスフオーマの組立体の構造を示す図である。
第2図は第1図のA−A矢視図である。図におい
て1は記録再生用の磁気記録変換器を含む回転磁
気ヘツド用ロータ、2は回転トランスフオーマ、
3スピンドルシヤフトの嵌合部、4は回転磁気ヘ
ツド用ロータの動的釣り合い面である。5は回転
磁気ヘツドロータの動的釣り合い面4に構成され
たねじ穴である。従来この回転体の組立体の動的
釣り合いは回転磁気ヘツド用ロータ1のスピンド
ル嵌合部3に実際に回転磁気ヘツド機構に使用す
るスピンドルシヤフトあるいは動的釣り合いのた
めの専用のシヤフトを嵌合させ第1図に示す回転
磁気ヘツド用ロータ1と回転トランスフオーマ2
の組立体とスピンドルシヤフトが一体となつた回
転体の組立体を動的釣り合い試験機に設置して回
転させ、動的不釣り合い量を零にすべく、第2図
に示す回転磁気ヘツド用ロータ1の動的釣合い面
4にあらかじめとびとびにあけられた複数のねじ
穴5に適宜、質量の異なるねじ棒をねじ込んで動
的釣り合いをとり回転体の質量の不釣り合いをな
くしていた。さらに従来の回転磁気ヘツド用ロー
タを含む回転体の別な動的釣り合いの方法として
第2図のねじ穴にねじ棒を機械的にねじ込むとは
逆の方法で、回転磁気ヘツドロータの動的釣り合
い面の質量を、動的不釣り合い量を零にすべく機
械的に削除する方法である。さて従来の少なくと
も回転磁気ヘツド用ロータを含む回転磁気ヘツド
機構の回転体の動的釣り合いにおいて行なわれて
いる回転磁気ヘツド用ロータの動的釣り合い面に
機械的な質量の付加あるいは削除する方法は、回
転体の動的釣り合いのために非常に時間がかかる
という欠点があり、また動的釣り合いをとる作業
そのものも非常に神経を使う作業である。また回
転磁気ヘツド用ロータの動的釣り合い面の機械的
な質量の削除による動的釣り合いの方法は磁気記
録変換器を含む回転磁気ヘツド用ロータが機械的
に高精度、高精密を必要とする性格から、機械的
な質量の除去の際発生する切粉の処理、対策が非
常に大変である。また切粉による回転磁気ヘツド
用ロータの損傷が致命的な問題を誘発する原因に
なる。回転磁気ヘツド機構の回転体の動的釣り合
いは、回転体の最終の組立体でとることが理想で
ある。何よりも回転磁気ヘツド用ロータの動的釣
り合い面の機械的な質量の付加や削除による動的
釣り合いの方法は回転磁気ヘツド機構の構造が複
雑になつてくると現実的には回転体の最終の組立
体で動的釣り合いをとることの可能性をなくして
しまうという欠点がある。
Conventionally, the dynamic balance of the rotating body has been determined depending on the desired allowable unbalance amount at the time of final assembly. This has been carried out at various levels such as the final assembly of the transformer and spindle shaft or the rotating body of the rotating magnetic head mechanism. Generally speaking, among the main components of the above-mentioned rotating magnetic head mechanism, the component that causes the largest dynamic imbalance is the rotating magnetic head rotor because the rotor support is equipped with a magnetic recording transducer for recording and reproducing. big. Furthermore, the dynamic balance of the rotating body is performed in the final assembly of the rotating body of the rotating magnetic head mechanism due to the complexity of mounting the rotating magnetic head mechanism. This method is extremely difficult because it involves adding or removing mechanical mass to the rotor for the magnetic head. In view of the above-mentioned background, dynamic balancing of the rotating body of a rotating magnetic head mechanism is generally performed using an assembly of a rotor for a rotating magnetic head and a rotating transformer, or an assembly combining them with a spindle shaft. Figure 1 is well known to those skilled in the art.
FIG. 3 is a diagram showing the structure of an assembly of a rotating magnetic head rotor and a rotating transformer used in a rotating magnetic head mechanism of an IBM 3850 type mass storage device.
FIG. 2 is a view taken along the line A--A in FIG. 1. In the figure, 1 is a rotor for a rotating magnetic head including a magnetic recording transducer for recording and reproducing, 2 is a rotating transformer,
3 is a fitting portion of the spindle shaft, and 4 is a dynamic balance surface of a rotor for a rotating magnetic head. 5 is a screw hole formed in the dynamic balance surface 4 of the rotating magnetic head rotor. Conventionally, the dynamic balance of this rotating body assembly is achieved by fitting a spindle shaft actually used in the rotating magnetic head mechanism or a dedicated shaft for dynamic balancing into the spindle fitting part 3 of the rotor 1 for the rotating magnetic head. A rotor 1 for a rotating magnetic head and a rotating transformer 2 shown in FIG.
The rotating body assembly, which includes the assembly and the spindle shaft, was installed in a dynamic balance tester and rotated. Threaded rods having different masses are suitably screwed into a plurality of screw holes 5 pre-drilled at intervals in the dynamic balance surface 4 of 1 to achieve dynamic balance, thereby eliminating the unbalance of the mass of the rotating body. Furthermore, as another method for dynamic balancing of a rotating body including a rotor for a rotating magnetic head in the past, a method opposite to mechanically screwing a threaded rod into a screw hole as shown in FIG. This is a method of mechanically removing the mass of , in order to make the amount of dynamic unbalance zero. Now, the conventional method of adding or removing mechanical mass to the dynamic balance surface of the rotor for a rotating magnetic head, which is carried out in dynamic balancing of the rotating body of a rotating magnetic head mechanism including at least the rotor for a rotating magnetic head, is as follows. The disadvantage is that it takes a very long time to dynamically balance the rotating body, and the process of dynamically balancing itself is very nerve-wracking. In addition, the method of dynamic balancing by removing the mechanical mass of the dynamic balancing surface of the rotor for a rotating magnetic head is a method of dynamic balancing that requires high mechanical accuracy and precision of the rotor for a rotating magnetic head, including a magnetic recording transducer. Therefore, it is very difficult to deal with and take measures against the chips generated during mechanical mass removal. Furthermore, damage to the rotor of the rotating magnetic head caused by chips can cause fatal problems. Ideally, the dynamic balance of the rotating body of the rotating magnetic head mechanism is achieved in the final assembly of the rotating body. Above all, the method of dynamic balance by adding or removing mechanical mass on the dynamic balance surface of the rotor for a rotating magnetic head is difficult to achieve in reality as the structure of the rotating magnetic head mechanism becomes complex. The disadvantage is that it eliminates the possibility of dynamic balancing in the assembly.

本発明の目的は少なくとも回転磁気ヘツド用ロ
ータを含む回転磁気ヘツド機構の回転体の動的釣
り合いを機械的な質量の付加および削除によらず
行ない、前述した少なくとも回転ヘツド用ロータ
を含む回転磁気ヘツド機構の回転体の動的釣り合
いの方法に見られた諸欠点を除去し、より簡単
に、短時間に、高精度に回転磁気ヘツド用ロータ
を含む回転磁気ヘツド機構の回転体の動的釣り合
いをとり、しかも回転磁気ヘツド機構の回転体の
最終組立体の状態でも動的釣り合いが可能となる
回転磁気ヘツド用ロータを提供することにある。
An object of the present invention is to dynamically balance a rotating body of a rotating magnetic head mechanism including at least a rotor for a rotating magnetic head without adding or removing mechanical mass, and The various drawbacks found in the method of dynamic balancing of the rotating body of a rotating magnetic head mechanism, including the rotor for a rotating magnetic head mechanism, have been eliminated, and the dynamic balancing of the rotating body of a rotating magnetic head mechanism, including the rotor for a rotating magnetic head mechanism, has been achieved more easily, in a short time, and with high precision. In addition, it is an object of the present invention to provide a rotor for a rotating magnetic head that enables dynamic balancing even in the final assembled state of the rotating body of the rotating magnetic head mechanism.

本発明によれば、磁気記録変換器を担持して回
転するロータ支持体の回転軸方向の少なくとも一
つの側面に環状の鋼球案内軌道の内輪と、形状記
憶合金による環状の鋼球案内軌道の外輪とを設
け、前記鋼球案内軌道の内輪および外輪によつて
構成される環状の溝中を移動できるように複数の
鋼球を保持させ、少なくとも回転磁気ヘツド用ロ
ータを含む回転磁気ヘツド機構の回転体の動的釣
り合い時に前記鋼球案内軌道を構成している形状
記憶合金のマルテンサイト変態の逆変態による形
状記憶効果によつて、回転体の質量の不釣り合い
を打ち消す位置に位置する複数の鋼球を前記鋼球
案内軌道の内輪および外輪によつて構成される溝
中に固定し、動的釣り合いをとることを特徴とす
る回転磁気ヘツド用ロータが得られる。
According to the present invention, the inner ring of the annular steel ball guide track is formed on at least one side surface in the direction of the rotational axis of the rotor support body that rotates while supporting the magnetic recording transducer, and the annular steel ball guide track is formed of a shape memory alloy. A rotary magnetic head mechanism including at least a rotor for a rotary magnetic head is provided with an outer ring and holds a plurality of steel balls so as to be movable in an annular groove constituted by the inner ring and the outer ring of the steel ball guide raceway. When the rotating body is dynamically balanced, a plurality of A rotor for a rotating magnetic head is obtained, characterized in that steel balls are fixed in grooves formed by the inner ring and outer ring of the steel ball guide raceway, and dynamic balance is achieved.

本発明による回転磁気ヘツド用ロータを少なく
とも含む回転磁気ヘツド機構の回転体の動的釣り
合いの方法の何よりの特徴は形状記憶合金の形状
記憶効果を利用していることである。以下周知の
ことではあるが、形状記憶合金の形状記憶効果の
機構の原理を簡単に説明する。形状記憶合金に共
通した点は熱弾性マルテンサイト変態をする、
この相変態の高温側の相は規則格子である。
The most important feature of the method of dynamically balancing a rotating body of a rotating magnetic head mechanism including at least a rotor for a rotating magnetic head according to the present invention is that it utilizes the shape memory effect of a shape memory alloy. Although it is well known, the principle of the mechanism of the shape memory effect of shape memory alloys will be briefly explained below. What shape memory alloys have in common is that they undergo thermoelastic martensitic transformation.
The phase on the high temperature side of this phase transformation is a regular lattice.

このとは金属結晶学的には密接な関係を持
つている。マルテンサイト変態とは合金を構成し
ている各原子が連携して一斉にごく短距離に動く
相変態である。この変態をする金属を高温から冷
却してくると、ある温度からマルテンサイト変態
が起こる。さらに冷やすとある温度で100%マル
テンサイト相になる。形状記憶合金はマルテンサ
イト変態の逆変態によつて起こる。逆変態とはマ
ルテンサイト相を加熱していくと、ある温度で元
の高温相に戻り始め、さらに加熱すると100%高
温「相」になるの「熱弾性型」とはマルテンサ
イト変態開始温度と逆変態開始温度の差が小さい
ものを言う。の規則格子とはたとえば合金成分
原子がABABA…のように規則的に並んでいる結
晶構造を示す。この規則格子相が力を受けてマル
テンサイト変態をしながら塑性変形する。この合
金を加熱すると、元の規則格子相に戻ろうとする
逆変態が起こる。この逆変態は可逆的に戻ること
によつて規則格子状態になる方がエネルギー上、
最もよい。この可逆的変化が形状記憶合金の形状
記憶効果の機構である。
There is a close relationship with this in terms of metal crystallography. Martensitic transformation is a phase transformation in which the atoms that make up the alloy work together and move all at once over very short distances. When a metal that undergoes this transformation is cooled from a high temperature, martensitic transformation occurs at a certain temperature. If it is further cooled, it becomes 100% martensitic at a certain temperature. Shape memory alloys are created by a reverse transformation of martensitic transformation. What is reverse transformation? When the martensitic phase is heated, at a certain temperature it begins to return to the original high-temperature phase, and when further heated, it becomes 100% high-temperature "phase." ``Thermoelastic type'' refers to the temperature at which martensitic transformation begins. Refers to those with a small difference in reverse transformation start temperature. For example, the ordered lattice indicates a crystal structure in which alloy component atoms are regularly arranged like ABABA... This ordered lattice phase undergoes martensitic transformation and undergoes plastic deformation when subjected to force. When this alloy is heated, a reverse transformation occurs in which it attempts to return to its original ordered lattice phase. In terms of energy, it is better for this reverse transformation to return to the regular lattice state by reversibly
Best. This reversible change is the mechanism of the shape memory effect of shape memory alloys.

以下本発明による回転磁気ヘツド用ロータの実
施例について図面を参照してその構成、作用、効
果を詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The structure, operation, and effects of embodiments of a rotor for a rotating magnetic head according to the present invention will be described in detail below with reference to the drawings.

第3図は本発明よる回転磁気ヘツド用ロータの
構造を示す図である。
FIG. 3 is a diagram showing the structure of a rotor for a rotating magnetic head according to the present invention.

第4図は第3図のB−B矢視図で本発明の回転
磁気ヘツド用ロータの側面を示している。同図に
おいて6はロータ支持体、7,8,9は本発明の
特徴である形状記憶合金による動的釣り合い機構
を構成する要素で、7は形状記憶合金による環状
の鋼球案内軌道の外輪、8は形状記憶合金による
環状の鋼球案内軌道の外輪7と組合わされて複数
の鋼球9を自由に移動案内することができる環状
の溝を形成する環状の鋼球案内軌道の内輪で、形
状記憶合金による環状の鋼球案内軌道の外輪7を
ロータ支持体6の片端の円筒部10に固定する機
能をも有している。環状の鋼球案内軌道8はたと
えばロータ支持体6の片端の円筒部10に圧入等
の方法で固定される。次に本発明よる回転磁気ヘ
ツド用ロータを少なくとも含む回転磁気ヘツド機
構の回転体の動的釣り合いの方法について説明す
る。第5図は本発明による形状記憶合金による動
的釣り合い機構を構成した回転磁気ヘツド用ロー
タと回転トランスフオーマの組立体を示す図であ
り、第6図は第5図のC−C矢視図である。
FIG. 4 is a view along the line B--B in FIG. 3, showing a side view of the rotor for a rotating magnetic head of the present invention. In the figure, 6 is a rotor support, 7, 8, and 9 are elements constituting a dynamic balancing mechanism made of a shape memory alloy, which is a feature of the present invention, and 7 is an outer ring of an annular steel ball guide race made of a shape memory alloy; Reference numeral 8 denotes an inner ring of an annular steel ball guide race that is combined with an outer ring 7 of an annular steel ball guide race made of a shape memory alloy to form an annular groove that can freely move and guide a plurality of steel balls 9; It also has the function of fixing the outer ring 7 of the annular steel ball guide track made of memory alloy to the cylindrical portion 10 at one end of the rotor support 6. The annular steel ball guide track 8 is fixed, for example, to a cylindrical portion 10 at one end of the rotor support 6 by a method such as press fitting. Next, a method for dynamically balancing a rotating body of a rotating magnetic head mechanism including at least a rotor for a rotating magnetic head according to the present invention will be explained. FIG. 5 is a view showing an assembly of a rotor for a rotating magnetic head and a rotating transformer that constitute a dynamic balancing mechanism using a shape memory alloy according to the present invention, and FIG. 6 is a view taken along the line C--C in FIG. It is.

図において、11は本発明による回転磁気ヘツ
ド用ロータで図示されていないが記録再生用の磁
気記録変換器を担持している。12は回転トラン
スフオーマである。回転磁気ヘツド用ロータ11
は前述したように回転軸方向の一端部に形状記憶
合金による環状の鋼球案内軌道の外輪7,環状の
鋼球案内軌道の内輪8,環状の鋼球案内軌道の外
輪および内輪によつて形成される環状の溝中に保
持された複数の鋼球9から構成される形状記憶合
金よる動的釣り合い機構を備えている。環状の鋼
球案内軌道の外輪7の形状記憶合金にはたとえば
Ti−Ni、Cu−Zn−Alなどの合金が使われる。さ
て第5図に示す回転磁気ヘツド用機構の組立体の
動的釣り合いをとる時はたとえば回転磁気ヘツド
用ロータ11のスピンドル嵌合部13に実際に回
転磁気ヘツド機構に使用されるスピンドルシヤフ
トあるいは動的釣り合いのための専用のシヤフト
を嵌合させる。第7図は第5図のA部の拡大図で
動的釣り合いをとる前の状態を示している。この
状態では複数の鋼球9は形状記憶合金による環状
の鋼球案内軌道の外輪7と環状の鋼球案内軌道の
内輪8によつて形成される環状の溝中を自由に動
けるようになつている。第5図に示す回転磁気ヘ
ツド用ロータ11と回転トランスフオーマ12の
回転体の組立体を前述した方法で動的釣り合いを
とるために回転させると前記回転体と複数の鋼球
9の共振周波数が生じている時に回転体の質量不
釣り合いを打ち消す位置に複数の鋼球9は位置す
る。この状態で複数の鋼球9を固定すると回転体
の質量の釣り合いは保たれる。第8図は形状記憶
合金の鋼球案内軌道の外輪7が回転体の質量不釣
り合いを打ち消す位置に複数の鋼球9が位置して
いる時に複数の鋼球9を押さえ付けた状態を示し
ている。通常第7図に示す状態は環状の形状記憶
合金による鋼球案内軌道の外輪に冷たい空気か二
酸化炭素を吹きつけることによつて形状記憶合金
をマルテンサイト変態させることによつて達成さ
れ、複数の鋼球9は環状の形状記憶合金による鋼
球案内軌道の外輪7と環状の鋼球案内軌道の内輪
8によつて形成される構中を自由に動けるように
なる。第8図の状態は回転体と複数の鋼球9が共
振して、動的釣り合いをとつた時に回転中の回転
磁気ヘツド用ロータ11の環状の形状記憶合金に
よる鋼球案内軌道の外輪7に温風を吹きつけ、形
状記憶合金による鋼球案内軌道の外輪7をマルテ
ンサイト変態の逆変態による形状記憶効果によつ
て元の形状に戻すことによつて達成され、複数の
鋼球9は回転体の質量の不釣り合いを打ち消され
た位置に固定される。
In the figure, reference numeral 11 denotes a rotor for a rotating magnetic head according to the present invention, which carries a magnetic recording transducer for recording and reproduction, although not shown. 12 is a rotating transformer. Rotor 11 for rotating magnetic head
As mentioned above, is formed by the outer ring 7 of the annular steel ball guide race, the inner ring 8 of the annular steel ball guide race, and the outer ring and inner ring of the annular steel ball guide race made of shape memory alloy at one end in the direction of the rotation axis. It is equipped with a dynamic balancing mechanism made of a shape memory alloy consisting of a plurality of steel balls 9 held in an annular groove. For example, the shape memory alloy of the outer ring 7 of the annular steel ball guide raceway is
Alloys such as Ti-Ni and Cu-Zn-Al are used. Now, when dynamically balancing the assembly of the rotating magnetic head mechanism shown in FIG. Fits a special shaft for target balance. FIG. 7 is an enlarged view of section A in FIG. 5 and shows the state before dynamic balance is taken. In this state, the plurality of steel balls 9 can freely move in the annular groove formed by the outer ring 7 of the annular steel ball guide track and the inner ring 8 of the annular steel ball guide track made of a shape memory alloy. There is. When the assembly of the rotating body of the rotating magnetic head rotor 11 and the rotating transformer 12 shown in FIG. The plurality of steel balls 9 are located at positions that cancel out the mass imbalance of the rotating body when it occurs. If a plurality of steel balls 9 are fixed in this state, the mass balance of the rotating body is maintained. FIG. 8 shows a state in which the outer ring 7 of the shape memory alloy steel ball guide track holds down a plurality of steel balls 9 when the plurality of steel balls 9 are positioned at a position that cancels out the mass imbalance of the rotating body. There is. Normally, the state shown in FIG. 7 is achieved by blowing cold air or carbon dioxide onto the outer ring of the steel ball guide raceway made of an annular shape memory alloy, thereby causing the shape memory alloy to undergo martensitic transformation. The steel balls 9 can freely move in a structure formed by the outer ring 7 of the annular shape memory alloy steel ball guide track and the inner ring 8 of the annular steel ball guide track. In the state shown in FIG. 8, when the rotating body and the plurality of steel balls 9 resonate and are in dynamic balance, the outer ring 7 of the steel ball guide track made of an annular shape memory alloy of the rotating magnetic head rotor 11 is rotated. This is achieved by blowing warm air to return the outer ring 7 of the steel ball guide raceway made of a shape memory alloy to its original shape due to the shape memory effect caused by reverse transformation of martensitic transformation, and the plurality of steel balls 9 are rotated. The body is fixed in a position where the unbalance of its mass is canceled out.

以上本発明の実施例について詳細に説明してき
たが、本発明の主旨の範囲を逸脱しないで種々の
変形が可能である。本発明の実施例では産業用の
回転磁気ヘツド用ロータを少なくとも含む回転磁
気ヘツド機構の回転体の動的釣り合いの方法につ
いて説明したが、民生用のVTR等の回転磁気ヘ
ツドロータを少なくとも含む回転体の動的釣り合
いにも適用できる。また本発明の実施例では主と
して回転体の組立体が回転磁気ヘツド用ロータと
回転トランスフオーマの組立体の動的釣り合いの
場合について説明してきたが、回転磁気ヘツド機
構の構造が複雑になつたきて、もはや回転磁気ヘ
ツド用ロータの機械的な質量の付加あるいは削除
による動的釣り合いが不可能でも、形状記憶合金
に外部から熱風を吹きつけることが可能ならば回
転磁気ヘツド機構の回転体の最終の実装状態で動
的釣り合いをとることが可能である。
Although the embodiments of the present invention have been described in detail above, various modifications can be made without departing from the scope of the gist of the present invention. In the embodiments of the present invention, a method for dynamically balancing a rotating body of a rotating magnetic head mechanism including at least a rotor for an industrial rotating magnetic head has been described. It can also be applied to dynamic balance. Further, in the embodiments of the present invention, the case where the rotating body assembly is a dynamic balance of the rotating magnetic head rotor and the rotating transformer assembly has been mainly explained, but as the structure of the rotating magnetic head mechanism becomes more complex, Even if it is no longer possible to achieve dynamic balance by adding or removing mechanical mass to the rotor for a rotating magnetic head, if it is possible to blow hot air onto the shape memory alloy from the outside, the final balance of the rotating body of the rotating magnetic head mechanism can be improved. It is possible to perform dynamic balancing in the implementation state.

本発明は以上説明したように回転磁気ヘツド用
ロータの回転軸方向の一端部に前述した形状記憶
合金による動的釣り合い機構を具備させることに
よつて、従来の回転磁気ヘツド機構の回転磁気ヘ
ツド用ロータを含む回転体の動的釣り合いの方
法、すなわち機械的な質量の付加および除去によ
る方法に見られた種々の問題点、欠点を除去で
き、非常に短時間にしかも簡単、高精度に回転磁
気ヘツド機構の回転磁気ヘツド用ロータを含む回
転体の動的釣り合いをとることができ、実用上非
常に効果がある。
As explained above, the present invention provides a dynamic balancing mechanism made of the above-mentioned shape memory alloy at one end of the rotor for a rotating magnetic head in the direction of the rotational axis, thereby providing a rotary magnetic head for a conventional rotating magnetic head mechanism. It is possible to eliminate various problems and drawbacks found in the method of dynamic balancing of rotating bodies including rotors, that is, the method of mechanical addition and removal of mass, and it is possible to achieve rotational magnetism in a very short time, easily, and with high precision. It is possible to dynamically balance the rotating body including the rotor for the rotating magnetic head of the head mechanism, which is very effective in practice.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の回転磁気ヘツド機構に使用され
ている回転磁気ヘツド用ロータと回転トランスフ
オーマの組立体の構造を示す図、第2図は第1図
のA−A矢視図、第3図は本発明による回転磁気
ヘツド用ロータの構造を示す図、第4図は第3図
のB−B矢視図、第5図は本発明による回転磁気
ヘツド用ロータと回転トランスフオーマの組立体
の構造を示す図、第6図は第5図のC−C矢視
図、第7図は第5図のA部拡大図の一状態を示す
図、第8図は第5図のA部拡大図の一状態を示す
図で、図において、1は回転磁気ヘツド用ロー
タ、2は回転トランスフオーマ、3はスピンドル
嵌合部、4は動的釣り合い面、5は動的釣り合い
面に構成されたねじ穴、6はロータ支持体、7は
形状記憶合金による環状の鋼球案内軌道の外輪、
8は環状の鋼球案内軌道の内輪、9は鋼球、10
はロータ支持体の円筒部、11は本発明による回
転磁気ヘツド用ロータ、12は回転トランスフオ
ーマ、13はスピンドル嵌合部である。
Fig. 1 is a diagram showing the structure of an assembly of a rotor for a rotating magnetic head and a rotary transformer used in a conventional rotating magnetic head mechanism, Fig. 2 is a view taken along arrow A-A in Fig. The figure shows the structure of a rotor for a rotating magnetic head according to the present invention, FIG. 4 is a view taken along the line B-B in FIG. 3, and FIG. 5 shows an assembly of a rotor for a rotating magnetic head and a rotary transformer according to the present invention. 6 is a view taken along the line C-C in FIG. 5, FIG. 7 is an enlarged view of section A in FIG. 5, and FIG. 8 is an enlarged view of section A in FIG. 5. This figure shows one state of an enlarged view, and in the figure, 1 is a rotor for a rotating magnetic head, 2 is a rotating transformer, 3 is a spindle fitting part, 4 is a dynamic balance surface, and 5 is a dynamic balance surface. 6 is a rotor support, 7 is an outer ring of an annular steel ball guide raceway made of shape memory alloy,
8 is the inner ring of the annular steel ball guide track, 9 is the steel ball, 10
1 is a cylindrical portion of a rotor support, 11 is a rotor for a rotating magnetic head according to the present invention, 12 is a rotating transformer, and 13 is a spindle fitting portion.

Claims (1)

【特許請求の範囲】[Claims] 1 磁気記録変換器を担持して回転するロータ支
持体の回転軸方向の少なくとも一つの側面に環状
の鋼球案内軌道の内輪と、形状記憶合金による環
状の鋼球案内軌道の外輪とを設け、前記鋼球案内
軌道の内輪および外輪によつて形成される環状の
溝中を移動できるように複数の鋼球を保持させ、
少なくとも回転磁気ヘツド用ロータを含む回転磁
気ヘツド機構の回転体の動的釣り合い時に前記鋼
球案内軌道を構成している形状記憶合金のマルテ
ンサイト変態の逆変態による形状記憶効果によつ
て回転体の質量の不釣り合いを打ち消す位置に位
置する複数の鋼球を前記鋼球案内軌道の内輪およ
び外輪によつて構成される溝中に固定し動的釣り
合いをとるようにしたことを特徴とする回転磁気
ヘツド用ロータ。
1. An inner ring of an annular steel ball guide track and an outer ring of an annular steel ball guide track made of a shape memory alloy are provided on at least one side surface in the direction of the rotation axis of a rotor support that rotates while supporting a magnetic recording transducer, holding a plurality of steel balls so as to be movable in an annular groove formed by an inner ring and an outer ring of the steel ball guide race;
When the rotating body of the rotating magnetic head mechanism including at least the rotor for the rotating magnetic head is dynamically balanced, the shape memory effect due to the reverse transformation of the martensitic transformation of the shape memory alloy constituting the steel ball guide track causes the rotational body to change. A rotation characterized in that a plurality of steel balls located at positions to cancel mass imbalance are fixed in a groove formed by an inner ring and an outer ring of the steel ball guide race to achieve dynamic balance. Rotor for magnetic head.
JP9671080A 1980-07-15 1980-07-15 Rotor for rotary magnetic head Granted JPS5720914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9671080A JPS5720914A (en) 1980-07-15 1980-07-15 Rotor for rotary magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9671080A JPS5720914A (en) 1980-07-15 1980-07-15 Rotor for rotary magnetic head

Publications (2)

Publication Number Publication Date
JPS5720914A JPS5720914A (en) 1982-02-03
JPS645371B2 true JPS645371B2 (en) 1989-01-30

Family

ID=14172297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9671080A Granted JPS5720914A (en) 1980-07-15 1980-07-15 Rotor for rotary magnetic head

Country Status (1)

Country Link
JP (1) JPS5720914A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5111713A (en) * 1989-12-18 1992-05-12 International Business Machines Corporation Dynamically balanced rotary unit

Also Published As

Publication number Publication date
JPS5720914A (en) 1982-02-03

Similar Documents

Publication Publication Date Title
JP3042188B2 (en) Manufacturing method of pivot mechanism
US5127744A (en) Self-acting air bearing spindle for disk drive
US5824898A (en) Rotating mass balancing system
JPS645371B2 (en)
JPH08306125A (en) Information recording and reproducing device
JPS645372B2 (en)
JPS58133673A (en) Magnetic disc pack
EP0193699B1 (en) Spindle shafts and method of attaching same to bearing assemblies
US4888656A (en) Pivot mechanism for rotary disc drives
US6657822B1 (en) Magnetic disk apparatus
JP3079587B2 (en) Magnetic disk drive
US5463515A (en) Magnetic head supporting structure with a bearing fixed to a radially thin wall part of a sleeve located between an arm holder and the bearing
JP2000018364A (en) Ball screw device
JPH09140089A (en) Motor
JP2570103B2 (en) Carriage structure of magnetic disk drive
JPH02211036A (en) Rotary supporting device of disc
JPH0725905Y2 (en) Magnetic disk unit
JPH10125053A (en) Magnetic disc drive
JPH0345258B2 (en)
JPS5914881Y2 (en) magnetic disk storage device
JPH0418109Y2 (en)
JPH0127180Y2 (en)
JPS63298781A (en) Magnetic disk device
JPH01253876A (en) Magnetic disk device
JP2002235739A (en) Double row ball bearing unit