JPS645247Y2 - - Google Patents

Info

Publication number
JPS645247Y2
JPS645247Y2 JP8145482U JP8145482U JPS645247Y2 JP S645247 Y2 JPS645247 Y2 JP S645247Y2 JP 8145482 U JP8145482 U JP 8145482U JP 8145482 U JP8145482 U JP 8145482U JP S645247 Y2 JPS645247 Y2 JP S645247Y2
Authority
JP
Japan
Prior art keywords
electrode
gas
permeable membrane
internal
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8145482U
Other languages
Japanese (ja)
Other versions
JPS58182149U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8145482U priority Critical patent/JPS58182149U/en
Publication of JPS58182149U publication Critical patent/JPS58182149U/en
Application granted granted Critical
Publication of JPS645247Y2 publication Critical patent/JPS645247Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、ガス分析装置に関する。さらに詳
しくは、ガス電極のガス透過性膜の異常を測定系
を乱すことなく簡便にチエツクでき、ことに血液
ガス分析等に有用なガス分析装置に関する。
[Detailed Description of the Invention] This invention relates to a gas analyzer. More specifically, the present invention relates to a gas analyzer that can easily check for abnormalities in the gas permeable membrane of the gas electrode without disturbing the measurement system, and is particularly useful for blood gas analysis.

従来から、たとえばClark型酸素電極や
Severinghaus型炭酸ガス電極等の、ガス透過性
膜を有するガス電極が各種ガス分析に用いられ、
ことにこれらとPH電極とを組合せたガス分析装置
が血液ガス分析装置として各種病院等で広く用い
られている。
Traditionally, for example, Clark-type oxygen electrodes and
Gas electrodes with gas permeable membranes, such as the Severinghaus type carbon dioxide electrode, are used for various gas analyses.
In particular, gas analyzers that combine these and PH electrodes are widely used as blood gas analyzers in various hospitals.

かようなガス分析装置のトラブルで意外に多い
のはガス電極のガス透過性膜の電気的リークに基
づく測定値の異常である。すなわち、ガス電極の
ガス透過性膜は、通常薄いテフロン膜やシリコン
樹脂膜やポリプロピレン膜をゴム製のO−リング
等で電極筒先端に張設してなるが、これらの膜は
しばしば破れやピンボールを生じ、またO−リン
グがゆるみを生じる場合もあり、これによつて電
極内液と試科液との間に電気的な洩れを生じて測
定値の異常を引き起すことがしばしばあつた。こ
のようなガス透過性膜の異常は電極較正の段階で
は気づきにくく、そのため、ガス電極と同一の電
解質溶液に接してステンレスなどで作られた第二
の電極を設定し、ガス電極の内部極と第二の電極
との間の導電率又は電位を測定することによつて
かような膜の異常を検出していたが、装置の測定
系に第二の電極を取り付ける必要があり、また検
出用の導電率計や電位差計又はその回路を別に設
ける必要があるという問題点があつた。
A surprisingly common problem with such gas analyzers is abnormal measurement values due to electrical leakage in the gas permeable membrane of the gas electrode. In other words, the gas permeable membrane of a gas electrode is usually made of a thin Teflon membrane, silicone resin membrane, or polypropylene membrane stretched over the tip of the electrode tube with a rubber O-ring, etc., but these membranes are often prone to tears or pins. Balls may occur, and the O-ring may become loose, which often causes electrical leakage between the electrode solution and the sample solution, resulting in abnormal measured values. . Such abnormalities in the gas permeable membrane are difficult to notice at the electrode calibration stage, so a second electrode made of stainless steel or the like is set in contact with the same electrolyte solution as the gas electrode, and the internal electrode of the gas electrode is connected to the second electrode. Such membrane abnormalities have been detected by measuring the conductivity or potential between the second electrode, but it is necessary to attach the second electrode to the measurement system of the device, and the detection There was a problem in that it was necessary to separately provide a conductivity meter, a potentiometer, or a circuit thereof.

この考案は、かような問題点を解消すべくなさ
れたものであり、ガス透過性膜の異常を、測定系
を乱すことなく、さらに新たな測定器を用いるこ
となく簡便に検出できるガス分析装置を提供する
ものである。この考案の考案者らは、ガス電極装
置に付設されたPH電極系を用いてガス透過性膜の
異常を検出することに想着し、種々検討を行つた
結果、この考案に到達した。
This idea was made to solve these problems, and is a gas analyzer that can easily detect abnormalities in gas permeable membranes without disturbing the measurement system or using new measuring instruments. It provides: The creators of this idea came up with the idea of detecting abnormalities in gas permeable membranes using a PH electrode system attached to a gas electrode device, and after conducting various studies, they arrived at this idea.

かくしてこの考案によれば、ガス透過性膜を有
するガス電極と、PH電極及びそれに対応する参照
電極とを同一測定系に備えてなるガス分析装置に
おいて、ガス電極内部の内部極とそのグラウンド
間にスイツチを設けてなり、該スイツチの開閉に
よつてガス電極のガス透過性膜の異常をPH出力に
基づいて検出しうるよう構成してなるガス分析装
置が提供される。
Thus, according to this invention, in a gas analyzer comprising a gas electrode having a gas permeable membrane, a PH electrode, and a reference electrode corresponding thereto in the same measurement system, there is a gap between the internal electrode inside the gas electrode and its ground. A gas analyzer is provided, which is provided with a switch and is configured to detect an abnormality in a gas permeable membrane of a gas electrode based on the PH output by opening and closing the switch.

上記“同一測定系”とは、ガス電極,PH電極及
び参照電極が同一の液に接触しうる状態に設置さ
れていることを意味する。また、“ガス電極内部
の内部極”とは、ガス電極内部の一対の電極のう
ち基準極となる電極部を意味し、例えば、
Severinghaus型炭酸ガス電極の場合にはAg/
AgCl極を、Clark型酸素電極の場合にはアノード
(例えばAg/AgCl極)が挙げられる。
The above-mentioned "same measurement system" means that the gas electrode, PH electrode, and reference electrode are installed in a state where they can come into contact with the same liquid. Furthermore, the term "internal electrode inside the gas electrode" refers to the electrode part that serves as a reference electrode among a pair of electrodes inside the gas electrode, and includes, for example,
In the case of Severinghaus type carbon dioxide electrode, Ag/
In the case of a Clark type oxygen electrode, an anode (for example, an Ag/AgCl electrode) may be used as the AgCl electrode.

上記、内部極は通常、グラウンドに接続されて
いるが、この考案においては該内部極とグラウン
ド間を開閉しうるスイツチが設けられている。開
閉しうるスイツチとしては、トランジスターから
なるスイツチング回路が挙げられ、これ以外にマ
ニユアルスイツチやリレー等が適用できる。
The above-mentioned internal pole is normally connected to ground, but in this invention, a switch is provided that can open and close between the internal pole and ground. Examples of switches that can be opened and closed include switching circuits made of transistors, and manual switches, relays, and the like may also be used.

ガス電極のガス透過性膜に異常を生じている場
合には、上記スイツチを開閉することにより参照
電極の電位が変動するため、PH出力が変化し、そ
れによつてガス透過性膜の異常を検知することが
できる。
If there is an abnormality in the gas permeable membrane of the gas electrode, opening and closing the above switch changes the potential of the reference electrode, which changes the PH output, thereby detecting the abnormality in the gas permeable membrane. can do.

なお、この考案に用いるガス電極,PH電極及び
参照電極としてはそれぞれ公知のものが適用で
き、参照電極としてはKCl流出型の開放型塩橋の
ものであつてもよい。また各検出回路もスイツチ
を除いて公知のものを適用できる。
Note that the gas electrode, PH electrode, and reference electrode used in this invention may each be of a known type, and the reference electrode may be a KCl outflow type open salt bridge type. Also, known detection circuits can be used for each detection circuit except for the switch.

以下添付図面に従いこの考案を詳しく説明す
る。
This invention will be explained in detail below with reference to the accompanying drawings.

第1図は、この考案の装置の具体例を示す構成
説明図である。図において、炭酸ガス電極2a、
酸素電極2b、PH電極3及び参照電極4はそれぞ
れ試料導管16に連設されてなり、試料導管中の
試料と各電極先端(感応面)とが接触するように
固定されている。炭酸ガス電極2aの先端には、
例えば、テフロンからなるガス透過性膜1aが張
設されてなり試料中の炭酸ガスを電極2aの内部
液中へ充分透過できるよう保持されてなる。同様
に炭酸ガス電極2bの先端には、例えばポリプロ
ピレンからなるガス透過性膜1bが張設されてな
る。炭酸ガス電極2a内のガラス電極部8、酸素
ガス電極2b内の白金電極部9及びPH電極3はそ
れぞれ図に示すごとくプリアンプ12,12′及
び12″、メインアンプ13並びにA−Dコンバ
ーター14を通じて測定表示部15に接続されて
いる。一方、炭酸ガス電極2aの内部極5aは通
常グラウンド7に接続されており基準極となる
が、この考案の装置においては内部極5aとグラ
ウンド7間にスイツチ6が設けられてなる。同様
に、酸素ガス電極2bの内部極5bは、通常、直
流電源17を介してグラウンド7に接続されてい
るが、この考案の装置においては、その間にスイ
ツチ6が設けられてなる。なお、10は液絡部
を、11はカロメル電極あるいはAg/AgCl電極
を、18は炭酸水素ナトリウムを含有する炭酸ガ
ス電極内部液を、19は塩化カリウムを含有する
酸素ガス電極内部液を、20は飽和塩化カリウム
溶液からなる参照電極内部液を示す。
FIG. 1 is a diagram showing a specific example of the device of the present invention. In the figure, a carbon dioxide gas electrode 2a,
The oxygen electrode 2b, the pH electrode 3 and the reference electrode 4 are each connected to a sample conduit 16 and are fixed so that the sample in the sample conduit comes into contact with the tip (sensitive surface) of each electrode.
For example, a gas-permeable membrane 1a made of Teflon is stretched over the tip of the electrode 2a so that the carbon dioxide gas in the sample can be sufficiently permeated into the liquid inside the electrode 2a. Similarly, a gas-permeable membrane 1b made of polypropylene is stretched over the tip of the carbon dioxide electrode 2b. The glass electrode 8 in the carbon dioxide gas electrode 2a, the platinum electrode 9 in the oxygen gas electrode 2b, and the pH electrode 3 are connected to a measurement display unit 15 through preamplifiers 12, 12', and 12", a main amplifier 13, and an A-D converter 14, as shown in the figure. On the other hand, the internal electrode 5a of the carbon dioxide gas electrode 2a is usually connected to ground 7 and serves as a reference electrode, but in the device of this invention, a switch 6 is provided between the internal electrode 5a and ground 7. Similarly, the internal electrode 5b of the oxygen gas electrode 2b is usually connected to ground 7 through a DC power source 17, but in the device of this invention, a switch 6 is provided between them. Note that 10 denotes a liquid junction, 11 denotes a calomel electrode or Ag/AgCl electrode, 18 denotes a carbon dioxide gas electrode internal liquid containing sodium bicarbonate, 19 denotes an oxygen gas electrode internal liquid containing potassium chloride, and 20 denotes a reference electrode internal liquid consisting of a saturated potassium chloride solution.

上記構成において、試料導管16が血液等の試
料で満たされた時にPH電極3は参照電極4と回路
を形成して試料のPHを測定するのであるが、ガス
電極2a及び/又は2bのガス透過性膜が破れ
や、液の流出等の異常を生じている際にはガス電
極の内部液と試料とが導通し、内部極5a及び/
又は5bと参照電極4とが電気的に導通のある状
態となる。
In the above configuration, when the sample conduit 16 is filled with a sample such as blood, the PH electrode 3 forms a circuit with the reference electrode 4 to measure the PH of the sample. When an abnormality occurs such as breakage of the electrolyte membrane or leakage of liquid, the internal liquid of the gas electrode and the sample are electrically connected, and the internal electrode 5a and/or
Alternatively, 5b and the reference electrode 4 become electrically conductive.

ところで、内部極5a及び5bはそれぞれ参照
電極4に対して異なる電位を有する。なぜなら酸
素電極2bの内部極5bは直流電源17により約
+0.6Vの電圧が印加されており、内部液に含ま
れる塩素イオン濃度の差を考慮しても+0.5〜
0.6Vの電位を有し、炭酸ガス電極2aの内部極
5bは、内部液18と参照電極4の内部液20と
の塩素イオン濃度の差(通常10〜100倍、内部液
20の方が濃い)により−20〜−120mV程度の
電位を有する。
Incidentally, the internal electrodes 5a and 5b each have a different potential with respect to the reference electrode 4. This is because a voltage of about +0.6V is applied to the internal electrode 5b of the oxygen electrode 2b by the DC power supply 17, and even considering the difference in the chlorine ion concentration contained in the internal solution, the voltage is +0.5~
The internal electrode 5b of the carbon dioxide electrode 2a has a potential of 0.6V, and the difference in chlorine ion concentration between the internal liquid 18 and the internal liquid 20 of the reference electrode 4 (usually 10 to 100 times, the internal liquid 20 is higher) ) has a potential of about -20 to -120mV.

従つて、前記のごとく内部極5a及び又は5b
と参照電極とが試料を介して電気的導通状態にな
つた際には、スイツチ6が閉じられた状態(すな
わち従来の回路状態)において、これらの間で回
路が形成され、みかけ上参照電極の電位が変化
し、この変化した参照電極の電位に基づいてPHを
測定していることとなる。この状態においてスイ
ツチ6をそれぞれ閉(ON)から開(OFF)にす
ると、内部極5a又は5bと参照電極4との間に
形成された回路は切れるため、参照電極4の電位
は正常な電位に戻る。従つてそれぞれON−OFF
の操作を行なつた際にPH出力に変化を生じ、これ
に基づいて各ガス電極のガス透過性膜の異常を検
出することができる。なお、ガス透過性膜に何ん
ら異常を生じていない場合には、上記ON−OFF
の操作を行なつても参照電極4の電位はほとんど
変化しない。
Therefore, as described above, the internal poles 5a and/or 5b
When the reference electrode and the reference electrode become electrically conductive through the sample, a circuit is formed between them when the switch 6 is closed (i.e., the conventional circuit state), and the apparent reference electrode The potential changes, and the PH is measured based on this changed potential of the reference electrode. In this state, when the switch 6 is turned from closed (ON) to open (OFF), the circuit formed between the internal electrode 5a or 5b and the reference electrode 4 is broken, so that the potential of the reference electrode 4 returns to the normal potential. return. Therefore, ON-OFF respectively
When this operation is performed, a change occurs in the PH output, and based on this, it is possible to detect an abnormality in the gas permeable membrane of each gas electrode. In addition, if there is no abnormality in the gas permeable membrane, the above ON-OFF
Even if the above operation is performed, the potential of the reference electrode 4 hardly changes.

そして、酸素電極2bのガス透過性膜に異常を
生じた場合にはPH出力はプラス側に変化し、炭酸
ガス電極2aのガス透過性膜に異常を生じた場合
にはPH出力はマイナス側に変化し、それぞれの変
化幅は各ガス透過性膜の膜の破れ、液もれ、ピン
ホール等の程度により変化するのでその程度も把
握できる。
If an abnormality occurs in the gas permeable membrane of the oxygen electrode 2b, the PH output changes to the positive side, and if an abnormality occurs in the gas permeable membrane of the carbon dioxide electrode 2a, the PH output changes to the negative side. The width of each change varies depending on the degree of membrane tear, liquid leakage, pinhole, etc. of each gas permeable membrane, so the degree can also be grasped.

なお、実際の検出操作は試料は用いず較正液を
用いたPH電極の較正時に行なうのが好ましい。
Note that the actual detection operation is preferably performed during calibration of the PH electrode using a calibration solution without using a sample.

上記検出機構を等価回路で説明すると第2〜4
図のようになる。すなわち、第2図はガス透過性
膜が正常な際のPH測定等価回路を示し、R1は参
照電極側の液間抵抗を、E1は発生電位を、R2
PH電極側の液間抵抗に対応するものである。ガス
電極のガス透過性膜に異常を生じた際には、スイ
ツチ6をONすると第3図のごとき回路が構成さ
れてE1に相当する出力がE1+(R1/R1+R3)E2に相 当する出力に変化する。なお、E2は対象とする
ガス電極内の内部極の有する電位を示し、R3
内部極と参照電極間の液間抵抗に対応するもので
ある。この際、第4図に示すようにスイツチ6を
OFFにすると、かような回路が切れるためPH出
力は第1図に示した正常な状態と同様となり、第
3図の際の出力と異なる出力が検知される。膜が
正常な際には、スイツチをONからOFFに切り換
えてもPH出力は変化しない。
To explain the above detection mechanism using an equivalent circuit, 2nd to 4th
It will look like the figure. In other words, Figure 2 shows the equivalent circuit for PH measurement when the gas permeable membrane is normal, where R 1 is the liquid resistance on the reference electrode side, E 1 is the generated potential, and R 2 is
This corresponds to the liquid resistance on the PH electrode side. When an abnormality occurs in the gas permeable membrane of the gas electrode, when switch 6 is turned on, a circuit as shown in Fig. 3 is configured and the output corresponding to E 1 becomes E 1 + (R 1 /R 1 + R 3 ). The output changes to correspond to E 2 . Note that E 2 represents the potential of the internal electrode in the target gas electrode, and R 3 corresponds to the liquid resistance between the internal electrode and the reference electrode. At this time, switch 6 is turned on as shown in Figure 4.
When turned OFF, such a circuit is cut off, so the PH output becomes the same as the normal state shown in Figure 1, and an output different from the output in Figure 3 is detected. When the membrane is normal, the PH output does not change even if the switch is turned from ON to OFF.

以上の具体例等に示されるように、この考案の
装置によれば、ガス透過性膜の異常を較正液や試
料等の測定系を乱すことなくそのまま簡便にチエ
ツクでき、構造も非常に簡素化され、工業上極め
て有用である。
As shown in the above specific examples, with the device of this invention, it is possible to easily check for abnormalities in the gas permeable membrane without disturbing the measurement system of the calibration solution or sample, and the structure is also extremely simple. and is extremely useful industrially.

なお、ガス電極によりガス濃度を測定する際に
スイツチはONされた状態とされることはいうま
でもない。
It goes without saying that the switch is in an ON state when measuring the gas concentration using the gas electrode.

また、上記スイツチの切り換えやPH出力の変化
のチエツク等をマイクロコンピユーターで制御し
てもよく、その際のフローチヤートを第5図に示
した。
Further, switching of the above-mentioned switches, checking of changes in the PH output, etc. may be controlled by a microcomputer, and a flowchart in this case is shown in FIG.

なお、第5図においてSW1とは炭酸ガス電極の
スイツチを示し、SW2とは酸素電極のスイツチを
示す。
In addition, in FIG. 5, SW 1 indicates a switch for the carbon dioxide electrode, and SW 2 indicates a switch for the oxygen electrode.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この考案のガス分析装置の具体例を
示す構成説明図であり、第2〜4図は、この考案
の装置の機能を説明する等価回路図であり、第5
図は、この考案の装置におけるガス透過性膜の異
常チエツク時の操作手順の一例を示すフローチヤ
ートである。 1a,1b……ガス透過性膜、2a……炭酸ガ
ス電極、2b……酸素電極、3……PH電極、4…
…参照電極、5a,5b……内部極、6……スイ
ツチ、7……グラウンド、8……ガラス電極部、
9……白金電極部、10……液絡部、11……カ
ロメル電極、12,12′,12″……プリアン
プ、13……メインアンプ、14……A−Dコン
バーター、15……測定表示部、16……試料導
入管、17……直流電源、18,19,20……
内部液。
FIG. 1 is a configuration explanatory diagram showing a specific example of the gas analyzer of this invention, FIGS. 2 to 4 are equivalent circuit diagrams explaining the functions of the device of this invention, and FIG.
The figure is a flowchart showing an example of the operating procedure when checking for an abnormality in a gas permeable membrane in the device of this invention. 1a, 1b... Gas permeable membrane, 2a... Carbon dioxide electrode, 2b... Oxygen electrode, 3... PH electrode, 4...
...Reference electrode, 5a, 5b...Inner pole, 6...Switch, 7...Ground, 8...Glass electrode part,
9...Platinum electrode part, 10...Liquid junction part, 11...Calomel electrode, 12, 12', 12''...Preamplifier, 13...Main amplifier, 14...A-D converter, 15...Measurement display Part, 16... Sample introduction tube, 17... DC power supply, 18, 19, 20...
Internal fluid.

Claims (1)

【実用新案登録請求の範囲】 1 ガス透過性膜を有するガス電極と、PH電極及
びそれに対応する参照電極とを同一測定系に備
えてなるガス分析装置において、ガス電極内部
の内部極とそのグラウンド間にスイツチを設け
てなり、該スイツチの開閉によつてガス電極の
ガス透過性膜の異常をPH出力に基づいて検出し
うるよう構成してなるガス分析装置。 2 ガス透過性膜を有するガス電極が、酸素電極
及び/又は炭酸ガス電極である実用新案登録請
求の範囲第1項記載の装置。 3 血液ガス分析に用いられる実用新案登録請求
の範囲第2項記載の装置。
[Claims for Utility Model Registration] 1. In a gas analyzer comprising a gas electrode having a gas permeable membrane, a PH electrode and a reference electrode corresponding thereto in the same measurement system, an internal electrode inside the gas electrode and its ground A gas analyzer is provided with a switch in between, and is configured to detect an abnormality in a gas permeable membrane of a gas electrode based on the PH output by opening and closing the switch. 2. The device according to claim 1, wherein the gas electrode having the gas permeable membrane is an oxygen electrode and/or a carbon dioxide electrode. 3. The device according to claim 2 of the utility model registration claim, which is used for blood gas analysis.
JP8145482U 1982-05-31 1982-05-31 gas analyzer Granted JPS58182149U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8145482U JPS58182149U (en) 1982-05-31 1982-05-31 gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8145482U JPS58182149U (en) 1982-05-31 1982-05-31 gas analyzer

Publications (2)

Publication Number Publication Date
JPS58182149U JPS58182149U (en) 1983-12-05
JPS645247Y2 true JPS645247Y2 (en) 1989-02-09

Family

ID=30090558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8145482U Granted JPS58182149U (en) 1982-05-31 1982-05-31 gas analyzer

Country Status (1)

Country Link
JP (1) JPS58182149U (en)

Also Published As

Publication number Publication date
JPS58182149U (en) 1983-12-05

Similar Documents

Publication Publication Date Title
KR101256133B1 (en) Method and apparatus for detection of abnormal traces during electrochemical analyte detection
US4377446A (en) Carbon dioxide measurement
KR20140034720A (en) Method and apparatus for measuring oxidation-reduction potential
Hahn et al. The development of new microelectrode gas sensors: an odyssey. Part 1. O2 and CO2 reduction at unshielded gold microdisc electrodes
JPS645247Y2 (en)
US8518237B2 (en) Modulating polarization voltage of amperometric sensors
US20060163088A1 (en) Amperometric sensor with counter electrode isolated from fill solution
US4891102A (en) Method of determining carbon dioxide in the presence of oxygen
Walker Polarographic measurement of oxygen
Winckers et al. A comparative study of the electrode systems of three pH and blood gas apparatus
EP0096117B1 (en) Analyzer for chemical oxidizing or reducing agents
JPH05264499A (en) Measuring device for concentration of oxidizable substance
US5921922A (en) Measuring of bloodgases
JP2004125668A (en) Oxidation-reduction potential measuring instrument
JPS6236554A (en) Electrochemical type acid gas detector
CA2772706A1 (en) Water analysis measurement arrangement
SU600427A1 (en) Method of electrochemical analysis of substances
JPS61750A (en) Glucose concentration detector
JP3842875B2 (en) Polarographic gas sensor
JP2004053613A (en) Oxidation-reduction potential measuring device
JPH04305Y2 (en)
Vadgama et al. Interferent ion effects on the Orion SS-20 calcium ion analyser
JPH0375552A (en) Enzyme electrode
JPH0139781B2 (en)
JPS63169550A (en) Dissolved oxygen electrode