JPS645066B2 - - Google Patents

Info

Publication number
JPS645066B2
JPS645066B2 JP13878283A JP13878283A JPS645066B2 JP S645066 B2 JPS645066 B2 JP S645066B2 JP 13878283 A JP13878283 A JP 13878283A JP 13878283 A JP13878283 A JP 13878283A JP S645066 B2 JPS645066 B2 JP S645066B2
Authority
JP
Japan
Prior art keywords
ethylene
copolymer
unsaturated carboxylic
carboxylic acid
graft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13878283A
Other languages
Japanese (ja)
Other versions
JPS6035043A (en
Inventor
Shiro Narasaki
Sadaki Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dow Mitsui Polychemicals Co Ltd
Original Assignee
Du Pont Mitsui Polychemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Du Pont Mitsui Polychemicals Co Ltd filed Critical Du Pont Mitsui Polychemicals Co Ltd
Priority to JP13878283A priority Critical patent/JPS6035043A/en
Publication of JPS6035043A publication Critical patent/JPS6035043A/en
Publication of JPS645066B2 publication Critical patent/JPS645066B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、成形用樹脂組成物に関する。更に詳
しくは、アイオノマー樹脂の剛性を実質的に低下
させることなく、耐衝撃性および耐屈曲性を大幅
に改善せしめた成形用樹脂組成物に関する。 一般にアイオノマー樹脂と呼ばれているエチレ
ン−α,β−不飽和カルボン酸共重合体またはエ
チレン−α,β−不飽和カルボン酸−α,β−不
飽和カルボン酸エステル3元共重合体の金属イオ
ン架橋体は、その分子中に水素結合および金属イ
オン架橋構造を有するために、すぐれた加工性、
透明性、強度、耐衝撃性、耐摩耗性などを示し、
このため多くのプラスチツク成形品、例えば事務
用機械部品、自動車部品、スポーツ用品、建築用
品、家庭用品、医療用品などに使用されている。
これらの用途の中、スキー靴、スポーツ靴カウン
ター、冷凍庫の間仕切などに使用される場合に
は、高い耐衝撃性および耐屈曲性が要求されてお
り、アイオノマー樹脂は比較的良好な耐衝撃性お
よび耐屈曲性を示すものの、なお一層の改善が望
まれていた。 これらの性質の改善目的に対しては、一般にエ
ラストマーをブレンドする方法が行われており、
このような方法によつてアイオノマー樹脂に、例
えばスチレン−ブタジエン共重合ゴム、ポリイソ
プレンゴム、ポリクロロプレンゴム、アクリロニ
トリル−ブタジエン共重合ゴム、ブチルゴムなど
のエラストマーをブレンドすると、耐衝撃性の改
善効果は常温では認められるものの、低温時のそ
れを改善する迄には至らず、また射出成形すると
層状剥離などの現象もみられる。 本出願人は先に、アイオノマー樹脂に密度0.85
〜0.90g/cm3の低結晶性乃至非結晶性エチレン−
ブテン−1共重合体を混合し、アイオノマー樹脂
の低温耐衝撃性および非白濁性を改善し得ること
を見出しているが(特願昭57−15182号参照)、更
に検討を進めた結果、同密度の低結晶性乃至非結
晶性エチレン−α−オレフイン共重合体へα,β
−不飽和カルボン酸類をグラフト共重合させた変
性物をアイオノマー樹脂に混合すると、それから
得られた成形品は、剛性を実質的に低下させるこ
となく、更に耐衝撃性を改善し、同時に耐屈曲性
をも改善させ得ることをここに見出した。しか
も、ブレンド物成形の場合にしばしばみられる層
状剥離という重大な欠点も、本発明では効果的に
解消されている。 従つて、本発明は射出成形や押出成形(押出コ
ーテイングを含む)などに用いられる成形用樹脂
組成物に係り、この樹脂組成物は、(A)エチレン−
α,β−不飽和カルボン酸共重合体またはエチレ
ン−α,β−不飽和カルボン酸−α,β−不飽和
カルボン酸エステル3元共重合体の金属イオン架
橋体50〜90重量部および(B)密度0.85〜0.90g/cm3
(ASTM D−1505)の低結晶性乃至非結晶性エ
チレン−α−オレフイン共重合体へα,β−不飽
和カルボン酸またはその誘導体をグラフト共重合
させたグラフト変性物50〜10重量部を混合してな
る。 (A)成分である改質さるべきアイオノマー樹脂
は、例えば特公昭39−6810号公報に記載される方
法によつて製造される。即ち、エチレンとアクリ
ル酸、メタクリル酸、イタコン酸、フマル酸など
の炭素数3〜8の不飽和カルボン酸との共重合
体、またはこれに更にアクリル酸メチル、アクリ
ル酸エチル、アクリル酸イソブチル、メタクリル
酸メチル、メタクリル酸エチル、メタクリル酸ブ
チル、メタクリル酸イソブチル、フマル酸ジメチ
ルなどの炭素数4〜8のα,β−不飽和カルボン
酸エステルを第3成分として含有する3元共重合
体中のカルボン酸基の一部または全部を、金属イ
オン架橋させたものである。共重合体中の不飽和
カルボン酸の含有量は、一般に約0.5〜15モル%
であり、好ましくは約1〜8モル%である。ま
た、第3成分として共重合される不飽和カルボン
酸エステルの含有量は、一般に約0.2〜10モル%、
好ましくは約1〜6モル%である。 金属イオン架橋に使用される金属イオンとして
は、リチウム、ナトリウム、カリウム、セシウム
などの1価金属イオン、マグネシウム、カルシウ
ム、ストロンチウム、バリウム、銅、亜鉛などの
2価金属イオンまたはアルミニウム、鉄などの3
価金属イオンが挙げられる。金属化合物の形で用
いられる金属イオンは、共重合体中の酸の含有
量、メルトインデツクス、イオンの種類およびそ
の用途などによつてその添加量が変化するが、一
般には約10%以上、好ましくは約15〜80%のカル
ボン酸基を中和する量で用いられる。 かかるアイオノマー樹脂にブレンドされる(B)成
分グラフト変性物のベースポリマーであるエチレ
ン−α−オレフイン共重合体は、密度が0.85〜
0.90g/cm3でありかつ低結晶性乃至非結晶性(比
容法による結晶化度が約20〜0%)のものであ
る。この共重合体は、エチレンおよび炭素数3〜
9のα−オレフイン、好ましくはブテン−1また
はプロピレンを、例えば三塩化バナジウム、四塩
化バナジウムによつて代表されるバナジウム化合
物と有機アルミニウム化合物との複合触媒などを
用いて共重合させることにより得られ、好ましく
は共重合体中に約5〜30モル%のα−オレフイン
を共重合させ、これによつて結晶化度を調節して
おり、そのメルトインデツクスは約0.5〜30g/
10分の範囲内にあることが好ましい。 これらのエチレン−α−オレフイン共重合体に
グラフト共重合されるα,β−不飽和カルボン酸
またはその誘導体としては、アクリル酸、メタク
リル酸、イタコン酸、フマル酸、無水マレイン酸
などが例示され、特に無水マレイン酸が好まし
い。これらのα,β−不飽和カルボン酸類は、得
られるグラフト変性物中0.1〜5.0重量%となるよ
うな量でグラフト共重合される。 (A)成分のアイオノマー樹脂と(B)成分のグラフト
変性物とは、それぞれ50〜90重量部および50〜10
重量部の割合で混合して用いられる。(B)成分の混
合割合がこれより多いと、それから成形される成
形品の剛性が大幅に低下し、逆にこれより少ない
割合で(B)成分が用いられると、本発明の目的を達
成することができない。 成形用樹脂組成物の調製は、前記各成分を同時
的または遂次的にドライブレンドしまたはメルト
ブレンドすることによつて行われる。ドライブレ
ンドの場合には、成形機中でアイオノマー樹脂が
溶融可塑化される段階で、グラフト変性物もアイ
オノマー樹脂に容易に均一に溶融混合される。メ
ルトブレンドの場合には、単軸押出機、2軸押出
機、バンバリーミキサーなどの各種ミキサー、ロ
ール、各種ニーダーなどを用いて溶融混合すれば
よい。 本発明に係る成形用樹脂組成物は、アイオノマ
ー樹脂の剛性を実質的に低下させることなく、そ
れから得られる成形品の耐衝撃性および耐屈曲性
を大幅に改善し、また耐層状剥離性の点でも良好
であるが、これは低結晶性乃至非結晶性エチレン
−α−オレフイン共重合体がアイオノマー樹脂に
対して他のエラストマーよりも比較的良好な相溶
性を示すことに加えて、これにα,β−不飽和カ
ルボン酸類をグラフト共重合させることによつ
て、アイオノマー樹脂のカルボン酸基との水素結
合およびカルボン酸金属塩基との金属イオン結合
を構成させることによる相溶性の大幅な上昇によ
つてもたらされる効果と考えられる。 この結果、低結晶性乃至非結晶性エチレン−α
−オレフイン共重合体をグラフト共重合させるこ
となくそのまま用いた場合には、低温耐衝撃性の
改善効果はエチレン−ブテン−1共重合体のみに
しかみられず、他の共重合体の場合には有効では
なかつたが、本発明の樹脂組成物においては、エ
チレン−ブテン−1共重合体を始め広くエチレン
−α−オレフイン共重合体一般のグラフト変性物
のいずれも使用することができる。 次に、実施例について本発明を説明する。 実施例 1 アイオノマー樹脂(三井ポリケミカル製品ハイ
ミラン1601、Naタイプ、メルトインデツクス
1.2)70部(重量、以下同じ)およびエチレン−
ブテン−1共重合体(密度0.88g/cm3、ブテン−
1含有量15モル%、メルトインデツクス4)への
無水マレイン酸グラフト変性物(無水マレイン酸
グラフト量0.4重量%)30部を、40mm径押出機
(L/D=20)を用いて180℃の温度で混練し、次
いでペレツト化した。得られた樹脂組成物につい
て、次のような項目の物性測定を行ない、その結
果を後記表に示した。 曲げ剛性率:ASTM D−747に従い、厚さ3
mmのプレスシートについて測定し
た。 引張衝撃強度:ASTM D−1822に準拠し、260
℃で射出成形した80×140×2mmの
角板について、流れ方向(縦方向)
およびこれと直角方向(横方向)の
値を23℃および−30℃でそれぞれ測
定した。 耐屈曲性:デイマチヤー試験機を用い、上記
角板について−5℃、ノツチなしの
条件下で、この角板に亀裂、ネツキ
ング、剥離、切断などの欠陥が発生
する迄の屈曲回数を測定した 耐層状剥離性:上記角板について目視で判定 実施例 2 実施例1において、エチレン−ブテン−1共重
合体グラフト変性物の代りに、エチレン−プロピ
レン共重合体(密度0.88cm3/g、プロピレン含有
量20モル%、メルトインデツクス0.44)への無水
マレイン酸グラフト変性物(無水マレイン酸グラ
フト量0.4重量%)の同量が用いられた。 実施例 3 実施例1において、他のアイオノマー樹脂(三
井ポリケミカル製品ハイミラン1557、Znタイプ、
メルトインデツクス5.0)の同量が用いられた。 実施例 4 実施例3において、エチレン−ブテン−1共重
合体グラフト変性物の代りに、実施例2で用いら
れたエチレン−プロピレン共重合体のグラフト変
性物の同量が用いられた。 実施例 5 実施例3において、アイオノマー樹脂とエチレ
ン−ブテン−1共重合体とが、それぞれ85部およ
び15部の割合で用いられた。 実施例 6 実施例3において、アイオノマー樹脂とエチレ
ン−ブテン−1共重合体とが、それぞれ50部宛用
いられた。 比較例 1 実施例1において、グラフト変性されないエチ
レン−ブテン−1共重合体がそのまま30部用いら
れた。 比較例 2 実施例2において、グラフト変性されないエチ
レン−プロピレン共重合体がそのまま30部用いら
れた。 比較例 3 実施例3において、グラフト変性されないエチ
レン−ブテン−1共重合体がそのまま30部用いら
れた。 比較例 4 比較例2において、他のエチレン−プロピレン
共重合体(密度0.88g/cm3、プロピレン含有量20
モル%、メルトインデツクス1.2)の同量が用い
られた。 比較例 5 比較例2において、更に他のエチレン−プロピ
レン共重合体(密度0.88g/cm3、プロピレン含有
量20モル%、メルトインデツクス5.0)の同量が
用いられた。 比較例 6 実施例3で用いられたアイオノマー樹脂が単体
で用いられた。 比較例 7 実施例1で用いられたアイオノマー樹脂が単体
で用いられた。 比較例 8 実施例1〜4および比較例1〜5の各樹脂組成
物とほぼ同程度の曲げ剛性率を示す他のアイオノ
マー樹脂(三井ポリケミカル製品ハイミラン
1652、Znタイプ、メルトインデツクス5.0)が単
体で用いられた。 実施例2〜6および比較例1〜8の測定結果
も、次の表に示される。
The present invention relates to a molding resin composition. More specifically, the present invention relates to a molding resin composition that significantly improves impact resistance and bending resistance without substantially reducing the rigidity of the ionomer resin. Metal ions of ethylene-α,β-unsaturated carboxylic acid copolymer or ethylene-α,β-unsaturated carboxylic acid-α,β-unsaturated carboxylic acid ester ternary copolymer, which is generally called ionomer resin. Because the crosslinked product has hydrogen bonds and metal ion crosslinked structures in its molecules, it has excellent processability and
It shows transparency, strength, impact resistance, abrasion resistance, etc.
For this reason, it is used in many plastic molded products, such as office machine parts, automobile parts, sporting goods, construction goods, household goods, and medical goods.
Among these applications, when used in ski boots, sports shoe counters, freezer partitions, etc., high impact resistance and bending resistance are required, and ionomer resins have relatively good impact resistance and Although it exhibits bending resistance, further improvement was desired. To improve these properties, a method of blending elastomers is generally used.
When an elastomer such as styrene-butadiene copolymer rubber, polyisoprene rubber, polychloroprene rubber, acrylonitrile-butadiene copolymer rubber, or butyl rubber is blended with the ionomer resin by such a method, the effect of improving impact resistance remains at room temperature. However, it is not possible to improve the problem at low temperatures, and phenomena such as delamination are also observed during injection molding. The applicant previously developed an ionomer resin with a density of 0.85.
~0.90g/ cm3 of low crystalline to amorphous ethylene-
It has been discovered that the low-temperature impact resistance and non-clouding properties of ionomer resins can be improved by mixing a butene-1 copolymer (see Japanese Patent Application No. 15182/1982); however, as a result of further investigation, α, β to low-density crystalline to non-crystalline ethylene-α-olefin copolymer
- When a modified product obtained by graft copolymerization of unsaturated carboxylic acids is mixed with an ionomer resin, the molded product obtained therefrom further improves impact resistance and flex resistance without substantially reducing stiffness. Here we have discovered that it is possible to improve the Moreover, the serious drawback of delamination, which is often seen in the case of blend molding, is also effectively eliminated in the present invention. Therefore, the present invention relates to a molding resin composition used for injection molding, extrusion molding (including extrusion coating), etc., and this resin composition comprises (A) ethylene-
50 to 90 parts by weight of a metal ion crosslinked product of α,β-unsaturated carboxylic acid copolymer or ethylene-α,β-unsaturated carboxylic acid-α,β-unsaturated carboxylic acid ester terpolymer and (B )Density 0.85~0.90g/ cm3
(ASTM D-1505) 50 to 10 parts by weight of a graft modified product obtained by graft copolymerizing an α,β-unsaturated carboxylic acid or its derivative to a low-crystalline to amorphous ethylene-α-olefin copolymer are mixed. It will be done. The ionomer resin to be modified, component (A), is produced, for example, by the method described in Japanese Patent Publication No. 39-6810. That is, a copolymer of ethylene and an unsaturated carboxylic acid having 3 to 8 carbon atoms such as acrylic acid, methacrylic acid, itaconic acid, or fumaric acid, or in addition to this, methyl acrylate, ethyl acrylate, isobutyl acrylate, or methacrylate. Carvone in a ternary copolymer containing an α,β-unsaturated carboxylic acid ester having 4 to 8 carbon atoms such as methyl acid, ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, and dimethyl fumarate as the third component. Some or all of the acid groups are crosslinked with metal ions. The content of unsaturated carboxylic acid in the copolymer is generally about 0.5 to 15 mol%
and preferably about 1 to 8 mol%. In addition, the content of the unsaturated carboxylic acid ester copolymerized as the third component is generally about 0.2 to 10 mol%,
Preferably it is about 1-6 mol%. Metal ions used for metal ion crosslinking include monovalent metal ions such as lithium, sodium, potassium, and cesium; divalent metal ions such as magnesium, calcium, strontium, barium, copper, and zinc; and trivalent metal ions such as aluminum and iron.
Examples include valent metal ions. The amount of metal ions used in the form of metal compounds varies depending on the acid content in the copolymer, melt index, type of ion, and its use, but generally it is about 10% or more. Preferably, it is used in an amount that neutralizes about 15-80% of the carboxylic acid groups. The ethylene-α-olefin copolymer, which is the base polymer of the graft modified component (B) blended with the ionomer resin, has a density of 0.85 to
It is 0.90 g/cm 3 and has low crystallinity to non-crystallinity (crystallinity by the specific volume method is about 20 to 0%). This copolymer contains ethylene and 3 to 3 carbon atoms.
It is obtained by copolymerizing α-olefin of No. 9, preferably butene-1 or propylene, using a composite catalyst of a vanadium compound represented by vanadium trichloride or vanadium tetrachloride and an organoaluminum compound, etc. , preferably about 5 to 30 mol % of α-olefin is copolymerized in the copolymer, thereby controlling the crystallinity, and the melt index is about 0.5 to 30 g/
Preferably within 10 minutes. Examples of α,β-unsaturated carboxylic acids or derivatives thereof to be graft copolymerized to these ethylene-α-olefin copolymers include acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic anhydride, etc. Maleic anhydride is particularly preferred. These α,β-unsaturated carboxylic acids are graft copolymerized in an amount such that the resulting graft modified product accounts for 0.1 to 5.0% by weight. The ionomer resin of component (A) and the graft modified product of component (B) are 50 to 90 parts by weight and 50 to 10 parts by weight, respectively.
They are used by mixing them in parts by weight. If the mixing ratio of component (B) is higher than this, the rigidity of the molded product formed from it will be significantly reduced, and conversely, if component (B) is used in a ratio lower than this, the object of the present invention will not be achieved. I can't. The resin composition for molding is prepared by dry-blending or melt-blending the above-mentioned components simultaneously or sequentially. In the case of dry blending, the graft modified product is also easily and uniformly melt-mixed with the ionomer resin at the stage where the ionomer resin is melted and plasticized in the molding machine. In the case of melt blending, melt mixing may be performed using a single screw extruder, a twin screw extruder, various mixers such as a Banbury mixer, rolls, various kneaders, and the like. The molding resin composition according to the present invention significantly improves the impact resistance and bending resistance of molded products obtained from it without substantially reducing the rigidity of the ionomer resin, and also improves delamination resistance. However, this is because low-crystalline to non-crystalline ethylene-α-olefin copolymers exhibit relatively better compatibility with ionomer resins than other elastomers; , by graft copolymerizing β-unsaturated carboxylic acids, hydrogen bonds with the carboxylic acid group of the ionomer resin and metal ion bonds with the carboxylic acid metal base are formed, resulting in a significant increase in compatibility. This is thought to be an effect brought about by As a result, low crystallinity to non-crystalline ethylene-α
- When the olefin copolymer is used as it is without graft copolymerization, the effect of improving low-temperature impact resistance is seen only in the ethylene-butene-1 copolymer, and in the case of other copolymers. Although not effective, in the resin composition of the present invention, any of a wide variety of graft-modified ethylene-α-olefin copolymers including ethylene-butene-1 copolymer can be used. Next, the present invention will be explained with reference to examples. Example 1 Ionomer resin (Mitsui Polychemical product Himilan 1601, Na type, melt index
1.2) 70 parts (weight, same below) and ethylene-
Butene-1 copolymer (density 0.88 g/cm 3 , butene-1 copolymer
1 content 15 mol%, melt index 4) 30 parts of a maleic anhydride graft modified product (maleic anhydride grafting amount 0.4% by weight) was heated at 180°C using a 40 mm diameter extruder (L/D = 20). The mixture was kneaded at a temperature of 100 mL, and then pelletized. The physical properties of the resulting resin composition were measured for the following items, and the results are shown in the table below. Bending rigidity: thickness 3 according to ASTM D-747
Measurements were made on a press sheet of mm. Tensile impact strength: 260 according to ASTM D-1822
Flow direction (longitudinal direction) of 80 x 140 x 2 mm square plate injection molded at °C
And the values in the direction perpendicular to this (lateral direction) were measured at 23°C and -30°C, respectively. Bending resistance: Using a daytimer tester, the above square plate was bent under the condition of -5℃ and without notches, and the number of times the square plate was bent until defects such as cracking, netting, peeling, and cutting occurred was measured. Layer peelability: Judgment visually on the square plate Example 2 In Example 1, instead of the ethylene-butene-1 copolymer graft modified product, ethylene-propylene copolymer (density 0.88 cm 3 /g, propylene-containing The same amount of maleic anhydride graft modified product (maleic anhydride grafting amount 0.4% by weight) was used. Example 3 In Example 1, other ionomer resins (Mitsui Polychemical product Himilan 1557, Zn type,
The same amount of melt index 5.0) was used. Example 4 In Example 3, the same amount of the graft modified ethylene-propylene copolymer used in Example 2 was used in place of the graft modified ethylene-butene-1 copolymer. Example 5 In Example 3, ionomer resin and ethylene-butene-1 copolymer were used in proportions of 85 parts and 15 parts, respectively. Example 6 In Example 3, ionomer resin and ethylene-butene-1 copolymer were used in amounts of 50 parts each. Comparative Example 1 In Example 1, 30 parts of the ethylene-butene-1 copolymer that was not graft modified was used as it was. Comparative Example 2 In Example 2, 30 parts of the ethylene-propylene copolymer that was not graft modified was used as it was. Comparative Example 3 In Example 3, 30 parts of the ethylene-butene-1 copolymer that was not graft modified was used as it was. Comparative Example 4 In Comparative Example 2, another ethylene-propylene copolymer (density 0.88 g/cm 3 , propylene content 20
The same amount of mol %, melt index 1.2) was used. Comparative Example 5 In Comparative Example 2, the same amount of yet another ethylene-propylene copolymer (density 0.88 g/cm 3 , propylene content 20 mol %, melt index 5.0) was used. Comparative Example 6 The ionomer resin used in Example 3 was used alone. Comparative Example 7 The ionomer resin used in Example 1 was used alone. Comparative Example 8 Another ionomer resin (Mitsui Polychemical product Himilan) showing approximately the same bending rigidity as each resin composition of Examples 1 to 4 and Comparative Examples 1 to 5 was used.
1652, Zn type, melt index 5.0) was used alone. The measurement results of Examples 2-6 and Comparative Examples 1-8 are also shown in the following table.

【表】 以上の結果から、アイオノマー樹脂単体のもの
と比較して、これに低結晶性乃至非結晶性エチレ
ン−α−オレフイン共重合体を混合したものは、
エチレン−ブテン−1共重合体では耐衝撃性、耐
屈曲性が改善され、層状剥離性も示さないが、エ
チレン−プロピレン共重合体ではこれらのいずれ
の点でも格別の改善を示さず、これに対して低結
晶性乃至非結晶性エチレン−α−オレフイン共重
合体のグラフト変性物の混合物にあつては、ベー
スポリマーたるエチレン−α−オレフイン共重合
体の種類によらず、剛性を実質的に低下させるこ
となく、一段と顕著な耐衝撃性および耐屈曲性の
改善がなされており、層状剥離性も示していな
い。
[Table] From the above results, compared to the ionomer resin alone, the mixture of low-crystalline or non-crystalline ethylene-α-olefin copolymer has a
Ethylene-butene-1 copolymer has improved impact resistance and bending resistance, and does not exhibit delamination properties, but ethylene-propylene copolymer does not show any particular improvement in any of these respects, and On the other hand, in the case of a mixture of a graft modified product of a low-crystalline or non-crystalline ethylene-α-olefin copolymer, the stiffness can be substantially reduced regardless of the type of ethylene-α-olefin copolymer used as the base polymer. A further significant improvement in impact resistance and flex resistance is achieved without any deterioration, and no delamination properties are shown.

Claims (1)

【特許請求の範囲】 1 (A)エチレン−α,β−不飽和カルボン酸共重
合体またはエチレン−α,β−不飽和カルボン酸
−α,β−不飽和カルボン酸エステル3元共重合
体の金属イオン架橋体50〜90重量部および(B)密度
0.85〜0.90g/cm3(ASTM D−1505)の低結晶
性乃至非結晶性エチレン−α−オレフイン共重合
体へα,β−不飽和カルボン酸またはその誘導体
をグラフト共重合させたグラフト変性物50〜10重
量部を混合してなる成形用樹脂組成物。 2 (B)成分がエチレン−ブテン−1共重合体のグ
ラフト変性物である特許請求の範囲第1項記載の
成形用樹脂組成物。 3 (B)成分がエチレン−プロピレン共重合体のグ
ラフト変性物である特許請求の範囲第1項記載の
成形用樹脂組成物。 4 (B)成分がエチレン−α−オレフイン共重合体
の無水マレイン酸グラフト変性物である特許請求
の範囲第1項、第2項または第3項記載の成形用
樹脂組成物。 5 (B)成分がα,β−不飽和カルボン酸またはそ
の誘導体を0.1〜5.0重量%グラフト共重合させた
グラフト変性物である特許請求の範囲第1項また
は第4項記載の成形用樹脂組成物。
[Scope of Claims] 1 (A) Ethylene-α,β-unsaturated carboxylic acid copolymer or ethylene-α,β-unsaturated carboxylic acid-α,β-unsaturated carboxylic acid ester ternary copolymer 50 to 90 parts by weight of metal ion crosslinked material and (B) density
Graft modified product obtained by graft copolymerizing α, β-unsaturated carboxylic acid or its derivative onto a low-crystalline to non-crystalline ethylene-α-olefin copolymer of 0.85 to 0.90 g/cm 3 (ASTM D-1505). A molding resin composition prepared by mixing 50 to 10 parts by weight. 2. The molding resin composition according to claim 1, wherein component (B) is a graft modified product of an ethylene-butene-1 copolymer. 3. The molding resin composition according to claim 1, wherein component (B) is a graft modified product of an ethylene-propylene copolymer. 4. The molding resin composition according to claim 1, 2 or 3, wherein component (B) is a maleic anhydride graft modified product of an ethylene-α-olefin copolymer. 5. The molding resin composition according to claim 1 or 4, wherein component (B) is a graft-modified product obtained by graft copolymerizing 0.1 to 5.0% by weight of an α,β-unsaturated carboxylic acid or a derivative thereof. thing.
JP13878283A 1983-07-29 1983-07-29 Molding resin composition Granted JPS6035043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13878283A JPS6035043A (en) 1983-07-29 1983-07-29 Molding resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13878283A JPS6035043A (en) 1983-07-29 1983-07-29 Molding resin composition

Publications (2)

Publication Number Publication Date
JPS6035043A JPS6035043A (en) 1985-02-22
JPS645066B2 true JPS645066B2 (en) 1989-01-27

Family

ID=15230074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13878283A Granted JPS6035043A (en) 1983-07-29 1983-07-29 Molding resin composition

Country Status (1)

Country Link
JP (1) JPS6035043A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62227973A (en) * 1986-03-29 1987-10-06 Mitsubishi Chem Ind Ltd Bondable resin composition

Also Published As

Publication number Publication date
JPS6035043A (en) 1985-02-22

Similar Documents

Publication Publication Date Title
US5789475A (en) Adipic acid modified-ionomers having improved properties and processability
US5889114A (en) Thermoplastic elastomeric compositions
US5338801A (en) Compositions of propylene polymer materials and olefin polymer materials with reduced gloss
JP2007513250A (en) Products containing rigid and elastic ethylene copolymer compositions
US6034177A (en) Propylene resin composition
JPH10506139A (en) Halogen-free flexible thermoplastic polyolefin composition
JPH066656B2 (en) Polymer composition
JPS645066B2 (en)
JPS6015409A (en) Adhesive polyolefin composition
JP3189477B2 (en) Polypropylene resin molded product
JP3338247B2 (en) Thermoplastic polymer composition
JPH06313075A (en) Ionomer composition and its use
JP3323413B2 (en) Thermoplastic resin composition
JPH04130146A (en) Composition containing ethylene copolymer
JP3476159B2 (en) Resin composition
JPS6365102B2 (en)
KR100513621B1 (en) Polypropylene resin composition
JP3373599B2 (en) Thermoplastic resin composition
JP4749524B2 (en) Flame retardant resin composition
JPS61185546A (en) Olefin polymer composition
JPS58108241A (en) Mica-containing propylene polymer composition
JP3331009B2 (en) Polypropylene resin composition
JPS62169841A (en) Ethylene/alpha-olefin copolymer rubber composition
JP3558802B2 (en) Resin composition
JPH0657048A (en) Thermoplastic resin composition